1 Complementary Slackness

Another intuition:

- $\min \{y b \mid y A \geq c\}$ (note flipped sign)
- suppose b points straight up.
- so goal is to follow gravity.
- put a ball in the polytope, let it fall
- stops at opt y (no local minima)
- stops because in physical equilibrium
- equilibrium exterted by forces normal to "floors"
- that is, aligned with the A_{i} (columns)
- thus $b=\sum A_{i} x_{i}$ for some nonnegative force coeffs x_{i}.
- in other words, x feasible for $\max \{c x \mid A x=b, x \geq 0\}$
- also, only walls touching ball can exert any force on it
- thus, $x_{i}=0$ if $y A_{i}>c_{i}$
- that is, $\left(c_{i}-y A_{i}\right) x_{i}=0$
- thus, $c x=\sum\left(y A_{i}\right) x_{i}=y b$
- so x is dual optimal.

Leads to another idea: complementary slackness:

- given feasible solutions x and $y, c x-b y \geq 0$ is duality gap.
- optimal iff gap 0 (good way to measure "how far off"
- Go back to original primal and dual forms
- rewrite dual: $y A+s=c$ for some $s \geq 0$ (that is, $s=c_{j}-y A_{j}$
- The following are equivalent for feasible x, y :
- x and y are optimal
$-s x=0$
$-x_{j} s_{j}=0$ for all j
- $s_{j}>0$ implies $x_{j}=0$
- proof:
$-c x=b y$ iff $(y A+s) x=(A x) y$, so $s x=0$
- if $s x=0$, then since $s, x \geq 0$ have $s_{j} x_{j}=0$ (converse easy)
- so of course $s_{j}>0$ forces $x_{j}=0$ (converse easy)
- basic idea: opt cannot have a variable x_{j} and corresponding dual constraint s_{j} slack at same time: one must be tight.
- Another way to state: in arbitrary form LPs, feasible points optimal if:

$$
\begin{aligned}
y_{i}\left(a_{i} x-b_{i}\right) & =0 \forall i \\
\left(c_{j}-y A_{j}\right) x_{j} & =0 \forall j
\end{aligned}
$$

- proof: note in definition of primal/dual, feasiblity means $y_{i}\left(a_{i} x-b_{i}\right) \geq 0$ (since \geq constraint corresponds to nonnegative y_{i}). Also $\left(c_{j}-y A_{j}\right) x_{j} \geq 0$. Also,

$$
\begin{aligned}
\sum y_{i}\left(a_{i} x-b_{i}\right)+\left(c_{j}-y A_{j}\right) x_{j} & =y A x-y b+c x-y A x \\
& =c x-y b \\
& =0
\end{aligned}
$$

at opt. But since all terms are nonnegative, all must be 0
Let's take some duals.
Max-Flow min-cut theorem:

- primal problem: create infinite capacity (t, s) arc

$$
\begin{aligned}
P & =\max \sum_{w} x_{t s} \\
\sum_{w} x_{v w}-x_{w v} & =0 \\
x_{v w} & \leq u_{v w} \\
x_{v w} & \geq 0
\end{aligned}
$$

- dual problem:

$$
\begin{aligned}
D & =\min \sum_{v w} y_{v w} u_{v w} \\
y_{v w} & \geq 0 \\
z_{v}-z_{w}+y_{v w} & \geq 0 \\
z_{t}-z_{s}+y_{t s} & \geq 1
\end{aligned}
$$

- note $y_{t s}=0$ since otherwise dual infinite. so $z_{t}-z_{s} \geq 1$.
- rewrite as $z_{w} \leq z_{v}+y_{v w}$.
- deduce $y_{v w}$ are edge lengths, z_{v} are distance upper bounds from source.
- might as well set z to distances from source (doesn't affect constraints)
- sanity check: mincut: assign length 1 to each mincut edge
- unfortunately, might have noninteger dual optimum.
- note z_{i} are distances, rescale to $z_{s}=0$
- let $T=v \mid z_{v} \geq 1$ (so $s \notin W, t \in W$)
- use complementary slackness:
- if (v, w) crosses out of T, then $z_{v}-z_{w}+y_{v} w \geq z_{v}-z_{w}>1-1=0$
- so $x_{v w}=u_{v w}$
- on the orher hand, if (v, w) goes into T, then $y_{v w} \geq z_{w}-z_{v}>0$, so $x_{v w}=0$.
- in other words: all leaving edges saturated, all coming edges empty.
- now just observe that value of flow equal value crossing cut equals value of cut.

Min cost circulation: change the objective function associated with max-flow.

