
Massachusetts Institute of Technology

16.410-13 Principles of Autonomy and Decision Making

Assignment #1, tutorial. Due: LEC #4

Problem PS.1.1.1: A simple forward-chaining rule set

You are given the following database of assertions:
 (P a b)
 (P a c)
 (P c d)
 (P d e)
 (P d f)
and the following rules:
 (R1 IF (P ?x ?y)
 (P ?y ?z)
 THEN (G ?x ?z))

 (R2 IF (G ?x ?y)
 (P ?y ?z)
 THEN (H ?x ?z))

Part 1: New rules

In the space below, write all the (new) assertions that will be added to the database by a
forward-chaining system. Be sure to write the assertions as lists, i.e. in the same format as
the input assertions shown above.

Part 2: Triggering

1. How many triggered rule instances are found before the first rule is fired?
2. How many of these triggered rule instances are found again after the first rule is

fired?

Problem PS.1.1.2: IF-THEN Forward Chaining

The following problems refer to general properties of forward-chaining systems using
only deduction rules, that is, rules that have only IF and THEN clauses. For this problem,
assume the rules do not use STOP assertions anywhere.

Part 1: Order

Given a rule set with only IF-THEN rules, indicate which of the following
statements are true.

1. Nothing that an IF-THEN rule adds to the database can make a rule that is
triggered once become untriggered.

2. In our default forward-chainer, assuming no infinite looping, the order of
the rules will never affect which assertions end up being added to the
database.

3. The following rule can cause infinite looping IF ?x THEN ?x
4. The following rule can cause infinite looping IF THEN (Hello)
5. The following rule can cause infinite looping IF ?x THEN (P ?x)

Part 2: Conflict

Given a rule set with only IF-THEN rules and assuming no infinite looping, which of the
following conflict-resolution strategies will produce the same set of new assertions as the
strategy implemented in our default forward-chaining system?

1. Fire all triggered rule instances.
2. Fire the triggered rule instance derived from the most recently added

assertion (settle ties randomly)
3. Fire the triggered rule instance derived from the least recently added

assertion (settle ties randomly)
4. Fire a random triggered rule instance.

True/False problems do not have a Check button.

Problem PS.1.1.3: Finding the way

Impressed with the argument that all intelligent behavior may arise from rule-based
processing, you decide to implement a rule-based system that can navigate around
Cambridge. Assume that you have a representation of a map in which every intersection
is named, e.g. Harvard-square or place-946, and in which the existence of street
segments that connect intersections is represented by assertions of the form
 (connect-from place-946 Harvard-square)
Consider a small version of the Cambridge map, that consists of just the following places
and connections:
 (connect-from tech-square central-square)
 (connect-from tech-square inman-square)
 (connect-from tech-square cambridge-port)
 (connect-from inman-square porter-square)
 (connect-from inman-square central-square)

 (connect-from harvard-square fresh-pond)
 (connect-from cambridge-port harvard-square)
 (connect-from central-square harvard-square)

where the assertions are ordered as shown in the rule-chainer's assertion database.

Part 1: Reaching TS

We can define two rules that will let us know where we can get from Tech
Square:
 (start-from-tech-square
 IF (connect-from tech-square ?x)
 THEN (reachable-from-tech-square ?x (tech-square ?x)))
 (reach-from-tech-square
 IF (reachable-from-tech-square ?x ?path)
 (connect-from ?x ?y)
 THEN (reachable-from-tech-square ?y (?path ?y)))
Note: The last element of the (reachable-from-tech-square ...) assertions
is meant to be the path of how the second element can be reached from Tech
Square. Note that it is not a list of places because ?path is a list, so this will
produce paths such as ((A B) C) instead of (A B C).

