1.

$$
\begin{aligned}
& \vec{\nabla}^{2} p=\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}} \\
& \text { L.H.S. }=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial p}{\partial r}\right) \\
& \frac{\partial p}{\partial r}=\frac{\partial}{\partial r}\left(\frac{A}{r} e^{-i(k r-\omega t)}\right) \\
& =\left(-\frac{A}{r^{2}}-\frac{i A k}{r}\right) e^{-i(k r-\omega t)} \\
& r^{2} \frac{\partial p}{\partial r}=(-A-i A k r) e^{-i(k r-\omega t)} \\
& \frac{\partial}{\partial r}\left(r^{2} \frac{\partial p}{\partial r}\right)=(-i A k+(-A-i A k r)(-i k)) e^{-i(k r-\omega t)} \\
& \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial p}{\partial r}\right)=\left(-\frac{A k^{2}}{r}\right) e^{-i(k r-\omega t)} \\
& \text { R.H.S. }=\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}} \\
& =\frac{1}{c^{2}}\left(-\frac{A \omega^{2}}{r} e^{-i(k r-\omega t)}\right)
\end{aligned}
$$

Using the property, $c=\lambda f=\frac{\omega}{k}$, we can show that the L.H.S. is the same as R.H.S. (QED)
3.(a)

$$
I_{r e f}=\frac{p_{r e f}^{2}}{\rho c}=\frac{\left(1 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}\right)^{2}}{\left(1000 \mathrm{~kg} / \mathrm{m}^{3} \times 1500 \mathrm{~m} / \mathrm{s}\right)}=0.67 \times 10^{-18} \mathrm{Watt} / \mathrm{m}^{2}
$$

(b)

$$
\begin{gathered}
0.0002 \text { dyne } / \mathrm{cm}^{2} \times \frac{10^{4} \mathrm{~cm}^{2}}{1 \mathrm{~m}^{2}} \times \frac{10^{-} 5 \mathrm{~N}}{1 \text { dyne }}=2 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2} \\
I_{\text {ref }}=\frac{p_{r e f}^{2}}{\rho c}=\frac{\left(2 \times 10^{-5}\right)^{2}}{(1.21 \times 343)}=9.63 \times 10^{-13} \mathrm{Watt} / \mathrm{m}^{2}
\end{gathered}
$$

(c)

$$
S L=10 \log \frac{I}{I_{r e f}}
$$

For the whisper, $\mathcal{P}=10^{-10} \mathrm{~W}$ and for the shout, $\mathcal{P}=10^{-5} \mathrm{~W}$. Assuming that both the shout and the whisper are omni-directional, we can divide by 4π to get the intensities: $I_{\text {whisper }}=7.9^{-12}$ and $I_{\text {shout }}=7.9^{-7}$.
Using the air reference:

$$
\begin{aligned}
& I_{\text {whisper }}=10 \log \left(\frac{7.9^{-12}}{9.63 \times 10^{-13}}\right)=9.1 \mathrm{~dB} \text { re } 0.0002 \text { dyne } / \mathrm{cm}^{2} \\
& I_{\text {shout }}=10 \log \left(\frac{7.9^{-7}}{9.63 \times 10^{-13}}\right)=59.1 \mathrm{~dB} \text { re } 0.0002 \text { dyne } / \mathrm{cm}^{2}
\end{aligned}
$$

Using the underwater reference:

$$
\begin{aligned}
& I_{\text {whisper }}=10 \log \left(\frac{7.9^{-12}}{0.67 \times 10^{-18}}\right)=70.7 \mathrm{~dB} \text { re } 1 \mu \mathrm{~Pa} \\
& I_{\text {shout }}=10 \log \left(\frac{7.9^{-7}}{0.67 \times 10^{-18}}\right)=120.7 \mathrm{~dB} \text { re } 1 \mu \mathrm{~Pa}
\end{aligned}
$$

(d) If the whole world shouted at once (in the same place),

$$
I=\left(6 \times 10^{9}\right) \times 7.9^{-7} \mathrm{~W} / \mathrm{m}^{2}=4.74 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}
$$

Calculate sound pressure level in dB :

$$
\begin{gathered}
S L=10 \log \left(\frac{4.74 \times 10^{3}}{9.63 \times 10^{-13}}\right)=157 \mathrm{~dB} \text { re } 0.0002 \text { dyne } / \mathrm{cm}^{2} \\
S L=10 \log \left(\frac{4.74 \times 10^{3}}{0.67 \times 10^{-18}}\right)=218 \mathrm{~dB} \text { re } 1 \mu \mathrm{~Pa} .
\end{gathered}
$$

