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Abstract

Knowing which method parameters may be mutated during
a method’s execution is useful for many software engineer-
ing tasks. We present an approach to discovering parameter
immutability, in which several lightweight, scalable analyses
are combined in stages, with each stage refining the overall ®
result. The resulting analysis is scalable and combines the
strengths of its component analyses. As one of the compo-
nent analyses, we present a novel, dynamic mutability anal-
ysis and show how its results can be improved by random
input generation. Experimental results on programs of up to
185 kLOC show that, compared to previous approaches, our *
approach increases both scalability and overall accuracy.

1. Introduction

Knowing which method parameters are accessed in a read-
only way, and which ones may be mutated, is useful in many
software engineering tasks, such as modeling [8], verifica-
tion [54], compiler optimizations [11, 47], program transfor-

of mutability analysis. Our staged approach is unusual in
that it combines static and dynamic stages and it explicitly
represents analysis imprecision. The framework is sound,
but an unsound analysis may be used as a component, and
we examine the tradés involved.

Mutability analyses. The primary contribution is a novel,
dynamic analysis that scales well, yields accurate results
(it has a sound mode as well as optional heuristics), and
complements existing analyses. We extend the dynamic
analysis with random input generation, which improves
the analysis results by increasing code coverage.
Evaluation. We have implemented our framework and
analyses for Java, and we investigate the costs and ben-
efits of various sound and unsound techniques, including
both our own and that of&@cianu and Rinard [48]. Our
results show that a well-designed collection of fast, simple
analyses can outperform a sophisticated analysis in both
scalability and accuracy.

The remainder of this paper is organized as follows. Sec-

mations such as refactoring [20], test input generation [2], tion 2 describes the problem of inferring parameter mutabil-

regression oracle creation [32, 59], invariant detection [18], ity and illustrates it on an example. Section 3 presents our

specification mining [13], program slicing [58, 52], and pro- staged mutability analysis. Sections 4 and 5 describe the dy-

gram comprehension [17]. namic and static mutability analyses that we developed as
Previous work on mutability has employed static analysis components in the staged analysis. Section 6 describes the

techniques to detedinmutableparameters. Static analysis experimental evaluation. Section 7 surveys related work, and

approximations can lead to weak results and computing bet-Section 8 concludes.

ter approximationsféects scalability. Dynamic analyses of-

fer_ an attractiye cc_)mplemept to stati_c approaches, both in noty Parameter Reference Immutability

using approximations and in detectinmitableparameters. B o »
This paper presents an approach to the mutability prob- '_rhe goal of parameter mutability .analy§|s is the cIa_ssmca-

lem that combines the strengths of static and dynamic anal-fion of each method parameter (including the receiver) as

yses to create an analysis that is both accurate and scalabléither reference-mutable or reference-immutable.

In our approach, dierent analyses are combined in stages, APPendix A formally defines reference (im)mutability.

forming a “pipeline”, with each stage refining the overall re- Informally, reference immutability guarantees that a given

sult. The result is an analysis that is more accurate and more€férence is not used to modify its referent. Paramptef
scalable than previously developed techniques. methodmis referencanutableif there exists an execution of

This paper makes the following contributions: min whichpis usedtp muFate the statfa of the object pointed
to by p. Parametep is said to bausedin a mutation, if the
¢ The first formal definition of reference immutability that left hand side of the mutating assignment can be replaced
takes into account parameter aliasing. with a series of executdikld accesses fromp. (Array access
¢ A staged analysis approach for discovering parameter mu-are treated analogously throughout this paper.) If no such
tability. The idea of staged analyses is not new, but a execution exists, the parametpris referencammutable
staged approach has not been investigated in the contexiThe state of an objectconsists of the values ofs primitive
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reference t@3 is copied intoc and then used to perform

1class C {

2 public C next; a modification on line 19.

j} e p4 is directly modified immodifyAll (line 17). Note that
sclass Main { line 17 doesnot modify p3, p5, or p6 because the mu-
o vold Mot pyparami (C pl, boolean doft) tation occurs via referenget. In this paper, we are con-
8 pl.next = null; cerned withreference(im)mutability rather tharobject-

. ) ¥ (im)mutabilityand thus the reference via which the modi-
1 fication happens is significant.

e "°iiogigiggzﬁrg;;‘dﬁ:;%y(C p2, boolean dolt) { e p5 is mutablebecause line 19 modifigss.next.next.

1} ® p6 is passed tmodifyParamlIndirectly, in which it

15
16 void modifyAll(C p3, C p4, C p5, C p6, boolean doIt) { may be mutated.

17 p4.next = p3; * p8 is passed tmodifyParaml, in which it may be mu-

o comext < mall] tated.

"y modifyParamiindirectly(p6, dolt); Our dynamic and static analyses complement each other
2 _ _ to classify parameters intmutableand immutable in the

Ha st following steps:

22}} 1. Initially, all parameters aranknown

2. A mostly flow-insensitive, intra-procedural static analysis
classifiesp1, p4 andp5 asmutable The analysis classi-
fies p7 asimmutable—there is no direct mutation in the
method and the parameter is not used in a method call.

3. An inter-procedural static analysis propagates the current

fields (e.g.int, float) and the states of all objects pointed  classification along the call-graph and classi#és p6,

to by o's non-primitive fields. The mutation may occurrim andp8 asmutable

itself or in any method thah (transitively) calls. 4. Dynamic analysis needs an example execution in order to
Reference immutability may be combined with aliasing ~ classify parameters. If the following main method

information at each call site to determine whether a specific 1 void main© {

object passed as a parameter may change [6, 48]. If the 2, "0&ALL(xl, 32, 32, %3, false);

object is unreachable from amyutableparameter, then the ] ) ] o )
call will not change it. is supplied, the dynamic analysis will classfg asmu-

table (the other parameters are leftknown.

Figure 1. Example code that illustrates our staged approach
to parameter immutability. All non-primitive parameters
other tharp7 aremutable

2.1 Example Our staged analysis correctly classifies all parameters in

Inthe code in Figure 1, parametet is referencemmutable Figure 1. However, this example posefiidilties for purely

and all nonboolean parameters other tha7 are reference-  static or purely dynamic techniques. On the one hand, static
mutable because there exists an execution of their declaring techniques have fliculties correctly classifying3. This is
method such that the object pointed to by the parameter ref-hecause, to avoid over-conservativeness, static analyses of-
erence is modifiedia the reference ten assume that on entry to a method all parameters are fully
immutableparameters un-aliased, i.e., point to disjoint parts of the heap. In our
example, this assumption may lead such analyses to incor-
rectly classifyp3 asimmutableg(in fact, Slcianu uses a sim-

ilar example to illustrate the unsoundness of his analysis [47,
p.78]). On the other hand, dynamic analyses are limited to a
specific execution and only consider modifications that hap-
pen during that execution. In our example, a purely dynamic
technique may incorrectly classifjz andp6 asimmutable
mutableparameters because during the executionmefin, those parameters are
not modified.

¢ p7 is referencammutable An object passed tp7 might
be mutated by an execution of methmddi fyParam2-
Indirectly; for example in a call wherg7 andp8 are
aliased, thereforp7 is objectmutable However, no exe-
cution of the method can cause a mutation via parameter
p7, hence paramete? is referencammutable

¢ pl may be directly modified imodifyParaml (line 8).
i:)aztelapassed tmodifyParaml, in which it may be mu 3. Staged Mutability Analysis
¢ p3 is mutablebecause the state of the object passed to In our approach, mutability analyses are combined in stages,
p3 can get modified on line 19 vip3. This can happen  forming a “pipeline”. The input to the first stage is the ini-
becausep4 andp5 might be aliased; for example, in the tial classification of all parameters (typically, alhknown
call modifyAll(x1,x2,x2,x3, false). In this case, the  though parameters declared in the standard libraries may
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be pre-classified). Each stage of the pipeline refines the re- To improve the analysis results, we developed several
sults computed by the previous stage by classifying some heuristics (Section 4.3). Each heuristic carriesBedent risk
unknownparameters. Once a parameter is classifieginas  of unsoundness. However, most are shown to be accurate in
mutableor immutable further stages do not change the clas- our experiments. The analysis has an iterative variation with
sification. The output of the last stage is the final classifica- random input generation (Section 4.4) that improves analysis
tion, in which some parameters may remairtknown precision and run-time.

