Discuss midterm.
Discuss project:

e four goals: read, implement, test, and exposite.

e was described as 2 projects, but can be met in 1.

e choosing algorithm:

e read:

a nontrivial algorithm or data structure: Fib heap, bucket heap, VEB
heap, splay tree, suffix tree, max-flow push/relabel, unusual shortest
path, etc

source: advanced textbooks, or FOCS/STOC/SODA

maybe inherent interest, maybe useful in an application you are work-
ing on.

some article from a proceedings or journal, not yet digested in test-
book.

goal: demonstrate you understood it (by explaining well).

e implement /test:

should not be too major to implement (don’t write whole interior
point algorithm!)

design/justify interesting inputs, or

use inputs from a real motivating application (still need to “design”,
but easier)

need a “control” experiment—dumb or prior implementation
testing should suggest changes. explain motivation and effect.
testing should suggest new inputs. explain motivation and effect.

perfectly all right for new version to work worse. But have to explain
why.

e exposition:

clear explanation of algorith.
must demonstrate you understand it well

needn’t include proofs in detail, but should give idea of “why works”

e meeting the goals: can either implement a new algorithm, or implement
an old one but write about a new one. need to know can read journal
article.



1 Interior Point

Ellipsoid has problems in practice (O(n®) for one). So people developed a dif-
ferent approach that has been extremely successful.
What goes wrong with simplex?

¢ follows edges of polytope
e complex stucture there, run into walls, etc

e interior point algorithms stay away from the walls, where structure sim-
pler.

e Karmarkar did the first one (1984); we’ll descuss one by Ye

1.1 Potential Reduction
Potential function:

e Idea: use a (nonlinear) potential function that is minimized at opt but
also enforces feasibility

e use gradient descent to optimize the potential function.
e Recall standard primal {Az = b,z > 0} and dual yA +s=1¢,s > 0.
e duality gap sz

e Use logarithmic barrier function

G(xz,s) =qlnzxs — Zlnxj - Zlnsj

and try to minimize it (pick ¢ in a minute)
o first term forces duality gap to get small
e second and third enforce positivity

e note barrier prevents from ever hitting optimum, but as discussed above
ok to just get close.

Choose ¢ so first term dominates, guarantees good G is good xs
e G(z,s) small should mean zs small
e zs large should mean G(z,s) large
o write G = In(zs)?/ []z;s;

® s> x;sj,50 (xs)” > [[x;s;. So taking ¢ > n makes top term dominate,
G >Inzxs

How minimize potential function? Gradient descent.



have current (z,s) point.

take linear approx to potential function around (z, s)
move to where linear approx smaller (—V,G)
deduce potential also went down.

crucial: can only move as far as linear approximation accurate

Firs wants big ¢, second small q. Compromise at n + 1/n, gives O(L+/n) itera-

tions.

Must stay feasible:

1.2

Have gradient g = V,G

since potential not minimized, have reasonably large gradient, so a small
step will improve potential a lot. picture

want to move in direction of G, but want to stay feasilbe
project G onto nullspace(A4) to get d

then A(z +d) = Az =0

also, for sufficiently small step, > 0

potential reduction proportional to length of d

problem if d too small

In that case, move s (actually y) by g — d which will be big.

so can either take big primal or big dual step

Path Following

Potential function:

Define
P(p) =cx — ,uZlogxi

minimize over Az = b

When p is tiny, barrier is negligible except right at edge of polytope

so optimum is right near LP opt, just pushed away from boundary a bit.
For each p, some optimum z(u)

lim,,_,o P(p) is LP opt.

P(p) as p varies defines a function: central path



starts where pu = 00, analytic center farthest from all boundaries.

Path following algorithm:

repeatedly optimizes P(u) for smaller and smaller
when g small enough, round to (optimal) vertex

need to start somewhere near central path—revise problem to make this
easy.

Path following step:

2

suppose have z'(u) near z(u)

want ' (zp) near z(n) for g = (1 — B)p

take a (second order) taylor expansion of P(fi) near ' (1)
since z'(u) near z(@), Taylor “accurate” (need 3 = 1/4/n)
take a “Newton step” towards minimizing P (i)

takes us closer to (1)

update 7r and repear

like potential method, O(y/nL) iterations.

in practice, 9 iterations halve potential!

