3.155J/6.152J Lecture 2: IC Lab Overview

Prof. Martin A. Schmidt
Massachusetts Institute of Technology
9/8/2003
Outline

- The MOSFET Structure
- Semiconductor Doping
- The MOSFET as a Switch
- A MOSFET Process
- The MOS Capacitor Process
- Recommended reading
 - Plummer, Chapter 1
N-Channel MOSFET
A Word About Doping....

Silicon has four valence electrons
It covalently bonds with 4 adjacent atoms in the crystal lattice

Fall 2003 – M.A. Schmidt
3.155J/6.152J – Lecture 2 – Slide 5
Increasing Temperature Causes Creation of Free Carriers

10^{10} \text{ cm}^{-3} \text{ free carriers at } 23\text{C} (\text{out of } 2 \times 10^{23} \text{ cm}^{-3})

\rightarrow \text{ Intrinsic Conductivity}
N-type Doping

Phosphorus has 5 valence electrons
‘Donates’ one conduction electron – \(n\text{-type} \)

Our substrate has \(10^{15} \text{ cm}^{-3} \) phosphorus (1 in \(10^8 \))
Boron has 3 valence electrons
‘Accepts’ one electron from lattice
Creates a ‘hole’ – *p-type*
Counter Doping

The addition of one more B than P causes the doping type to change from n-type to p-type.
Counter Doping Process

n-type \((10^{15} \text{ cm}^{-3}) \)

Implant Boron and Anneal

p-type \((>10^{15} \text{ cm}^{-3}) \)

n-type \((10^{15} \text{ cm}^{-3}) \)

Fall 2003 – M.A. Schmidt
P/N Junction

p-type

Depletion Region

n-type

Fall 2003 – M.A. Schmidt

3.155J/6.152J – Lecture 2 – Slide 11
P/N Junction - Diode

I

p-type n-type

+ V −

+ V −

I

V

Fall 2003 – M.A. Schmidt

3.155J/6.152J – Lecture 2 – Slide 12
N-Channel MOSFET Operation

0 V \rightarrow $+V_G$

0 V

$+V_D$

n-type

Oxide

n-type

p-type

Fall 2003 – M.A. Schmidt

3.155J/6.152J – Lecture 2 – Slide 13
MOSFET as a Switch

Fall 2003 – M.A. Schmidt

3.155J/6.152J – Lecture 2 – Slide 14
Microfabricated Devices

- **Starting Material**
 - Single crystal silicon

- **Mask Set**
 - Contains x,y info
 (Top View)

- **Process Sequence**
 - Contains z info
 (Cross Section)
Sample Mask Set

- Four Levels (Masks)

<table>
<thead>
<tr>
<th>Mask</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active Area</td>
</tr>
<tr>
<td>2</td>
<td>Polysilicon</td>
</tr>
<tr>
<td>3</td>
<td>Contact Cuts</td>
</tr>
<tr>
<td>4</td>
<td>Aluminum</td>
</tr>
</tbody>
</table>

Transistor (MOSFET)
Diffusion Resistor (Diode)
Polysilicon Resistor
Metal Resistor

Fall 2003 – M.A. Schmidt

3.155J/6.152J – Lecture 2 – Slide 16
Our Process

- Poly Gate pMOS
 - Polycrystalline Silicon
 - Source
 - Gate
 - Drain

Metal-Oxide-Semiconductor (MOSFET)

polysilicon

n-silicon
Starting Material

- 6” (150mm) Diameter Silicon Wafer
 - 30 +/- 1 mil thick (~750 μm)
 - n-type (doped with Phosphorus)
 - 1.5 Ω-cm resistivity (10^{15} cm^{-3} Phos)
 - <100> crystal orientation

![Diagram of silicon wafer with crystal orientations labeled](image)
FET Process Steps

