
Massachusetts Institute of Technology 

16.410/413 Principles of Autonomy 
and Decision Making 

Problem Set #10, Linear Programming using AMPL/CPLEX 

Due in class, Monday, November 24, 2003. 

Objective 
To exercise your ability to formulate problems as linear programs over integer and real-valued 
decision variables.  To encode and solve these problems using the AMPL/CPLEX system. 

Problem 1 Astronaut Task Assignment 

Write the mathematical program for each part of the following problem. Then write an AMPL 
program to solve it. Submit your AMPL program, and the output. Give the assignment of which 
astronauts will be assigned to what task? 

Part 1. NASA has four tasks to be completed on the space station. There are four astronauts 
available to work on the tasks, but NASA’s goal is to finish the entire list in the minimum time 
(because space walks are expensive). Because of radiation exposure concerns, each astronaut 
can complete only one task. Assume the tasks will be completed one at a time, that is, the 

John Sally 
37.7 32.9 33.8 37.0 
43.4 33.1 42.2 34.7 
33.3 28.5 38.9 30.4 
29.2 26.4 29.6 28.5 

objective is to minimize the total time spent. 
Christa Edward 

Adjust mirrors 
Sample dust 
Repair antenna 
Polish fenders 

Part 2. Now write an AMPL program assuming that all will spacewalk at the same time, so that 
the objective is to minimize the maximum of the task times.  Again, submit your AMPL 
program, the AMPL run commands you used, and the list of astronauts assigned to each task. 

Bonus points will be awarded if you can formulate both AMPL programs as linear programs, 
rather than integer programs.  Give brief arguments: why is the linear program guaranteed to give 
a feasible assignment as the optimum?  Why is solving as a linear program preferable to solving 
as an integer program? 



Problem 2 A Mars Rover obstacle avoidance problem 

Part 1: Fixed Horizon obstacle avoidance 

Design and implement in AMPL a trajectory planner for the Mars Rover, travelling near a line at 

x=0. The rover chooses a new setting for the heading angle ϕ relative to the line x=0 every 10 

seconds. However, the new heading angle must be within 10 degrees of the previous heading 

angle or the Rover will roll. Use the small angle approximation to model this problem linearly. 

There are enormous dirt clods in the Rover’s path, requiring that the car be displaced from the 

nominal path x=0 at 200 seconds by at least 10 feet, and at 500 seconds by at least 5 feet. The 

rover’s speed is 0.5 feet/second. Use linear programming to design an autopilot for 700 seconds 

of roving, minimizing the absolute value of the deviation from the lane x=0 while avoiding the 

obstacles, assuming you know about all of the obstacles in advance. 


Submit a description of your design, your AMPL program, and output demonstrating the correct 

function of your autopilot.


Note: The following AMPL constructs might be helpful in part 1: 

set TIME := 1..70 ordered; 

subject to Limit {j in TIME:j!=last(TIME)}: 


secs 

20 feet 

300 secs 

10 feet 

250 secs 200 secs 



Part 2. Receding Horizon Driving 

In this section you will design and write pseudocode for a receding horizon Rover planner. One 
could write a looping function using AMPL commands (your model will be as above with a few 
changes) to handle the case where the planning is accomplished with a receding horizon of 200 
seconds and a recalculation every 10 seconds. This might be necessary, for instance, if obstacles 
are not visible more than 100 feet ahead, or if the onboard computer is too slow to solve the 70 
timestep version, or if observation of the obstacles and current heading is noisy so requires re-
observation every 10 seconds. 

However, since AMPL looping commands have arcane syntax and can not be run from the 
website, we are not asking you to put together a full AMPL implementation. Instead we are 
asking you to give a written description of how to modify your fixed horizon version in order to 
make it receding horizon.  You should describe it in pseudocode, beginning with 

for i in 1:70 


and describing explicitly which constraints to change, which constants to change, when you will 
call solve, and which controls ϕ to actually apply to the rover. 

Submit an explanation for your design changes, including the pseudocode, described above. 



Part 3.  Simplex algorithm 

(from George Dantzig, Linear Programming and Extensions, Princeton University Press) 

Solve using the simplex method the following linear program: 

Maximize Z=3y1 +4y2 

Subject to: 2y1 + y2 <2
y1 -2y2 <6

3y1 +9y2 <1 
y1 >0, y2 >0 

Interpret each pivot step of the simplex algorithm geometrically in the plane ofy1 and y2 