Online algorithms

Motivation:

till now, our algorithms start with input, work with it

(exception: data structures—come back later)

now, suppose input arrives a little at a time, need instant response
eg stock market, paging

question: what is a “good” algorithm.

depends on what we measure.

if knew whole input ¢ in advance, easy to optimize Cprrn(0)

ski rental problem: rent 1, buy 7. don’t know how often.

notice that on some inputs, can’t do well! (stock market that only goes
down, thrashing in paging)



e problem isn’t to decide fast, rather what to decide.
Definition: competitive ratio
e compare to full knowledge optimum
o k-competitive if for all sequences etc. Ca(0) < kCurrn (o)
e sometimes, to ignore edge effects, C'a(0) < kCrrrn (o) + O(1).
e idea: “regret ratio”
e analyze ski rental

e we think of competitve analysis as a (zero sum) game between algorithm
and adversary. want to find best strategy for algorithm.

e supposed to be competitive against all sequences. So, can imagine that
adversary is adapting to algorithm’s choices (to get worst sequence)

Paging problem
o define
e LRU, FIFO, LIFO, Flush when full, Least freq use
e LIFO, LFU not competititive
e LRU, FIFO k-competitive.
e will see this is best possible (det)
LRU is k-competitive
e note we prove this without knowing opt!
e assume start with same pages in memory (adds const)
e phase: k page faults, ending with last fault (start counting after first fault)
e show 1 fault to MIN in each phase
e case 1: two faults on p in 1 phase

— then had accesses to k other pages between faults to p

— so k + 1 pages accessed in phase—MIN must fault once.
e case 2: kdistinct faults

— let p be last fault of previous phase

— case 2a: fault to p in phase. Then argue as before, k£ pages between
p faults



— case 2b: no fault to p. immediately after first p-fault, MIN has p in
memory, other £ — 1 pages. k new pages accessed in phase. Deduce
one faults MIN.

e Notice: in case 2, fault we charge to phase might happen before phase.

— but, happens after last fault-for-LRU in previous phase

— so is different fault than the one deduced for previous phase.

Observations:

e proved without knowing optimum

e instead, derived lower bound on cost of any algorithm

e same argument applies to FIFO.
Lower bound: no online algorithm beats k-competitive.

o set of k + 1 pages

e always ask for the one A doesn’t have

e faults every time.

e 50, just need to show can get away with 1 fault every k steps

e have k pages, in memory. When fault, look ahead, one of k + 1 isn’t used
in next k, so evict it.

e one fault every k steps
e 50 A is only k-competitive.
Observations:
e Ib can be proven without knowing OPT, often is.

e competitive analysis doesn’t distinguish LRU and FIFO, even though
know different in practice.

e still trying to refine competitive analysis to measure better: new SODA
paper: “LRU is better than FIFO”

e applies even if just have k + 1 pages!
Optimal offline algorithm: Longest Forward Distance
e evict page that will be asked for farthest in future.

e suppose MIN is better than LFD. Will make NEW, as good, agrees more
with LFD.

e Let o; be first divergence of MIN and LFD (at page fault)



e LFD discards ¢, MIN discards p (so p will be accessed before ¢ after time
i)

e Let ¢ be time MIN discards ¢

e revise schedule so MIN and LFD agree up to ¢, yielding NEW

e NEW discards ¢ at i, like LFD

e so MIN and NEW share k — 1 pages. will preserve till merge

¢ in fact, ¢ is unique page that MIN has that new doesn’t

e case 1: 04,... ,0¢,..-,Dy---,(q

— until reach ¢

— let e be unique page NEW has that MIN doesn’t (init e = p)

— when get 0, # e, evict same page from both

— note o7 # ¢, so MIN does fault when NEW does

— both fault, and preserves invariant

— when o7 = e, only MIN faults

— when get to ¢, both fault, but NEW evicts e and converges to MIN.
— clearly, NEW no worse than MIN

e case 2: t after ¢

— follow same approach as above till hit ¢
— since MIN didn’t discard ¢ yet, it doesn’t fault at ¢, but

— since p requested before ¢, had o; = e at least once, so MIN did worse
than NEW. (MIN doesn’t have p till faults)

— so, fault for NEW already paid for

— still same.
e prove that can get to LFD without getting worse.

e so LFD is optimal.

2.1 Randomized Online Algorithms

We’ve seen online as a game between adversary input and algorithm.
Well known that optimum strategies require randomization.

e alg has random bits, makes random decisions.
e effect: random choice from among det algorithms.

¢ for given sequence, get expected performance, compare to opt



find worst over all inputs for competitive ratio.

oblivious adversary: doesn’t know alg choices (equive: must choose seq in
advance)

adaptive: knows coin tosses up to n before making move n
seems like det, but not: can’t back A into a corner.
will see that with randomization, can get log k competitive.

marking algorithm