(e) For the rock band:

$$
\begin{gathered}
140 \mathrm{~dB}=10 \log \left(\frac{\mathrm{I}}{9.63 \times 10^{-13}}\right) \\
I=\left(9.63 \times 10^{-13}\right) \times 10^{14}=96.3 \text { Watts } / \mathrm{m}^{2} .
\end{gathered}
$$

What is the corresponding sound pressure level (SPL) in water?

$$
10 \log \left(\frac{96.3}{0.67 \times 10^{-18}}\right)=202 \mathrm{~dB} \text { re } 1 \mu \mathrm{~Pa} .
$$

(f) The rock band would be louder than the whale.
4. (a) From the definition, the intensity of A, I_{A} satisfies:

$$
100=10 \log _{10} \frac{I_{A}}{I_{r e f}}, \Rightarrow \frac{I_{A}}{I_{r e f}}=10^{10}
$$

Those of B and C satisfy respectively,

$$
\begin{aligned}
100 & =10 \log _{10} \frac{I_{B}}{I_{r e f}} \Rightarrow \frac{I_{B}}{I_{r e f}}=10^{10} \\
90 & =10 \log _{10} \frac{I_{C}}{I_{r e f}} \Rightarrow \frac{I_{C}}{I_{r e f}}=10^{9}
\end{aligned}
$$

Therefore, $I_{A+B}=\left(I_{A}+I_{B}\right)$ gives us

$$
\begin{aligned}
10 \log _{10}\left(\frac{I_{A}+I_{B}}{I_{\text {ref }}}\right) & =10 \log _{10}\left(\frac{I_{A}}{I_{\text {ref }}}+\frac{I_{B}}{I_{\text {ref }}}\right) \\
& =10 \log _{10}\left(2 \cdot 10^{10}\right)=10\left(\log _{10} 2+10\right) \\
& \cong 103.0 \mathrm{~dB} \text { re } 1 \mu \mathrm{~Pa}
\end{aligned}
$$

(b)

$$
\begin{aligned}
10 \log _{10}\left(\frac{I_{A}+I_{C}}{I_{r e f}}\right) & =10 \log _{10}\left(\frac{I_{A}}{I_{r e f}}+\frac{I_{C}}{I_{r e f}}\right) \\
& =10 \log _{10}\left(10^{10}+10^{9}\right) \cong 100.4 \mathrm{~dB} \text { re } 1 \mu \mathrm{~Pa}
\end{aligned}
$$

(c)

$$
\begin{aligned}
10 \log _{10}\left(\frac{I_{A}+I_{B}+I_{C}}{I_{\text {ref }}}\right) & =10 \log _{10}\left(\frac{I_{A}}{I_{r e f}}+\frac{I_{B}}{I_{r e f}}+\frac{I_{C}}{I_{r e f}}\right) \\
& =10 \log _{10}\left(10^{10}+10^{10}+10^{9}\right) \cong 103.2 \mathrm{~dB} \text { re } 1 \mu \mathrm{~Pa}
\end{aligned}
$$

5.
6. $f=30 \mathrm{kHz} ; \lambda=c / f=1500 / 15000=0.05 \mathrm{~m}$.
$\tan \theta_{3 d B}=(25 / 1000) \Longrightarrow \theta_{3 d B}= \pm 1.43^{\circ}$
$\theta_{3 d B}= \pm \frac{29.5 \lambda}{D}= \pm 1.43$
$D=\frac{29.5(0.05)}{1.43}=1.03$ meters.
7. $\mathrm{DI}=10 \log \left(\frac{\pi \mathrm{D}}{\lambda}\right)^{2}=10 \log \left(\frac{1.03 \pi}{0.05}\right)^{2}=36 \mathrm{~dB}$
8. $\mathrm{SL}=171+10 \log \mathcal{P}+D I=171+10 \log (1)+36=207 \mathrm{~dB}$ re $1 \mu \mathrm{~Pa}$ at 1 meter.
9. From matlab, $\alpha \approx 7.6 \mathrm{~dB} / \mathrm{km}$.
$\mathrm{TL}=20 \log r+\alpha r \times 10^{-3}=20 \log 1000+1(7.6)=60+7.6=67.6 \mathrm{~dB}$ re 1 meter.
10. Use the formula for echo level from Urick (and handout 2): $\mathrm{EL}=\mathrm{SL}-2 \mathrm{TL}+\mathrm{TS}=$ $207-2(67.6)=72 \mathrm{~dB}$ re $1 \mu \mathrm{~Pa}$ at 1 meter.
11. When ship rolls ± 10 degrees, the insonified area will vary between $\pm\left(10+\theta_{3 d B}\right)$ $= \pm 11.5$ degrees in the across track direction. $1000 \tan \left(11.5^{\circ}\right)=203$ meters. Hence the ensonified region of the bottom will be up to ± 203 meters wide.
Note also that it takes $2 \times 1000 \mathrm{~m} \div 1500 \mathrm{~m} / \mathrm{sec} \approx 1.3$ seconds for a sound ping to travel from the ship to the bottom and back. Depending on the roll rate of the ship, there is a good chance the beam will be pointing in a different direction at reception than for transmission of the pulse. This would result in a much weaker detection from one of the sidelobes of the beam pattern, or in no detection at all.
12. (c) Expand $D \rho / D t$ using the definition of substantial derivative,

