
����� Advanced Algorithms

Lecture �� September �� ���� Lecturer� David Karger

Scribes� David G� Andersen� Ioana Dumitriu� John Dunagan

Fibonaccci Heaps

��� Motivation and Background

Priority queues are a classic topic in theoretical computer science� As we shall see� Fibonacci

Heaps provide a fast and elegant solution� The search for a fast priority queue implementation is

motivated primarily by t wo n e t work optimization algorithms� Shortest Path and Minimum Spanning

Tree �MST��

����� Shortest Path and Minimum Spanning Trees

�

+Given a graph G�V � E � w ith v ertices V and edges E and a length function l � E ! � We de�ne

the Shortest Path and MST problems to be� respectively�

shortest path� For a �xed source s 2 V � �nd the shortest path to all vertices v 2 V

minimum spanning tree �MST�� Find the minimum length set of edges F � E such that F

connects all of V �

Note that the MST problem is the same as the Shortest Path problem� except that the source is

not �xed� Unsurprisingly� these two problems are solved by v ery similar algorithms� Prim�s for MST

and Djikstra�s for Shortest Path� The algorithm is�

�� Maintain a priority queue on the vertices

	� Put s in the queue� where s is the start vertex �Shortest Path� or any v ertex �MST�� Give s a

key of
�

�� Repeatedly delete the minimum�key vertex v from the queue and mark it scanned�

For each neighb o r w of v�

If w is not in the queue and not scanned� add it with key�

� Shortest Path� k ey �v� � len gth �v ! w�

� MST� len gth �v ! w�

If� on the other hand� w is in the queue already� then decrease its key to the minimum of the

value calculated above a n d w�s current k ey�

���

Lecture �� September �� ���� ���

����� Heaps

The classical answer to the problem of maintaining a priority queue on the vertices is to use a binary

heap� often just called a h e a p � Heaps are commonly used because they have good bounds on the

time required for the following operations�

insert O�log n�

delete�min O�log n�

decrease�key O�log n�

If a graph has n vertices and m edges� then running either Prim�s or Djikstra�s algorithms will

require O�n log n� time for inserts and deletes� However� in the worst case� we will also perform m

decrease�keys� because we m a y h a ve to perform a key update every time we come across a new edge�

This will take O�m log n� time� Since the graph is connected� m � n� a n d th e o verall time bound is

given by O�m log n��

Since m � n� it would b e nice to have cheaper key decreases� A simple way t o do this is to use

d�heaps�

����� d�Heaps

d�heaps make key reductions cheaper at the expense of more costly deletions� This trade o	 is

accomplished by replacing the binary heap with a d�ary heap
the branching factor �the maximum

numb e r o f c hildren for any node� is changed from � to d� The depth of the tree then becomes logd�n��

However� delete�min operations must now t r a verse all of the children in a node� so their cost goes up

to d logd�n�� Thus� the running time of the algorithm becomes O�nd logd�n�� m logd�n��� Choosing

the optimal d � m�n to balance the two terms� we obtain a total running time of O�m logm�n

n��

When m � n2 � th is is O�m�� and when m � n� th is is O�n log n�� This seems pretty g o o d � but it

turns out we can do m uch better�

����� Amortized Analysis

Amortized analysis is a technique for bounding the running time of an algorithm� Often we analyse an

algorithm by analyzing the individual operations that the algorithm performs and then multiplying

the total number of operations by the time required to perform an operation� However� it is often the

case that an algorithm will on occasion perform a very expensive operation� but most of the time the

operations are cheap� Amortized analysis is the name given to the technique of analyzing not just

the worst case running time of an operation but the average case running time of an operation� This

will allow us to balance the expensive�but�rare operations against their cheap�and�frequent peers�

There are several methods for performing amortized analysis for a good treatment� see Introduction

to Algorithms by Cormen� Leiserson� and Rivest� The method of amortized analysis used to analyze

Fibonacci heaps is the potential method�

� Measure some aspect of the data structure using a potential function� Often this aspect of

Lecture �� September �� ����	 ���

the data structure corresponds to what we i n tuitively think of as the complexity of the data

structure or the amount b y which it is out of kilter or in a bad arrangement�

�	 If operations are only expensive when the data structure is complicated� and expensive op�
erations can also clean up ��uncomplexify�� the data structure� and it takes many cheap

operations to noticeably increase the complexity of the data structure� then we c a n amortize

the cost of the expensive operations over the cost of the many c heap operations to obtain a

low a verage cost�

Therefore� to design an e	cient algorithm� we w ant to force the user to perform many operations to

make the data structure complicated� so that the work doing the expensive operation and cleaning

up the data structure is amortized over those many operations�

We compute the potential of the data structure by using a potential function
 that maps the data

structure �DS � to a real numb er
 � DS �� Once we h a ve de�ned
� we calculate the cost of the ith

operation by�

costamortized

�operationi

� costactual

�operationi� �
� DS i

� �
�DS i�1

�

where DS i

refers to the state of the data structure after the ith operation� The sum of the amortized

