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Abstract
Knowing which method parameters may be mutated during
a method’s execution is useful for many software engineer-
ing tasks. We present an approach to discovering parameter
immutability, in which several lightweight, scalable analyses
are combined in stages, with each stage refining the overall
result. The resulting analysis is scalable and combines the
strengths of its component analyses. As one of the compo-
nent analyses, we present a novel, dynamic mutability anal-
ysis and show how its results can be improved by random
input generation. Experimental results on programs of up to
185 kLOC show that, compared to previous approaches, our
approach increases both scalability and overall accuracy.

1. Introduction
Knowing which method parameters are accessed in a read-
only way, and which ones may be mutated, is useful in many
software engineering tasks, such as modeling [8], verifica-
tion [54], compiler optimizations [11, 47], program transfor-
mations such as refactoring [20], test input generation [2],
regression oracle creation [32, 59], invariant detection [18],
specification mining [13], program slicing [58, 52], and pro-
gram comprehension [17].

Previous work on mutability has employed static analysis
techniques to detectimmutableparameters. Static analysis
approximations can lead to weak results and computing bet-
ter approximations affects scalability. Dynamic analyses of-
fer an attractive complement to static approaches, both in not
using approximations and in detectingmutableparameters.

This paper presents an approach to the mutability prob-
lem that combines the strengths of static and dynamic anal-
yses to create an analysis that is both accurate and scalable.
In our approach, different analyses are combined in stages,
forming a “pipeline”, with each stage refining the overall re-
sult. The result is an analysis that is more accurate and more
scalable than previously developed techniques.

This paper makes the following contributions:

• The first formal definition of reference immutability that
takes into account parameter aliasing.
• A staged analysis approach for discovering parameter mu-

tability. The idea of staged analyses is not new, but a
staged approach has not been investigated in the context

of mutability analysis. Our staged approach is unusual in
that it combines static and dynamic stages and it explicitly
represents analysis imprecision. The framework is sound,
but an unsound analysis may be used as a component, and
we examine the tradeoffs involved.
• Mutability analyses. The primary contribution is a novel,

dynamic analysis that scales well, yields accurate results
(it has a sound mode as well as optional heuristics), and
complements existing analyses. We extend the dynamic
analysis with random input generation, which improves
the analysis results by increasing code coverage.
• Evaluation. We have implemented our framework and

analyses for Java, and we investigate the costs and ben-
efits of various sound and unsound techniques, including
both our own and that of S̆alcianu and Rinard [48]. Our
results show that a well-designed collection of fast, simple
analyses can outperform a sophisticated analysis in both
scalability and accuracy.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the problem of inferring parameter mutabil-
ity and illustrates it on an example. Section 3 presents our
staged mutability analysis. Sections 4 and 5 describe the dy-
namic and static mutability analyses that we developed as
components in the staged analysis. Section 6 describes the
experimental evaluation. Section 7 surveys related work, and
Section 8 concludes.

2. Parameter Reference Immutability
The goal of parameter mutability analysis is the classifica-
tion of each method parameter (including the receiver) as
either reference-mutable or reference-immutable.

Appendix A formally defines reference (im)mutability.
Informally, reference immutability guarantees that a given
reference is not used to modify its referent. Parameterp of
methodm is reference-mutableif there exists an execution of
m in which p is usedto mutate the state of the object pointed
to by p. Parameterp is said to beusedin a mutation, if the
left hand side of the mutating assignment can be replaced
with a series of executedfield accesses fromp. (Array access
are treated analogously throughout this paper.) If no such
execution exists, the parameterp is reference-immutable.
The state of an objecto consists of the values ofo’s primitive
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1 class C {
2 public C next;
3 }
4

5 class Main {
6 void modifyParam1(C p1, boolean doIt) {
7 if (doIt) {
8 p1.next = null;
9 }

10 }
11

12 void modifyParam1Indirectly(C p2, boolean doIt) {
13 modifyParam1(p2, doIt);
14 }
15

16 void modifyAll(C p3, C p4, C p5, C p6, boolean doIt) {
17 p4.next = p3;
18 C c = p5.next;
19 c.next = null;
20 modifyParam1Indirectly(p6, doIt);
21 }
22

23 void modifyParam2Indirectly(C p7, C p8) {
24 modifyParam1(p8, true);
25 }
26 }

Figure 1. Example code that illustrates our staged approach
to parameter immutability. All non-primitive parameters
other thanp7 aremutable.

fields (e.g.,int, float) and the states of all objects pointed
to by o’s non-primitive fields. The mutation may occur inm
itself or in any method thatm (transitively) calls.

Reference immutability may be combined with aliasing
information at each call site to determine whether a specific
object passed as a parameter may change [6, 48]. If the
object is unreachable from anymutableparameter, then the
call will not change it.

2.1 Example

In the code in Figure 1, parameterp7 is reference-immutable,
and all non-boolean parameters other thanp7 are reference-
mutable, because there exists an execution of their declaring
method such that the object pointed to by the parameter ref-
erence is modifiedvia the reference.
immutableparameters:

• p7 is reference-immutable. An object passed top7 might
be mutated by an execution of methodmodifyParam2-
Indirectly; for example in a call wherep7 andp8 are
aliased, thereforep7 is object-mutable. However, no exe-
cution of the method can cause a mutation via parameter
p7, hence parameterp7 is reference-immutable.

mutableparameters:

• p1 may be directly modified inmodifyParam1 (line 8).
• p2 is passed tomodifyParam1, in which it may be mu-

tated.
• p3 is mutablebecause the state of the object passed to
p3 can get modified on line 19 viap3. This can happen
becausep4 andp5 might be aliased; for example, in the
call modifyAll(x1, x2, x2, x3, false). In this case, the

reference top3 is copied intoc and then used to perform
a modification on line 19.
• p4 is directly modified inmodifyAll (line 17). Note that

line 17 doesnot modify p3, p5, or p6 because the mu-
tation occurs via referencep4. In this paper, we are con-
cerned withreference-(im)mutability rather thanobject-
(im)mutabilityand thus the reference via which the modi-
fication happens is significant.
• p5 is mutablebecause line 19 modifiesp5.next.next.
• p6 is passed tomodifyParam1Indirectly, in which it

may be mutated.
• p8 is passed tomodifyParam1, in which it may be mu-

tated.

Our dynamic and static analyses complement each other
to classify parameters intomutableand immutable, in the
following steps:

1. Initially, all parameters areunknown.
2. A mostly flow-insensitive, intra-procedural static analysis

classifiesp1, p4 andp5 asmutable. The analysis classi-
fies p7 as immutable—there is no direct mutation in the
method and the parameter is not used in a method call.

3. An inter-procedural static analysis propagates the current
classification along the call-graph and classifiesp2, p6,
andp8 asmutable.

4. Dynamic analysis needs an example execution in order to
classify parameters. If the following main method

1 void main() {
2 modifyAll(x1, x2, x2, x3, false);
3 }

is supplied, the dynamic analysis will classifyp3 asmu-
table(the other parameters are leftunknown).

Our staged analysis correctly classifies all parameters in
Figure 1. However, this example poses difficulties for purely
static or purely dynamic techniques. On the one hand, static
techniques have difficulties correctly classifyingp3. This is
because, to avoid over-conservativeness, static analyses of-
ten assume that on entry to a method all parameters are fully
un-aliased, i.e., point to disjoint parts of the heap. In our
example, this assumption may lead such analyses to incor-
rectly classifyp3 asimmutable(in fact, S̆alcianu uses a sim-
ilar example to illustrate the unsoundness of his analysis [47,
p.78]). On the other hand, dynamic analyses are limited to a
specific execution and only consider modifications that hap-
pen during that execution. In our example, a purely dynamic
technique may incorrectly classifyp2 andp6 as immutable
because during the execution ofmain, those parameters are
not modified.

3. Staged Mutability Analysis
In our approach, mutability analyses are combined in stages,
forming a “pipeline”. The input to the first stage is the ini-
tial classification of all parameters (typically, allunknown,
though parameters declared in the standard libraries may
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be pre-classified). Each stage of the pipeline refines the re-
sults computed by the previous stage by classifying some
unknownparameters. Once a parameter is classified asim-
mutableor immutable, further stages do not change the clas-
sification. The output of the last stage is the final classifica-
tion, in which some parameters may remainunknown.

Combining mutability analyses can yield an analysis that
has better accuracy than any of the components. For exam-
ple, a static analysis can cover the whole program code,
while a dynamic analysis can conclusively prove the pres-
ence of a mutation.

Combining analyses in pipelines also has performance
benefits—a component analysis in a pipeline may ignore
code for which all parameters have been classified asmu-
table or immutable. This can permit the use of techniques
that would be too computationally expensive if applied to an
entire program.

