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��� Motivation and Background 

Priority queues are a classic topic in theoretical computer science� As we shall see� Fibonacci 

Heaps provide a fast and elegant solution� The search for a fast priority queue implementation is 

motivated primarily by t wo n e t work optimization algorithms� Shortest Path and Minimum Spanning 

Tree �MST�� 

����� Shortest Path and Minimum Spanning Trees 

� 

+Given a graph G�V � E � w ith v ertices V and edges E and a length function l � E ! � We de�ne 

the Shortest Path and MST problems to be� respectively� 

shortest path� For a �xed source s 2 V � �nd the shortest path to all vertices v 2 V 

minimum spanning tree �MST�� Find the minimum length set of edges F � E such that F 

connects all of V � 

Note that the MST problem is the same as the Shortest Path problem� except that the source is 

not �xed� Unsurprisingly� these two problems are solved by v ery similar algorithms� Prim�s for MST 

and Djikstra�s for Shortest Path� The algorithm is� 

�� Maintain a priority queue on the vertices 

	� Put s in the queue� where s is the start vertex �Shortest Path� or any v ertex �MST�� Give s a 

key of 
� 

�� Repeatedly delete the minimum�key vertex v from the queue and mark it scanned� 

For each neighb o r w of v� 

If w is not in the queue and not scanned� add it with key� 

� Shortest Path� k ey �v� � len gth �v ! w� 

� MST� len gth �v ! w� 

If� on the other hand� w is in the queue already� then decrease its key to the minimum of the 

value calculated above a n d w�s current k ey� 

��� 
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����� Heaps 

The classical answer to the problem of maintaining a priority queue on the vertices is to use a binary 

heap� often just called a h e a p � Heaps are commonly used because they have good bounds on the 

time required for the following operations� 

insert O�log n� 

delete�min O�log n� 

decrease�key O�log n� 

If a graph has n vertices and m edges� then running either Prim�s or Djikstra�s algorithms will 

require O�n log n� time for inserts and deletes� However� in the worst case� we will also perform m 

decrease�keys� because we m a y h a ve to perform a key update every time we come across a new edge� 

This will take O�m log n� time� Since the graph is connected� m � n� a n d th e o verall time bound is 

given by O�m log n�� 

Since m � n� it would b e nice to have cheaper key decreases� A simple way t o do this is to use 

d�heaps� 

����� d�Heaps 

d�heaps make key reductions cheaper at the expense of more costly deletions� This trade o	 is 

accomplished by replacing the binary heap with a d�ary heap
the branching factor �the maximum 

numb e r o f c hildren for any node� is changed from � to d� The depth of the tree then becomes logd�n�� 

However� delete�min operations must now t r a verse all of the children in a node� so their cost goes up 

to d logd�n�� Thus� the running time of the algorithm becomes O�nd logd�n�� m logd�n��� Choosing 

the optimal d � m�n to balance the two terms� we obtain a total running time of O�m logm�n 

n�� 

When m � n2 � th is is O�m�� and when m � n� th is is O�n log n�� This seems pretty g o o d � but it 

turns out we can do m uch better� 

����� Amortized Analysis 

Amortized analysis is a technique for bounding the running time of an algorithm� Often we analyse an 

algorithm by analyzing the individual operations that the algorithm performs and then multiplying 

the total number of operations by the time required to perform an operation� However� it is often the 

case that an algorithm will on occasion perform a very expensive operation� but most of the time the 

operations are cheap� Amortized analysis is the name given to the technique of analyzing not just 

the worst case running time of an operation but the average case running time of an operation� This 

will allow us to balance the expensive�but�rare operations against their cheap�and�frequent peers� 

There are several methods for performing amortized analysis for a good treatment� see Introduction 

to Algorithms by Cormen� Leiserson� and Rivest� The method of amortized analysis used to analyze 

Fibonacci heaps is the potential method� 

� Measure some aspect of the data structure using a potential function� Often this aspect of 



Lecture �� September �� ����	 ��� 

the data structure corresponds to what we i n tuitively think of as the complexity of the data 

structure or the amount b y which it is out of kilter or in a bad arrangement� 

�	 If operations are only expensive when the data structure is complicated� and expensive op�
erations can also clean up ��uncomplexify�� the data structure� and it takes many cheap 

operations to noticeably increase the complexity of the data structure� then we c a n amortize 

the cost of the expensive operations over the cost of the many c heap operations to obtain a 

low a verage cost� 

Therefore� to design an e	cient algorithm� we w ant to force the user to perform many operations to 

make the data structure complicated� so that the work doing the expensive operation and cleaning 

up the data structure is amortized over those many operations� 

We compute the potential of the data structure by using a potential function 
 that maps the data 

structure �DS � to a real numb er 
 � DS �� Once we h a ve de�ned 
� we calculate the cost of the ith 

operation by� 

costamortized 

�operationi 

�  costactual 

�operationi� � 
� DS i 

� � 
�DS i�1 

� 

where DS i 

refers to the state of the data structure after the ith operation� The sum of the amortized 