Combining mutability analyses can yield an analysis that
has better accuracy than any of the components. For exam
ple, a static analysis can cover the whole program code, During program execution, the dynamic analysis tags each
while a dynamic analysis can conclusively prove the pres- reference in the running program with the set of all formal
ence of a mutation. parameters (from any method invocation on the call stack)

Combining analyses in pipelines also has performance whose fields were directly or indirectly accessed to obtain
benefits—a component analysis in a pipeline may ignore the reference. When a reference is siffeaed (i.e., used as
code for which all parameters have been classifiechas right-hand-side in a field-write), all formal parameters in its
table or immutable This can permit the use of techniques set are classified as mutable. The analysis tags references,
that would be too computationally expensive if applied to an not objects, because more than one reference can point to
entire program. the same object. Primitives need not be tagged, as they are

The problem of mutability inference is undecidable, so immutable.
no analysis can be both sound and complete. An analysis The algorithm for detecting mutable parameters is given
is i-sound if it never classifies amutable parameter as by a set of data-flow rules. The rules track mutations to each
immutable An analysis isn-sound if it never classifies an ~ parameter. Next, we present those rules informally. The rules
immutableparameter amutable An analysis icompletdf are formalized in Appendix A.

it classifies every parameter as eithastableor ir_nr_nutable 1. On method entry, the algorithm adds each formal param-
In our staged approach, analyses may explicitly represent eter (that is classified asmknown to the parameter set of

their incompleteness using theknowrclassification. Thus, the corresponding actual parameter reference

an analy;is result classifies parameFers into three groupss o method exit, the algorithm removes all parameters

mutable immutable andun_known Previous wqu that gsed for the current invocation from the parameter sets of all

only two output classifications [44, 42] loses information by references in the program

cc_)nflating paramete&methods that_are !(nown to be mut_apl_e 3. Assignments, including pseudo-assignments for parame-

with those where analysis approximations prevent definitive ter passing and return values, propagate the parameter sets

classification. '

. . . . unchanged.

.leferent clients of mutab|I|Fy analyses hgvﬁdlent '® 4. Field accesses also propagate the sets unchanged: the set
qwremeqts. For e>.<ample,' using immutability f(_)r compﬂgr of parameters fox.f is the same as that af
optlml_zguc;_ns requires an_l-sound a_nalyses, while using im- 5. For a field writex.f = v, the algorithm classifies asuta-
mutap!llty_ln test generation benefits from_ more complete bleall parameters in the parameter sekof
classification and can tolerate some classification mistakes.
To address the needs offfdirent mutability analysis con- The algorithm as presented so far has a significant run-
texts, the analyses presented in this paper can be combinedime cost—maintaining reference tag sets for all references
in pipelines with diferent properties. For example, the client is computationally expensive. The next section presents an
of the analysis can create an i-sound analysis by combiningalternative algorithm that we implemented.
only i-sound components (all of our analyses have i-sound

variations), while clients who desire more complete analy-
ses may use i-unsound components as well. To overcome the performance problem of the algorithm in

Section 4.1, we developed an alternative algorithm that does
not maintain parameter reference tags and is, nevertheless,
. . . i-sound and m-sound. The alternative algorithm is, however,
4. Dynamic Mutability Analysis less complete—it classifies fewer parameters. In the alterna-
Our dynamic mutability analysis observes the program’s tive algorithm, parametgs of methodmiis classified asnu-
execution and classifies amitablethose method parameters tableif: (i) the transitive state of the object thatpoints to

that are used to mutate objects. The algorithm is m-sound: itchanges during the executionrof and (i) p is not aliased to
classifies a parameter asutableonly when the parameter any other parameter of. Part (ii) is critical for maintaining

is mutated. The algorithm is also i-sound: it classifies all m-soundness of the algorithm—without part (ii), parameters
remaining parameters asknown Section 4.1 givestheidea may be wrongly classified asutablewhen they are aliased
behind the algorithm, and Section 4.2 describes an optimizedto a mutableparameter during the execution (but are not,
implementation. themselvesmutablg.

4.1 Conceptual Algorithm

4.2 Dynamic Analysis Algorithm
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The example code in Figure 1 illustrates th&eatience

classifies asmmutablea parametep declared in method

between the conceptual algorithm presented in Section 4.1mif p was not modifiedm was executed at leadt times,
and the algorithm presented in this section. When method and the executions achieved block coverage of at l8ast

main executes, it callsodifyAll. The conceptual algo-
rithm based on the definition (correctly) classifies all non-
boolean parameters (excep? andp8) asmutable The al-
ternative algorithm leavgst andp5 asunknowr—when the

modification to the referent object happens (line 17), param-

etersp4 andp5 are aliased. Note that the inter-procedural

Higher values of the thresholN or t increase i-soundness
but decrease completeness; see Section 6.4.5.

The intuition behind this heuristic is that, if a method
executed multiple times, and the executions covered a large
part of the method, and the parameter was not modified
during any of those executions, then the parameter may in

static analysis (Section 5.1) compensates for the incomplete-fact beimmutable This heuristic is m-sound but i-unsound.

ness of the dynamic analysis in this case and correctly clas-

sifiesp4 andp5 asmutable

The algorithm permits anfiecient implementation: when
methodmis called during the program’s execution, the anal-
ysis computes the setachim, p) of objects that are transi-
tively reachable from each paramefevia field references.
When the program writes to a field in objeztthe analy-
sis finds all parameterg of methods that are currently on
the call stack. For each such parameigf o € reach(m, p)
andp is not aliased to other parametersngfthen the anal-
ysis classifiesp as mutable The algorithm checks alias-
ing by verifying emptiness of intersection of reachable sub-
heaps (ignoring immutable objects, such as boxed primi-
tives, which may be shared).

The implementation of the dynamic analysis is straight-

In our experiments, this heuristic greatly improved recall and
was not a significant source of mistakes.

(B) Using current mutability classification. This heuris-
tic classifies a parameter asutableif the object to which
the parameter points is passed in a method invocation to a
formal parameter that is already classifiechagable(by a
previous or the current analysis). That is, the heuristic does
not wait for the actual modification of the object but as-
sumes that the object will be modified if it is passed to a
mutableposition. The heuristic enables not tracking the ob-
ject in the new method invocation, which improves analysis
performance.

The intuition behind this heuristic is that if an object is
passed as an argument to a parameter that is known to be
mutable then it is likely that the object will be modified

forward: the analyzed code is executed and instrumented atduring the call. The heuristic is i-sound but m-unsound. In

load-time. The analysis works online, i.e., in tandem with
the target program, without creating a trace file. Our imple-
mentation includes the following three optimizations, which
together improve the run time by over:30(a) the analysis
determines object reachability by maintaining and traversing

our experiments, this heuristic improved recall and run time
of the analysis and caused few misclassifications.

(C) Classifying aliased mutated parametersThis heuris-
tic classifies a parametgr as mutableif the object thatp
points to is modified, regardless of whether the modification

its own data structure that mirrors the heap; this is faster thanhappened through an alias poor through the referencp

using reflection, (b) the analysis computes the set of reach-

able objects lazily, when a modification occurs, and (c) the

itself. For example, if parameteasandb happen to point to
the same objedat, ando is modified, then this heuristic will

analysis caches the set of objects transitively reachable fromclassify botha andb asmutable even if it the modification

every object, invalidating it when one of the objects in the
set is modified.

4.3 Dynamic Analysis Heuristics

The dynamic analysis algorithm described in Sections 4.1
and 4.2 is m-sound—a parameter is classifiednagable
only if it is modified during execution. The recall (see Sec-
tion 6) of the algorithm can be greatly improved by using
heuristics. The heuristics allow the algorithm to take ad-
vantage of theabsenceof parameter modifications and of

is only done using the formal parameter’s referenca to

The heuristic is i-sound but m-unsound. In our experi-
ments, using this heuristic improved the results in terms of
recall, without causing any misclassifications.

4.4 Using Randomly Generated Inputs

The dynamic mutability analysis requires an example execu-
tion. Random generation [36] of method calls can comple-
ment (or even replace) an execution provided by a user, for
instance by increasing coverage.

the classification results computed by previous stages in the Using only randomly generated execution has benefits

analysis pipeline.

for a dynamic analysis. First, the analysis that uses random

Using the heuristics may potentially introduce i-unsoundnessecutions may able to explore parts of the program that the

or m-unsoundness to the analysis results, but in practice,

user-supplied execution may not reach. Second, the analysis

they cause few misclassifications (see Section 6.4.5). Webecomes fully-automated and requires only the program’s

developed the following heuristics:

(A) Classifying parameters asimmutable at the end
of the analysis. This heuristic classifies asnmutableall
(unknown parameters that satisfy conditions that are set by
the client of the analysis. In our framework, the heuristic

code—the user need not provide a representative execution.
Third, each of the generated random inputs may be executed
immediately—this allows the client of the analysis to stop
generating inputs when the client is satisfied with the results
of the analysis computed so far. Forth, the client of the
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analysis may direct the input generator towards methodsof dereferencing; we found that this provided satisfactory

for which the results are incomplete. In contrast, by using

results.

a user-provided execution, the client does not have such a The points-to analysis computé(l, p) via a fixpoint

fine-grained control.
Our generator gives a higher selection probability to
methods withunknownparameters and methods that have

computation on each method. At the beginning of the com-
putation,D(p, p)(f) = 0, andD(l, p)(f) = oo for all other
| and p. Due to space constraints, we give the flavor of the

not yet been executed by other dynamic analyses in thedataflow rules with a few examples:

pipeline. By default, the number of generated method calls
is max500Q #methodsInPrograin
Generation of random inputs is iterative. After the dy-

namic analysis has classified some parameters, it makes
sense to propagate that information (see Section 5.3) and

to re-focus random input generation on the remaining

knownparameters. Such re-focusing iterations continue as

long as at least 1% of the remainingknowrparameters are
classified (the threshold is user-settable).

5. Static Mutability Analysis

This section describes a simple, scalable static mutability
analysis. It consists of two phaseS; an intraprocedural
analysis that classifies agnjmutable parameters (never)
affected by field writes within the procedure itself (Sec-
tion 5.2), andP, an interprocedural analysis that propagates
mutability information between method parameters (Sec-
tion 5.3). P may be executed at any point in an analysis
pipeline afterS has been run, and may be run multiple times
(interleaving with other analyses$. and P both rely on a

coarse intraprocedural pointer analysis that calculates the pa-

rameters pointed to by each local variable (Section 5.1).

5.1 Intraprocedural Points-To Analysis

The analysis must determine which parameters can be

pointed to by each expression (without loss of generality,

we assume three-address SSA form and consider only lo-

¢ Afield dereferencé, = I,.f updates

vg:D(l1, p)(@ <« min(D(l1, p)(9), D(l2, p)(f) - 1)
D(l2, p)(f) « min(D(Iz,p)(f),mginD(ll,p)(g)+1)

¢ Afield assignmenty.f = I, updates
D(l1, p)(f) < min(D(l1, p)(f), mgin D(l2, p)(9) + 1)

vg:D(l2, p)(@ <« min(D(l2, p)(9), D(l1, p)(f) — 1)

¢ Method calls are handled either by assuming they create
no aliasing (creating an underestimate of the true points-to
sets) or by assuming they might alias all of their parame-
ters together (for an overestimate). If an underestimate is
desired, no values d(l, p)(f) are updated. For an over-
estimate, le§ be the set of all locals used in the statement
(including receiver and return value); for edch S and
each paramete, setD(l, p)(f) « minyesg D(I", p)(9).

After the computation reaches a fixpoint, it sets

P() = {p3f: D(, p)(f) # e}
Po(l) = {pIVf:D(.,p)(f) =0}

5.2 Intraprocedural Phase:S

The intraprocedural phase first calculates the “overestimate”
points-to analysis described in Section 5.1.

The analysis marks anutablesome parameters that are
currently marked asinknown For each mutatior;.f =
I, the analysis marks all elements Bf(l;) as mutable

cal variables). We use a coarse, scalable, intraproceduralBecause of infeasible paths, and because its pointer analysis

flow-insensitive, 1-level field-sensitive, points-to analysis.
The points-to analysis calculates, for each local variable
I, a setPy(l) of parameters whose statecan point to di-
rectly and a seP(l) of parameters whose stdte€an point
to directly or transitively. The points-to analysis has “over-
estimate” and “underestimate” varieties; theffeli in how
method calls are treated (see below).
For each local variablé and parametep, the analysis
calculates a distance mdp(l, p) from the fields of object
| to a non-negative integer @p. D(l, p)(f) represents the
number of dereferences that can be applied wiarting
with a dereference of the fiell to find an object pointed
to (possibly indirectly) byp. Each mapD(l, p) is either
strictly positive everywhere or is zero everywhere. Suppose
| directly referenceg or some object transitively pointed
to by p; thenD(l, p)(f) = O for all f. As another example,
supposé.f.g.h = p.x; thenD(l, p)(f) = 3. The distance map
D makes the analysis field-sensitive, but only at the first layer

is an overestimate is notm-sound.

Next, S marks asimmutablesome parameters that are
currentlyunknown The analysis computes a “leaked skt”
of locals, consisting of all arguments (including receivers) in
all method invocations and any local assigned to a static field
(in a statement of the formdlobal.field = local). The
analysis then marks @ammutableall unknownparameters
that are not in the seti P(1) .

S never marks any parameteriagnutableif the param-
eter can be referred to in a mutation or escape to another
method body. Howevesg as presented so far is not i-sound,
because of it does not account for all possible aliasing re-
lationships; for an example (that is also misclassified}y
see Figure 10.

We correct this problem with a sound version, denoted
SS, that is just likeS except that it does not classify any
parameter asnmutableunless it can classify all parameters
asimmutable
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5.3 Interprocedural Propagation PhaseP program size |classes parameters
The interprocedural propagation phase refines the current. (LOC) all_| non-trivial | inspected
parameter classification by propagating both mutability and jolden 6,215 °6) 705 470 470
. S . . satéj 15,081 122| 1,499 1,136 118
!mmutapmty mformguonl through the c_aII graph. Given an tinysg 32149  119| 2408 1,708 206
i-sound input classification and a precise call-graph, propa- htmiparser || 64,019  158| 2,270 1738 82
gation is i-sound. ejc 107,371  320| 9,641 7,936 7,936

Because propagation ignores the bodies of methods, the gajkon 185,267 842|16,781 13,319 73
P phase is sound only if the method bodies have already| Total 410,102 1,617/ 33,304 26,307 8,885
been analyzed. It is intended to be run only afterShghase : -
of Section 5.1 has already be run. However, it can be run Figure 2. Subject programs.
multiple times (with other analyses in between).

parameters agnmutable and only a minimal number of

5.3.1 Binding Multi-Graph parameters misclassified amitable
The propagation uses a variant (that accounts for pointer data

structures) of thebinding multi-graph(BMG) [12]. Each 5.3.2 Propagation Algorithm
node is a method parameteip. An edge fromml.pl to
m2.p2 exists if m1 callsm2, passing as positiop2 part of

pl’s state (eithepl or an object that may be transitively  ynknowrparameters that can reach in the under-approximated
pointed-to byp1). _ BMG (can flow to in the program) a parameter that is clas-
We create a BMG by generating a call-graph and trans- sjfied asmutable Using an over-approximation to the BMG
lating each method call edge into a set of parameter depen-yguld be unsound because spurious edges may lead propa-
dency edges, using the séif) described in Section 5.1 10 gation to incorrectly classify parameters as mutable.
tell which parameters correspond to which locals. The immutability propagation phase classifies addi-
Our algorithm is parameterized by a call-graph construc- tional parameters asmmutable This phase uses a fix point
tion algorithm. Our experiments used CHA [14]—the sim- compytation: in each step, the analysis classifiesnas
plest and least precise call-graph construction algorithm of- 1, tableall unknowrparameters that have meutableor un-
fered by Soot. In the future, we want to investigate using knownsuccessors (callees) in the over-approximated BMG.
more precise but still scalable algorithms, such as RTA [3] Using an under-approximation to the BMG would be un-
(available in Soot, but containing bugs that prevented Us soynd because if an edge is missing in the BMG, the analy-
from using it), or those proposed by Tip and Palsberg [53] sis may classify a parameter msmutableeven though the

(notimplemented in Soot). ~ parameter is really mutable. This is because the parameter
The true BMG is not computable, because determin- yay pe missing, in the BMG, mutablesuccessor.

ing perfect aliasing and call information is undecidable.
Our analysis uses an under-approximation (i.e., it con- .
tains a subset of edges of the ideal graph) and an over—6' Evaluation

approximation (i.e., it contains a superset of edges of the We experimentally evaluated 192 combinations of mutabil-
ideal graph) to the BMG as safe approximations for de- ity analyses, comparing the results with each other and with
termining mutable and immutable parameters, respectively.a manually computed (and inspected) correct classification
As the over-approximated BMG, our implementation uses of parameters. Our results indicate that staged mutability
the fully-aliased BMG, which is created with an overesti- analysis can be accurate, scalable, and useful.

mating points-to analysis which assumes that method calls
introduce aliasings betweeall parameters. As the under-

approximated BMG, our implementation usestinealiased  \we computed mutability for 6 open-source subject programs
BMG, which is created with an underestimating points- (see Figure 2). When an example input was needed (e.g., for

to analysis which assumes that method calls introduwe 5 dynamic analysis), we ran each subject program on a single
aliasings between parameters. More precise approximationsnput,

could be computed by a more complex points-to analysis.
To construct the under-approximation of the true BMG, e jolden! is a benchmark suite of 10 small programs. As
propagation needs a call-graph that is an under-approximation the example input, we used tlmain method and argu-

Propagation refines the parameter classification in 2 phases.
Themutability propagation classifies asutableall the

6.1 Methodology and Measurements

of the real call-graph. However, most existing call-graph
construction algorithms [14, 16, 3, 53] create an over-
approximation. Therefore, our implementation uses the
same call-graph for building the un- and fully-aliased BMGs.

ments that were included with the benchmarks. We in-
cluded these programs primarily to permit comparison
with Salcianu’s evaluation [48].

In our experiments, this never caused misclassification of

1 http://www-ali.cs.umass.edu/DaCapo/benchmarks.html
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« sat4f? is a SAT solver. We used a file with an unsatisfiable many immutable parameters are marked as such by the anal-
formula as the example input. ysis. m-precision and m-recall are similarly defined. An i-
« tinysgl® is a minimal SQL engine. We used the program’s sound analysis has i-precision of 1.0, and an m-sound analy-
test suite as the example input. sis has m-precision of 1.0. Ideally, both precision and recall
e htmlparser is a real-time parser for HTML. We used our  should be 1.0, but this is not feasible: there is always a trade-
research group’s webpage as the example input. off between analysis precision and recall.
* ejc° is the Eclipse Java compiler. We used one Java file as
the example input.
« daikon® is an invariant detector. We used the StackAr test 6-2 Evaluated Analyses
case from its distribution as the example input. Our experiments evaluate pipeline analyses composed of
d analyses described in Section 8.Y-Z denotes a staged
analysis in which component analy%iss followed by com-
ponent analysi¥ and then by component analyZis
Our experiments use the following component analyses:

As the input to the first analysis in the pipeline, we use
a pre-computed (manually created) classification for all pa-
rameters in the standard Java libraries. Callbacks from the li-
brary code to the client code (e.ggString(), hashCode())
were analyzed under the closed world assumption in which
all of the subject programs were included. The pre-computed o s js the intraprocedural static analysis (Section 5.2).
classification was created once, and reused many timesinall, 55 s the sound intraprocedural static analysis (Sec-
the experiments. Another benefit of using this classification  jop 5.2).
is that it covers otherwise un-analyzable code, such as native, p js the interprocedural static propagation (Section 5.3).
calls. e D is the dynamic analysis (Section 4).

We measured the results only for non-trivial parameters o py js D, augmented with all the heuristics described in

declared in the application. That is, we ignored parameters  gection 4.3DA, DB, andDC areD, augmented with just
declared in external or JDK libraries, and ignored all param-  5ne of the heuristics.

eters with a primitive, boxed primitive, &tring type. « DRH is DH enhanced with random input generation (Sec-
To measure the accuracy of each mutability analysis, we  tjon 4.4); likewise forDRA, etc.
determined the correct classificationiytableor immutablé « Jis Salcianu and Rinard’s state-of-the-art static analysis

for 8,885 parameters: all of jolden and ejc, and 5 randomly-  3ppa [48]. It never classifies parametersagable—only
selected classes from each of the other programs. To find jnmutableandunknown

the correct classification, we first ran every tool available to ¢ jyH is J, augmented in two ways. FirstyIH uses anain

us (including our analysis pipelinesalianu’s tool, and the method that contains calls to all the public methods in the
Javarifier [55] type inference tool for Javari). Then, we man- subject program [42]3 only analyzes methods that are
ually determined the correct classification for every param-  reachable fronmain, limiting its code coverage and thus

eter where any two tool resultsftéred, or where only one recall. Second,JMH heuristically classifies amutable
tool completed successfully. _ . any parameter for whicli provides an explanation of a
Figure 3 and the tables in Section 6.4 present precision potential modificationJ has m-precision and m-recall of
and recall results, computed as follows: 0.
i-precision = =
i-recall = 6.3 Results
m-precision = T Figure 3 compares the accuracy of a selected set of mutabil-
m-recall = _mn_ ity analyses with which we experimented.

o ) Different analyses are appropriate iffelient situations,
whereii is the number of immutable parameters that are cor- ;¢ the pipeline with the highest overall precision and recall

rectly classified, andhi is the number of immutable param- 255 p_pRH-P. It dominates &lcianu's [48] state-of-the-
_eters incorrectly classified aeutable(5|m|larl_y, ui). Sim- art analysis,). For every subject program, the staged mu-
ilarly, for mutable parameters, we havem im and um tability analysis, combined of static and dynamic phases,
I-precision is measure of soundness: it counts how often 5chieves equal i-precision and better i-recall, and much bet-
the analysis is correct when it classifies a parametémas o1 m_recall and m-precision, becauseever classifies pa-
mutable i-recall is measure of completeness: it counts how ., meters amutable The staged analysis is also considerably
more scalable.

In certain applications, i-soundness is a critical property.

2 http://www.sat4j.org/
3 http://sourceforge.net/projects/tinysql

4http://htmlparser.sourceforge.net/ We evaluated i-sound versions of our analyses (see Sec-
Shttp://www.eclipse.org/ tion 6.4.6), and Figure 3 shows the results$&-P-DBC-P,
Shttp://pag.csail.mit.edu/daikon/ the best-performing i-sound staged analysis.
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g|Analysis I-recall |i-precision |m-recall \m-precision periments, propagation always increased all other statistics

c (sometimes significantly). For example, the table shows that
J 0.593| 0.999 | 0.000 |  0.000 propagation increased i-recall from 0.56350 0.777 inS-
jmﬂ S-P-DRH.-P g'ggg 8'333 8'83‘11 g'ggi P and it increased m-recall from 0.299%to 0.904 inS-P.

© S-p 07771 1.000 | 0904 0.971 I\_/Iore_ove_r, since almost all of the run-time cost qf propaga-
S-P-DRH-P 0928| 0.996 0.907 0.971 tion lies in the call-graph construction, only the first execu-
SS-P-DRBC-P | 0.781| 1.000 | 0915 0.956 tion incurs notable run-time cost on the analysis pipeline;
3 58941 1000 T 0000 5000 subseq.uer!t executions of'propagation are fast. Therefore,
IMH 0985 1.000 | 0660 0955 most pipelines presented in the sequel hBvstages exe-

5|OMH-5-P-DRH-P| 0.989| 0.996 | 0.990 | 0.970 cuted after every other analysis.

2/S-P 0.829 1.000 0.907 1.000
E_SP_IDI?SSSDC_P 82;3 1:888 1:838 8:3;2 6.4.2 Combining Static and Dynamic Analysis
3 0.750] 1.000 | 0.000 0.000 Combining static and dynamic analysis in either order is
IMH . - - . helpful—the two types of analysis are complementary.

S|IMH-S-P-DRH-P| - - - -

Sls-p 0.636 1.000 0.931 0.844 - - - — —
S-P-DRH-P 0.750| 1.000 0.931 0.844 Analysis i-recall |i-precision | m-recall | m-precision
SS-P-DRBC-P | 0.705| 1.000 | 0931 | 0.844 S-P 07771 1.000 | 0.904 0.971

S-P-DRH 0.922 0.996 0.906 0.971

_ J ) } B ) S-P-DRH-S-P | 0.928 0.996 0.907 0.971

£[IMH - - - - DRH 0540 | 0715 | 0.144 | 0.987

§[IMH-S-P-DRH-P| - - - - DRH-S-P 0.939 | 0812 | 0722 0.981

£|S-P 0836 1.000 | 0.863 | 0.965 DRH-S-P-DRH| 0.943 | 0.813 | 0.722 0.981

=|S-P-DRH-P 0.968 0.984 0.947 0.957
SS-P-DRBC-P | 0.836] 1.000 | 0.863 0.953 For best results, the static stage should precede the dy-

Figure 3. Mutability analyses on subject programs. Sub- Namic stage. Pipelin€-P-DRH, in which the static stage
jects tinysql, sat4j and htmlparser are presented jointly as prec_e(_jes the dynamic stage, ach|eve_d 5|gn|f|cantly better i-
the last group, marked as tingat-html. Empty cells mean precision and m-recall thabRH-S-P, with only marginally

that the analysis aborted with an error. lower i—reqall and m-precision. ) ) )
Repeating executions of static or dynamic analyses bring

no substantial further improvement. For examp&P-
DRH-S-P (i.e., static-dynamic-static) achieves the same re-
We experimented with six programs and 19&etient anal- sults asS-P-DRH (i.e., static-dynamic). SimilarlyDRH-S-

ysis pipelines. This section discusses the important obser-P-DRH (i.e., dynamic-static-dynamic) only marginally im-
vations that stem from the results of our experiments. Each proves i-recall oveDRH-S-P (i.e., dynamic-static).
sub-section discusses one observation that is supported by a

table listing representative pipelines illustrating the observa- ] )

tion. The tables in this section present results for ejc. Results®-4-3  Comparing Static Stages

for other programs were similar. However, for smaller pro- In a staged mutability analysis, using a more complex static
grams all analyses did better and th&eatiences in results  analysis does not bring much benefit. We experimented with
were not as pronounced. replacing our lightweight interprocedural static analysis with
J, Salcianu’s heavyweight static analysis.

6.4 Discussion of Results

6.4.1 Interprocedural Propagation
Running interprocedural propagatidn i the tables) is al-

ways beneficial, as the following table shows on representa-| ~nalysis i-recall | i-precision | m-recall | m-precision
tive pipelines. J-DRH-P 0.973 0.787 0.664 0.998
JMH-DRH-P 0.939 0.922 0.878 0.949
Analysis i-recall |i-precision | m-recall | m-precision JMH-S-P-DRH-P | 0.939 0.997 0.944 0.951
S 0.563 1.000 0.299 0.998 S-P-DRH-P 0.928 0.996 0.907 0.971
S-P 0.777 1.000 0.904 0.971
S-P-DRH 0.922 0.996 0.906 0.971 S-P-DRH-P outperformsJMH-DRH-P with respect to
S-P-DRH-P | 0.928 0.996 0.907 0.971 3 of 4 statistics, including i-precision (see Section 6.4.6).
DRH 0.540 | 0.715 0.144 0.987 Combining the two static analyses improves recaliH-
DRH-P 0940 | 0.776 | 0.663 0.988 S-P-DRH-P has better i-recall thas-P-DRH-P and better

Propagation may decrease m-precision but in our exper-m-recall thanIMH-DRH-P. This shows that the two kinds of
iments, the decrease was never larger than 0.03. In the exstatic analysis are complementary.
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6.4.4 Randomly Generated Inputs in Dynamic

Analysis TR g
Using randomly generated inputs to the dynamic analysis 08 b e ek ]
(DRH) achieves better results than using a user-supplied
execution DH). We also considered pipelines that use both 06 | ]
types of executions. '

- . - — — 04 r 1
Analysis i-recall |i-precision | m-recall | m-precision
S-P-DH 0.827 0.984 0.911 0.961 —————
S-P-DH-P-DRH | 0.917 0.984 0.915 0.958 0.2+ T ]
S-P-DRH 0.922 | 0.996 0.906 0.971 ~ irecall
S-P-DRH-P-DH| 0.932 | 0.983 0.912 0.970 0 ‘ ‘ , precision -+

0 20 40 60 80 100

PipelineS-P-DRH achieves better results th&P-DH
with respect to i-precision, i-recall and m-precision (with
marginally lower m-recall). Using both kinds of executions
can have dferent dfects. For instanc&-P-DH-P-DRH has
better results thag-P-DH, butS-P-DRH-P-DH has a lower
i-precision with a small gain in i-recall and m-recall over
S-P-DRH-P-DH.

The surprising finding that randomly generated code isas  HeuristicA is parameterized by a coverage threshold
effective as using an example execution suggests that otheHjigher values of the threshold classify fewer parameters
dynamic analyses (e.g., race detection [49, 35], invariant de-asimmutable increasing i-precision but decreasing i-recall.
tection [18], inference of abstract types [21], and heap type Figure 4 shows this relation on results ron ejc (the de-
inference [39]) might also benefit from replacing example pendency still exists, but is less pronounced, on other sub-
executions with random executions. jects and pipelines). The heuristic is m-sound, so it has no ef-
fect on m-precision. The threshold value méieat m-recall
(if the analysis incorrectly classifiesrautableparameter),
but, in our experiments, we have not observed this.

required coverage (%)

Figure 4. Relation between i-precision, i-recall and the cov-
erage threshold in dynamic analysis heurigticThe pre-
sented results are for the dynamic analysisn the ejc sub-
ject program.

6.4.5 Dynamic Analysis Heuristics

By exhaustive evaluation, we determined that each of the
heuristics is beneficial. A pipeline witbhRH achieves no- 6.4.6
tably higher i-recall and only slightly lower i-precision than
a pipeline withDR (which uses no heuristics). This section An i-sound mutability analysis never incorrectly classifies a
indicates the unique contribution of each heuristic, by re- Parameter asnmutable All our component analyses have i-
moving it from the full set (because some heuristics may Sound variations and composing i-sound analyses yields an
have overlapping benefits). For consistency with other tablesi-sound staged analyses. We evaluated i-sound versions of
in this section, we present the results for ejc; however, the the staged analyses

i-sound Analysis Pipelines

effects of heuristics were more pronounced on other bench-

Analysis i-recall |i-precision | m-recall | m-precision
marks. SS 0.454 1.000 0.299 0.998
HeuristicA (evaluated by th®RBC line) has the greatest SS-P 0.777 1.000 0.904 0.971
effect; removing this heuristic significantly lowers i-recall |SS-P-DRBC| 0.777 1.000 0.906 0.971
(as compared t8-P-DRH-P, which includes all heuristics.) SS-P-DBC | 0.777 1.000 0.912 0.959

However, because the heuristic is i-unsound, removing it in-
creases i-precision, albeit only by 0.004. Heuri®idthe

proves performance by 10%. Heuris@iqthe DRAB line) is

increase to m-recall.

SS is the i-sound version of the intra-procedural static
analysisS. Not surprisingly, the i-sound pipelines achieve
DRAC line) increases both i-recall and i-precision, and im- |gwer i-recall than i-unsound pipelines presented in Fig-
ure 3 (which presents the results 88-P-DRBC-P for all
primarily a performance optimization. Including this heuris- gypjects). For clients for whom i-soundness is critical, this
tic results in a 30% performance improvement and a small may be an acceptable tradé-dn contrast to our analyses,
J is not i-sound [47], although it did achieve very high i-

precision (see Figure 3).

Analysis i-recall |i-precision | m-recall | m-precision

S-P-DR-P 0.777 1.000 0.905 0.971 .

S-P-DRH-P | 0928 | 0996 | 0907 | 0.971 6.5 Scalability

S-P-DRBC-P | 0.777 1.000 0.906 0.971 Figure 5 shows run times of analyses on daikon (185 kLOC,
S-P-DRAC-P| 0.927 |  0.995 0.905 0.971 which is larger than previous evaluations of mutability anal-
S-P-DRAB-P | 0928 | 0.996 | 0.906 0.971 yses [44, 42, 48]). The experiments were run using a quad-
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Analysis [ total time (s) [ last component (s analysis | nodes [ratio|| edges | ratio[[ time (s)] ratio

J 5586 5586 jolden + ejc + daikon

IM - - no immutability|| 444,729 1.00|| 624,767 1.00|| 6,703|1.00
JMH - - J 131,425 3.83|| 210,354{ 2.97|| 4,626| 1.44
SS 167 167 S-P-DRH-P 124,601 3.57|| 201,327 3.10|| 4,271| 1.56
SS-P 564 397 htmlparser + tinysqgl + sat4j

S 167 167 no immutability|| 48,529| 1.00|| 68,402| 1.00 215]1.00
S-P 564 397 J - - - - - -
S-P-DH 859 295 S-P-DRH-P 8,254| 5.88|| 13,047 5.24 90| 2.38
S-P-DH-P 869 10

S-P-DRH 1484 920 Figure 6. Palulu [2] model size and model generation time,
S-P-DRH-P 1493 9 when assisted by immutability classifications. The numbers

are sums over indicated subject programs. Smaller models
are better. Also shown are improvement ratios over no im-
mutability information (the “ratio” columns). Empty cells
indicate that the analysis aborted with an error.

Figure 5. Run time, in seconds, of analyses on daikon, the
largest of analyzed programs: both the cumulative time and
the time for the last component analysis in the pipeline.
Empty cells indicate that the analysis aborted with an error

(JM denotes) executed on aain that includes calls to all
public methods in the application). Palulu [2], a system that generates models for model-based

testing. The model is a directed graph that describes per-
mitted sequences of method calls. The model can be pruned
core AMD Opteron 64-bit #1.8GHz machine with 4GB of ~ (without changing the state space it describes) by removing
RAM, running Debian Linux and Sun HotSpot 64-bit Server calls that do not mutate specific parameters, because non-
VM 1.5.0.09-b01. Staged mutability analysis scales to large mutating calls are not useful in constructing new test inputs.
code-bases and runs in about a quarter the tim@lofwu’s A smaller model permits a systematic test generator to ex-
analysis (i.e.] in Figure 5).JMH, the augmented version plore the state space more quickly, or a random test genera-
of J, aborted with an error (the error was not due to the tor to explore more of the state space.
heuristic—IM also aborted with an error). We ran Palulu on our subject programs using no im-
The figure overstates the cost of both #heand DRH mutability information, and using immutability information
stages, due to limitations of our implementation. First, the computed byl and byS-P-DRH-P. Figure 6 shows the num-
major cost of propagatiorP] is computing the call graph, ber of nodes and edges in the generated model graph, and
which can be reused later in the same pipeline. According the time Palulu took to generate the model (not counting
to SAlcianu,J's RTA [3] call graph construction algorithm the immutability analysis). Mutability information permitted
takes seconds, and our tool takes two orders of magnitudePalulu to run faster and to generate smaller models.
longer to perform CHA [14] (a less precise algorithm) using
Soot [57]. Use of a more optimized implementation could 7. Related Work
greatly reduce the cost of propagation. SecondDRE step  gection 7.1 discusses previous work that discovers im-
iterates many times, each time performing load-time instru- mytability (for example, determines when a parameter is
mentation and other tasks that could be cached; without thispeyer modified during execution). Section 7.2 discusses pre-
repeated workDRH can be much faster th@H. These im-  yious work that checks or enforces mutability annotations
plementation fixes would save between 50% and 70% of the yritten by the programmer (or inserted by a tool).
total S-P-DRH-P time.
However, the figure also overstates the cosd;oh the 7.1 Discovering Mutability
experiments, &lcianu's analysis analyzed the whole JDK  There s a rich history of research in analyzing programs
library on every execution, while our analysis was able t0 {4 getermine what mutations may occur. Early work [4, 12]
reuse a pre-computed analysis result. _ considered pointer-free languages, such as Fortran. In such
Note thatSS-P (Section 6.4.6) runs, on daikon, an order 4 |anguage, aliases are induced only by reference parame-
of magnitude faster thah (or even better, if dferences in - ter passing, and aliases persist until the procedure returns.

call graph construction are discounted). Moreo8&sP isi- ~ MOD analysis determines which of the reference parame-
sound, while] is i-unsound. FinallySS-P has highm-recall  ters, and which global variables, are assigned by the body of
and m-precision, whilg has 0 m-recall and m-precision. a procedure. Our analysis shares similar data structures and

approach, but handles pointers and object-oriented programs
and incorporates field-sensitivity, among othefatences.

In addition to evaluating the accuracy of mutability anal- Subsequent research, often called sidleat analysis, ad-
ysis, we evaluated how much the computed immutability dressed aliasing in languages containing pointers. An update
information helps a client analysis. We experimented with r.f = v has the potential to modify any object that might be

6.6 Application: Test Input Generation
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referred to byr. An alias analysis can determine the possi- field is marked as sideffiected or not. Razamahefa [41] re-
ble referents of pointers and thus the possible sitiects. ports an average 6% speedup for loop invariant code motion
(An alias or class analysis also aids in call graph construc- in an inlining JIT Le et al. [29] summarize their own and
tion for object-oriented programs, by indicating the type of related work as follows: “Although precision of the under-
receivers and so disambiguating virtual calls.) This work in- lying analyses tends to have larg@eets on static counts of
dicates which which aliased locations might also be mutated optimization opportunities, thefects on dynamic behavior

— often reporting results in terms of the number of locations are much smaller; even simple analyses provide most of the
(typically, an allocation site in the program) that may be ref- improvement.”

erenced [27] — but less often indicates what other variables ~ The research that is most related to ours is that of Roun-
in the program might also refer to that site. More relevantly, tev [42] and @lcianu [48, 47]. Both are static analyses
it does not answer reference immutability questions regard- for determining side{gect-free methods. Like ours and ev-
ing what references might be used to perform a mutation; ery practical mutability analyses of which we are aware,
ours is the first analysis to do so. A follow-on alias or escape they combine a pointer analysis, a local (intra-procedural)
analysis can be used to strengthen reference immutability toanalysis to determine “immediate” sidéfects, and inter-
object immutability [6]. procedural propagation to determine transitive sidieots.

New aliagclass analyses lead to improved sidéeet Salcianu defines a sidefect-free method as one that
analyses [46, 42]. Landi et al. [28] improve the precision does not modify any heap cell that existed when the method
of previous work by using program-point-specific aliasing was called. Rountev use a more restricted definition that pro-
information. Ryder et al. [46] compare the flow-sensitive hibits a side-fect-free method from creating and return-
algorithm [28] with a flow-insensitive one that yields a sin- ing a hew object, or creating and using a temporary object.
gle alias result that is valid throughout the program. The Salcianu’s analysis can compute per-parameter mutability
flow-sensitive version is more precise but slower and un- information in addition to per-method sid&ect informa-
scalable, and the flow-insensitive version provides adequatetion. (A method is side{gect-free if it modifies neither its
precision for certain applications. Milanova et al. [33] pro- parameters nor the global state, which is an implicit param-
vide a yet more precise algorithm via an object-sensitive, eter.) Rountev’s coarser analysis results are one reason that
flow-insensitive points-to analysis that analyzes a method we cannot compare directly to his implementation. Roun-
separately for each of the objects on which the method is tev applies his analysis to program fragments by creating an
invoked. Object sensitivity outperforms Andersen’s context- artificial main routine that calls all methods of interest; we
insensitive analysis [1, 43]. Rountev [42] compares RTA to a adopted this approach in augmentih(see Section 6).
context-sensitive points-to analysis for call graph construc-  Salcianu’s [48, 47] analysis uses a complex pointer anal-
tion; the latter found only one more sidé€ext-free method  ysis. Its flow-insensitive method summary represents in a
than the former, out of a total of 40. Rountev’s experimental special way objects allocated by the current method invo-
results suggest that sophisticated pointer analysis may not becation, so a sidefBect-free method may perform sidffects
necessary to achieve good results. (This mirrors other workon a newly-allocated objects. Like oursal&8ianu’s analysis
questioning the usefulness of highly complex pointer anal- handles code that it does not have access to, such as native
ysis [45, 22].) We, too, compared a sophisticated analysis methods, by using manually prepared annotatioati&nu
(Salcianu’s) to a simpler one (ours) and found the simpler describes an algorithm for computing object immutability
one competitive. and proves it sound, but his implementation computes ref-

Side-dfect analysis [9, 44, 33, 42, 48, 47] originated in erence immutability and contains some minor unsoundness.
the compiler community and has focused on i-sound analy- We evaluated our analyses, which also compute reference
ses. Our work investigates other traffisand other uses for  immutability, against 8lcianu’s implementation (Section 5).

the immutability information. Specifically, fierently from In the experiments, our staged analyses achieve comparable
previous research, our work (1) computes hwoititableand or better accuracy and scaled better.
immutableclassifications, (2) tradedfcsoundness and pre- Work by Porat et al. [40, 5] infers class immutability for

cision to improve overall accuracy, (3) combines dynamic global (static) variables in Javals.jar, thus indicating the

and static stages, (4) includes a novel dynamic mutability extent to which immutability can be found in practice; the

analysis, and (5) permits an analysis to explicitly represent work also addresses sealiagcapsulation.

its imprecision. s . .
Preliminary results of using siddfect analysis for opti- 7.2 Specifying and Checking Mutability

mization — an application that requires an i-sound analysis TO specify and enforce immutability, a programming lan-

— show modest speedups. Le et al. [29] report speedups ofguage is augmented to include tool-checked mutability an-

3-5% for a coarse CHA analysis, and only 1% more for a notations.

finer points-to analysis. Clausen [11] reports an average 4% Type and ect systems [31, 24] allow specifying side-

speedup, using a CHA-like sid€ect analysis in which each  €ffects of functions. The Java Modeling Language (JML) [8]
allows specifying pure methods (i.e., methods that have
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no side dects on any of their parameters or the global tics, optimizations, and enhancements that make it practi-

state), but it has only weak support for checking these cal. For example, iterative random test input generation ap-

specifications. Other approaches that allow specifying im- pears competitive with user-supplied sample executions. Our

mutability annotations are data groups [26, 30] and owner- static analysis reports botinmutableand mutableparame-

ship types [10]. The Splint [19] tool statically checks user- ters, and it demonstrates that a simple, scalable analysis can

provided type mutability annotations. perform at a par with much more heavyweight and sophis-
Language extensions that provide reference immutability ticated static analyses. Combining the lightweight static and

by enhancing the type system include Islands [23], Flexi-
ble Alias Protection [34], €+ const [51], ModeJava [50],
JAC [25], Capabilities [7], Javari [6, 56], Universes [15],
and 1GJ [60]. Most of those solutions aim to provide transi-
tive reference-immutability (E+ const and Boyland’s Ca-
pabilities are non-transitive). Appendix A contains, to the
best of our knowledge, the first formal definition of transi-
tive reference-immutability.

To compare our immutability approach with that of
Javari, a reference-immutability extension to Java, we used
a pre-release of the Javarifier type inference tool [55] to
annotate the jolden programs with Javari annotations. Our
analysis agreed with Javari-annotated code on 97.4% of
parameters. The other 2.6% reflecffeliences in the im-
mutability definitions between the two approaches. For ex-
ample, Javari’s type system requires that method overrid-
ing preserve immutability of the receiver parameter, while
our definition (and 8lcianu’s [48]) allows this immutability
to vary between the overriding and overridden method. In
this case, our definition is more expressive. In another ex-
ample, Javari's definition is more expressive: Javari allows
immutable arrays of mutable elements, while our definition
requires transitive immutability and treats array elements as
fields.

Object immutability is a stronger property than reference
immutability: it guarantees that a particular value is never

modified, even through aliased parameters. Reference muta-

bility, together with an alias or escape analysis, is enough to
establish object immutability [6]. Pechtchanski [37] allows

the user to annotate his code with object immutability an-
notation and employs a combination of static and dynamic

analysis to detect where those annotations are violated. The

IGJ language [60] supports both reference and object im-
mutability via a type system based on Java generics.

8. Conclusion

We have described a staged mutability analysis framework
for Java, along with a set of component analyses that can
be plugged into the analysis. The framework permits com-
binations of mutability analyses, including static and dy-

namic techniques. The framework explicitly represents anal-
ysis imprecision, and this makes it possible to compute both

immutable and mutable parameters. Our component analy-

ses take advantage of this feature of the framework.
Our dynamic analysis is novel, to the best of our knowl-

edge; at run time, it marks parameters as mutable based
on mutations of objects. We presented a series of heuris-
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dynamic analyses yields a combined analysis with many of
the positive features of both, including both scalability and
accuracy.

Our evaluation includes manyftBrent combinations of
staged analysis, in both sound and unsound varieties. This
evaluation sheds insight into both the complexity of the
problem and the sorts of analyses that can fiecévely
applied to it. We also show how the results of the mutability
analysis can improve a client analysis.
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A. Parameter Mutability Definition
o o JTR stores:
A formal_ Qefmmon .of' parameter reference mutabl!lty is a @ empty store
pre-requisite to verifying an algorithm or tool. Previous re- wl=v location binding

search [56, 60, 25, 34, 50, 15] defines reference-mutability
informally: a reference isnutableif there exists an execu-

tion in which the reference is used to change the state of its— -
referent object. However, previous work left the term “used” Figure 7. Syntax  of AUnit-Ref-Mut.  Changes from
undefined. A formal definition of parameter reference muta- 4UNit-Ref [38] are shaded.

bility is non-trivial since a reference, or references obtained
from it by a series of field accesses, may be stored in a vari-
able or passed as an argument to a function, and used in
performing a modification later during the execution of the
function.

Intuitively, a reference is usedin a mutation if the mu-
tation happens to an object viaor via a reference that was
obtained via a series of dereferences firoi@ection A.1 for-
malizes this intuition. Section A.2 illustrates the definition
via examples.

e One function in the program is marked.as(checkedab-
straction). This is the function that declares the parameter
whose mutability is being defined (ttehecked parame-
ter).

¢ A value in AUnit-Ref-Mut is a pair containing the cor-
responding value fromUnit-Ref (i.e., abstraction, con-
stant, or location) and a distance, which is a lifted natural
number.

o The checked parameter’s location has a distance of 0.
A.1  Formal Definition A location has a non-negative distantéf it was obtained
We proceed to define parameter mutability as follows. First, (during execution) by dereferencing the checked parameter
we define a core language for which we build the muta- n times. Other locations (that were not obtained from the
bility definition. Second, we augment the term evaluation checked parameter), and all non-locations (which cannot be
rules (i.e., the operational semantics) to additionally com- modified), have a distance af The distance for a value can
pute whether the parameter reference is used in a muta-be thought of as the length of a chain of executed derefer-
tion. Third, we formally define reference-mutability (Defi- ences from the checked parameter to the given value. Any

nition 3). location with a nont distance aliases part of the checked
We define reference-mutability in the contextifnit-Ref-Mutparameter’s state.
an augmented version ofUnit-Ref [38, pp. 166-167], a In AUnit-Ref-Mut, evaluation maintains the distances as-

core language of untyped lambda-calculus and referencessociated with each value. The checked parametaigble
The modified language captures all essential features thatf a location that has a non-distance (was reached by a

affect mutability. series of dereferences from the parameter) is assigned.
Figure 7 presents the syntax.dfnit-Ref-Mut. Changes The reduction rules fatUnit-Ref-Mut are shown in Fig-
from AUnit-Ref are shaded. The main changes are: ure 8. Each reduction rule is a relationshipyu — t’ | ¢/,
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wheret with a storeu reduces tot’ with a storey’. For

simplicity, the rules account for only one checked parameter
in the program. There are five changes to the semantics of

AUnit-Ref:

E-ArpABs When an abstractiof = Acx.t is applied E-AprrABs3)

to a location(1, d), the parametex is substituted in the

resulting expression with a pair containing the original

location and a distance of 0. This indicates that i§
modified, the modification to the value passedftwvill
occur at a distance of 0 dereferences from that value.
If A¢is applied to a non-locatiorE€AprABs2), Or a regular
(non-checked) is applied to any valueH-ArprABs1), then
the distance of the value is unchanged.

E-RerV When a new referenck to an existing valuey is

created, the value is put in the store with its distance.
Since the newly created location is not reachable from the
checked parameter (or any other location), its distance is

1.

E-DererLoc When a locatior1, 1) is dereferenced, the
obtained value retains its original distance, siice/as
not reached from the parameter (r&eéDererLocl).

When a location(1;,d;) is dereferenced, the resulting
locationl; is obtained usind,; +1 dereferences. (Location

1, may have already been obtained from the parameter

using a diferent path of length, # L, before it was putin
the store. In that case, we could choose either1 ord,.

This choice has noftect, since a mutation only depends

on whether or not the distance.is)

E-AssieN During evaluation of an assignment to a location

that was not reached from the parameterdjstance in

E-AssiaN), the store is updated and the computed value is

{unit, L) since the distance of unit is always
E-AssioNERrrOR The rule E-AssiGNERROR StOps the execu-

tion when a location with a non- distance is mutated

(changing the state of the checked parameter).

il — 1y

ity — ity (E-Arrl)
t2lp —
vitalg —vity | (E-Arp2)

AXt) Vo lp — [x & Vo]t |u (E-ArrABsl)

v, not location

(AeXt1) valp — [x = Vo]tip| (E-ArpABs2)

vy = (1p,d)
(AeXt) volp — [x = (13,0)]t1z|u

(E-ArrABs3)

1 ¢ dom(u)

(E-RerV)
refvilp — (1,1 | (u,1 - vy)
g — 't
reftyu — reft] |y (E-ReF)

u(l) =v
(L, 0| —vip

(E-DererLocl)

u(1ly) = 1z,dp)  di#EL
I1g,dp) g — (12,0 + 1) |

(E-DererLoc?2)

tilp — |y

Ity Ju —!t) W (E-DErEF)

(1,1) ==volp — (unit, 1) |[1 = vy]u (E-AssioN)

d# L

(1,d) := v, |u — error:modification (E-AssiGNERROR)

We define reference-immutable and reference-mutable pa-

rameters:

Definition 1. (contains execution)Term e; contains an
executiorof checked abstractioh = A.x.t iff

e f is asub-term oés,

¢ f is the only checked abstractionen.

o f is applied during the evaluation ef according to the
rules of Figure 8.

Definition 2. (modification) Parameterp of a checked
abstractionf = Acp.t is used in a modificationf dur-
ing the evaluation of¢, an application off evaluates to
error:modification using the rules of Figure 8.

Definition 3. (parameter reference (im)mutability)
Parametep of a checked abstractioh= A:p.t is reference-
mutableif there exists a terne; containing an execution of
f such thatp is used in a modification during the evaluation
of e;. Otherwise p is reference-immutable

15

tylpy — Iy

=t luy >t =ty (E-AssigNl)
talg — Gy
vii=tolp —vii=t (E-AssiGN2)

Figure 8. Operational semantics (evaluation rules) for
AUnit-Ref-Mut. Changes fromUnit-Ref [38] are shaded.

To show correctness of the reference immutability defini-
tion, we prove the following lemma.

Lemma 4. A parametex of abstractiorf = Acx.tis mutable
iff there exists a termg; containing an execution df, such
that the following conditions are met:

e (cl)es evaluatestql’,d’) ;== v, d # 1.
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e (c2)Let(1,d) be the argument in the last applicationfof
in e; thenl’ was obtained using a seriesdtddereferences
from 1.

Proof. = If x is mutablethen by definitions 1, 2, and 3 we
get the following facts:

¢ (i) There exists a termg; containing an execution df.
o (ii) f is a sub-term o&;.

e (iii) f isthe only checked abstractione.

e (iv) f is applied during the evaluation ef.

¢ (V) e evaluates to error:modification.

By rule E-AssioNError and fact(v) the term

Q,dy=v,d #1 Q)
is the last to be reduced in the evaluationegf(satisfying
condition(cl)).

Since a location is created with_a distance E-RerV),
and aL distance can only change in ruleAppABs3, it fol-
lows from (1) that rulé€e-AppABs3 must have been applied in
the execution o€&;. Sincef is the only checked abstraction
in e; (factiii)), it follows that f is applied to a location; let
(1, dy be the last such location.

Condition (c2) is proven by induction. When' = 0
thenl’ = 1 by rule E-AprPABs3. Assume that the value
(1”,d" - 1) was reached by a series d@f— 1 dereferences
from 1. The only way to get valuél’, d’) is by applying rule
E-DererL oc2 on the expression

K17,d - 1). 2)
The antecedent of the rue-DererLoc2 is u(1”) = (1/,d’).
Thereforel’ is reached by one dereference operation from
1” proving condition(c2).

<= This direction follows immediately from Defini-
tion 3 and the fact thel’,d’) := v, d # L evaluates to
error:modification E-AssiGNERROR).

O

A.2 Examples

We illustrate the formal definition of parameter reference
mutability on the example functions in Figures 9 and 10.

Function £1 (Figure 10)

In function f1, referencesp2 and p3 are reference-
mutable(line 2 modifiesp2, and line 4 modifiep3.next).
Referencep1 is also referenceautable whenp2 andp3 are
aliased, for example in the cafli(x,y,y), the state of the
object passed tp1 is modified on line 4 using a series of
dereferences from1.

Figure 9 demonstrates that parameteof function£1 is
referencemutable Functionf1 is converted taUnit-Ref-Mut:

executione;; is selected such that it showd’s mutability.

This execution corresponds to the call(x,y,y). The ex-
ecutioney; is evaluated using the set of rules in Figure 8.
Figure 9 shows the evaluation. The evaluation finishes with
error:modification, which demonstrates tlpat is mutable

In each step, the rule in the “rule” column is applied to the
underlined redex in the expression on the same row, result-
ing in the expression, store, and distance shown in the next
row.

Function £2 (Figure 9)

In function £2, referencep4 is clearly mutablebecause
line 2 modifiegp4.next. However, references is reference-
immutable—it is never used to make any modification to an
object during the execution df2. The parameteps is im-
mutabledespitethe fact that theobject passed t@5 may
be mutated, e.g., when parameters are aliased in the call
£2(x, x). Our definition is concerned witleferencanutabil-
ity, which, together with aliasing information, may be used
to compute object mutability. In the example of functifin
the information that paramete@5 is reference-immutable
can be combined with information abopd andp5 being
aliased in the calf2(x, x) to determine that, in that call, both
objects may be modified.

Figure 10 demonstrates that parameiérof function
£2 is not referencenutablein the call £2(x, x) (i.e., when
parameters are aliased). The execut®mp is evaluated.
The evaluation finishes without error and computes value
{unit, L), which shows that, in this executiop5 was not
used to modify a location.

field accessed are replaced with location dereferencing and

multiple function parameters are supplied by currying. The
top-most abstraction is the checked abstraction, igAn
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1 wvoid £f1(C pl, C p2, C p3){

2  p2next = pl; f1= Acpy.Ap2.Aps.(Ax.(Av.Iv = (unit, L))('p3))(!p2 = pr)

3 C local = p3.next;

4  local.next = null,; er1 = (Ay.(Ax. 1 x y y)(ref (unit, L))(ref ref(unit, L))

S
step expression store rule
1 (Ay.(Ax.T1 x y y)(ref (unit, L))(ref ref(unit, L)) @ E-RerV
2 Ay.(Ax.fLxyy) 1y L) 1y, L) {(Lx, Cunit, 1)), (1y, (1}, 1)), (17, Cunit, 1))}  E-AppABs2
3 11y, L) (1y, L)y, L) ... E-ArrABs3
4 (Ap.Apz.(Ax.(Av.Iv := (unit, L))('p3))(!p2 1= (1, O))(Ly, L) 1y, L) ... E-AprpABs2
5  @x(v.!vi= unit DX, D)0y, 1) =(1,0) ... E-DererLocl
6 (Ax.(Av.IV 1= (unit, 1)(1(Ly, L) ({5, L) = (14, 1)) .. E-AsSIGN
7 @x(vtvi= unit D)y, D)unit 1) {1y, (unit, 1)), (1y, (17, 1)), (1), (1, 0)}  E-AppArsl
8 (Av.v = (unit, 1)) K1y, L) E-DererLocl
9 (Av.v = (unit, 1)) (17, L) E-ArpABs2
10 K1, 1):=(unit 1) . E-DererLocl
11 (14,0) := (unit, L) E-AssiGNERROR
12 error:modification

Figure 9. Call £1(x,y,y), converted tolUnit-Ref-Mut (withp; as checked parameter) and evaluated using rules in Figure 8.
Evaluation finishes with error:modification, which means that paranpates used in a mutation and thus referemoatable
f1is the converted functiomy; is the call tof1, and the figure shows the evaluation.

1 wvoid £2(Cp4, Cp5){ f2 = Acps.Ap,4.1 pg 1= (unit, L)

2 p4.next = null,

3} erp = (Ax. 2 x X)(ref ref ref(unit, L))
step expression store rule
1 (Ax.f2x X)(ref ref ref(unit, L)) @ E-RerV
2 Ax.f2x %) (1, 1) (Lo (1 1)), (1 (14, 1), (1%, ¢unit, 1))} E-AppABs2
3 f(1y, L) (1y, L) E-ArpABs3
4 (Apa.'ps := (unit, L)) (14, L) E-AprrABs2
5 K1, L) :=(unit L) E-DererLocl
8 (1}, L) :={unit, L) E-AssiGN
9  (unit 1) {(1x, (1% 1)), (1}, Cunit, 1)), (13, Cunit, 1))}

Figure 10. Call £2(x, x), converted tolUnit-Ref-Mut (with p5 as checked parameter) and evaluated using rules in Figure 8.
Evaluation does not finish with error:modification, which means that paramg&ismot mutated in this executiorf.2 is the
converted functiones, shows the call t&2, and the figure shows the evaluation.
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