- primal:

$$
\begin{aligned}
z & =\min \sum c_{v w} x_{v w} \\
\sum_{w} x_{v w}-x_{w v} & =0 \\
x_{v w} & \leq u_{v w} \\
x_{v w} & \geq 0
\end{aligned}
$$

- as before, dual: variable $y_{v w}$ for capacity constraint on $f_{v w}, z_{v}$ for balance.
- Change to primal min problem flips sign constraint on $y_{v w}$
- What does change in primal objective mean for dual? Different constraint bounds!

$$
\begin{aligned}
& \max \sum y_{v w} u_{v w} \\
& z_{v}-z_{w}+y_{v w} \leq c_{v w} \\
& y_{v w} \leq 0 \\
& z_{v} \text { UIS }
\end{aligned}
$$

- rewrite dual: $p_{v}=-z_{v}$

$$
\begin{aligned}
& \max \sum y_{v w} u_{v w} \\
& y_{v w} \leq 0 \\
& y_{v w} \leq c_{v w}+p_{v}-p_{w}=c_{v e}^{(p)}
\end{aligned}
$$

- Note: $y_{v w} \leq 0$ says the objective function is the sum of the negative parts of the reduced costs (positive ones get truncated to 0)
- Note: optimum ≤ 0 since of course can set $y=0$. Since since zero circulation is primal feasible.
- complementary slackness.
- Suppose $f_{v w}<u_{v w}$.
- Then dual variable $y_{v w}=0$
- So $c_{i j}^{(p)} \geq 0$
- Thus $c_{i j}^{(p)}<0$ implies $f_{i j}=u_{i j}$
- that is, all negative reduced cost arcs saturated.
- on the other hand, suppose $c_{i j}^{(p)}>0$
- then constraint on $z_{i j}$ is slack
- so $f_{i j}=0$
- that is, all positive reduced arcs are empty.

2 Ellipsoid

We know a lot about structure. And we've seen how to verify optimality in polynomial time. Now turn to question: can we solve in polynomial time? Yes, sort of (Khachiyan 1979):

- polynomial algorithms exist
- strongly polynomial do not.

2.1 Size of Problem

To talk formally about polynomial time, need to talk about size of problems.

- number n has size $\log n$
- rational p / q has size $\operatorname{size}(p)+\operatorname{size}(q)$
- size(product) is sum(sizes).
- dimension n vector has size n plus size of number
- $m \times n$ matrix similar: $m n$ plus sizeof numbers
- size (matrix product) at most sum of matrix sizes
- our goal: polynomial time in size of input, measured this way

Claim: if A is $n \times n$ matrix, then $\operatorname{det}(A)$ is poly in size of A

- more precisely, twice the size
- proof by writing determinant as sum of permutation products.
- each product has size n times size of numbers
- n ! products
- so size at most size of (n ! times product) $\leq n \log n+n$-size(largest entry).

Corollary:

- inverse of matrix is poly size (write in terms of cofactors)
- solution to $A x=b$ is poly size (by inversion)

Claim: all vertices of LP have polynomial size.

- vertex is bfs
- bfs is intersection of n constraints $A_{B} x=b$
- invert matrix.

Now can prove that feasible alg can optimize a different way:

- use binary search on value z of optimum
- add constraint $c x \leq z$
- know opt vertex has poly number of bits
- so binary search takes poly (not logarithmic!) time
- not as elegant as other way, but one big advantage: feasiblity test over basically same polytope as before. Might have fast feasible test for this case.

2.2 Basic Idea of Ellipsoid

Define an ellipsoid

- generalizes ellipse
- write some $D=B B^{T}$ "radius"
- center z
- point set $\left\{(x-z)^{T} D^{-1}(x-z) \leq 1\right\}$
- note this is just a basis change of the unit sphere $x^{2} \leq 1$.
- under transform $x \rightarrow B x+z$

Outline of algorithm:

- goal: find a feasible point for $P=\{A x \leq b\}$
- start with ellipse containing P, center z
- check if $z \in P$
- if not, use separating hyperplane to get $1 / 2$ of ellipse containing P
- find a smaller ellipse containing this $1 / 2$ of original ellipse
- until center of ellipse is in P.