Fill in the following assertions in the order that they will be added to the database
by our Scheme forward rule chainer (note that new assertions are added at the end
of the list of assertions) . The rules are ordered as shown above. Please use the
following abbreviations in your answer:

o TS = tech-square
o CS = central-square
o HS = harvard-square
o IS = inman-square
o PS = porter-square
o CP = cambridge-port
o FP = fresh-pond

1. (reachable-from-tech-square)
2. (reachable-from-tech-square)
3. (reachable-from-tech-square)
4. (reachable-from-tech-square)
5. (reachable-from-tech-square)
6. (reachable-from-tech-square)
7. (reachable-from-tech-square)
8. The total number of new assertions added to the database is ______
9. The total number of assertions added to the database that match the

following pattern (reachable-from-tech-square harvard-square
?p) is _______

Problem PS.1.1.3: Finding the way

Impressed with the argument that all intelligent behavior may arise from rule-based
processing, you decide to implement a rule-based system that can navigate around
Cambridge. Assume that you have a representation of a map in which every intersection
is named, e.g. Harvard-square or place-946, and in which the existence of street
segments that connect intersections is represented by assertions of the form
 (connect-from place-946 Harvard-square)
Consider a small version of the Cambridge map, that consists of just the following places
and connections:
 (connect-from tech-square central-square)
 (connect-from tech-square inman-square)
 (connect-from tech-square cambridge-port)
 (connect-from inman-square porter-square)
 (connect-from inman-square central-square)
 (connect-from harvard-square fresh-pond)
 (connect-from cambridge-port harvard-square)
 (connect-from central-square harvard-square)

where the assertions are ordered as shown in the rule-chainer's assertion database.

Part 2: Reaching anywhere

Navigating a map of Cambridge only from Tech Square seems a bit too
egocentric, so you define two, more general, rules in place of the two above.

We can define two rules that will let us know where we can get from Tech
Square:

 (reachable-by-connect
 IF (connect-from ?start ?end)
 THEN (reachable ?start ?end (?start ?end)))
 (reachable-by-reach
 IF (reachable ?x ?y ?path1)
 (reachable ?y ?z ?path2)
 THEN (reachable ?x ?z (?path1 ?path2)))
Note: The third element of (reachable ...) again collects an indication of the
path, but the format of the path is a bit convoluted. We really want to append the
paths not just put them into a list. Also, in the rule reachable-by-reach, the
place that matches ?y will be part of both paths ?path1 and ?path2, so it will
show up twice in the combined path. So, the rule will construct paths such as ((A
B) (B D)) instead of (A B D). We ignore these difficulties so as to simplify the
problem a bit.

1. What are the number of physically distinct paths (in our little database)
between tech-square and harvard-square?

2. What is the total number of assertions added to the database that match the
pattern: (reachable tech-square harvard-square ?p)?

3. If we could append ?path1 and ?path2 in the second rule, how many
assertions matching the pattern above would be added?

Part 3: Reaching anywhere again

Write a variant of the reachable-by-reach rule that generates the expected number of paths
between two places

Part 4: Reaching symmetry

Thus far, our Cambridge has the odd characteristic that all paths can be walked in only
one direction. Because real streets are very rarely like this, and because we don't want to
double the size of the database of (connect-from ...) assertions, we add the following
rule:

 (symmetric-connect
 IF (connect-from ?x ?y)
 THEN (connect-from ?y ?x))
With this rule, we start worrying about the potential of infinite loops; let's
consider the effect of several conflict-resolution strategies.

1. If this rule were the only one in the system:
a. Our forward-chaining system, using rule-ordering, would generally

go into an infinite loop
b. Our forward-chaining system, modified so that a triggered rule-

instance involving the least-recently added assertion is fired, would
generally go into an infinite loop

c. Our forward-chaining system, modified so that a triggered rule-
instance involving the most-recently added assertion is fired,
would generally go into an infinite loop

d. Our forward-chaining system, modified so that a randomly chosen
triggered rule-instance is fired, would generally go into an infinite
loop