$$
\frac{D \rho}{D t}=\frac{\partial \rho}{\partial t}+(\vec{u} \cdot \nabla) \rho
$$

and insert in Equation 1 to yield

$$
\frac{\partial \rho}{\partial t}+(\vec{u} \cdot \nabla) \rho+\rho(\nabla \cdot \vec{u})=0
$$

The last two terms are the result of applying the chain rule to the divergence of a scalar times a vector, i.e.

$$
\nabla \cdot(\rho \vec{u})=(\vec{u} \cdot \nabla) \rho+\rho(\nabla \cdot \vec{u})
$$

and we get the result:

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho \vec{u})
$$

(d) We can neglect the effect of gravity in deriving the wave equation because we are assuming infinitesimal motion. Applying the definition of the substantial derivative $D u / D t$ and applying Equation 4 yields:

$$
\begin{gathered}
\rho\left[\frac{\partial u}{\partial t}+(\vec{u} \cdot \nabla) u\right]=\left\{-\frac{\partial p}{\partial x}+0+0\right\} \\
\rho\left[\frac{\partial v}{\partial t}+(\vec{u} \cdot \nabla) v\right]=\left\{0-\frac{\partial p}{\partial y}+0\right\} \\
\rho\left[\frac{\partial w}{\partial t}+(\vec{u} \cdot \nabla) w\right]=\left\{0+0-\frac{\partial p}{\partial z}\right\}
\end{gathered}
$$

(f) The perturbations for pressure and density are $p=p_{0}+p^{\prime}, \rho=\rho_{0}+\rho^{\prime}$. For the three components of velocity we have $u=u_{0}+u^{\prime}, v=v_{0}+v^{\prime}$, and $w=w_{0}+w^{\prime}$, however, we are told that $u_{0}=v_{0}=w_{0}=0$. Hence, the velocity vector \vec{u} is simply $\overrightarrow{u^{\prime}}=u^{\prime} \vec{i}+v^{\prime} \vec{j}+v^{\prime} \vec{k}$. Applying these to the mass equation yields:

$$
\begin{gathered}
\frac{\partial\left(\rho_{0}+\rho^{\prime}\right)}{\partial t}=-\nabla \cdot\left(\left(\rho_{0}+\rho^{\prime}\right) \overrightarrow{u^{\prime}}\right) \\
\frac{\partial \rho_{0}}{\partial t}+\frac{\partial \rho^{\prime}}{\partial t}=-\rho_{0} \nabla \cdot \overrightarrow{u^{\prime}}-\nabla \cdot\left(\rho^{\prime} \overrightarrow{u^{\prime}}\right)
\end{gathered}
$$

Since ρ_{0} is constant, $\partial \rho_{0} / \partial t=$ zero. Further, $\nabla \cdot\left(\rho^{\prime} \overrightarrow{u^{\prime}}\right)$ is a second-order term, and can be dropped, yielding:

$$
\frac{\partial \rho^{\prime}}{\partial t}=-\rho_{0} \nabla \cdot \overrightarrow{u^{\prime}}
$$

For the momentum equations, first consider the equation for x :

$$
\begin{gathered}
\rho\left[\frac{\partial u^{\prime}}{\partial t}+\left(\overrightarrow{u^{\prime}} \cdot \nabla\right) u^{\prime}\right]=\frac{\partial\left(p_{0}+p^{\prime}\right)}{\partial x} \\
\rho\left[\frac{\partial u^{\prime}}{\partial t}+\left(u^{\prime} \frac{\partial u^{\prime}}{\partial x}+v^{\prime} \frac{\partial u^{\prime}}{\partial y}+w^{\prime} \frac{\partial u^{\prime}}{\partial z}\right)\right]=\frac{\partial p_{0}}{\partial x}+\frac{\partial p^{\prime}}{\partial x}
\end{gathered}
$$

