Discuss midterm.
Discuss project:

- four goals: read, implement, test, and exposite.
- was described as 2 projects, but can be met in 1 .
- choosing algorithm:
- a nontrivial algorithm or data structure: Fib heap, bucket heap, VEB heap, splay tree, suffix tree, max-flow push/relabel, unusual shortest path, etc
- source: advanced textbooks, or FOCS/STOC/SODA
- maybe inherent interest, maybe useful in an application you are working on.
- read:
- some article from a proceedings or journal, not yet digested in testbook.
- goal: demonstrate you understood it (by explaining well).
- implement/test:
- should not be too major to implement (don't write whole interior point algorithm!)
- design/justify interesting inputs, or
- use inputs from a real motivating application (still need to "design", but easier)
- need a "control" experiment-dumb or prior implementation
- testing should suggest changes. explain motivation and effect.
- testing should suggest new inputs. explain motivation and effect.
- perfectly all right for new version to work worse. But have to explain why.
- exposition:
- clear explanation of algorith.
- must demonstrate you understand it well
- needn't include proofs in detail, but should give idea of "why works"
- meeting the goals: can either implement a new algorithm, or implement an old one but write about a new one. need to know can read journal article.

1 Interior Point

Ellipsoid has problems in practice ($O\left(n^{6}\right)$ for one). So people developed a different approach that has been extremely successful.
What goes wrong with simplex?

- follows edges of polytope
- complex stucture there, run into walls, etc
- interior point algorithms stay away from the walls, where structure simpler.
- Karmarkar did the first one (1984); we'll descuss one by Ye

1.1 Potential Reduction

Potential function:

- Idea: use a (nonlinear) potential function that is minimized at opt but also enforces feasibility
- use gradient descent to optimize the potential function.
- Recall standard primal $\{A x=b, x \geq 0\}$ and dual $y A+s=c, s \geq 0$.
- duality gap $s x$
- Use logarithmic barrier function

$$
G(x, s)=q \ln x s-\sum \ln x_{j}-\sum \ln s_{j}
$$

and try to minimize it (pick q in a minute)

- first term forces duality gap to get small
- second and third enforce positivity
- note barrier prevents from ever hitting optimum, but as discussed above ok to just get close.

Choose q so first term dominates, guarantees good G is good $x s$

- $G(x, s)$ small should mean $x s$ small
- $x s$ large should mean $G(x, s)$ large
- write $G=\ln (x s)^{q} / \prod x_{j} s_{j}$
- $x s>x_{j} s_{j}$, so $(x s)^{n}>\prod x_{j} s_{j}$. So taking $q>n$ makes top term dominate, $G>\ln x s$

How minimize potential function? Gradient descent.

- have current (x, s) point.
- take linear approx to potential function around (x, s)
- move to where linear approx smaller $\left(-\nabla_{x} G\right)$
- deduce potential also went down.
- crucial: can only move as far as linear approximation accurate

Firs wants big q, second small q. Compromise at $n+\sqrt{n}$, gives $O(L \sqrt{n})$ iterations.
Must stay feasible:

- Have gradient $g=\nabla_{x} G$
- since potential not minimized, have reasonably large gradient, so a small step will improve potential a lot. picture
- want to move in direction of G, but want to stay feasilbe
- project G onto nullspace (A) to get d
- then $A(x+d)=A x=b$
- also, for sufficiently small step, $x \geq 0$
- potential reduction proportional to length of d
- problem if d too small
- In that case, move s (actually y) by $g-d$ which will be big.
- so can either take big primal or big dual step

1.2 Path Following

Potential function:

- Define

$$
P(\mu)=c x-\mu \sum \log x_{i}
$$

- minimize over $A x=b$
- When μ is tiny, barrier is negligible except right at edge of polytope
- so optimum is right near LP opt, just pushed away from boundary a bit.
- For each μ, some optimum $x(\mu)$
- $\lim _{\mu \rightarrow 0} P(\mu)$ is LP opt.
- $P(\mu)$ as μ varies defines a function: central path
- starts where $\mu=\infty$, analytic center farthest from all boundaries.

Path following algorithm:

- repeatedly optimizes $P(\mu)$ for smaller and smaller μ
- when μ small enough, round to (optimal) vertex
- need to start somewhere near central path-revise problem to make this easy.

Path following step:

- suppose have $x^{\prime}(\mu)$ near $x(\mu)$
- want $x^{\prime}(\bar{\mu} \mu)$ near $x(\bar{\mu})$ for $\bar{\mu}=(1-\beta) \mu$
- take a (second order) taylor expansion of $P(\bar{\mu})$ near $x^{\prime}(\mu)$
- since $x^{\prime}(\mu)$ near $x(\bar{\mu})$, Taylor "accurate" (need $\beta \approx 1 / \sqrt{n}$)
- take a "Newton step" towards minimizing $P(\bar{\mu})$
- takes us closer to $x(\bar{\mu})$
- update $\bar{\mu}$ and repear
- like potential method, $O(\sqrt{n} L)$ iterations.
- in practice, 9 iterations halve potential!

2 Online algorithms

Motivation:

- till now, our algorithms start with input, work with it
- (exception: data structures-come back later)
- now, suppose input arrives a little at a time, need instant response
- eg stock market, paging
- question: what is a "good" algorithm.
- depends on what we measure.
- if knew whole input σ in advance, easy to optimize $C_{M I N}(\sigma)$
- ski rental problem: rent 1 , buy T. don't know how often.
- notice that on some inputs, can't do well! (stock market that only goes down, thrashing in paging)
- problem isn't to decide fast, rather what to decide.

Definition: competitive ratio

- compare to full knowledge optimum
- k-competitive if for all sequences etc. $C_{A}(\sigma) \leq k C_{M I N}(\sigma)$
- sometimes, to ignore edge effects, $C_{A}(\sigma) \leq k C_{M I N}(\sigma)+O(1)$.
- idea: "regret ratio"
- analyze ski rental
- we think of competitve analysis as a (zero sum) game between algorithm and adversary. want to find best strategy for algorithm.
- supposed to be competitive against all sequences. So, can imagine that adversary is adapting to algorithm's choices (to get worst sequence)

Paging problem

- define
- LRU, FIFO, LIFO, Flush when full, Least freq use
- LIFO, LFU not competititive
- LRU, FIFO k-competitive.
- will see this is best possible (det)

LRU is k-competitive

- note we prove this without knowing opt!
- assume start with same pages in memory (adds const)
- phase: k page faults, ending with last fault (start counting after first fault)
- show 1 fault to MIN in each phase
- case 1: two faults on p in 1 phase
- then had accesses to k other pages between faults to p
- so $k+1$ pages accessed in phase-MIN must fault once.
- case $2: k$ distinct faults
- let p be last fault of previous phase
- case 2a: fault to p in phase. Then argue as before, k pages between p faults
- case 2b: no fault to p. immediately after first p-fault, MIN has p in memory, other $k-1$ pages. k new pages accessed in phase. Deduce one faults MIN.
- Notice: in case 2, fault we charge to phase might happen before phase.
- but, happens after last fault-for-LRU in previous phase
- so is different fault than the one deduced for previous phase.

Observations:

- proved without knowing optimum
- instead, derived lower bound on cost of any algorithm
- same argument applies to FIFO.

Lower bound: no online algorithm beats k-competitive.

- set of $k+1$ pages
- always ask for the one A doesn't have
- faults every time.
- so, just need to show can get away with 1 fault every k steps
- have k pages, in memory. When fault, look ahead, one of $k+1$ isn't used in next k, so evict it.
- one fault every k steps
- so A is only k-competitive.

Observations:

- lb can be proven without knowing OPT, often is.
- competitive analysis doesn't distinguish LRU and FIFO, even though know different in practice.
- still trying to refine competitive analysis to measure better: new SODA paper: "LRU is better than FIFO"
- applies even if just have $k+1$ pages!

Optimal offline algorithm: Longest Forward Distance

- evict page that will be asked for farthest in future.
- suppose MIN is better than LFD. Will make NEW, as good, agrees more with LFD.
- Let σ_{i} be first divergence of MIN and LFD (at page fault)
- LFD discards q, MIN discards p (so p will be accessed before q after time i)
- Let t be time MIN discards q
- revise schedule so MIN and LFD agree up to t, yielding NEW
- NEW discards q at i, like LFD
- so MIN and NEW share $k-1$ pages. will preserve till merge
- in fact, q is unique page that MIN has that new doesn't
- case 1: $\sigma_{i}, \ldots, \sigma_{t}, \ldots, p, \ldots, q$
- until reach q
- let e be unique page NEW has that MIN doesn't (init $e=p$)
- when get $\sigma_{l} \neq e$, evict same page from both
- note $\sigma_{l} \neq q$, so MIN does fault when NEW does
- both fault, and preserves invariant
- when $\sigma_{l}=e$, only MIN faults
- when get to q, both fault, but NEW evicts e and converges to MIN.
- clearly, NEW no worse than MIN
- case $2: t$ after q
- follow same approach as above till hit q
- since MIN didn't discard q yet, it doesn't fault at q, but
- since p requested before q, had $\sigma_{l}=e$ at least once, so MIN did worse than NEW. (MIN doesn't have p till faults)
- so, fault for NEW already paid for
- still same.
- prove that can get to LFD without getting worse.
- so LFD is optimal.

2.1 Randomized Online Algorithms

We've seen online as a game between adversary input and algorithm.
Well known that optimum strategies require randomization.

- alg has random bits, makes random decisions.
- effect: random choice from among det algorithms.
- for given sequence, get expected performance, compare to opt
- find worst over all inputs for competitive ratio.
- oblivious adversary: doesn't know alg choices (equive: must choose seq in advance)
- adaptive: knows coin tosses up to n before making move n
- seems like det, but not: can't back A into a corner.
- will see that with randomization, can get $\log k$ competitive.
- marking algorithm