1. Characterize the wafer (resistivity, orientation, and type)
2. Grow 5000A ‘Field Oxide’ for device isolation

Typically at 800-1100C for 1 hour in O₂ or steam
Process Steps

3. Pattern Active Area (Mask #1)

1. Coat with photoresist
2. Expose
3. Develop
4. Etch*
5. Strip resist

*Wet etch
Process Steps

4. Grow 500A Gate Oxide

5. Deposit 5000A Polysilicon by LPCVD (low pressure chemical vapor deposition)
Process Steps

6. Pattern Polysilicon (Mask #2)
Process Steps

7. Etch Gate Oxide
8. Ion Implantation of Boron

9. Drive-In (950C in O₂)

Note self alignment
10. Strip Backside
Process Steps

11. Pattern Contact Cuts (Mask #3)
12. Evaporate Aluminum
Process Steps

13. Pattern Aluminum (Mask #4)
Process Steps

14. Sinter (400°C – N₂:H₂)
The Four Mask Process Yields

- Resistors
 - Metal
 - Polysilicon
 - Diffusion

- Capacitors
 - Metal-Silicon
 - Metal-Polysilicon
 - Polysilicon-Silicon
 - Gate Oxide
 - Field Oxide

- Diode
- MOSFET
- Bipolar Junction Transistor (low quality)
Our Labs

Lab Session 1
- 1.1 Lab Safety and Cleanroom Orientation
- 1.2 RCA (ICL RCA)
- 1.3 Gate Oxidation
 - Thermco Atmospheric Furnace (5D-FieldOx)
 - Dry Oxidation, 1000°C 60 minutes
- 1.4 Doped Polysilicon Deposition
 - Thermco LPCVD (6A-Poly)

Lab Session 2
- 2.1 Measure oxide thickness (UV1280)
- 2.2 HMDS, Photoresist Application, Postbake (SSI coater track)
- 2.3 Dry etch backside polysilicon (LAM490B)
- 2.4 Etch backside oxide in BOE until de-wet (OxEtch-BOE)
- 2.5 Strip frontisde resist with Matrix System One Stripper (Asher)

Lab Session 3
- 3.1 HMDS, Photoresist Application, Pre-bake (SSI coater track)
- 3.2 Exposure, Development, and Inspection (I-Stepper)
- 3.3 Dry-etch polysilicon (LAM490B)
- 3.4 Strip photoresist with Matrix System One Stripper (Asher)
- 3.5 Visual Inspection.
- 3.6 HF dip for 30 s (ICL Pre-Metal)
- 3.7 Device characterization: MOS Capacitor
 - Determine oxide capacitance.
 - Determine bulk dopant concentration.
 - Determine fixed interface charge.
- 3.8 Sheet resistance measurement: Van der Pauw structure
Lab Session 1

- 1.1 Lab Safety and Cleanroom Orientation
- 1.2 RCA (ICL RCA)
- 1.3 Gate Oxidation
 - Thermco Atmospheric Furnace (5D-FieldOx)
 - Dry Oxidation, 1000°C 60 minutes
- 1.4 Doped Polysilicon Deposition
 - Thermco LPCVD (6A-Poly)
Lab Session 2

- 2.1 Measure oxide thickness (UV1280)
- 2.2 HMDS, Photoresist Application, Postbake (SSI coater track)
- 2.3 Dry etch backside polysilicon (LAM490B)
- 2.4 Etch backside oxide in BOE until de-wet (OxEtch-BOE)
- 2.5 Strip frontisde resist with Matrix System One Stripper (Asher)
Lab Session 3

- 3.1 HMDS, Photoresist Application, Pre-bake (SSI coater track)
- 3.2 Exposure, Development, and Inspection (I-Stepper)
- 3.3 Dry-etch polysilicon (LAM490B)
- 3.4 Strip photoresist with Matrix System One Stripper (Asher)
- 3.5 Visual Inspection
Lab Session 3 (con’t.)

- 3.6 HF dip for 30 s (ICL Pre-Metal)
- 3.7 Device characterization: MOS Capacitor
 - Determine oxide capacitance.
 - Determine bulk dopant concentration.
 - Determine fixed interface charge.
- 3.8 Sheet resistance measurement: Van der Pauw structure