The problem of mutability inference is undecidable, so
no analysis can be both sound and complete. An analysis
is i-sound if it never classifies amutable parameter as
immutable. An analysis ism-sound if it never classifies an
immutableparameter asmutable. An analysis iscompleteif
it classifies every parameter as eithermutableor immutable.

In our staged approach, analyses may explicitly represent
their incompleteness using theunknownclassification. Thus,
an analysis result classifies parameters into three groups:
mutable, immutable, andunknown. Previous work that used
only two output classifications [44, 42] loses information by
conflating parameters/methods that are known to be mutable
with those where analysis approximations prevent definitive
classification.

Different clients of mutability analyses have different re-
quirements. For example, using immutability for compiler
optimizations requires an i-sound analyses, while using im-
mutability in test generation benefits from more complete
classification and can tolerate some classification mistakes.
To address the needs of different mutability analysis con-
texts, the analyses presented in this paper can be combined
in pipelines with different properties. For example, the client
of the analysis can create an i-sound analysis by combining
only i-sound components (all of our analyses have i-sound
variations), while clients who desire more complete analy-
ses may use i-unsound components as well.

4. Dynamic Mutability Analysis
Our dynamic mutability analysis observes the program’s
execution and classifies asmutablethose method parameters
that are used to mutate objects. The algorithm is m-sound: it
classifies a parameter asmutableonly when the parameter
is mutated. The algorithm is also i-sound: it classifies all
remaining parameters asunknown. Section 4.1 gives the idea
behind the algorithm, and Section 4.2 describes an optimized
implementation.

To improve the analysis results, we developed several
heuristics (Section 4.3). Each heuristic carries a different risk
of unsoundness. However, most are shown to be accurate in
our experiments. The analysis has an iterative variation with
random input generation (Section 4.4) that improves analysis
precision and run-time.

4.1 Conceptual Algorithm

During program execution, the dynamic analysis tags each
reference in the running program with the set of all formal
parameters (from any method invocation on the call stack)
whose fields were directly or indirectly accessed to obtain
the reference. When a reference is side-effected (i.e., used as
right-hand-side in a field-write), all formal parameters in its
set are classified as mutable. The analysis tags references,
not objects, because more than one reference can point to
the same object. Primitives need not be tagged, as they are
immutable.

The algorithm for detecting mutable parameters is given
by a set of data-flow rules. The rules track mutations to each
parameter. Next, we present those rules informally. The rules
are formalized in Appendix A.

1. On method entry, the algorithm adds each formal param-
eter (that is classified asunknown) to the parameter set of
the corresponding actual parameter reference.

2. On method exit, the algorithm removes all parameters
for the current invocation from the parameter sets of all
references in the program.

3. Assignments, including pseudo-assignments for parame-
ter passing and return values, propagate the parameter sets
unchanged.

4. Field accesses also propagate the sets unchanged: the set
of parameters forx.f is the same as that ofx.

5. For a field writex.f = v, the algorithm classifies asmuta-
bleall parameters in the parameter set ofx.

The algorithm as presented so far has a significant run-
time cost—maintaining reference tag sets for all references
is computationally expensive. The next section presents an
alternative algorithm that we implemented.

4.2 Dynamic Analysis Algorithm

To overcome the performance problem of the algorithm in
Section 4.1, we developed an alternative algorithm that does
not maintain parameter reference tags and is, nevertheless,
i-sound and m-sound. The alternative algorithm is, however,
less complete—it classifies fewer parameters. In the alterna-
tive algorithm, parameterp of methodm is classified asmu-
table if: (i) the transitive state of the object thatp points to
changes during the execution ofm, and (ii) p is not aliased to
any other parameter ofm. Part (ii) is critical for maintaining
m-soundness of the algorithm—without part (ii), parameters
may be wrongly classified asmutablewhen they are aliased
to a mutableparameter during the execution (but are not,
themselves,mutable).
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The example code in Figure 1 illustrates the difference
between the conceptual algorithm presented in Section 4.1
and the algorithm presented in this section. When method
main executes, it callsmodifyAll. The conceptual algo-
rithm based on the definition (correctly) classifies all non-
boolean parameters (exceptp7 andp8) asmutable. The al-
ternative algorithm leavesp4 andp5 asunknown—when the
modification to the referent object happens (line 17), param-
etersp4 andp5 are aliased. Note that the inter-procedural
static analysis (Section 5.1) compensates for the incomplete-
ness of the dynamic analysis in this case and correctly clas-
sifiesp4 andp5 asmutable.

The algorithm permits an efficient implementation: when
methodm is called during the program’s execution, the anal-
ysis computes the setreach(m, p) of objects that are transi-
tively reachable from each parameterp via field references.
When the program writes to a field in objecto, the analy-
sis finds all parametersp of methods that are currently on
the call stack. For each such parameterp, if o ∈ reach(m, p)
andp is not aliased to other parameters ofm, then the anal-
ysis classifiesp as mutable. The algorithm checks alias-
ing by verifying emptiness of intersection of reachable sub-
heaps (ignoring immutable objects, such as boxed primi-
tives, which may be shared).

The implementation of the dynamic analysis is straight-
forward: the analyzed code is executed and instrumented at
load-time. The analysis works online, i.e., in tandem with
the target program, without creating a trace file. Our imple-
mentation includes the following three optimizations, which
together improve the run time by over 30×: (a) the analysis
determines object reachability by maintaining and traversing
its own data structure that mirrors the heap; this is faster than
using reflection, (b) the analysis computes the set of reach-
able objects lazily, when a modification occurs, and (c) the
analysis caches the set of objects transitively reachable from
every object, invalidating it when one of the objects in the
set is modified.

4.3 Dynamic Analysis Heuristics

The dynamic analysis algorithm described in Sections 4.1
and 4.2 is m-sound—a parameter is classified asmutable
only if it is modified during execution. The recall (see Sec-
tion 6) of the algorithm can be greatly improved by using
heuristics. The heuristics allow the algorithm to take ad-
vantage of theabsenceof parameter modifications and of
the classification results computed by previous stages in the
analysis pipeline.

Using the heuristics may potentially introduce i-unsoundness
or m-unsoundness to the analysis results, but in practice,
they cause few misclassifications (see Section 6.4.5). We
developed the following heuristics:

(A) Classifying parameters asimmutable at the end
of the analysis.This heuristic classifies asimmutableall
(unknown) parameters that satisfy conditions that are set by
the client of the analysis. In our framework, the heuristic

classifies asimmutablea parameterp declared in method
m if p was not modified,m was executed at leastN times,
and the executions achieved block coverage of at leastt%.
Higher values of the thresholdN or t increase i-soundness
but decrease completeness; see Section 6.4.5.

The intuition behind this heuristic is that, if a method
executed multiple times, and the executions covered a large
part of the method, and the parameter was not modified
during any of those executions, then the parameter may in
fact beimmutable. This heuristic is m-sound but i-unsound.
In our experiments, this heuristic greatly improved recall and
was not a significant source of mistakes.

(B) Using current mutability classification. This heuris-
tic classifies a parameter asmutableif the object to which
the parameter points is passed in a method invocation to a
formal parameter that is already classified asmutable(by a
previous or the current analysis). That is, the heuristic does
not wait for the actual modification of the object but as-
sumes that the object will be modified if it is passed to a
mutableposition. The heuristic enables not tracking the ob-
ject in the new method invocation, which improves analysis
performance.

The intuition behind this heuristic is that if an object is
passed as an argument to a parameter that is known to be
mutable, then it is likely that the object will be modified
during the call. The heuristic is i-sound but m-unsound. In
our experiments, this heuristic improved recall and run time
of the analysis and caused few misclassifications.

(C) Classifying aliased mutated parameters.This heuris-
tic classifies a parameterp asmutableif the object thatp
points to is modified, regardless of whether the modification
happened through an alias top or through the referencep
itself. For example, if parametersa andb happen to point to
the same objecto, ando is modified, then this heuristic will
classify botha andb asmutable, even if it the modification
is only done using the formal parameter’s reference toa.

The heuristic is i-sound but m-unsound. In our experi-
ments, using this heuristic improved the results in terms of
recall, without causing any misclassifications.

4.4 Using Randomly Generated Inputs

The dynamic mutability analysis requires an example execu-
tion. Random generation [36] of method calls can comple-
ment (or even replace) an execution provided by a user, for
instance by increasing coverage.

Using only randomly generated execution has benefits
for a dynamic analysis. First, the analysis that uses random
executions may able to explore parts of the program that the
user-supplied execution may not reach. Second, the analysis
becomes fully-automated and requires only the program’s
code—the user need not provide a representative execution.
Third, each of the generated random inputs may be executed
immediately—this allows the client of the analysis to stop
generating inputs when the client is satisfied with the results
of the analysis computed so far. Forth, the client of the
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analysis may direct the input generator towards methods
for which the results are incomplete. In contrast, by using
a user-provided execution, the client does not have such a
fine-grained control.

