Finish remarks on min-cost flow.

- Strongly polynomial algorithms exist.
- Tardos 1985
- minimum mean-cost cycle
- reducing ϵ-optimality
- "fixing" arcs of very high reduced cost
- best running running time roughly $O\left(m^{2}\right)$
- best scaling time (double scaling) $O(m n \log \log U \log C)$.

1 Linear Programming

Problem description:

- motivate by min-cost flow
- bit of history
- everything is LP
- NP and coNP. P breakthrough.
- general form:
- variables
- constraints: linear equalities and inequalities
- x feasible if satisfies all constraints
- LP feasible if some feasible x
- x optimal if optimizes objective over feasible x
- LP is unbounded if have feasible x of arbitrary good objective value
- lemma: every lp is infeasible, has opt, or is unbounded
- (by compactness of R^{n} and fact that polytopes are closed sets).

Problem formulation:

- canonical form: $\min c^{T} x, A x \geq b$
- matrix representation, componentwise \leq
- rows a_{i} of A are constraints
- c is objective
- any LP has transformation to canonical:
- max/min objectives same
- move vars to left, consts to right
- negate to flip \leq for \geq
- replace $=$ by two \leq and \geq constraints
- standard form: $\min c^{T} x, A x=b, x \geq 0$
- slack variables
- splitting positive and negative parts $x \rightarrow x^{+}-x^{-}$
- $A x \geq b$ often nicer for theory; $A x=b$ good for implementations.

How solve? First review systems of linear equalities.

- $A x=b$. when have solution?
- baby case: A is squre matrix with unique solution.
- solve using, eg, Gaussian elimination.
- discuss polynomiality, integer arithmetic later
- equivalent statements:
- A invertible
- A^{T} invertible
$-\operatorname{det}(A) \neq 0$
- A has linearly independent rows
- A has linearly independent columns
- $A x=b$ has unique solution for every b
- $A x=b$ has unique solution for some b.
- What if A isn't square?
- note that " $A x=b$ " means columns of A span b.
- use Gramm-Schmidt to find a basis of columns, check if b independent of them
- if not, some linear comb of A spans b
- in general, set of points $\left\{A x \mid x \in \Re^{n}\right\}$ is a subspace
- so is $\left\{y \in \Re^{m} \mid A y=b\right\}$
- anyone remember what we can say about dimensions?
- standard form LP asks for linear combo oto, but requires that all coefficients of combo be nonnegative!

Geometry

- canonical form: $A x \geq b$ is an intersection of (finitely many) halfspaces, a polyhedron
- standard form: $A x=b$ is an intersection of hyperplanes (thus a subspace), then $x \geq 0$ intersects in some halfspace. Also a polyhedron, but not full dimensional.
- polyhedron is bounded if fits inside some box.
- either formulation defines a convex set:
- if $x, y \in P$, so is $\lambda x+(1-\lambda) y$ for $\lambda \in 0,1$.
- that is, line from x to y stays in P.
- halfspaces define convex sets. Converse also true!
- let C be any convex set, $z \notin C$.
- then there is some a, b such that $a x \geq b$ for $x \in C$, but $a z<b$.
- Proof in 2D (for basic idea)
- let y be closest point to z in C
- let a be line from z to y.
- note $a y<a z$ (take $b=a y$)
- claim $a x \leq b=a y$ for $x \in C$
- suppose not. some $x \in C$ has $a x>b$
- line from x to y is in C (convex)
- but line from x to y goes into circle around z
- that is, gets closer to z
- also true in higher dimensions (don't bother proving)
- consider $u(\lambda)=\lambda x+(1-\lambda) y$
$-f(\lambda)=\|z-u\|^{2}$ distance from z to u
- $f(0)$ supposed to be minimum
- But

$$
\begin{aligned}
f^{\prime}(0) & =\nabla f(u(0)) \cdot \frac{d u}{d \lambda} \\
& =2(z-y) \cdot(x-y) \\
& =-2 a \cdot(x-y) \\
& =2 a y-2 a x \\
& \leq 0
\end{aligned}
$$

- so, can reduce f by increasing λ. Contra choice of y.
- deduce: every convex set is the intersection of the halfspaces containing it.

1.1 Vertices

Polyhedron has infinitely many points. Where are the optima? At "corners"

- a extreme point is a point that is not a convex combo of 2 other points in poly.
- a vertex is a point that is uniquely optimal in P for some cost function c
- vertex is extreme point:
- vertex x unique opt for c
- suppose $x=\lambda y+(1-\lambda) z$
- then

$$
\begin{aligned}
c x & =\lambda c y+(1-\lambda) c z \\
& \leq \max (c y, c z) \\
& <c x
\end{aligned}
$$

by uniqe opt of x, a contradiction.

- soon, show extreme point is vertex

Claim: any LP in standard form with finite opt has opt at extreme point.

- suppose x opt, not extreme.
- find y so $x+y, x-y \in P$
- then $A(x+y)=A(x-y)$ so $A y=0$
- if $c^{T} y \neq 0$, can improve objective over x, contra
- Choose y so $y_{j}<0$ some j (can since $y \neq 0$)
- note $c^{T}(x+\lambda y)=c x=\mathrm{opt}$
- increase λ till new $x_{i}=0$ becomes tight
- note get nonzero λ, since $\lambda=1$ works
- so some new x_{i} becomes tight
- also by choice of y, if $x_{i}=0$ then $y_{i}=0$.
- so no zero x_{i} become nonzero.
- so one more zero.
- only can happen n times before stop at extreme point

Corollary:

- Actually showed, if x feasible, exists vertex with no worse objective.
- Note that in canconical form, might not have opt at vertex (optimize x_{1} over (x_{1}, x_{2}) such that $0 \leq x_{1} \leq 1$).
- but can deduce that any nonempty standard form poly has a vertex
- take arbitrary c, optimize over poly, get vertex.

