1 Review

Farkas Lemma: Exactly one is true
o Ax =0,z > 0 feasible
e for some y, yA > 0 but yb < 0
Dual linear programs:
e Primal (P) mincx, Az =0, z > 0. Opt z.
e Pick any y such that yA <c¢
e then for any z > 0, cz > yAzx = yb
e 50 yb is lower bound.
e Dual (D) maxyb, yA < c. Opt w.
e weak duality: w < z.

e also, saw dual of dual us primal.

2 Strong Duality

Strong duality: if P or D is feasible then z = w
e assume P feasible and z > w, show contra.
— includes D infeasible via w = —o0)
e recall w = max{yb | yA < ¢}
e thus, no solution for yA < ¢, yb > 2
e that is, y(A (=b)) < (¢ (—2)) infeasible
e so by Farkas, some (2) with z,¢ > 0 has Az — bg = 0 but cz — zq < 0.
e that is, Az = bg but cx < 2q
e what if ¢ >0
— then A(z/q) = b (note /g > 0) but c¢(z/q) < z
— 80 ¢/q shows z not primal optimum.
e what if ¢ =07
— Then Az =0 but cz < 0.
— Take any opt Az* = b, cx = z.

— Then z* + x better! contra.



Neat corollary: Feasibility or optimality: which harder?
e given optimizer, can check feasiblity by optimizing arbitrary func.
e Given feasibility algorithm, can optimize by mixing primal and dual.

Interesting note: knowing dual solution may be useless for finding optimum
(more formally: if your alg runs in time T to find primal solution given dual,
can adapt to alg that runs in time O(T") to solve primal without dual).

2.1 Rules for duals

General dual formulation:

e primal is

z = minci Ty + Ty + c313
Anxy + Apzy + Aizzs = by
A21my + Agowa + Azzrs > by
Az1my + Azoy + Azzzs < b3
7 > 0
zo < 0
T3 UIS

(UIS emphasizes unrestricted in sign)

e means dual is

w = maxy1b; + y2b2 + ysbs
y1Air +y2 Ao +y3dsn <
yrAie +y2Aos +ysdss >
y1Ai13 +y2 Aoz +yzAsz = c3
Y1 UIS
y2 > 0
ys < 0
e In general, variable corresponds to constraint (and vice versa):
PRIMAL | minimize | maximize DUAL
> b; >0
constraints < <0 variables
=b; free
Z O S Cj
variables >0 <g¢j constraints
free =cj




Derivation:

Note:

2.2

remember lower bounding plan: use yb = yAz < cz relation.
If constraint is in “natural” direction, dual variable is positive.
We saw Aj; and z; case. x; > 0 ensured yAzy < ¢yxy for any y

If some x5 < 0 constraint, we want yA;» > ¢y to maintain rule that
y1A1222 < 2%

If £3 unconstrained, we are only safe if yA;3 = c3.

if instead have As1x1 > by, any old y won’t do for lower bound via ¢y zy >
yaAs1x1 > y2by. Only works if yo > 0.

and so on (good exercise).

This gives weak duality derivation. Easiest way to derive strong duality
is to transform to standard form, take dual and map back to original
problem dual (also good exercise).

tighter the primal, looser the dual
(equality constraint leads to unrestricted var)

adding constraints create a new variable: more flexibility

Shortest Paths

A dual example:

shortest path is a dual (max) problem:

w = maxd; —dg
dj —di < ¢

constraints matrix A has ij rows, i columns, +1 entries (draw)

what is primal? unconstrained vars, give equality constraints, dual upper
bounds mean vars must be positive.

z min E YijCij
0

Yij >

thus

Zyji —vyi; = 1(i = s),—1(i = t), ow
J

It’s the minimum cost to send one unit of flow from s to ¢!



2.3 Simplex
We’ve actually seen duality before.
e recall simplex method.
o defined reduced costs of nonbasic vars N by
N =¢N — cBAglAN
and argued that when all éxy > 0, had optimum.
e Define y = cBA]_31 (so of course cg = yAg)
e nonegative reduced costs means cy > yAn
e put together, see yA < ¢ so y is dual feasible
e but, yb= cBAglb = cprp = cz (since zny = 0)
e so y is dual optimum.
e more generally, y measures duality gap for current solution!

e another way to prove duality theorem: prove there is a terminating (non
cycling) simplex algorithm.

3 Complementary Slackness

Another intuition:
e min{ydb | yA > ¢} (note flipped sign)
e suppose b points straight up.
e so goal is to follow gravity.
e put a ball in the polytope, let it fall
e stops at opt y (no local minima)
e stops because in physical equilibrium
e cquilibrium exterted by forces normal to “floors”
e that is, aligned with the A; (columns)
e thus b =) A;z; for some nonnegative force coeffs z;.
e in other words, x feasible for max{cz | Az = b,z > 0}
e also, only walls touching ball can exert any force on it

e thus, z; = 0if yA; > ¢;



e that is, (¢; —yA;)z; =0
o thus, cx = > (yA;)z; = yb
e so x is dual optimal.
Leads to another idea: complementary slackness:
e given feasible solutions x and y, cx — by > 0 is duality gap.
e optimal iff gap 0 (good way to measure “how far off”
e Go back to original primal and dual forms
e rewrite dual: yA + s = ¢ for some s > 0 (that is, s = ¢; — yA;
e The following are equivalent for feasible z, y:

— z and y are optimal
—sz=0
— zjs; =0 for all j
— 5; > 0 implies z; =0
e proof:
— cx =by iff (yA+ s)z = (Az)y, so sz =0
— if sz = 0, then since s,z > 0 have sjz; = 0 (converse easy)

— so of course s; > 0 forces x; = 0 (converse easy)

e basic idea: opt cannot have a variable z; and corresponding dual con-
straint s; slack at same time: one must be tight.

e Another way to state: in arbitrary form LPs, feasible points optimal if:

(cj —yAj)z; =0Vj

e proof: note in definition of primal/dual, feasiblity means y;(a;z — b;) > 0.
Also (¢; —yAj)z; > 0. Also,

Z yilae — b)) + (¢; —yAj)z; = yAr —yb+cx —yAx
= cx—yb
0

at opt. But since all terms are nonnegative, all must be 0