Our generator gives a higher selection probability to
methods withunknownparameters and methods that have
not yet been executed by other dynamic analyses in the
pipeline. By default, the number of generated method calls
is max(5000,#methodsInProgram).

Generation of random inputs is iterative. After the dy-
namic analysis has classified some parameters, it makes
sense to propagate that information (see Section 5.3) and
to re-focus random input generation on the remainingun-
knownparameters. Such re-focusing iterations continue as
long as at least 1% of the remainingunknownparameters are
classified (the threshold is user-settable).

5. Static Mutability Analysis
This section describes a simple, scalable static mutability
analysis. It consists of two phases:S, an intraprocedural
analysis that classifies as (im)mutableparameters (never)
affected by field writes within the procedure itself (Sec-
tion 5.2), andP, an interprocedural analysis that propagates
mutability information between method parameters (Sec-
tion 5.3). P may be executed at any point in an analysis
pipeline afterS has been run, and may be run multiple times
(interleaving with other analyses).S and P both rely on a
coarse intraprocedural pointer analysis that calculates the pa-
rameters pointed to by each local variable (Section 5.1).

5.1 Intraprocedural Points-To Analysis

The analysis must determine which parameters can be
pointed to by each expression (without loss of generality,
we assume three-address SSA form and consider only lo-
cal variables). We use a coarse, scalable, intraprocedural,
flow-insensitive, 1-level field-sensitive, points-to analysis.

The points-to analysis calculates, for each local variable
l, a setP0(l) of parameters whose statel can point to di-
rectly and a setP(l) of parameters whose statel can point
to directly or transitively. The points-to analysis has “over-
estimate” and “underestimate” varieties; they differ in how
method calls are treated (see below).

For each local variablel and parameterp, the analysis
calculates a distance mapD(l, p) from the fields of object
l to a non-negative integer or∞. D(l, p)( f ) represents the
number of dereferences that can be applied tol starting
with a dereference of the fieldf to find an object pointed
to (possibly indirectly) byp. Each mapD(l, p) is either
strictly positive everywhere or is zero everywhere. Suppose
l directly referencesp or some object transitively pointed
to by p; thenD(l, p)( f ) = 0 for all f . As another example,
supposel. f .g.h = p.x; thenD(l, p)( f ) = 3. The distance map
D makes the analysis field-sensitive, but only at the first layer

of dereferencing; we found that this provided satisfactory
results.

The points-to analysis computesD(l, p) via a fixpoint
computation on each method. At the beginning of the com-
putation,D(p, p)( f ) = 0, andD(l, p)( f ) = ∞ for all other
l and p. Due to space constraints, we give the flavor of the
dataflow rules with a few examples:

• A field dereferencel1 = l2. f updates

∀g : D(l1, p)(g) ← min(D(l1, p)(g),D(l2, p)( f ) − 1)

D(l2, p)( f ) ← min(D(l2, p)( f ),min
g

D(l1, p)(g) + 1)

• A field assignmentl1. f = l2 updates

D(l1, p)( f ) ← min(D(l1, p)( f ),min
g

D(l2, p)(g) + 1)

∀g : D(l2, p)(g) ← min(D(l2, p)(g),D(l1, p)( f ) − 1)

• Method calls are handled either by assuming they create
no aliasing (creating an underestimate of the true points-to
sets) or by assuming they might alias all of their parame-
ters together (for an overestimate). If an underestimate is
desired, no values ofD(l, p)( f ) are updated. For an over-
estimate, letS be the set of all locals used in the statement
(including receiver and return value); for eachl ∈ S and
each parameterp, setD(l, p)( f )← minl′∈S,g D(l′, p)(g).

After the computation reaches a fixpoint, it sets

P(l) = {p | ∃ f : D(l, p)( f ) , ∞}
P0(l) = {p | ∀ f : D(l, p)( f ) = 0}

5.2 Intraprocedural Phase:S

The intraprocedural phase first calculates the “overestimate”
points-to analysis described in Section 5.1.

The analysis marks asmutablesome parameters that are
currently marked asunknown: For each mutationl1. f =

l2, the analysis marks all elements ofP0(l1) as mutable.
Because of infeasible paths, and because its pointer analysis
is an overestimate,S is notm-sound.

Next, S marks asimmutablesome parameters that are
currentlyunknown. The analysis computes a “leaked set”L
of locals, consisting of all arguments (including receivers) in
all method invocations and any local assigned to a static field
(in a statement of the formGlobal.field = local). The
analysis then marks asimmutableall unknownparameters
that are not in the set∪l∈LP(l) .

S never marks any parameter asimmutableif the param-
eter can be referred to in a mutation or escape to another
method body. However,S as presented so far is not i-sound,
because of it does not account for all possible aliasing re-
lationships; for an example (that is also misclassified byJ),
see Figure 10.

We correct this problem with a sound version, denoted
SS, that is just likeS except that it does not classify any
parameter asimmutableunless it can classify all parameters
asimmutable.
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5.3 Interprocedural Propagation Phase:P

The interprocedural propagation phase refines the current
parameter classification by propagating both mutability and
immutability information through the call graph. Given an
i-sound input classification and a precise call-graph, propa-
gation is i-sound.

Because propagation ignores the bodies of methods, the
P phase is sound only if the method bodies have already
been analyzed. It is intended to be run only after theS phase
of Section 5.1 has already be run. However, it can be run
multiple times (with other analyses in between).

5.3.1 Binding Multi-Graph

The propagation uses a variant (that accounts for pointer data
structures) of thebinding multi-graph(BMG) [12]. Each
node is a method parameterm.p. An edge fromm1.p1 to
m2.p2 exists iff m1 calls m2, passing as positionp2 part of
p1’s state (eitherp1 or an object that may be transitively
pointed-to byp1).

We create a BMG by generating a call-graph and trans-
lating each method call edge into a set of parameter depen-
dency edges, using the setsP(l) described in Section 5.1 to
tell which parameters correspond to which locals.

Our algorithm is parameterized by a call-graph construc-
tion algorithm. Our experiments used CHA [14]—the sim-
plest and least precise call-graph construction algorithm of-
fered by Soot. In the future, we want to investigate using
more precise but still scalable algorithms, such as RTA [3]
(available in Soot, but containing bugs that prevented us
from using it), or those proposed by Tip and Palsberg [53]
(not implemented in Soot).

The true BMG is not computable, because determin-
ing perfect aliasing and call information is undecidable.
Our analysis uses an under-approximation (i.e., it con-
tains a subset of edges of the ideal graph) and an over-
approximation (i.e., it contains a superset of edges of the
ideal graph) to the BMG as safe approximations for de-
termining mutable and immutable parameters, respectively.
As the over-approximated BMG, our implementation uses
the fully-aliasedBMG, which is created with an overesti-
mating points-to analysis which assumes that method calls
introduce aliasings betweenall parameters. As the under-
approximated BMG, our implementation uses theun-aliased
BMG, which is created with an underestimating points-
to analysis which assumes that method calls introduceno
aliasings between parameters. More precise approximations
could be computed by a more complex points-to analysis.

To construct the under-approximation of the true BMG,
propagation needs a call-graph that is an under-approximation
of the real call-graph. However, most existing call-graph
construction algorithms [14, 16, 3, 53] create an over-
approximation. Therefore, our implementation uses the
same call-graph for building the un- and fully-aliased BMGs.
In our experiments, this never caused misclassification of

program size classes parameters
(LOC) all non-trivial inspected

jolden 6,215 56 705 470 470
sat4j 15,081 122 1,499 1,136 118
tinysql 32,149 119 2,408 1,708 206
htmlparser 64,019 158 2,270 1,738 82
ejc 107,371 320 9,641 7,936 7,936
daikon 185,267 842 16,781 13,319 73
Total 410,102 1,617 33,304 26,307 8,885

Figure 2. Subject programs.

parameters asimmutable, and only a minimal number of
parameters misclassified asmutable.

5.3.2 Propagation Algorithm

Propagation refines the parameter classification in 2 phases.
Themutability propagation classifies asmutableall the

unknownparameters that can reach in the under-approximated
BMG (can flow to in the program) a parameter that is clas-
sified asmutable. Using an over-approximation to the BMG
would be unsound because spurious edges may lead propa-
gation to incorrectly classify parameters as mutable.

The immutability propagation phase classifies addi-
tional parameters asimmutable. This phase uses a fix point
computation: in each step, the analysis classifies asim-
mutableall unknownparameters that have nomutableor un-
knownsuccessors (callees) in the over-approximated BMG.
Using an under-approximation to the BMG would be un-
sound because if an edge is missing in the BMG, the analy-
sis may classify a parameter asimmutableeven though the
parameter is really mutable. This is because the parameter
may be missing, in the BMG, amutablesuccessor.