2. If we had the symmetric-connect rule followed by the two rules in the
first part of this problem:

a. Our forward-chaining system, using rule-ordering, would generally
go into an infinite loop

b. Our forward-chaining system, modified so that a triggered rule-
instance involving the least-recently added assertion is fired, would
generally go into an infinite loop

c. Our forward-chaining system, modified so that a triggered rule-
instance involving the most-recently added assertion is fired,
would generally go into an infinite loop

d. Our forward-chaining system, modified so that a randomly chosen
triggered rule-instance is fired, would generally go into an infinite
loop

e. Assume we add an AND-IF clause to the rule reach-from-tech-
square that makes sure that the place that matches ?y is not part of

the path that matches ?path. Then, our forward-chaining system,
using rule-ordering, would generally go into an infinite loop

3. If we had the symmetric-connect rule followed by the two rules in the
first part of this problem, but we added a mechanism to stop chaining once
we reached our desired destination (e.g. HS) [assume the rule (stop IF
(reachable-from-tech-square harvard-square ?x) THEN (STOP)) is added
at the front of the list of rules]:

a. A forward-chaining system, using rule-ordering and which adds
new assertions to the front of the list of assertions, would generally
go into an infinite loop before reaching the destination

b. Our forward-chaining system, modified so that a triggered rule-
instance involving the least-recently added assertion is fired, would
generally go into an infinite loop before reaching the destination.

c. Our forward-chaining system, modified so that a triggered rule-
instance involving the most-recently added assertion is fired,
would generally go into an infinite loop before reaching the
destination.

d. Our forward-chaining system, modified so that a randomly chosen
triggered rule-instance is fired, would generally go into an infinite
loop before reaching the destination.

e. Assume we add an AND-IF clause to the rule reach-from-tech-
square that makes sure that the place that matches ?y is not part of
the path that matches ?path. Then, our forward-chaining system,
using rule-ordering, would generally go into an infinite loop before
reaching the destination.

True/False problems do not have a Check button.

Problem PS.1.1.4: Family Chaining

You are given a large genealogical database made up of assertions like the following:
 (A is-parent-of B)
 (A is-parent-of C)
 (C is-parent-of D)
 (A is-of-gender Female)
 (B is-of-gender Male)
 (C is-of-gender Female)
 (D is-of-gender Female)

There are no other types of assertions in the database, only is-parent-of and is-of-
gender assertions.

Part 1: Grampy

Write an IF-THEN rule which, given this type of database, adds assertions of the form (A
is-grandparent-of D). Gender is irrelevant.

Please pick your variable names from the following: ?person, ?parent,
grandparent.

Part 2: Crying Uncle

Write an IF-THEN rule which, given this type of database, adds assertions of the form (B
is-uncle-of D). Do not make distinctions between siblings who share two parents or
just one parent.

Please pick your variable names from the following: ?person, ?parent, ?uncle,
?grandparent.

Note that to force two variables ?x and ?y to match different people you can add a
clause to the rule like this:

 AND-IF (not (eq? '?x '?y))
In general, the AND-IF clauses will be evaluated as Scheme expressions with the
current bindings of the rule variables substituted in. Note that you need to use '?x
to avoid trying to evaluate constants such as A and B. Syntax errors in AND-IF
expressions produce a scary and very uninformative Scheme error message -
sorry.

Problem PS.1.1.5: Anti-Tic-Tac-Toe

You are assigned to develop a program (Light Blue) that plays Anti-Tic-Tac-Toe
(ATTT). In ATTT, you lose by putting three of your marks (X or O) in a row on a 3X3
board. You win when the other player loses.

We will represent the locations on the board by symbols such as A1, B2, C3, etc. where
the row is indicated by a letter (A, B or C) and the column by a number (1, 2 or 3):

 1 2 3
A | |

B | |

C | |

Part 1: Diagonals

You decide to start with the following assertions, noting that this is all you need to define
the board layout:

 (A1 top-of B1), (B1 top-of C1)
 (A2 top-of B2), (B2 top-of C2)
 (A3 top-of B3), (B3 top-of C3)
 (A3 right-of A2), (A2 right-of A1)
 (B3 right-of B2), (B2 right-of B1)
 (C3 right-of C2), (C2 right-of C1)
However, you think that it would be nice to have 'diagonal' assertions of the form:
 (A3 top-right-of B2), (B2 top-left-of C3)

Write IF-THEN rules to add all of the appropriate top-right-of and top-left-of
assertions.

