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Problem PS.8.1.1: Best First from Depth First 
 
The function below, although it is called best-first is really an an implementation of 
Depth-First search using the machinery in ps4/search.scm.  

Your job is to convert that into a real definition for best-first search. For concreteness, 
add new (extended) paths onto the front of Q. You can assume that you have a working 
version of extend-path-with-heuristic. Also, note that we are assuming that the heuristic 
values already exist and you just need to look them up using (get-heuristic-value 
node finish), as defined in the code. 

define (best-first start finish)   

  ;; Really, this is Depth-First!! 

 

  ;; A Q addition function specific to DEPTH-FIRST search 

  ;; Add the new paths to the front of the queue 

  (define (merge-paths-into-Q new-paths Q) 

    (Q-set-paths! Q (append new-paths (Q-paths Q))) 

    ) 

 

  (define (heuristic node) #f)  ; not needed for DEPTH-FIRST 

 

  (define (successors path) 

    (extend-path path)) 

 



  ;; Fire up generalized search defined in search.scm: 

  (search 

   ;; Just start with a partial path including only start node. 

   finish    ; goal node 

   1     ; only 1 path wanted 

   pick-and-remove-first-path  ; pick the first path from Q 

   merge-paths-into-Q   ; add to the front of Q 

   successors    ; successors of path 

   ;; The initial Q, just one path = (start) 

   (make-Q (make-path #f (list start))) ; initial Q 

   '()     ; initial wins 

   )) 

 

Problem PS.8.1.2: Robot Search 

In PS 1 you saw that production rules, rules that add and delete assertions from the data 
base are quite sensitive to the order of firing. Simple-minded conflict-resolution strategies 
have a hard time ensuring that something useful happens. We saw, for example, that 
using simple rule-ordering, a set of rules aimed at modeling a simple robot just go into an 
infinite loop.  

In this problem, we are going to exploit our new found expertise in searching to try to do 
better. In particular, we will use a best-first search to try to decide what rule-instance 
should be fired. You may be interested in how the forward chainer can be used to define 
an abstract graph to be searched, see ps8/robot.scm It is surprisingly easy.  

To enable us to use heuristic search, you will need to provide a heuristic function to guide 
the search.  

The basic idea for the heuristic function is as follows:  

• The state of the world is described by a set of assertions. These are what we 
would find in the assertion database for our rule-based system.  



• The goal state is decribed by another list of assertions, describing the final state. 
This does not have to be a complete description of the final state. The termination 
condition is when all the assertions in the goal state are present in the current 
state.  

• The heuristic function should be a measure of the difference between these two 
states. The measure of difference will be specific to the particular problems we 
are dealing with, in particular, the types of assertions one finds in the states.  

For variety, we will look at a different example. Let's look at rules for manipulating 
stacks of toy blocks. This is the "Blocks World" you have heard about in the book.  
   (B1 IF    ; the table is always clear 
       ADD      (clear table)) 
 
   (B2 IF       (on ?x ?y) 
         (clear ?x)  
                (clear ?z)  
 AND-IF  (not (eq? '?x '?z)) 
         (not (eq? '?y '?z)) 
 ADD     (on ?x ?z)  
         (clear ?y) 
 DELETE  (on ?x ?y) 
         (clear ?z) 
 SAYING  ("move " ?x " from " ?y " to " ?z)) 
There are only two kinds of assertions:  

• (on A B) that indicates that A is ON B, and  
• (clear A) indicating that A is clear, that is has nothing on it. The table is defined 

to be always clear, so you can always put something on the table.  

Here are some assertions for a simple situation (state of the world):  

 (on A table) (clear A) 
 (on B table) (clear B) 
 (on C table) (clear C) 
 (on D table) (clear D) 
The initial state (node) is precisely a list of these assertions. The goal state would be 
described with another list of assertions, which might not be a complete description of the 
world. For example:  
 (on A B) 
 (on B C) 
is a perfectly reasonable description of a goal even though it does not specify where D is 
and what blocks are clear. Note that a path is simply a list of nodes and so it will be a list 
of lists of assertions.  

