1

Complementary Slackness

Another intuition:

min{yb | yA > ¢} (note flipped sign)

suppose b points straight up.

so goal is to follow gravity.

put a ball in the polytope, let it fall

stops at opt y (no local minima)

stops because in physical equilibrium

equilibrium exterted by forces normal to “floors”

that is, aligned with the A; (columns)

thus b =3 A;z; for some nonnegative force coeffs z;.
in other words, z feasible for max{cz | Az = b,z > 0}
also, only walls touching ball can exert any force on it
thus, z; = 0if yA; > ¢

that is, (¢; —yA;)z; =0

thus, cz = > (yA;)z; = yb

so z is dual optimal.

Leads to another idea: complementary slackness:

given feasible solutions = and y, cx — by > 0 is duality gap.
optimal iff gap 0 (good way to measure “how far off”

Go back to original primal and dual forms

rewrite dual: yA + s = ¢ for some s > 0 (that is, s = ¢; — y4;
The following are equivalent for feasible z, y:

— x and y are optimal

—sx=0

— zjs; =0 for all j

— s; > 0 implies z; =0
proof:

— cx =by iff (yA+ s)z = (Ax)y, so sz =0

— if sz = 0, then since s,z > 0 have sjz; = 0 (converse easy)

— so of course s; > 0 forces z; = 0 (converse easy)

e basic idea: opt cannot have a variable z; and corresponding dual con-
straint s; slack at same time: one must be tight.

e Another way to state: in arbitrary form LPs, feasible points optimal if:

yi(aiw —b;) = OVi
(cj —yAj)z; = 0OV

e proof: note in definition of primal/dual, feasiblity means y;(a;z — b;) >0
(since > constraint corresponds to nonnegative y;). Also (¢; —yA;)z; > 0.

Also,
> wyilaiw —bi) + (¢j —yAjz; = yAw—yb+cw —yAz
= cx—uyb
0

at opt. But since all terms are nonnegative, all must be 0

Let’s take some duals.
Max-Flow min-cut theorem:

e primal problem: create infinite capacity (¢,s) arc

P = maXE Tt
w

Z Tow — Twy = 0
w
Tyw < Uyw
Tyw > 0
e dual problem:
D = min Z YowUypw
rw
Yow = 0
2y — Zw + Youw =
2t — Zs + Yts Z

e note y;s = 0 since otherwise dual infinite. so z; — z5 > 1.

e rewrite as zy < 2y + Yow-

e deduce y,,, are edge lengths, z, are distance upper bounds from source.

e might as well set z to distances from source (doesn’t affect constraints)

e sanity check: mincut: assign length 1 to each mincut edge

¢ unfortunately, might have noninteger dual optimum.

e note z; are distances, rescale to zg =0

eletT=v|z,>1(s0os¢ W, teW)

e use complementary slackness:

if (v, w) crosses out of T', then z, — 2y + Ypw > 2y — 24y >1—-1=0
80 Tyw = Uyw

on the orher hand, if (v,w) goes into T, then Yy > 24 — 2y > 0, S0
Tyw = 0.

in other words: all leaving edges saturated, all coming edges empty.

e now just observe that value of flow equal value crossing cut equals value
of cut.

Min cost circulation: change the objective function associated with max-flow.

e primal:

z = min E CowTow
E Tyw — Twy = 0
w

:va u’l}’l_l)

0

IV IA

Tyw

e as before, dual: variable y,,, for capacity constraint on f,,, 2, for balance.

e Change to primal min problem flips sign constraint on yy.,

e What does change in primal objective mean for dual? Different constraint
bounds!

e i
Zy = 2Zwt Youw < Cow
Yow < 0
2y UIS

e rewrite dual: p, = —2z,

max Z vauvw
Yow < 0
Yow < Cow + Py —Puw = 05;1;)

e Note: y,u < 0 says the objective function is the sum of the negative
parts of the reduced costs (positive ones get truncated to 0)

e Note: optimum < 0 since of course can set y = 0. Since since zero
circulation is primal feasible.

e complementary slackness.

— Suppose fyw < Uyw-
— Then dual variable y,,, =0

~Soc? >0

— Thus cg) < 0 implies fi; = u;j
— that is, all negative reduced cost arcs saturated.
(p)
ij
— then constraint on z;; is slack
— SO f,'j =0

— that is, all positive reduced arcs are empty.

— on the other hand, suppose ¢;;” > 0

2 Ellipsoid

We know a lot about structure. And we’ve seen how to verify optimality in
polynomial time. Now turn to question: can we solve in polynomial time?
Yes, sort of (Khachiyan 1979):

e polynomial algorithms exist

e strongly polynomial do not.

2.1 Size of Problem

To talk formally about polynomial time, need to talk about size of problems.
e number n has size logn
e rational p/q has size size(p)-+size(q)

e size(product) is sum(sizes).

dimension n vector has size n plus size of number
m X m matrix similar: mn plus sizeof numbers
size (matrix product) at most sum of matrix sizes

our goal: polynomial time in size of input, measured this way

Claim: if A is n x n matrix, then det(A) is poly in size of A

more precisely, twice the size

proof by writing determinant as sum of permutation products.
each product has size n times size of numbers

n! products

so size at most size of (n! times product) < nlogn + n-size(largest entry).

Corollary:

inverse of matrix is poly size (write in terms of cofactors)

solution to Az = b is poly size (by inversion)

Claim: all vertices of LP have polynomial size.

vertex is bfs
bfs is intersection of n constraints Agx = b

invert matrix.

Now can prove that feasible alg can optimize a different way:

use binary search on value z of optimum

add constraint cx < z

know opt vertex has poly number of bits

so binary search takes poly (not logarithmic!) time

not as elegant as other way, but one big advantage: feasiblity test over
basically same polytope as before. Might have fast feasible test for this
case.

2.2 Basic Idea of Ellipsoid
Define an ellipsoid
e generalizes ellipse
o write some D = BBT “radius”
e center z
e point set {(z —2)TD(z —2) < 1}
e note this is just a basis change of the unit sphere 2 < 1.
e under transform z — Bz + z
Outline of algorithm:
e goal: find a feasible point for P = {Az < b}
o start with ellipse containing P, center z
e checkif z € P
e if not, use separating hyperplane to get 1/2 of ellipse containing P
e find a smaller ellipse containing this 1/2 of original ellipse
e until center of ellipse is in P.
Shrinking Lemma:
e Let E = (z,D) define an n-dimensional ellipsoid
e consider separating hyperplane az < az

Define E' = (', D’) ellipsoid:

g _ ,_ L Dal
B n+1+v/aDaT
n? 2 DaTaD
D' = 5 (D —)
n2—1 n+1 aDa

e then

En{z|arx<ez} C F
vol(E") < €'/t yol(E)

for proof, first show works with D = I and z = 0. new ellipse:

2 = =1/n+1
n? 2

D = I — I
n2—1(n+1

and volume ratio easy to compute directly.

e for general case, transform to coordinates where D = I (using new basis
B), get new ellipse, transform back to old coordinates, get (2, D’) (note
transformation don’t affect volume ratios.

So ellipsoid shrinks. Now prove 2 things:
e needn’t start infinitely large
e can’t get infinitely small
Starting size:
e recall bounds on size of vertices (polynomial)
e so coords of vertices are exponential but no larger
e so can start with sphere with radius exceeding this exponential bound
e this only uses polynomial values in D matrix.
¢ if unbounded, no vertices of P, will get vertex of box.
Ending size:
e convenient to assume that polytope full dimensional
e if so, it has n + 1 affinely indpendent vertices
e all the vertices have poly size coordinates

e so they contain a box whose volume is a poly-size number (computable as
determinant of vertex coordinates)

Put together:
e starting volume gn?®
e ending volume 9-nt
e cach iteration reduces volume by e'/(2"+1) factor
e so 2n + 1 iters reduce by e
e so n9(1) reduce by en?
e at which point, ellipse doesn’t contain P, contra
e must have hit a point in P before.
Justifying full dimensional:

o take {Az < b}, replace with P' = {Ax < b+ €} for tiny €

e any point of P is an interior of P, so P’ full dimensional (only have
interior for full dimensional objects)

P empty iff P'is (because € so small)

can “round” a point of P’ to P.

Infinite precision:

2.3

built a new ellipsoid each time.
maybe its bits got big?

no.

Separation vs Optimization

Notice in ellipsoid, were only using one constraint at a time.

didn’t matter how many there were.
didn’t need to see all of them at once.
just needed each to be represented in polynomial size.

so ellipsoid works, even if huge number of constraints, so long as have
separation oracle: given point not in P, find separating hyperplane.

of course, feasibility is same as optimize, so can optimize with sep oracle
too.

this is on a polytope by polytope basis. If can separate a particular poly-
tope, can optimize over that polytope.

This is very useful in many applications. e.g. network design.
Can also show that optimization implies separation:

suppose can optimize over P

then of course can find a point in P

suppose 0 € P (saves notation mess—just shift P)
define P* ={z | za <1Vz € P}

can separate over P*:

— given w, run OPT(p) with w objective

— get ¥ maximizing wx

— if wz* <1 then w € P*

— else wz* > 1> 2%z Vz € P* so z* is separating hyperplane

— since can separate P*, can optimize it

suppose want to separate y from P

let z =OPT(P*,y).

if yz > 1 then (since z € P*) we have yz > 1 but zz < 1 Vz € P
(separating hyperplane)

if y <1 then suppose y ¢ P.
then ax < 3 for z € P but ay >
since0 € P, >0

if 8 > 0 then %,a: < 1Vx € P soits in P* but %y > 1 s0 it is a better opt
for y contra

if 3 =0 then Aaxz <0 < 1VA > 05so Aa € P* but Aay > 1 for some A > 0
so is better opt for y contra.