costs is then 

X 

costactual 

�operationi� � 
 �nal 

� 
initial 

� 

If we can prove that 
f inal 

� 
initial 

� then we�ve s h o wn that the amortized costs bound the real P P 

that 


costs� that is� costamortized 

� costactual� Then we can just analyze the amortized costs and 

show t h a t this isn�t too much� knowing that our analysis is useful� Most of the time it is obvious 

fin al 

� 
initial 

and the real work is in coming up with a good potential function� 

��� Fibonacci Heaps 

The Fibonacci heap data structure invented by F redman and Tarjan in ���� gives a very e	cient 

implementation of the priority queues� Since the goal is to �nd a way to minimize the numb e r o f 

operations needed to compute the MST or SP� the kind of operations that we are interested in are 

insert� decrease�key� merge� and delete�min� �We haven�t covered why merge is a useful operation 

yet� but it will become clear�� The method to achieve this minimization goal is laziness � �do work 

only when you must� and then use it to simplify the structure as much as possible so 

that your future work is easy�� This way� the user is forced to do many c heap operations in 

order to make the data structure complicated� 

Fibonacci heaps make use of heap�ordered trees� A heap�ordered tree is one that maintains the heap 

property� that is� where k ey �parent� � k ey �child� for all nodes in the tree� 

A Fibonacci heap H is a collection of heap�ordered trees that have the following properties� 



Lecture �� September �� ����	 ��� 

�� The roots of these trees are kept in a doubly�linked list �the �root list� of H �� 

	�	 T he root of each tree contains the minimum element in that tree �this follows from being a 

heap�ordered tree�� 


� We access the heap by a p o i n ter to the root containing an item of minimum key� 

�� For each node x� we k eep track o f th e rank �also known as the order or degree � of x� which 

is just the numb e r o f c hildren x has� we also keep track o f th e mark of x� w h ich is a Boolean 

value whose role will be explained later� 

For each n o d e � w e h a ve at most four pointers that respectively point to the node�s parent� to one of 

its children� and to two of its siblings� The sibling pointers are arranged in a doubly�linked list �the 

�child list� of the parent node�� Of course� we h a ven�t described how the operations on Fibonacci 

heaps are implemented� and their implementation will add some additional properties to H � Here 

are some elementary operations used in maintaining Fibonacci heaps� 

����� Inserting� merging� cutting� and marking� 

Inserting a node x� We create a new tree containing only x and insert it into the root list of H � 

this is clearly an O��� operation� 

Merging two trees� Let x and y be the roots of the two trees we w ant to merge� then if the key 

in x is no less than the key in y� we m ake x the child of y� otherwise� we make y the child of x� We 

update the appropriate node�s rank and the appropriate child list� this takes O��� operations� 

Cutting a node� If x is a root in H � w e are done� If x is not a root in H � w e remove x from the 

child list of its parent� and insert it into the root list of H � updating the appropriate variables �the 

rank of the parent o f x is decremented� etc��� Again� this takes O��� operations� �We assume that 

when we w ant to nd a node� we h a ve a p o i n ter hanging around that accesses it directly� so actually 

nding the node takes O��� time�� 

Marking� We sa y that x is marked if its mark is set to �true�� and that it is unmarked if its mark 

is set to �false�� A root is always unmarked� We mark x if it is not a root and it loses a child �i�e�� 

one of its children is cut and put into the root�list�� We unmark x whenever it becomes a root� We 

will make sure later that no marked node loses another child b e f o r e it itself is cut �and reverted 

thereby to unmarked status�� 

����� Decreasing keys and Deleting mins 

At rst� decrease�key does not appear to be any di�erent than merge or insert � just nd the node 

and cut it o� from its parent� then insert the node into the root list with a new key� This requires 

removing it from its parent�s child list� adding it to the root list� updating the parent�s rank� and �if 

necessary� the pointer to the root of smallest key� This takes O��� operations� 
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The delete�min operation works in the same way a s decrease�key � Our pointer into the Fibonacci 

heap is a pointer to the minimum keyed node� so we can �nd it in one step� We r e m o ve this root of 

smallest key� add its children to the root�list� and scan through the linked list of all the root nodes to 

�nd the new root of minimum key� Therefore� the cost of a delete�min operation is O�� of children 	 

of the root of minimum key plus O�� of root nodes	
 in order to make this sum as small as possible� 

we h a ve to add a few bells and whistles to the data structure� 

����� Population Control for Roots 

We w ant to make sure that every node has a small numb e r o f c hildren� This can be done by ensuring 

that the total number of descendants of any n o d e i s e x p o n e n tial in the number of its children� In 

the absence of any �cutting� operations on the nodes� one way t o d o t h i s i s b y only merging trees 

that have the same numb e r o f c hildren �i�e� the same rank	� It is relatively easy to see that if we 

only merge trees that have t h e same rank� the total numb e r o f descendants �counting onself as a 

descendant	 is always �� o f c hildren	� The resulting structure is called a binomial tree because the �	 � 

number of descendants at distance k from the root in a tree of size n is exactly 

n � Binomial heaps 

k 

preceded Fibonacci heaps and were part of the inspiration for them� We now present Fibonacci 

heaps in full detail� 

����� Actual Algorithm for Fibonacci Heaps 

�	 Maintain a list of heap�ordered trees� 

�	 insert � add a degree � tree to the list� 

�	 delete�min � We can �nd the node we wish to delete immediately since our handle to the entire 

data structure is a pointer to the root with minimum key� Remove the smallest root� and add 

its children to the list of roots� Scan the roots to �nd the next minimum� Then consolidate all 

the trees �merging trees of equal rank	 until there is � � of each rank� �Assuming that we have 

achieved the property that the number of descendants is exponential in the numb e r o f c hildren 

for any node� as we did in the binomial trees� no node has rank � c log n for some constant c� 

Thus consolidation leaves us with O�log n	 roots�	 The consolidation is performed by allocating 

buckets of sizes up to the maximum possible rank for any root node� which w e just showed to 

be O�log n	� We put each n o d e i n to the appropriate bucket� at cost O�log n	 � O�� of roots	� 

Then we march through the buckets� starting at the smallest one� and consolidate everything 

possible� This again incures cost O�log n	 � O�� of roots	� 

�	 decrease�key � cut the node� change its key� and insert it into the root list as before� Additionally� 

if the parent of the node was unmarked� mark it� If the parent of the node was marked� cut it 

o� also� Recursively do this until we get up to an unmarked node� Mark it� 

����� Actual Analysis for Fibonacci Heaps 

De�ne ��DS 	 � � k� � of roots in DS �  � � marked bits in DS 	� Note that insert and delete�min 

do not ever cause nodes to be marked � we can analyze their behaviour without reference to marked 
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and unmarked bits� The parameter k is a constant that we w ill conveniently specify later� We now 

analyze the costs of the operations in terms of their amortized costs �de�ned to b e the real costs 

plus the changes in the potential function�� 

�	 insert � the amortized cost is O��� for the actual work plus k � O��� for adding a new root for 

a total amortized cost of O���� 

�	 delete�min � for every node that we put into the root list �the children of the node we have 

deleted�	 plus every node that is already in the root list	 we do constant work putting that 

node into a bucket corresponding to its rank and constant w ork whenever we merge the node� 

We also do O�log n� w ork just looking at every bucket when we consolidate all the nodes� For 

every node that we consolidate	 we decrease the potential function by k � O���� There are 

at most O�log n� nodes that we h a ve not consolidated at the end	 and thus we can o
set the 

constant amount o f w ork for all but O�log n� of the nodes by a corresponding decrease in our 

potential function just through appropriate choice of k� This	 combined with the O�log n� cost 

of scanning through all the buckets	 leaves us with an amortized cost of O�log n�� 

�	 decrease�key � The real cost is O��� for the cut	 key decrease and re�insertion� This also 

increases the potential function by O��� since we are adding a root to the root list	 and maybe 

by another � since we may mark a node� The only problematic issue is the possibility of a 

�cascading cut � a cascading cut is the name we g i v e to a cut that causes the node above i t 

to cut because it was already marked	 which causes the ndoe above it be cut since it too was 

alrady marked	 etc� This can increase the actual cost of the operation to �� of nodes already 

marked�� Luckily	 w e c a n p a y for this with the potential function� Every cost we incur from 

having to update pointers due to a marked node that was cut is o
set by the decrease in the 

potential function when that previously marked node is now left unmarked in the root list� 

Thus the amortized cost for this operation is just O���� 

The only thing left to prove is that for every node in every tree in our Fibonacci heap	 the numb e r 

of descendants of that node is exponential in the numb e r o f c hildren of that node	 and that this is 

true even in the presence of the �weird cut rule for marked bits� 

����� The trees are big 

Consider the children of some node x in the order in which they were added to x� 

ithLemma � T h e child to be added to x has rank at least i � �� 

P roof � Let x be the ith child to be added� W h en it w as added	 x had at least i � � c hildren� This 

is true because we can currently see i � � c hildren that were added earlier	 so they were there at the 

time of the ith child�s addition� This means that the ith child had at least i � � c hildren at the time 

of it�s merger	 because we only merge equal ranked nodes� Since a node could not lose more than 

one child without being cut itself	 it must be that the ith child to be added still has at least i � � 

children� 

Note that if we had b e e n working with a binomial tree	 the appropriate lemma would have b e e n 

rank � i � � not � i � �� 
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Let Sk 

be the minimum number of descendants of a node with k children� We h a ve S0 

� � � S 1 

� � 

and� 

k�2 X 

Sk 

� Si 

i�0 

This recurrence is solved by Sk 

� Fk+2 

� the � k � �	 

th Fibonacci numb e r � Ask anyone on the street and 

that person will tell you that the Fibonacci numb e r s g r o w exponentially
 we h a ve p r o ved Sk 

� ���k � 

completing our analysis of Fibonacci heaps� 

����� Utility 

Only recently have problem sizes increased to the p o i n t where Fibonacci heaps are beginning to 

appear in practice� Further study of this issue might m a k e a n i n teresting term project
 see David 

Karger if you�re curious� 

Fibonacci Heaps allow us to improve the running time in Prim�s and Djikstra�s algorithms� A m ore 

thorough analysis of this will be presented in the next class� 