Shrinking Lemma:

- Let $E=(z, D)$ define an n-dimensional ellipsoid
- consider separating hyperplane $a x \leq a z$
- Define $E^{\prime}=\left(z^{\prime}, D^{\prime}\right)$ ellipsoid:

$$
\begin{aligned}
z^{\prime} & =z-\frac{1}{n+1} \frac{D a^{T}}{\sqrt{a D a^{T}}} \\
D^{\prime} & =\frac{n^{2}}{n^{2}-1}\left(D-\frac{2}{n+1} \frac{D a^{T} a D}{a D a^{T}}\right)
\end{aligned}
$$

- then

$$
\begin{aligned}
& E \cap\{x \mid a x \leq e z\} \quad \subseteq \quad E^{\prime} \\
& \operatorname{vol}\left(E^{\prime}\right) \leq e^{1 /(2 n+1)} \operatorname{vol}(E)
\end{aligned}
$$

- for proof, first show works with $D=I$ and $z=0$. new ellipse:

$$
\begin{aligned}
z^{\prime} & =-1 / n+1 \\
D^{\prime} & =\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} I_{11}\right.
\end{aligned}
$$

and volume ratio easy to compute directly.

- for general case, transform to coordinates where $D=I$ (using new basis B), get new ellipse, transform back to old coordinates, get $\left(z^{\prime}, D^{\prime}\right)$ (note transformation don't affect volume ratios.

So ellipsoid shrinks. Now prove 2 things:

- needn't start infinitely large
- can't get infinitely small

Starting size:

- recall bounds on size of vertices (polynomial)
- so coords of vertices are exponential but no larger
- so can start with sphere with radius exceeding this exponential bound
- this only uses polynomial values in D matrix.
- if unbounded, no vertices of P, will get vertex of box.

Ending size:

- convenient to assume that polytope full dimensional
- if so, it has $n+1$ affinely indpendent vertices
- all the vertices have poly size coordinates
- so they contain a box whose volume is a poly-size number (computable as determinant of vertex coordinates)

Put together:

- starting volume $2^{n^{\circ(1)}}$
- ending volume $2^{-n^{\circ(1)}}$
- each iteration reduces volume by $e^{1 /(2 n+1)}$ factor
- so $2 n+1$ iters reduce by e
- so $n^{O}(1)$ reduce by $e^{n^{O(1)}}$
- at which point, ellipse doesn't contain P, contra
- must have hit a point in P before.

Justifying full dimensional:

- take $\{A x \leq b\}$, replace with $P^{\prime}=\{A x \leq b+\epsilon\}$ for tiny ϵ
- any point of P is an interior of P^{\prime}, so P^{\prime} full dimensional (only have interior for full dimensional objects)
- P empty iff P^{\prime} is (because ϵ so small)
- can "round" a point of P^{\prime} to P.

Infinite precision:

- built a new ellipsoid each time.
- maybe its bits got big?
- no.

2.3 Separation vs Optimization

Notice in ellipsoid, were only using one constraint at a time.

- didn't matter how many there were.
- didn't need to see all of them at once.
- just needed each to be represented in polynomial size.
- so ellipsoid works, even if huge number of constraints, so long as have separation oracle: given point not in P, find separating hyperplane.
- of course, feasibility is same as optimize, so can optimize with sep oracle too.
- this is on a polytope by polytope basis. If can separate a particular polytope, can optimize over that polytope.

This is very useful in many applications. e.g. network design.
Can also show that optimization implies separation:

- suppose can optimize over P
- then of course can find a point in P
- suppose $0 \in P$ (saves notation mess-just shift P)
- define $P^{*}=\{z \mid z x \leq 1 \forall x \in P\}$
- can separate over P^{*} :
- given w, run $\operatorname{OPT}(p)$ with w objective
- get x^{*} maximizing $w x$
- if $w x^{*} \leq 1$ then $w \in P^{*}$
- else $w x^{*}>1 \geq x^{*} z \forall z \in P^{*}$ so x^{*} is separating hyperplane
- since can separate P^{*}, can optimize it
- suppose want to separate y from P
- let $z=\mathrm{OPT}\left(P^{*}, y\right)$.
- if $y z>1$ then $\left(\right.$ since $z \in P^{*}$) we have $y z>1$ but $x z \leq 1 \forall x \in P$ (separating hyperplane)
- if $y \leq 1$ then suppose $y \notin P$.
- then $a x \leq \beta$ for $x \in P$ but $a y>\beta$
- since $0 \in P, \beta \geq 0$
- if $\beta>0$ then $\frac{a}{\beta} x \leq 1 \forall x \in P$ so its in P^{*} but $\frac{a}{\beta} y>1$ so it is a better opt for y contra
- if $\beta=0$ then $\lambda a x \leq 0 \leq 1 \forall \lambda>0$ so $\lambda a \in P^{*}$ but $\lambda a y>1$ for some $\lambda>0$ so is better opt for y contra.