The three terms that comprise the 2 nd part of left hand side of this equation are all quadratic, and hence can be dropped. Since p_{0} is constant, $\partial p_{0} / \partial x$ is zero, and we are left with:

$$
\rho \frac{\partial u^{\prime}}{\partial t}=\frac{\partial p^{\prime}}{\partial x}
$$

We apply the same process to the y and z momentum equations to yield:

$$
\begin{aligned}
& \rho \frac{\partial v^{\prime}}{\partial t}=\frac{\partial p^{\prime}}{\partial y} \\
& \rho \frac{\partial w^{\prime}}{\partial t}=\frac{\partial p^{\prime}}{\partial z}
\end{aligned}
$$

Which can be combined into a single vector equation:

$$
\rho \frac{\partial \overrightarrow{u^{\prime}}}{\partial t}=\nabla \cdot p^{\prime}
$$

(g) Differentiate the new mass equation with respect to time

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\frac{\partial \rho^{\prime}}{\partial t}\right) & =\frac{\partial}{\partial t}\left(-\rho_{0} \nabla \cdot \overrightarrow{u^{\prime}}\right) \\
\frac{\partial^{2} p^{\prime}}{\partial t^{2}} & =-\rho_{0} \frac{\partial}{\partial t}\left(\nabla \cdot \overrightarrow{u^{\prime}}\right) \tag{1}
\end{align*}
$$

and take the divergence of the momentum equations:

$$
\begin{gather*}
\nabla \cdot\left(\rho \frac{\partial u^{\prime}}{\partial t}\right)=\nabla \cdot\left(\frac{\partial p^{\prime}}{\partial x}\right) \\
\rho\left(\nabla \cdot \frac{\partial \overrightarrow{u^{\prime}}}{\partial t}\right)=\nabla^{2} p^{\prime} \tag{2}
\end{gather*}
$$

Because $\nabla \cdot\left(\partial \overrightarrow{u^{\prime}} / \partial t\right)=\partial / \partial t\left(\nabla \cdot \overrightarrow{u^{\prime}}\right)$, the right hand side of Equation 1 equals the left hand side of Equation 2, yielding the desired result:

$$
\frac{\partial^{2}}{\partial t^{2}} \rho^{\prime}=\nabla^{2} p^{\prime}
$$

(i) Manipulate Equation 3 to solve for p :

$$
\rho=\frac{\rho_{\phi}}{1-p / k}
$$

$$
\begin{gathered}
\rho(1-p / k)=\rho_{\phi} \\
k \rho-\rho p=k \rho_{\phi} \\
p=k\left[1-\frac{\rho_{\phi}}{\rho}\right] .
\end{gathered}
$$

Subsititute $k=c^{2} \rho$ into this equation to yield

$$
p=c^{2} \rho\left[1-\frac{\rho_{\phi}}{\rho}\right]=c^{2} \rho-c^{2} \rho_{\phi}
$$

and take the derivative with respect to ρ

$$
\frac{\partial p}{\partial \rho}=c^{2}
$$

(j) From the chain rule, we can expand $\partial^{2} \rho^{\prime} / \partial t^{2}$:

$$
\begin{aligned}
& \frac{\partial^{2} \rho^{\prime}}{\partial t^{2}}=\frac{\partial}{\partial t}\left[\frac{\partial \rho^{\prime}}{\partial t}\right]=\frac{\partial}{\partial t}\left[\frac{\partial p^{\prime}}{\partial t} \frac{\partial \rho^{\prime}}{\partial p^{\prime}}\right] \\
& =\frac{\partial p^{\prime}}{\partial t} \frac{\partial}{\partial t}\left(\frac{\partial \rho^{\prime}}{\partial p^{\prime}}\right)+\frac{\partial \rho^{\prime}}{\partial p^{\prime}} \frac{\partial}{\partial t}\left(\frac{\partial p^{\prime}}{\partial t}\right)
\end{aligned}
$$

but

$$
\frac{\partial}{\partial t}\left(\frac{\partial \rho^{\prime}}{\partial p^{\prime}}\right)=0
$$

so we can drop the first term, and we are left with:

$$
\frac{\partial^{2} \rho^{\prime}}{\partial t^{2}}=\frac{\partial \rho^{\prime}}{\partial p^{\prime}} \frac{\partial^{2} p^{\prime}}{\partial t^{2}}
$$

Using our result of c^{2} for $\partial p / \partial \rho$, we get:

$$
\frac{\partial^{2} \rho^{\prime}}{\partial t^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} p^{\prime}}{\partial t^{2}}
$$

Finally, substituting this into Equation 8, we obtain the desired result:

$$
\frac{1}{c^{2}} \frac{\partial^{2} p^{\prime}}{\partial t^{2}}=\nabla^{2} p^{\prime}
$$