Part 2: Losing

You now encode what is in each location on the board by assertions such as:

(A1 is X), (B3 is O), (B2 is blank), etc.
You figure it would also be nice to have a rule that will add an assertion when a
player has lost, e.g. (X lost) or (O lost). Write one or more rules that add
assertions of this type. You can assume that the top-righth-of and top-left-
of assertions are already available (as produced by correct rules from Part 1).

Note that to test that a variable is NOT equal to a value you can do, for example:

 AND-IF (not (eq? '?x 'blank))

In general, the AND-IF clauses will be evaluated as Scheme expressions with the current
bindings of the rule variables substituted in. Note that you need to use '?x to avoid trying
to evaluate constants such as A1. Syntax errors in AND-IF expressions produce a
scary and very uninformative Scheme error message - sorry.

Part 3: Playing

Now, to encode some move-making logic into Light Blue. As a start, you decide that it is
a good strategy to move between a mark of yours and a mark of the opponents, if
possible. Thus, B2 is a good move here:

 1 2 3
A | |

B X | | O

C | |

Write a rule that will perform this move, regardless of the direction. You may assume
that you are X.

Problem PS.1.2.1: A simple backward-chaining rule set (no rule
variables)

You are given the following set of rules:
 (r1
 IF
 (the patient is FATIGUED)
 (the patient has a FEVER)
 THEN
 (the diagnosis is (patient has a COLD)))

 (r2
 IF
 (the patient has MUSCLE aches)
 (the patient has NORMAL temperature)
 THEN
 (the diagnosis is (patient has the FLU)))

 (r3
 IF
 (the patient SLEEPS a lot)
 (the patient avoids EXERCISE)
 THEN
 (the patient is FATIGUED))

 (r5
 IF
 (the temperature of the patient is GREATER than 101)
 THEN
 (the patient has a FEVER))

Assume that there are initially no assertions in the database. Write the questions that
would be asked of the user by a backward chaining system (as illustrated in the recitation
material). The initial goal is:
(the diagnosis is ?x)
Assume that the user will answer the question
(the temperature of the patient is GREATER than 101)

as No but all other questions as Yes. To specify the question simply copy the assertion
being queried into the space below (including parens). The correct order is part of the
answer; assume the order is as in the recitation examples.

1. Questions asked (in order)
2. What is the diagnosis? Enter the complete assertion (including parents)

Problem PS.1.2.2: Unification

Fill in the variable assignments required to unify the expressions. Your answers should be
a list of statements like this (?x = A) or (?x = ?y) Your answer should include
the parens around each assignment. There needs to be spaces around the
=. If there is no unification possible, enter None.

1. (?x (B ?y)) and (A (?z ?w))
2. (?x (B ?y)) and (A (?y ?w))
3. (?x (B ?y)) and (A (?y C))

Problem PS.1.2.3: A simple backward-chaining rule set (with rule
variables)

Consider the following set of rules, which are intended to be a tiny fraction of a grammar
of English.
 (r1
 IF ; no antecedent, means always
true
 THEN (article (the . ?s1) ?s1))
 (r2
 IF ; no antecedent, means always
true
 THEN (noun (ball . ?s2) ?s2))
 (r3
 IF (article ?s3 ?s4)
 (noun ?s4 ?s5)
 THEN (NP ?s3 ?s5)
Each clause is of the form (type start rest), where type is the type of a word or
phrase, start is a pattern describing the start of the word or phrase in a list of words and
rest is the rest of the list of words (past the end of the word or phrase). So, the goal
(article (the ball) (ball)) matches the consequent of r1. The goal (NP (the
ball) ()) can be shown to be true using these rules. Give the variable bindings for each
rule as it is used in the backchaining process.

