
����� Advanced Algorithms

Lecture �� September ��� ���� Lecturer� David Karger

Scribes� Daniel Barkalow� Sara Picket� Ilya Shlyakhter

��� Dynamic Graph Connectivity

With a static graph� in order to determine if two n o d e s are connected by any series of edges� we

could use a breadth��rst search	 The problem becomes more di
cult� however� if we allow edges to

be dynamically inserted and deleted from the graph� but still wish to be able to make queries about

connectivity	 We could simply redo the breadth��rst search f o r e v ery query� but if there are limited

operations or limited structures� we can perform updates in such a w ay a s t o m a k e querying much

more e
cient	

Dynamic graph connectivity is the the standard example of dynamic graph data structures� and

there�s a lot of history and previous work for this problem	 There are many sub�linear time algorithms

from the ����s	

�	 Frederickson O�
p
n�

�	 ���� Henzinger and King� O�log3

n� with randomization

�	 ����� Holm� de Lichtenb e r g � and Thorup� O�log2

n�	 Similar to Henzinger and King�s

algorithm� but with the randomization removed	 It�s a rather subtle algorithm	

All of those running times are amortized an algorithm with a good worst case running time has

not yet been developed	

����� Forests of Trees

What can we do if a graph is always a forest of trees and we only allow some operations�

Forests with Insertion Only

Use disjoint sets to store the tree connectivity	 Adding an edge between trees is a union� to check

connectivity� see if the two nodes are in the same set	 This is very fast� and runs in O�m��n��

time over m operations� for O���n�� amortized time per operation� where � is the inverse Ackerman

function	

���

Lecture �� September ��� ���� ���

Forests with Deletion Only

Label each node with the component it�s in� This label can be anything� as long as it�s unique for

each component� Query is then O����

To do a deletion� maintain the information by relabeling the smaller tree� Find the smaller tree by

a depth�	rst search on both sub�trees a nd stop when you�ve only hit the end of the smaller� This

takes only as long as relabeling the tree�

Each time relabeling takes place� the component s i z e i s h a l v ed� so each node can only be relabeled

O�log n� times� Therefore� the total time for the deletes is O�n log n� if all of the edges are deleted�

����� Non�forests

Insert doesn�t care about whether it�s a tree� Extra edges in a component can just be ignored�

For deletion of edges� still label nodes with component names� but also maintain a spanning forest�

If an edge to be deleted isn�t in the spanning forest� ignore it� If it is� relabel the smaller half of the

component� Then try to 	nd a replacement e d g e which goes between in the smaller half and the

other half� If we can 	nd the replacement edge� then we h a ve to un�relabel the smaller half of the

component�

Analysis
 On a failed search� all failed edges have b o t h e n d p o i n ts in the half we relabeled� so their

component size has been halved� Therefore� there can be at most O�log n� failures per edge�

On a successful search� nothing halves� So it�s still O�m� time� where m is the numb e r of edges

in the graph� But� if we could somehow conserve t h e w ork we did on the smaller halve� we could

improve performance by not redoing work� This will require a real algorithmic tweak� not just a

change in our analysis�

����� Forests� with Insertion and Deletion

Use the idea of union 	nd
 root the trees at arbitrary nodes� and do a �	nd� to identify the

containing component b y going up from the nodes towards the root�s� and testing if the two n o d e s

have a common root�

This takes time O�d�� where d is the depth of the tree� which m a y b e O�n�� We need some method

of making the tree shallow via encoding� since we can�t modify the tree

� Sleator and Tarjan
 compressed long paths in trees

� Tarjan and Vishkin
 represent tree as a list with Euler tour trees

Lecture �� September ��� ���� ���

��� Euler Tour Trees

We want a representation of an arbitrary tree as a linear data structure� so we can use our usual

techniques on it �i�e�� O�log n� operations�� To do this� we de�ne an Euler tour as follows�

De�nition � An Euler tour on a tree T is a sequence of nodes of T such that for each edge in T�

the vertices at the ends of the edge appear adjacent once i n e ach order� and no other vertices appear

adjacent� The root of the tour is the �rst �and last� vertex listed�

Notice that the last vertex in the sequence is always a repeat of the �rst	 if this occurrence is ignored�

several things become simpler� Each v ertex appears a number of times equal to its degree� Changing

the root is simply rotation� However� we k eep both the �rst and last occurrences in the following

discussion�

Every tree has at least one Euler tour with any given vertex as the root� One can b e found by

starting at the root and traversing any u n used edge whenever there is such an edge� and traversing

the only edge which has been used once when there are no unused edges� unless all edges have been

traversed twice� at which point the tour is �nished� �Note that it is always possible to conduct an

Euler tour because trees are planar��

Every tour de�nes a unique tree� which c a n b e f o u n d b y accumulating the edges corresponding to

adjacent v ertices in the tour�

It is possible to change the root of a tour by removing the �nal vertex� splitting the sequence before

some occurrence of the new root� reversing the two halves� joining the two pieces� and duplicating

the �rst vertex at the end�

To connect two trees represented by Euler tours� change the roots of the two trees to b e the two

endpoints of the edge to be added� and then append the tours� duplicating the �rst vertex at the

end of the tour�

For example� if you connect the trees represented by babcb and ded with an edge from b to d� you

get babcbdedb� �Figure ��
�

Root of babcb

Root of ded

a

b

c

d

e

Figure ��
� Adding an edge from b in babcb to d in ded

To r e m o ve an edge� split the tour at the two places corresponding to the edge� One of the new trees

is the middle section� The other tree is formed by removing the �rst vertex in the last section and

appending the �rst and last sections�

��� Lecture �� September ��� ����

For example� if you take the tree represented by abdedbcba and split it by removing the edge from

b to d� y ou get ded and abcba� �Figure ����

Root

a

b

c

d

e

Figure ���� Deleting the edge from b to d from abdedbcba

The fastest way to represent an Euler tour is with a splay tree� Since splay trees support O�log n�

split and join� adding and deleting edges are O�log n�� In order to 	nd signi	cant places quickly�

keep pointers from the vertices to nodes in the splay tree which represent them� and from the edges

to both pairs of nodes surrounding the edge� �Figure ��
�

b

a d

e

d

c

a

b

b

{b, d}

a b c d e

Figure ��
� References from the graph to the splay tree