costs is then

X

costactual

�operationi� �
 �nal

�
initial

�

If we can prove that
f inal

�
initial

� then we�ve s h o wn that the amortized costs bound the real P P

that

costs� that is� costamortized

� costactual� Then we can just analyze the amortized costs and

show t h a t this isn�t too much� knowing that our analysis is useful� Most of the time it is obvious

fin al

�
initial

and the real work is in coming up with a good potential function�

��� Fibonacci Heaps

The Fibonacci heap data structure invented by F redman and Tarjan in ���� gives a very e	cient

implementation of the priority queues� Since the goal is to �nd a way to minimize the numb e r o f

operations needed to compute the MST or SP� the kind of operations that we are interested in are

insert� decrease�key� merge� and delete�min� �We haven�t covered why merge is a useful operation

yet� but it will become clear�� The method to achieve this minimization goal is laziness � �do work

only when you must� and then use it to simplify the structure as much as possible so

that your future work is easy�� This way� the user is forced to do many c heap operations in

order to make the data structure complicated�

Fibonacci heaps make use of heap�ordered trees� A heap�ordered tree is one that maintains the heap

property� that is� where k ey �parent� � k ey �child� for all nodes in the tree�

A Fibonacci heap H is a collection of heap�ordered trees that have the following properties�

Lecture �� September �� ����	 ���

�� The roots of these trees are kept in a doubly�linked list �the �root list� of H ��

	�	 T he root of each tree contains the minimum element in that tree �this follows from being a

heap�ordered tree��

� We access the heap by a p o i n ter to the root containing an item of minimum key�

�� For each node x� we k eep track o f th e rank �also known as the order or degree � of x� which

is just the numb e r o f c hildren x has� we also keep track o f th e mark of x� w h ich is a Boolean

value whose role will be explained later�

For each n o d e � w e h a ve at most four pointers that respectively point to the node�s parent� to one of

its children� and to two of its siblings� The sibling pointers are arranged in a doubly�linked list �the

�child list� of the parent node�� Of course� we h a ven�t described how the operations on Fibonacci

heaps are implemented� and their implementation will add some additional properties to H � Here

are some elementary operations used in maintaining Fibonacci heaps�

����� Inserting� merging� cutting� and marking�

Inserting a node x� We create a new tree containing only x and insert it into the root list of H �

this is clearly an O��� operation�

Merging two trees� Let x and y be the roots of the two trees we w ant to merge� then if the key

in x is no less than the key in y� we m ake x the child of y� otherwise� we make y the child of x� We

update the appropriate node�s rank and the appropriate child list� this takes O��� operations�

Cutting a node� If x is a root in H � w e are done� If x is not a root in H � w e remove x from the

child list of its parent� and insert it into the root list of H � updating the appropriate variables �the

rank of the parent o f x is decremented� etc��� Again� this takes O��� operations� �We assume that

when we w ant to nd a node� we h a ve a p o i n ter hanging around that accesses it directly� so actually

nding the node takes O��� time��

Marking� We sa y that x is marked if its mark is set to �true�� and that it is unmarked if its mark

is set to �false�� A root is always unmarked� We mark x if it is not a root and it loses a child �i�e��

one of its children is cut and put into the root�list�� We unmark x whenever it becomes a root� We

will make sure later that no marked node loses another child b e f o r e it itself is cut �and reverted

thereby to unmarked status��

����� Decreasing keys and Deleting mins

At rst� decrease�key does not appear to be any di�erent than merge or insert � just nd the node

and cut it o� from its parent� then insert the node into the root list with a new key� This requires

removing it from its parent�s child list� adding it to the root list� updating the parent�s rank� and �if

necessary� the pointer to the root of smallest key� This takes O��� operations�

Lecture �� September �� ����	 ���

The delete�min operation works in the same way a s decrease�key � Our pointer into the Fibonacci

heap is a pointer to the minimum keyed node� so we can �nd it in one step� We r e m o ve this root of

smallest key� add its children to the root�list� and scan through the linked list of all the root nodes to

�nd the new root of minimum key� Therefore� the cost of a delete�min operation is O�� of children 	

of the root of minimum key plus O�� of root nodes	
 in order to make this sum as small as possible�

we h a ve to add a few bells and whistles to the data structure�

����� Population Control for Roots

We w ant to make sure that every node has a small numb e r o f c hildren� This can be done by ensuring

that the total number of descendants of any n o d e i s e x p o n e n tial in the number of its children� In

the absence of any �cutting� operations on the nodes� one way t o d o t h i s i s b y only merging trees

that have the same numb e r o f c hildren �i�e� the same rank	� It is relatively easy to see that if we

only merge trees that have t h e same rank� the total numb e r o f descendants �counting onself as a

descendant	 is always �� o f c hildren	� The resulting structure is called a binomial tree because the �	 �

number of descendants at distance k from the root in a tree of size n is exactly

n � Binomial heaps

k

preceded Fibonacci heaps and were part of the inspiration for them� We now present Fibonacci

heaps in full detail�

����� Actual Algorithm for Fibonacci Heaps

�	 Maintain a list of heap�ordered trees�

�	 insert � add a degree � tree to the list�

�	 delete�min � We can �nd the node we wish to delete immediately since our handle to the entire

data structure is a pointer to the root with minimum key� Remove the smallest root� and add

its children to the list of roots� Scan the roots to �nd the next minimum� Then consolidate all

the trees �merging trees of equal rank	 until there is � � of each rank� �Assuming that we have

achieved the property that the number of descendants is exponential in the numb e r o f c hildren

for any node� as we did in the binomial trees� no node has rank � c log n for some constant c�

Thus consolidation leaves us with O�log n	 roots�	 The consolidation is performed by allocating

buckets of sizes up to the maximum possible rank for any root node� which w e just showed to

be O�log n	� We put each n o d e i n to the appropriate bucket� at cost O�log n	 � O�� of roots	�

Then we march through the buckets� starting at the smallest one� and consolidate everything

possible� This again incures cost O�log n	 � O�� of roots	�

�	 decrease�key � cut the node� change its key� and insert it into the root list as before� Additionally�

if the parent of the node was unmarked� mark it� If the parent of the node was marked� cut it

o� also� Recursively do this until we get up to an unmarked node� Mark it�

����� Actual Analysis for Fibonacci Heaps

De�ne ��DS 	 � � k� � of roots in DS � � � marked bits in DS 	� Note that insert and delete�min

do not ever cause nodes to be marked � we can analyze their behaviour without reference to marked

Lecture �� September �� ����	 ���

and unmarked bits� The parameter k is a constant that we w ill conveniently specify later� We now

analyze the costs of the operations in terms of their amortized costs �de�ned to b e the real costs

plus the changes in the potential function��

�	 insert � the amortized cost is O��� for the actual work plus k � O��� for adding a new root for

a total amortized cost of O����

�	 delete�min � for every node that we put into the root list �the children of the node we have

deleted�	 plus every node that is already in the root list	 we do constant work putting that

node into a bucket corresponding to its rank and constant w ork whenever we merge the node�

We also do O�log n� w ork just looking at every bucket when we consolidate all the nodes� For

every node that we consolidate	 we decrease the potential function by k � O���� There are

at most O�log n� nodes that we h a ve not consolidated at the end	 and thus we can o
set the

constant amount o f w ork for all but O�log n� of the nodes by a corresponding decrease in our

potential function just through appropriate choice of k� This	 combined with the O�log n� cost

of scanning through all the buckets	 leaves us with an amortized cost of O�log n��

�	 decrease�key � The real cost is O��� for the cut	 key decrease and re�insertion� This also

increases the potential function by O��� since we are adding a root to the root list	 and maybe

by another � since we may mark a node� The only problematic issue is the possibility of a

�cascading cut � a cascading cut is the name we g i v e to a cut that causes the node above i t

to cut because it was already marked	 which causes the ndoe above it be cut since it too was

alrady marked	 etc� This can increase the actual cost of the operation to �� of nodes already

marked�� Luckily	 w e c a n p a y for this with the potential function� Every cost we incur from

having to update pointers due to a marked node that was cut is o
set by the decrease in the

potential function when that previously marked node is now left unmarked in the root list�

Thus the amortized cost for this operation is just O����

The only thing left to prove is that for every node in every tree in our Fibonacci heap	 the numb e r

of descendants of that node is exponential in the numb e r o f c hildren of that node	 and that this is

true even in the presence of the �weird cut rule for marked bits�

����� The trees are big

Consider the children of some node x in the order in which they were added to x�

ithLemma � T h e child to be added to x has rank at least i � ��

P roof � Let x be the ith child to be added� W h en it w as added	 x had at least i � � c hildren� This

is true because we can currently see i � � c hildren that were added earlier	 so they were there at the

time of the ith child�s addition� This means that the ith child had at least i � � c hildren at the time

of it�s merger	 because we only merge equal ranked nodes� Since a node could not lose more than

one child without being cut itself	 it must be that the ith child to be added still has at least i � �

children�

Note that if we had b e e n working with a binomial tree	 the appropriate lemma would have b e e n

rank � i � � not � i � ��

��� Lecture �� September �� ����

Let Sk

be the minimum number of descendants of a node with k children� We h a ve S0

� � � S 1

� �

and�

k�2 X

Sk

� Si

i�0

This recurrence is solved by Sk

� Fk+2

� the � k � �	

th Fibonacci numb e r � Ask anyone on the street and

that person will tell you that the Fibonacci numb e r s g r o w exponentially
 we h a ve p r o ved Sk

� ���k �

completing our analysis of Fibonacci heaps�

����� Utility

Only recently have problem sizes increased to the p o i n t where Fibonacci heaps are beginning to

appear in practice� Further study of this issue might m a k e a n i n teresting term project
 see David

Karger if you�re curious�

Fibonacci Heaps allow us to improve the running time in Prim�s and Djikstra�s algorithms� A m ore

thorough analysis of this will be presented in the next class�

