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Fig. 9.2.1 A plane-elastic membrane in equilibrium subject to a tension S N/m along its
edges.

/ The displacement at the center of the section (z, y) is &(z, v, t).
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Wire or “String”
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Fig.9.2.2 Section of membrane having area (Az Ay) and subject to the uniform tension S.



Fig. 10.1.1 Dispersion equation for waves on the simple string.
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Fig.9.2.6 Sketch of experiment in which a taut spring is fixed at the left end and deflected
sinusoidally at the right end. (a) Deflections in the quasi-static limit at which the fre-
quency is low compared with the reciprocal of the time required for a disturbance to
propagate from one end of the spring to the other; (b) to (d) deflection as frequency is
varied from value at which k = m/l to k = 2=/l The excitation amplitude is kept the
same in going from () to (d). Actual experiment can be seen in film, “*Complex Waves 1"
produced by Education Development Center for National Committee on Electrical
Engineering Films.



Simple Elastic Continua
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Fig. 9.2.7 Allowed wavenumbers (eigenvalues) k = k,, as they are related to the eigen-
frequencies w, by the dispersion equation.
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Fig. 10.1.2 (a) A conducting wire is stretched along the z-axis and is free to undergo
transverse motions in the horizontal plane. Magnet coils produce a field B which is 2e10,
along the z-axis; (b) the wire carries a current / so that deflections from the z-axis result m’,I

a force that tends to restore the wire to its equilibrium position, !
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Waves and Instabilities in Stationary Media

Dynamics of Electromechanical Continua
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) Fig. 10.1.3 Dispersion relation for the wire subject to a restoring force distributed along
—ws ™ its length (for the case shown in Fig. 10.1.2). Complex values of k are shown as functions

of real values of w,

Fig. 10.1.6 A dispersion equation for waves on the wire in Fig. 10.1.2 showing the ve(atisw-
ship between the eigenfrequencies w, and the eigenvalues k = nn/l.
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Waves and Instabilities in Stationary Media
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Fig. 10.1.4 Envelope of wire deflection in magnetic field. The wire is fixed at the right
end and driven at a fixed sinusoidal frequency at the left end. The w-k plots show the
effect of the current / on the dispersion equation. The current / (or cutoff frequency w.)
is being raised so that (a), I ~ 0, (b) I is sufficient just to cut off the propagation (wg = w,),
and (c) the waves are evanescent, w; < w,. This experiment can be seen in the film **Complex
Waves 1, produced for the National Committee on Electrical Engineering films by
Education Development Center, Newton, Mass.
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Fig. 10.1.9  Wire carrying current / in a i i
: magnetic field that is zero al is ¢ =
Current is reversed from the situation shown in Fig. 10.1.2. 10 slong the s £ =0
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Waves and Instabilities in Stationary Media
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Fig. 10.1.10  Plot of the dispersion equation for physical situation shown in Fig. 10.1.2 with
the current reversed, as in Fig. 10.1.9. Complex values of w are shown for real values of .
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Fig.10.1.11  The dispersion equation for the system of Fig. 10.1.2 with current as shown in
Fig. 10.1.9. Complex values of w are shown for real values of k. The allowed values of &
give rise to the eigenfrequencies as shown.
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Fig. 10.1.14  Conducting elastic membrane held horizontal in a gravitational field by an

electrostatic force.
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