1. For rule r3: ?s3 = ?s4 = ?s5 =
2. For rule r2: ?s2 =
3. For rule r1: ?s1 =

Problem PS.1.2.4: Derivative Rules

In this problem we will explore the use of backward chaining to implement a simple
differentiation system. Some sample rules would be:
 (plus
 IF

 (deriv ?v ?dv)
 (deriv ?w ?dw)
 THEN (deriv (plus ?v ?w) (plus ?dv ?dw)))
 (times
 IF
 (deriv ?v ?dv)
 (deriv ?w ?dw)
 THEN (deriv (times ?v ?w) (plus (times ?v ?dw) (times ?dv ?w))))
Each (deriv w dw/dx) assertion in these rules expresses that the second entry is the
derivative of the first entry with respect to x.

We will use an auxiliary rule that can tell us if an expression can be treated as a constant,
that is, when it does not contain x.

 (aux
 IF
 AND-IF
 (not (contains? 'x '?x))
 THEN
 (constant ?x))

Your job is to finish up this system of rules so that we can differentiate expression
involving the sum and product of terms (some of which involve the variable x). For
example, we would do

(backchain '(deriv (plus x (times x x)) ?ans))
and expect to find a binding for ?ans. To keep things simple, we will not attempt to
simplify any expressions for now. We are looking for a couple of very simple rules.

Problem PS.1.2.5: Production Rules

Imagine that we have a robot that moves around within a room in which there are a
number of other objects. Each of these objects, and the robot, has some location
characterized by a pair of numbers (x and y on some grid). The robot is also able to climb
on objects. We describe the state of the world by a set of assertions of the following
types:
 (at location)
 (on object)
 (object at location)
 (loc location)
The (at location>) and (on object) assertions describe the state of the robot. The
(object at location) assertions describe each object's location. There is a special
object, floor, with no specified location. The existence of a location is indicated by (loc
location). There are two actions that the robot can perform:

• WALK - The robot must be on the floor as a precondition for walking and it will
be at the target location afterwards.

• CLIMB - There are two cases. Climbing down from an object: the robot can do
this at any time that it is not already on the floor. After the climb-down, the robot
is on the floor. Climbing onto an object: the robot must be on the floor at the same
location as that object. After the climb-up, the robot is on the relevant object.

Here are some production style rules that we could imagine using to model this sitation.
 (end
 IF
 (goal ?g)
 ?g
 SAYING "Stop"
 ADD (stop)) ;-- will terminate chaining

 (climb-down
 IF
 (on ?support)
 AND-IF (not (equal? '?support 'floor)) ;-- note vars have to be
quoted
 SAYING "CLIMB down to floor"
 ADD (on floor)
 DELETE (on ?support))

 (walk
 IF
 (on floor)
 (at ?old-loc)
 (loc ?new-loc)
 AND-IF (not (equal? '?old-loc '?new-loc)) ;-- note vars have to be
quoted
 SAYING "WALK to " ?new-loc
 ADD (at ?new-loc)
 DELETE (at ?old-loc))

and here are some assertions for a simple situation:

 (loc (9 5))
 (loc (3 4))
 (loc (5 6))
 (at (9 5))
 (on floor)
 (table at (5 6))
 (stool at (3 4))
 (goal (on table))

Part 1: Forward ho!

Now we want to write a climb-up rule of the following form:

 (climb-up
 IF
 SAYING "CLIMB onto " ?object
 ADD
 DELETE)
In filling the questions below, use the variables ?loc for locations and ?object
for objects

1. What should the IF clauses of the climb-up rule be?
2. What should the ADD clause of the climb-up rule be?
3. What should the DELETE clause of the climb-up rule be?

Part 2: Produce!

Assume we add the climb-up rule at the end of the rules given earlier. Now, we start the
forward-chaining system going (using rule-ordering as a conflict resolution strategy).

1. The first rule-instance fired deletes the assertion and adds the assertion.
2. The second rule-instance fired deletes the assertion and adds the assertion.

Problem PS.1.3.1: Hello World

Write a simple Scheme function, hello-world, that takes no parameters, and returns the
list (hello-world 5).

Problem PS.1.4.1: Hours

We want to understand how much time it took students to answer the questions on the
problem sets.

Approximately how many hours did you spend really working on this problem
set?

