1 Maximum Flow

1.1 Definitions

Tarjan: Data Structures and Network Algorithms
Ford and Fulkerson, Flows in Networks, 1962 (paper 1956)
Ahuja, Magnanti, Orlin Network Flows. Problem: do min-cost.
Problem: in a graph, find a flow that is feasible and has maximum value.
Directed graph, edge capacities $u(e)$ or $u(v, w)$. Why not c ? reserved for costs, later.
source $s, \operatorname{sink} t$
Goal: assign a flow value to each edge: (net flow form)

- skew symmetry: $f(v, w)=-f(w, v)$
- conservation: $\sum_{w} f(v, w)=0$ unless $v=s, t$
- capacity: $f(e) \leq u(e)$ (flow is feasible/legal)

Alternative formulation: (gross flow form)

- conservation: $\sum_{w} f(v, w)=0$ unless $v=s, t$
- capacity: $0 \leq f(e) \leq u(e)$ (flow is feasible/legal)

Equivalence: second formulation has "gross flow" g, first has "net flow" $f(v, w)=$ $g(v, w)-g(w, v)$. To go other way, sign of f defines "direction" of flow in g.
We'll focus on net flow model for now.
Flow value $|f|=\sum_{w} f(s, w)$ (in net model).
Water hose intuition. Also routing commodities, messages under bandwidth constraints, etc. Often "per unit time" flows/capacities.
Maximum flow problem: find flow of maximum value.
Path decomposition (another picture):

- claim: any s - t flow can be decomposed into paths with quantities
- proof: induction on number of edges with nonzero flow
- if s has out flow, find an s - t path (why can we? conservation) and kill
- if some vertex has outflow, find a cycle and kill
- corollary: flow into t equals flow out of s (global conservation)

Cuts:

- partition of vertices into 2 groups
- s-t-cut if one has s, other t
- represent as (S, \bar{S}) or just S
- $f(S)=$ net flow leaving S
- lemma: for any s-t cut, $f(S)=|f|$ (all cuts carry same flow)
- suppose move v from \bar{S} to S.
- adds $f(v, S)$ to crossing flow value (no longer subtracting from net)
- also add $f(v, \bar{S})$ (adding to net flow value)
- total change: $f(v, S \cup \bar{S})=0$

Flows versus cuts:

- Deduce: $|f| \leq u(S)=\sum_{e \in S \times \bar{S}} u(e)$.
- in other words, max-flow \leq minimum $s=t$ cut value.
- soon, we'll see equal (duality)
- first, need more machinery.

Residual network.

- Given: flow f in graph G
- define G_{f} to have capacities $u_{e}^{\prime}=u_{e}-f_{e}$
- if f feasible, all capacities positive
- Since f_{e} can be negative, some residual capacities grow
- Suppose f^{\prime} is a feasible flow in G_{f}
- then $f+f^{\prime}$ is feasible flow in G of value $f+f^{\prime}$
- flow
- feasible
- Suppose f^{\prime} is feasible flow in G
- then $f^{\prime}-f$ is feasible flow in G_{f} (value $\left.\left|f^{\prime}\right|-|f|\right)$
- corollary: max-flows in G correspond to max-flows in G_{f}
- Many algorithms for max-flow:

> - find some flow f
> - recurse on G_{f}

How can we know a flow is maximum?

- check if residual network has 0 max-flow
- augmenting path: s - t path of positive capacity in G_{f}
- if one exists, not max-flow

Max-flow Min-cut

- Equivalent statements:
- f is max-flow
- no augmenting path in G_{f}
$-|f|=u(S)$ for some S
Proof:
- if augmenting path, can increase f
- let S be vertices reachable from S in G_{f}. All outgoing edges have $f(e)=$ $u(e)$
- since $|f| \leq u(S)$, equality implies maximum

1.2 Problem Variants

Multiple sinks
Edge lower bounds
Bipartite matching.
Vertex capacities (HW).

1.3 Applications

Matrix Rounding (flow with lower bounds).
$P\left\|r_{j}, p m t n\right\| C_{\max }$

1.4 Algorithms

1.4.1 Augmenting paths

Can always find one.
If capacities integral, always find an integer.

- So terminate
- Running time $O(m f)$
- Lemma: flow integrality
- Polynomial for unit-capacity graphs
- Also terminate for rationals (but not polynomial)
- might not terminate for reals.

1.4.2 max capacity augmenting path

How find one?
Running time:

- recall flow decomposition bound
- Get $1 / m$ of flow each time.
- So $m \log f$ flows suffice for integer f
weakly vs. strongly polynomial bounds Works for rational capacities too.

1.5 If little time, scaling

Algorithm: repeatedly

- Shift in one bit at a time
- Run plain augmenting paths

Analysis:

- before bit shift, some cut has capacity 0
- after bit shift, cut has capacity at most m
- so m augmentations suffice.

Running time: $O(m \log U)$.
Discuss relation to max capacity algorithm.

1.5.1 Shortest Augmenting Path

Strongly polynomial.
Lemma: ($s . i$) and (i, t) distance nondecreasing.

- Among i that got closer to s
- Consider closest to s (after change)
- i has parent j on new shortest path
- j didn't get closer to s
- so (j, i) path got shorter
- so didn't used to have residual (j, i) edge
- so flow went from i to j
- so j was farther than i from s
- now they swapped places
- but j didn't get closer!
- so i must be farher-contra.

Lemma: at most $m n / 2$ augmentations.

- Consider edge (i, j) saturated by augmenting path
- Before used again, must push flow on (j, i)
- In first aug, i was closer than j to s
- In next, j was closer than i
- Since no distances go down, must have increased distance of i.
- only happens n times per edge

Running time: $O\left(m^{2} n\right)$.

1.5.2 Blocking Flows

definition of blocking flow
dinic's alg (alg + proof that s-t dist increases)
at the very end I stated BF time bounds and said they'd see more next time