Your job is to define the function (get-heuristic-value state goal-state) which 
is given two lists of (on and clear) assertions and returns an integer. The number should 
be low for states that might be "near" the goal-state, that is, which may require fewer rule 
applications to reach the goal.  



Your code will be checked by testing how effective it is at reducing the number of search 
steps required to reach some sample goals. It will be compared to the "trivial" solution, 
using a heuristic function that returns 0 always. Your objective is to do better than this. 
This means that, in this case, our official answer (just return 0) does not qualify as 
correct. When after checking your solution, the system reports "the correct value is 14", 
this is simply what the system using a heuristic of 0 does. If your result is LESS than 14, 
it will be marked correct.  

We will post some good solutions from students after the PS is due. Note, there is a time-
limit for each problem evaluation, if your code exceeds that time limit, you will see an 
error message wondering if there is an infinite loop. 

(define (get-heuristic-value state goal-state) 

  your_code_here) 

 

Problem PS.8.2.1: Heuristic Searches 

In this question, we explore the key properties of some common heuristic searchs: hill-
climbing (with and without backup), best-first and beam searches. 

Part 1: Characteristics 
 
Indicate which of the following statements are true.  

1. Hill-climbing search (without backup) is guaranteed to find a path 
between the start and the goal if one exists (assuming finite search spaces).  

2. Hill-climbing search (with backup) is guaranteed to find a path between 
the start and the goal if one exists (assuming finite search spaces).  

3. Best-first search is guaranteed to find a path between the start and the goal 
if one exists (assuming finite search spaces).  

4. Beam search (with beam-width less than d) is guaranteed to find a path 
between the start and the goal if one exists (assuming finite search spaces).  

5. Beam search with beam-width of 1 is equivalent to hill-climbing without 
backup.  

6. Hill-climbing search (with backup) and with a constant estimate of 
goodness for all nodes is equivalent to depth-first search.  

7. The worst-case running time of best-first search is worse than that of hill-
climbing search (with backup)  

8. The space required by best-first search is worse than that required by hill-
climbing search (with backup).  

9. Hill-climbing search (with backup) is guaranteed to find the shortest path 
(measured in terms of number of nodes on the path) between the start and 
the goal.  



10. Best-first search is guaranteed to find the shortest path (measured in terms 
of number of nodes on the path) between the start and the goal.  

11. Best-first search is guaranteed to vist fewer nodes during the search than 
hill-climbing (with backup)  

Part 2: Performance 
 
In asnwering these questions assume that the search space is a tree with branching 
factor b and depth d. Note that the number of nodes in such a tree is b(d+1) - 1/ (b - 
1). Since we only care about the order of growth, we will abbreviate this as b(d+1). 
The running time is proportional to the number of nodes visited and the space is 
proportional to the maximum length of Q in our simple implementation.  

1. What is the (approximate) worst case running time for hill-climbing search 
(without backup)?  

2. What is the (approximate) worst case space for hill-climbing search 
(without backup) ? 

3.  What is the (approximate) worst case running time for hill-climbing 
search (with backup)?  

4. What is the (approximate) worst case space for hill-climbing search (with 
backup)?  

5. What is the (approximate) worst case running time for best-first search?  
6. What is the (approximate) worst case space for best-first search?  
7. What is the (approximate) worst case running time for beam search (with 

beam-width = k)?  
8. What is the (approximate) worst case space for beam search (with beam-

width = k)?  

 

Problem PS.8.2.2: A* Search 

 
Indicate which of the following statements are true.  

1. A* is guaranteed to find an optimal solution.  
2. A solution found by A* is guaranteed to be optimal.  
3. The heuristic in A* must never over-estimate the true cost of a solution.  
4. A* makes use of an important principle from Dynamic Programming.  
5. In a search of a square grid, allowed moves are North, South, East, and West. The 

cost of such a move is the distance traveled (1 mile). All nodes exist at 
intersections of the grid. The Euclidean distance (square root of vertical and 
horizontal distance) is not an appropriate A* heuristic.  

 



Problem PS.8.3.1: Hours 

We want to understand how much time it took students to answer the questions on the 
problem sets.  

Approximately how many hours did you spend really working on this problem 
set?  