6. Evaluation
We experimentally evaluated 192 combinations of mutabil-
ity analyses, comparing the results with each other and with
a manually computed (and inspected) correct classification
of parameters. Our results indicate that staged mutability
analysis can be accurate, scalable, and useful.

6.1 Methodology and Measurements

We computed mutability for 6 open-source subject programs
(see Figure 2). When an example input was needed (e.g., for
a dynamic analysis), we ran each subject program on a single
input.

• jolden1 is a benchmark suite of 10 small programs. As
the example input, we used themain method and argu-
ments that were included with the benchmarks. We in-
cluded these programs primarily to permit comparison
with Sălcianu’s evaluation [48].

1 http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
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• sat4j2 is a SAT solver. We used a file with an unsatisfiable
formula as the example input.
• tinysql3 is a minimal SQL engine. We used the program’s

test suite as the example input.
• htmlparser4 is a real-time parser for HTML. We used our

research group’s webpage as the example input.
• ejc5 is the Eclipse Java compiler. We used one Java file as

the example input.
• daikon6 is an invariant detector. We used the StackAr test

case from its distribution as the example input.

As the input to the first analysis in the pipeline, we used
a pre-computed (manually created) classification for all pa-
rameters in the standard Java libraries. Callbacks from the li-
brary code to the client code (e.g.,toString(), hashCode())
were analyzed under the closed world assumption in which
all of the subject programs were included. The pre-computed
classification was created once, and reused many times in all
the experiments. Another benefit of using this classification
is that it covers otherwise un-analyzable code, such as native
calls.

We measured the results only for non-trivial parameters
declared in the application. That is, we ignored parameters
declared in external or JDK libraries, and ignored all param-
eters with a primitive, boxed primitive, orString type.

To measure the accuracy of each mutability analysis, we
determined the correct classification (mutableor immutable)
for 8,885 parameters: all of jolden and ejc, and 5 randomly-
selected classes from each of the other programs. To find
the correct classification, we first ran every tool available to
us (including our analysis pipelines, Sălcianu’s tool, and the
Javarifier [55] type inference tool for Javari). Then, we man-
ually determined the correct classification for every param-
eter where any two tool results differed, or where only one
tool completed successfully.

Figure 3 and the tables in Section 6.4 present precision
and recall results, computed as follows:

i-precision = ii
ii+im

i-recall = ii
ii+ui+mi

m-precision = mm
mm+mi

m-recall = mm
mm+um+im

whereii is the number of immutable parameters that are cor-
rectly classified, andmi is the number of immutable param-
eters incorrectly classified asmutable(similarly, ui). Sim-
ilarly, for mutable parameters, we havemm, im and um.
i-precision is measure of soundness: it counts how often
the analysis is correct when it classifies a parameter asim-
mutable. i-recall is measure of completeness: it counts how

2 http://www.sat4j.org/

3 http://sourceforge.net/projects/tinysql

4 http://htmlparser.sourceforge.net/

5 http://www.eclipse.org/

6 http://pag.csail.mit.edu/daikon/

many immutable parameters are marked as such by the anal-
ysis. m-precision and m-recall are similarly defined. An i-
sound analysis has i-precision of 1.0, and an m-sound analy-
sis has m-precision of 1.0. Ideally, both precision and recall
should be 1.0, but this is not feasible: there is always a trade-
off between analysis precision and recall.

6.2 Evaluated Analyses

Our experiments evaluate pipeline analyses composed of
analyses described in Section 3.X-Y-Z denotes a staged
analysis in which component analysisX is followed by com-
ponent analysisY and then by component analysisZ.

Our experiments use the following component analyses:

• S is the intraprocedural static analysis (Section 5.2).
• SS is the sound intraprocedural static analysis (Sec-

tion 5.2).
• P is the interprocedural static propagation (Section 5.3).
• D is the dynamic analysis (Section 4).
• DH is D, augmented with all the heuristics described in

Section 4.3.DA, DB, andDC areD, augmented with just
one of the heuristics.
• DRH is DH enhanced with random input generation (Sec-

tion 4.4); likewise forDRA, etc.
• J is S̆alcianu and Rinard’s state-of-the-art static analysis

JPPA [48]. It never classifies parameters asmutable—only
immutableandunknown.
• JMH is J, augmented in two ways. First,JMH uses amain

method that contains calls to all the public methods in the
subject program [42];J only analyzes methods that are
reachable frommain, limiting its code coverage and thus
recall. Second,JMH heuristically classifies asmutable
any parameter for whichJ provides an explanation of a
potential modification;J has m-precision and m-recall of
0.

6.3 Results

Figure 3 compares the accuracy of a selected set of mutabil-
ity analyses with which we experimented.

Different analyses are appropriate in different situations,
but the pipeline with the highest overall precision and recall
wasS-P-DRH-P. It dominates S̆alcianu’s [48] state-of-the-
art analysis,J. For every subject program, the staged mu-
tability analysis, combined of static and dynamic phases,
achieves equal i-precision and better i-recall, and much bet-
ter m-recall and m-precision, becauseJ never classifies pa-
rameters asmutable. The staged analysis is also considerably
more scalable.

In certain applications, i-soundness is a critical property.
We evaluated i-sound versions of our analyses (see Sec-
tion 6.4.6), and Figure 3 shows the results forSS-P-DBC-P,
the best-performing i-sound staged analysis.
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P
ro

g. Analysis i-recall i-precision m-recall m-precision

ej
c

J 0.593 0.999 0.000 0.000
JMH 0.734 0.998 0.691 0.941
JMH-S-P-DRH-P 0.939 0.997 0.944 0.951
S-P 0.777 1.000 0.904 0.971
S-P-DRH-P 0.928 0.996 0.907 0.971
SS-P-DRBC-P 0.781 1.000 0.915 0.956

jo
ld

en

J 0.894 1.000 0.000 0.000
JMH 0.985 1.000 0.660 0.955
JMH-S-P-DRH-P 0.989 0.996 0.990 0.970
S-P 0.829 1.000 0.907 1.000
S-P-DRH-P 0.973 1.000 1.000 0.970
SS-P-DRBC-P 0.829 1.000 1.000 0.924

da
ik

on

J 0.750 1.000 0.000 0.000
JMH - - - -
JMH-S-P-DRH-P - - - -
S-P 0.636 1.000 0.931 0.844
S-P-DRH-P 0.750 1.000 0.931 0.844
SS-P-DRBC-P 0.705 1.000 0.931 0.844

tin
y+

sa
t+

ht
m

l

J - - - -
JMH - - - -
JMH-S-P-DRH-P - - - -
S-P 0.836 1.000 0.863 0.965
S-P-DRH-P 0.968 0.984 0.947 0.957
SS-P-DRBC-P 0.836 1.000 0.863 0.953

Figure 3. Mutability analyses on subject programs. Sub-
jects tinysql, sat4j and htmlparser are presented jointly as
the last group, marked as tiny+sat+html. Empty cells mean
that the analysis aborted with an error.

6.4 Discussion of Results

We experimented with six programs and 192 different anal-
ysis pipelines. This section discusses the important obser-
vations that stem from the results of our experiments. Each
sub-section discusses one observation that is supported by a
table listing representative pipelines illustrating the observa-
tion. The tables in this section present results for ejc. Results
for other programs were similar. However, for smaller pro-
grams all analyses did better and the differences in results
were not as pronounced.

6.4.1 Interprocedural Propagation

Running interprocedural propagation (P in the tables) is al-
ways beneficial, as the following table shows on representa-
tive pipelines.

Analysis i-recall i-precision m-recall m-precision
S 0.563 1.000 0.299 0.998
S-P 0.777 1.000 0.904 0.971
S-P-DRH 0.922 0.996 0.906 0.971
S-P-DRH-P 0.928 0.996 0.907 0.971
DRH 0.540 0.715 0.144 0.987
DRH-P 0.940 0.776 0.663 0.988

Propagation may decrease m-precision but in our exper-
iments, the decrease was never larger than 0.03. In the ex-

periments, propagation always increased all other statistics
(sometimes significantly). For example, the table shows that
propagation increased i-recall from 0.563 inS to 0.777 inS-
P and it increased m-recall from 0.299 inS to 0.904 inS-P.
Moreover, since almost all of the run-time cost of propaga-
tion lies in the call-graph construction, only the first execu-
tion incurs notable run-time cost on the analysis pipeline;
subsequent executions of propagation are fast. Therefore,
most pipelines presented in the sequel haveP stages exe-
cuted after every other analysis.

6.4.2 Combining Static and Dynamic Analysis

Combining static and dynamic analysis in either order is
helpful—the two types of analysis are complementary.

Analysis i-recall i-precision m-recall m-precision
S-P 0.777 1.000 0.904 0.971
S-P-DRH 0.922 0.996 0.906 0.971
S-P-DRH-S-P 0.928 0.996 0.907 0.971
DRH 0.540 0.715 0.144 0.987
DRH-S-P 0.939 0.812 0.722 0.981
DRH-S-P-DRH 0.943 0.813 0.722 0.981

For best results, the static stage should precede the dy-
namic stage. PipelineS-P-DRH, in which the static stage
precedes the dynamic stage, achieved significantly better i-
precision and m-recall thanDRH-S-P, with only marginally
lower i-recall and m-precision.

Repeating executions of static or dynamic analyses bring
no substantial further improvement. For example,S-P-
DRH-S-P (i.e., static-dynamic-static) achieves the same re-
sults asS-P-DRH (i.e., static-dynamic). Similarly,DRH-S-
P-DRH (i.e., dynamic-static-dynamic) only marginally im-
proves i-recall overDRH-S-P (i.e., dynamic-static).

6.4.3 Comparing Static Stages

In a staged mutability analysis, using a more complex static
analysis does not bring much benefit. We experimented with
replacing our lightweight interprocedural static analysis with
J, Sălcianu’s heavyweight static analysis.

Analysis i-recall i-precision m-recall m-precision
J-DRH-P 0.973 0.787 0.664 0.998
JMH-DRH-P 0.939 0.922 0.878 0.949
JMH-S-P-DRH-P 0.939 0.997 0.944 0.951
S-P-DRH-P 0.928 0.996 0.907 0.971

S-P-DRH-P outperformsJMH-DRH-P with respect to
3 of 4 statistics, including i-precision (see Section 6.4.6).
Combining the two static analyses improves recall—JMH-
S-P-DRH-P has better i-recall thanS-P-DRH-P and better
m-recall thanJMH-DRH-P. This shows that the two kinds of
static analysis are complementary.
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6.4.4 Randomly Generated Inputs in Dynamic
Analysis

Using randomly generated inputs to the dynamic analysis
(DRH) achieves better results than using a user-supplied
execution (DH). We also considered pipelines that use both
types of executions.

Analysis i-recall i-precision m-recall m-precision
S-P-DH 0.827 0.984 0.911 0.961
S-P-DH-P-DRH 0.917 0.984 0.915 0.958
S-P-DRH 0.922 0.996 0.906 0.971
S-P-DRH-P-DH 0.932 0.983 0.912 0.970

PipelineS-P-DRH achieves better results thanS-P-DH
with respect to i-precision, i-recall and m-precision (with
marginally lower m-recall). Using both kinds of executions
can have different effects. For instance,S-P-DH-P-DRH has
better results thanS-P-DH, butS-P-DRH-P-DH has a lower
i-precision with a small gain in i-recall and m-recall over
S-P-DRH-P-DH.

The surprising finding that randomly generated code is as
effective as using an example execution suggests that other
dynamic analyses (e.g., race detection [49, 35], invariant de-
tection [18], inference of abstract types [21], and heap type
inference [39]) might also benefit from replacing example
executions with random executions.

6.4.5 Dynamic Analysis Heuristics

By exhaustive evaluation, we determined that each of the
heuristics is beneficial. A pipeline withDRH achieves no-
tably higher i-recall and only slightly lower i-precision than
a pipeline withDR (which uses no heuristics). This section
indicates the unique contribution of each heuristic, by re-
moving it from the full set (because some heuristics may
have overlapping benefits). For consistency with other tables
in this section, we present the results for ejc; however, the
effects of heuristics were more pronounced on other bench-
marks.

HeuristicA (evaluated by theDRBC line) has the greatest
effect; removing this heuristic significantly lowers i-recall
(as compared toS-P-DRH-P, which includes all heuristics.)
However, because the heuristic is i-unsound, removing it in-
creases i-precision, albeit only by 0.004. HeuristicB (the
DRAC line) increases both i-recall and i-precision, and im-
proves performance by 10%. HeuristicC (theDRAB line) is
primarily a performance optimization. Including this heuris-
tic results in a 30% performance improvement and a small
increase to m-recall.

Analysis i-recall i-precision m-recall m-precision
S-P-DR-P 0.777 1.000 0.905 0.971
S-P-DRH-P 0.928 0.996 0.907 0.971
S-P-DRBC-P 0.777 1.000 0.906 0.971
S-P-DRAC-P 0.927 0.995 0.905 0.971
S-P-DRAB-P 0.928 0.996 0.906 0.971
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Figure 4. Relation between i-precision, i-recall and the cov-
erage threshold in dynamic analysis heuristicA. The pre-
sented results are for the dynamic analysisD on the ejc sub-
ject program.

HeuristicA is parameterized by a coverage thresholdt.
Higher values of the threshold classify fewer parameters
asimmutable, increasing i-precision but decreasing i-recall.
Figure 4 shows this relation on results forD on ejc (the de-
pendency still exists, but is less pronounced, on other sub-
jects and pipelines). The heuristic is m-sound, so it has no ef-
fect on m-precision. The threshold value may affect m-recall
(if the analysis incorrectly classifies amutableparameter),
but, in our experiments, we have not observed this.

6.4.6 i-sound Analysis Pipelines

An i-sound mutability analysis never incorrectly classifies a
parameter asimmutable. All our component analyses have i-
sound variations and composing i-sound analyses yields an
i-sound staged analyses. We evaluated i-sound versions of
the staged analyses

Analysis i-recall i-precision m-recall m-precision
SS 0.454 1.000 0.299 0.998
SS-P 0.777 1.000 0.904 0.971
SS-P-DRBC 0.777 1.000 0.906 0.971
SS-P-DBC 0.777 1.000 0.912 0.959

SS is the i-sound version of the intra-procedural static
analysisS. Not surprisingly, the i-sound pipelines achieve
lower i-recall than i-unsound pipelines presented in Fig-
ure 3 (which presents the results forSS-P-DRBC-P for all
subjects). For clients for whom i-soundness is critical, this
may be an acceptable trade-off. In contrast to our analyses,
J is not i-sound [47], although it did achieve very high i-
precision (see Figure 3).

6.5 Scalability

Figure 5 shows run times of analyses on daikon (185 kLOC,
which is larger than previous evaluations of mutability anal-
yses [44, 42, 48]). The experiments were run using a quad-
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Analysis total time (s) last component (s)
J 5586 5586
JM - -
JMH - -
SS 167 167
SS-P 564 397
S 167 167
S-P 564 397
S-P-DH 859 295
S-P-DH-P 869 10
S-P-DRH 1484 920
S-P-DRH-P 1493 9

Figure 5. Run time, in seconds, of analyses on daikon, the
largest of analyzed programs: both the cumulative time and
the time for the last component analysis in the pipeline.
Empty cells indicate that the analysis aborted with an error
(JM denotesJ executed on amain that includes calls to all
public methods in the application).

core AMD Opteron 64-bit 4×1.8GHz machine with 4GB of
RAM, running Debian Linux and Sun HotSpot 64-bit Server
VM 1.5.0 09-b01. Staged mutability analysis scales to large
code-bases and runs in about a quarter the time of Sălcianu’s
analysis (i.e.,J in Figure 5).JMH, the augmented version
of J, aborted with an error (the error was not due to the
heuristic—JM also aborted with an error).

The figure overstates the cost of both theP and DRH
stages, due to limitations of our implementation. First, the
major cost of propagation (P) is computing the call graph,
which can be reused later in the same pipeline. According
to S̆alcianu,J’s RTA [3] call graph construction algorithm
takes seconds, and our tool takes two orders of magnitude
longer to perform CHA [14] (a less precise algorithm) using
Soot [57]. Use of a more optimized implementation could
greatly reduce the cost of propagation. Second, theDRH step
iterates many times, each time performing load-time instru-
mentation and other tasks that could be cached; without this
repeated work,DRH can be much faster thanDH. These im-
plementation fixes would save between 50% and 70% of the
total S-P-DRH-P time.

However, the figure also overstates the cost ofJ; in the
experiments, S̆alcianu’s analysis analyzed the whole JDK
library on every execution, while our analysis was able to
reuse a pre-computed analysis result.

Note thatSS-P (Section 6.4.6) runs, on daikon, an order
of magnitude faster thanJ (or even better, if differences in
call graph construction are discounted). Moreover,SS-P is i-
sound, whileJ is i-unsound. Finally,SS-P has high m-recall
and m-precision, whileJ has 0 m-recall and m-precision.

6.6 Application: Test Input Generation

In addition to evaluating the accuracy of mutability anal-
ysis, we evaluated how much the computed immutability
information helps a client analysis. We experimented with

analysis nodes ratio edges ratio time (s) ratio
jolden + ejc + daikon
no immutability 444,729 1.00 624,767 1.00 6,703 1.00
J 131,425 3.83 210,354 2.97 4,626 1.44
S-P-DRH-P 124,601 3.57 201,327 3.10 4,271 1.56
htmlparser + tinysql + sat4j
no immutability 48,529 1.00 68,402 1.00 215 1.00
J - - - - - -
S-P-DRH-P 8,254 5.88 13,047 5.24 90 2.38

Figure 6. Palulu [2] model size and model generation time,
when assisted by immutability classifications. The numbers
are sums over indicated subject programs. Smaller models
are better. Also shown are improvement ratios over no im-
mutability information (the “ratio” columns). Empty cells
indicate that the analysis aborted with an error.

Palulu [2], a system that generates models for model-based
testing. The model is a directed graph that describes per-
mitted sequences of method calls. The model can be pruned
(without changing the state space it describes) by removing
calls that do not mutate specific parameters, because non-
mutating calls are not useful in constructing new test inputs.
A smaller model permits a systematic test generator to ex-
plore the state space more quickly, or a random test genera-
tor to explore more of the state space.

We ran Palulu on our subject programs using no im-
mutability information, and using immutability information
computed byJ and byS-P-DRH-P. Figure 6 shows the num-
ber of nodes and edges in the generated model graph, and
the time Palulu took to generate the model (not counting
the immutability analysis). Mutability information permitted
Palulu to run faster and to generate smaller models.

7. Related Work
Section 7.1 discusses previous work that discovers im-
mutability (for example, determines when a parameter is
never modified during execution). Section 7.2 discusses pre-
vious work that checks or enforces mutability annotations
written by the programmer (or inserted by a tool).

7.1 Discovering Mutability

There is a rich history of research in analyzing programs
to determine what mutations may occur. Early work [4, 12]
considered pointer-free languages, such as Fortran. In such
a language, aliases are induced only by reference parame-
ter passing, and aliases persist until the procedure returns.
MOD analysis determines which of the reference parame-
ters, and which global variables, are assigned by the body of
a procedure. Our analysis shares similar data structures and
approach, but handles pointers and object-oriented programs
and incorporates field-sensitivity, among other differences.

Subsequent research, often called side effect analysis, ad-
dressed aliasing in languages containing pointers. An update
r.f = v has the potential to modify any object that might be
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referred to byr. An alias analysis can determine the possi-
ble referents of pointers and thus the possible side effects.
(An alias or class analysis also aids in call graph construc-
tion for object-oriented programs, by indicating the type of
receivers and so disambiguating virtual calls.) This work in-
dicates which which aliased locations might also be mutated
— often reporting results in terms of the number of locations
(typically, an allocation site in the program) that may be ref-
erenced [27] — but less often indicates what other variables
in the program might also refer to that site. More relevantly,
it does not answer reference immutability questions regard-
ing what references might be used to perform a mutation;
ours is the first analysis to do so. A follow-on alias or escape
analysis can be used to strengthen reference immutability to
object immutability [6].

New alias/class analyses lead to improved side effect
analyses [46, 42]. Landi et al. [28] improve the precision
of previous work by using program-point-specific aliasing
information. Ryder et al. [46] compare the flow-sensitive
algorithm [28] with a flow-insensitive one that yields a sin-
gle alias result that is valid throughout the program. The
flow-sensitive version is more precise but slower and un-
scalable, and the flow-insensitive version provides adequate
precision for certain applications. Milanova et al. [33] pro-
vide a yet more precise algorithm via an object-sensitive,
flow-insensitive points-to analysis that analyzes a method
separately for each of the objects on which the method is
invoked. Object sensitivity outperforms Andersen’s context-
insensitive analysis [1, 43]. Rountev [42] compares RTA to a
context-sensitive points-to analysis for call graph construc-
tion; the latter found only one more side-effect-free method
than the former, out of a total of 40. Rountev’s experimental
results suggest that sophisticated pointer analysis may not be
necessary to achieve good results. (This mirrors other work
questioning the usefulness of highly complex pointer anal-
ysis [45, 22].) We, too, compared a sophisticated analysis
(Sălcianu’s) to a simpler one (ours) and found the simpler
one competitive.

Side-effect analysis [9, 44, 33, 42, 48, 47] originated in
the compiler community and has focused on i-sound analy-
ses. Our work investigates other tradeoffs and other uses for
the immutability information. Specifically, differently from
previous research, our work (1) computes bothmutableand
immutableclassifications, (2) trades off soundness and pre-
cision to improve overall accuracy, (3) combines dynamic
and static stages, (4) includes a novel dynamic mutability
analysis, and (5) permits an analysis to explicitly represent
its imprecision.

Preliminary results of using side effect analysis for opti-
mization — an application that requires an i-sound analysis
— show modest speedups. Le et al. [29] report speedups of
3–5% for a coarse CHA analysis, and only 1% more for a
finer points-to analysis. Clausen [11] reports an average 4%
speedup, using a CHA-like side effect analysis in which each

field is marked as side-effected or not. Razamahefa [41] re-
ports an average 6% speedup for loop invariant code motion
in an inlining JIT Le et al. [29] summarize their own and
related work as follows: “Although precision of the under-
lying analyses tends to have large effects on static counts of
optimization opportunities, the effects on dynamic behavior
are much smaller; even simple analyses provide most of the
improvement.”

The research that is most related to ours is that of Roun-
tev [42] and S̆alcianu [48, 47]. Both are static analyses
for determining side-effect-free methods. Like ours and ev-
ery practical mutability analyses of which we are aware,
they combine a pointer analysis, a local (intra-procedural)
analysis to determine “immediate” side effects, and inter-
procedural propagation to determine transitive side effects.

Sălcianu defines a side-effect-free method as one that
does not modify any heap cell that existed when the method
was called. Rountev use a more restricted definition that pro-
hibits a side-effect-free method from creating and return-
ing a new object, or creating and using a temporary object.
Sălcianu’s analysis can compute per-parameter mutability
information in addition to per-method side effect informa-
tion. (A method is side-effect-free if it modifies neither its
parameters nor the global state, which is an implicit param-
eter.) Rountev’s coarser analysis results are one reason that
we cannot compare directly to his implementation. Roun-
tev applies his analysis to program fragments by creating an
artificial main routine that calls all methods of interest; we
adopted this approach in augmentingJ (see Section 6).

Sălcianu’s [48, 47] analysis uses a complex pointer anal-
ysis. Its flow-insensitive method summary represents in a
special way objects allocated by the current method invo-
cation, so a side-effect-free method may perform side effects
on a newly-allocated objects. Like ours, Sălcianu’s analysis
handles code that it does not have access to, such as native
methods, by using manually prepared annotations. Sălcianu
describes an algorithm for computing object immutability
and proves it sound, but his implementation computes ref-
erence immutability and contains some minor unsoundness.
We evaluated our analyses, which also compute reference
immutability, against S̆alcianu’s implementation (Section 5).
In the experiments, our staged analyses achieve comparable
or better accuracy and scaled better.

Work by Porat et al. [40, 5] infers class immutability for
global (static) variables in Java’srt.jar, thus indicating the
extent to which immutability can be found in practice; the
work also addresses sealing/encapsulation.

7.2 Specifying and Checking Mutability

To specify and enforce immutability, a programming lan-
guage is augmented to include tool-checked mutability an-
notations.

Type and effect systems [31, 24] allow specifying side-
effects of functions. The Java Modeling Language (JML) [8]
allows specifying pure methods (i.e., methods that have
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no side effects on any of their parameters or the global
state), but it has only weak support for checking these
specifications. Other approaches that allow specifying im-
mutability annotations are data groups [26, 30] and owner-
ship types [10]. The Splint [19] tool statically checks user-
provided type mutability annotations.

Language extensions that provide reference immutability
by enhancing the type system include Islands [23], Flexi-
ble Alias Protection [34], C++ const [51], ModeJava [50],
JAC [25], Capabilities [7], Javari [6, 56], Universes [15],
and IGJ [60]. Most of those solutions aim to provide transi-
tive reference-immutability (C++ const and Boyland’s Ca-
pabilities are non-transitive). Appendix A contains, to the
best of our knowledge, the first formal definition of transi-
tive reference-immutability.

To compare our immutability approach with that of
Javari, a reference-immutability extension to Java, we used
a pre-release of the Javarifier type inference tool [55] to
annotate the jolden programs with Javari annotations. Our
analysis agreed with Javari-annotated code on 97.4% of
parameters. The other 2.6% reflect differences in the im-
mutability definitions between the two approaches. For ex-
ample, Javari’s type system requires that method overrid-
ing preserve immutability of the receiver parameter, while
our definition (and S̆alcianu’s [48]) allows this immutability
to vary between the overriding and overridden method. In
this case, our definition is more expressive. In another ex-
ample, Javari’s definition is more expressive: Javari allows
immutable arrays of mutable elements, while our definition
requires transitive immutability and treats array elements as
fields.

Object immutability is a stronger property than reference
immutability: it guarantees that a particular value is never
modified, even through aliased parameters. Reference muta-
bility, together with an alias or escape analysis, is enough to
establish object immutability [6]. Pechtchanski [37] allows
the user to annotate his code with object immutability an-
notation and employs a combination of static and dynamic
analysis to detect where those annotations are violated. The
IGJ language [60] supports both reference and object im-
mutability via a type system based on Java generics.

8. Conclusion
We have described a staged mutability analysis framework
for Java, along with a set of component analyses that can
be plugged into the analysis. The framework permits com-
binations of mutability analyses, including static and dy-
namic techniques. The framework explicitly represents anal-
ysis imprecision, and this makes it possible to compute both
immutable and mutable parameters. Our component analy-
ses take advantage of this feature of the framework.

Our dynamic analysis is novel, to the best of our knowl-
edge; at run time, it marks parameters as mutable based
on mutations of objects. We presented a series of heuris-

tics, optimizations, and enhancements that make it practi-
cal. For example, iterative random test input generation ap-
pears competitive with user-supplied sample executions. Our
static analysis reports bothimmutableandmutableparame-
ters, and it demonstrates that a simple, scalable analysis can
perform at a par with much more heavyweight and sophis-
ticated static analyses. Combining the lightweight static and
dynamic analyses yields a combined analysis with many of
the positive features of both, including both scalability and
accuracy.

Our evaluation includes many different combinations of
staged analysis, in both sound and unsound varieties. This
evaluation sheds insight into both the complexity of the
problem and the sorts of analyses that can be effectively
applied to it. We also show how the results of the mutability
analysis can improve a client analysis.
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A. Parameter Mutability Definition
A formal definition of parameter reference mutability is a
pre-requisite to verifying an algorithm or tool. Previous re-
search [56, 60, 25, 34, 50, 15] defines reference-mutability
informally: a reference ismutableif there exists an execu-
tion in which the reference is used to change the state of its
referent object. However, previous work left the term “used”
undefined. A formal definition of parameter reference muta-
bility is non-trivial since a reference, or references obtained
from it by a series of field accesses, may be stored in a vari-
able or passed as an argument to a function, and used in
performing a modification later during the execution of the
function.

Intuitively, a referencer is usedin a mutation if the mu-
tation happens to an object viar or via a reference that was
obtained via a series of dereferences fromr. Section A.1 for-
malizes this intuition. Section A.2 illustrates the definition
via examples.

A.1 Formal Definition

We proceed to define parameter mutability as follows. First,
we define a core language for which we build the muta-
bility definition. Second, we augment the term evaluation
rules (i.e., the operational semantics) to additionally com-
pute whether the parameter reference is used in a muta-
tion. Third, we formally define reference-mutability (Defi-
nition 3).

We define reference-mutability in the context ofλUnit-Ref-Mut,
an augmented version ofλUnit-Ref [38, pp. 166–167], a
core language of untyped lambda-calculus and references.
The modified language captures all essential features that
affect mutability.

Figure 7 presents the syntax ofλUnit-Ref-Mut. Changes
from λUnit-Ref are shaded. The main changes are:

t F terms:
x variable
t t application
ref t reference creation
!t dereference
t := t assignment
v value

v F values:
〈 λx.t ,⊥〉 abstraction value

〈λcx.t,⊥〉 abstraction value with
checked parameter

〈 unit ,⊥〉 constantunit

〈 l ,d〉 store location

d F distances:
N distance
⊥ undefined distance

µ F stores:
∅ empty store
µ, l = v location binding

Figure 7. Syntax of λUnit-Ref-Mut. Changes from
λUnit-Ref [38] are shaded.

• One function in the program is marked asλc (checkedab-
straction). This is the function that declares the parameter
whose mutability is being defined (thechecked parame-
ter).
• A value in λUnit-Ref-Mut is a pair containing the cor-

responding value fromλUnit-Ref (i.e., abstraction, con-
stant, or location) and a distance, which is a lifted natural
number.

The checked parameter’s location has a distance of 0.
A location has a non-negative distancen if it was obtained
(during execution) by dereferencing the checked parameter
n times. Other locations (that were not obtained from the
checked parameter), and all non-locations (which cannot be
modified), have a distance of⊥. The distance for a value can
be thought of as the length of a chain of executed derefer-
ences from the checked parameter to the given value. Any
location with a non-⊥ distance aliases part of the checked
parameter’s state.

In λUnit-Ref-Mut, evaluation maintains the distances as-
sociated with each value. The checked parameter ismutable
if a location that has a non-⊥ distance (was reached by a
series of dereferences from the parameter) is assigned.

The reduction rules forλUnit-Ref-Mut are shown in Fig-
ure 8. Each reduction rule is a relationship,t | µ −→ t′ | µ′,
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wheret with a storeµ reduces tot′ with a storeµ′. For
simplicity, the rules account for only one checked parameter
in the program. There are five changes to the semantics of
λUnit-Ref:

E-AA When an abstractionf = λcx.t is applied (E-AA3)
to a location〈l,d〉, the parameterx is substituted in the
resulting expression with a pair containing the original
location and a distance of 0. This indicates that ifl is
modified, the modification to the value passed tof will
occur at a distance of 0 dereferences from that value.
If λc is applied to a non-location (E-AA2), or a regular
(non-checked)λ is applied to any value (E-AA1), then
the distance of the value is unchanged.

E-RV When a new referencel to an existing valuev is
created, the value is put in the store with its distance.
Since the newly created location is not reachable from the
checked parameter (or any other location), its distance is
⊥.

E-DL When a location〈l,⊥〉 is dereferenced, the
obtained value retains its original distance, sincel was
not reached from the parameter (ruleE-DL1).
When a location〈l1,d1〉 is dereferenced, the resulting
locationl2 is obtained usingd1+1 dereferences. (Location
l2 may have already been obtained from the parameter
using a different path of lengthd2 , ⊥, before it was put in
the store. In that case, we could choose eitherd1 + 1 ord2.
This choice has no effect, since a mutation only depends
on whether or not the distance is⊥.)

E-A During evaluation of an assignment to a location
that was not reached from the parameter (⊥ distance in
E-A), the store is updated and the computed value is
〈unit,⊥〉 since the distance of unit is always⊥.

E-AE The rule E-AE stops the execu-
tion when a location with a non-⊥ distance is mutated
(changing the state of the checked parameter).

We define reference-immutable and reference-mutable pa-
rameters:

Definition 1. (contains execution)Term ef contains an
executionof checked abstractionf ≡ λcx.t iff

• f is a sub-term ofef ,
• f is the only checked abstraction inef .
• f is applied during the evaluation ofef according to the

rules of Figure 8.

Definition 2. (modification) Parameterp of a checked
abstraction f ≡ λcp.t is used in a modificationif dur-
ing the evaluation ofef , an application off evaluates to
error:modification using the rules of Figure 8.

Definition 3. (parameter reference (im)mutability)
Parameterp of a checked abstractionf ≡ λcp.t is reference-
mutableif there exists a termef containing an execution of
f such thatp is used in a modification during the evaluation
of ef . Otherwise,p is reference-immutable.

t1 | µ −→ t′1 | µ′
t1 t2 | µ −→ t′1 t2 | µ′ (E-A1)

t2 | µ −→ t′2 | µ′
v1 t2 | µ −→ v1 t

′
2 | µ′ (E-A2)

(λx.t12) v2 | µ −→ [x 7→ v2]t12 | µ (E-AA1)

v2 not location

(λcx.t12) v2 | µ −→ [x 7→ v2]t12 | µ (E-AA2)

v2 = 〈l2, d〉
(λcx.t12) v2 | µ −→ [x 7→ 〈l2,0〉]t12 | µ (E-AA3)

l < dom(µ)

ref v1| µ −→ 〈 l ,⊥〉 | (µ, l 7→ v1)
(E-RV)

t1 | µ −→ t′1 | µ′t
ref t1| µ −→ ref t′1 | µ′ (E-R)

µ(l) = v

! 〈 l ,⊥〉 | µ −→ v | µ (E-DL1)

µ(l1) = 〈l2, d2〉 d1 , ⊥
!〈l1,d1〉 | µ −→ 〈l2, d1 + 1〉 | µ (E-DL2)

t1 | µ −→ t′1 | µ′
!t1 | µ −→!t′1 | µ′ (E-D)

〈 l ,⊥〉 := v2 | µ −→ 〈 unit ,⊥〉 | [l 7→ v2]µ (E-A)

d , ⊥
〈l,d〉 := v2 | µ −→ error:modification (E-AE)

t1 | µ −→ t′1 | µ′
t1 := t2 | µ −→ t′1 := t2 | µ′ (E-A1)

t2 | µ −→ t′2 | µ′
v1 := t2 | µ −→ v1 := t′2 | µ′ (E-A2)

Figure 8. Operational semantics (evaluation rules) for
λUnit-Ref-Mut. Changes fromλUnit-Ref [38] are shaded.

To show correctness of the reference immutability defini-
tion, we prove the following lemma.

Lemma 4. A parameterx of abstractionf = λcx.t ismutable
iff there exists a termef containing an execution off , such
that the following conditions are met:

• (c1)ef evaluates to〈l′,d′〉 := v, d′ , ⊥.
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• (c2)Let 〈l,d〉 be the argument in the last application off
in ef thenl′ was obtained using a series ofd′ dereferences
from l.

Proof. =⇒ If x is mutablethen by definitions 1, 2, and 3 we
get the following facts:

• (i) There exists a termef containing an execution off .
• (ii) f is a sub-term ofef .
• (iii) f is the only checked abstraction inef .
• (iv) f is applied during the evaluation ofef .
• (v) ef evaluates to error:modification.

By ruleE-AE and fact(v) the term

〈l′,d′〉 := v, d′ , ⊥ (1)

is the last to be reduced in the evaluation ofef (satisfying
condition(c1)).

Since a location is created with a⊥ distance (E-RV),
and a⊥ distance can only change in ruleE-AA3, it fol-
lows from (1) that ruleE-AA3 must have been applied in
the execution ofef . Since f is the only checked abstraction
in ef (fact(iii) ), it follows that f is applied to a location; let
〈l,d〉 be the last such location.

Condition (c2) is proven by induction. Whend′ = 0
then l′ = l by rule E-AA3. Assume that the value
〈l′′,d′ − 1〉 was reached by a series ofd′ − 1 dereferences
from l. The only way to get value〈l′,d′〉 is by applying rule
E-DL2 on the expression

!〈l′′,d′ − 1〉. (2)

The antecedent of the ruleE-DL2 is µ(l′′) = 〈l′,d′〉.
Thereforel′ is reached by one dereference operation from
l′′ proving condition(c2).
⇐= This direction follows immediately from Defini-

tion 3 and the fact the〈l′,d′〉 := v, d , ⊥ evaluates to
error:modification (E-AE).

�

A.2 Examples

We illustrate the formal definition of parameter reference
mutability on the example functions in Figures 9 and 10.

Function f1 (Figure 10)
In function f1, referencesp2 and p3 are reference-

mutable(line 2 modifiesp2, and line 4 modifiesp3.next).
Referencep1 is also reference-mutable: whenp2 andp3 are
aliased, for example in the callf1(x, y, y), the state of the
object passed top1 is modified on line 4 using a series of
dereferences fromp1.

Figure 9 demonstrates that parameterp1 of functionf1 is
reference-mutable. Functionf1 is converted toλUnit-Ref-Mut:
field accessed are replaced with location dereferencing and
multiple function parameters are supplied by currying. The
top-most abstraction is the checked abstraction, i.e.,λc. An

executionef 1 is selected such that it showsp1’s mutability.
This execution corresponds to the callf1(x, y, y). The ex-
ecutionef 1 is evaluated using the set of rules in Figure 8.
Figure 9 shows the evaluation. The evaluation finishes with
error:modification, which demonstrates thatp1 is mutable.
In each step, the rule in the “rule” column is applied to the
underlined redex in the expression on the same row, result-
ing in the expression, store, and distance shown in the next
row.

Function f2 (Figure 9)
In function f2, referencep4 is clearlymutablebecause

line 2 modifiesp4.next. However, referencep5 is reference-
immutable—it is never used to make any modification to an
object during the execution off2. The parameterp5 is im-
mutabledespitethe fact that theobject passed top5 may
be mutated, e.g., when parameters are aliased in the call
f2(x, x). Our definition is concerned withreferencemutabil-
ity, which, together with aliasing information, may be used
to compute object mutability. In the example of functionf2,
the information that parameterp5 is reference-immutable
can be combined with information aboutp4 andp5 being
aliased in the callf2(x, x) to determine that, in that call, both
objects may be modified.

Figure 10 demonstrates that parameterp5 of function
f2 is not reference-mutablein the callf2(x, x) (i.e., when
parameters are aliased). The executionef 2 is evaluated.
The evaluation finishes without error and computes value
〈unit,⊥〉, which shows that, in this execution,p5 was not
used to modify a location.
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1 void f1(C p1, C p2, C p3) {
2 p2.next = p1;
3 C local = p3.next;
4 local.next = null;
5 }

f 1 ≡ λcp1.λp2.λp3.(λx.(λv.!v := 〈unit,⊥〉)(!p3))(!p2 := p1)

ef 1 ≡ (λy.(λx. f 1 x y y)(ref 〈unit,⊥〉)(ref ref 〈unit,⊥〉)

step expression store rule
1 (λy.(λx. f 1 x y y)(ref 〈unit,⊥〉)(ref ref 〈unit,⊥〉) ∅ E-RV
2 (λy.(λx. f 1 x y y)) 〈lx,⊥〉 〈ly,⊥〉 {(lx, 〈unit,⊥〉), (ly, 〈l′y,⊥〉), (l′y, 〈unit,⊥〉)} E-AA2

3 f 1 〈lx,⊥〉 〈ly,⊥〉 〈ły,⊥〉 . . . E-AA3
4 (λp2.λp3.(λx.(λv.!v := 〈unit,⊥〉)(!p3))(!p2 := 〈lx, 0〉))〈ly,⊥〉 〈ly,⊥〉 . . . E-AA2

5 (λx.(λv.!v := 〈unit,⊥〉)〈ly,⊥〉)(!〈ly,⊥〉 := 〈lx, 0〉) . . . E-DL1

6 (λx.(λv.!v := 〈unit,⊥〉)(!〈ly,⊥〉)(〈l′y,⊥〉 := 〈lx,1〉) . . . E-A

7 (λx.(λv.!v := 〈unit,⊥〉)〈!ly,⊥〉)〈unit,⊥〉 {(lx, 〈unit,⊥〉), (ly, 〈l′y,⊥〉), (l′y, 〈lx,0〉)} E-AA1
8 (λv.!v := 〈unit,⊥〉) !〈ly,⊥〉 . . . E-DL1

9 (λv.!v := 〈unit,⊥〉) 〈l′y,⊥〉 . . . E-AA2

10 !〈l′y,⊥〉 := 〈unit,⊥〉 . . . E-DL1

11 〈lx, 0〉 := 〈unit,⊥〉 . . . E-AE

12 error:modification . . .

Figure 9. Call f1(x, y, y), converted toλUnit-Ref-Mut (withp1 as checked parameter) and evaluated using rules in Figure 8.
Evaluation finishes with error:modification, which means that parameterp1 is used in a mutation and thus reference-mutable.
f 1 is the converted function,ef 1 is the call tof1, and the figure shows the evaluation.

1 void f2(C p4, C p5) {
2 p4.next = null;
3 }

f 2 ≡ λcp5.λp4.!p4 := 〈unit,⊥〉

ef 2 ≡ (λx. f 2 x x)(ref ref ref〈unit,⊥〉)

step expression store rule
1 (λx. f 2 x x)(ref ref ref〈unit,⊥〉) ∅ E-RV
2 (λx. f 2 x x) 〈lx,⊥〉 {(lx, 〈l′x,⊥〉), (l′x, 〈l′′x ,⊥〉, (l′′x , 〈unit,⊥〉)} E-AA2
3 f 〈lx,⊥〉 〈lx,⊥〉 . . . E-AA3
4 (λp4.!p4 := 〈unit,⊥〉) 〈lx,⊥〉 . . . E-AA2
5 !〈lx,⊥〉 := 〈unit,⊥〉 . . . E-DL1
8 〈l′x,⊥〉 := 〈unit,⊥〉 . . . E-A

9 〈unit,⊥〉 {(lx, 〈l′x,⊥〉), (l′x, 〈unit,⊥〉), (l′′x , 〈unit,⊥〉)}

Figure 10. Call f2(x, x), converted toλUnit-Ref-Mut (with p5 as checked parameter) and evaluated using rules in Figure 8.
Evaluation does not finish with error:modification, which means that parameterp5 is not mutated in this execution.f 2 is the
converted function,ef 2 shows the call tof2, and the figure shows the evaluation.
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