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���� Ellipsoid 

������ De�ning An Ellipsoid 

An ellipsoid is a n�dimensional generalization of an ellipse� It consists of a center z and a positive 

de�nite matrix D 	 BB 

T � which contains the radius 
 or scaling fator 
 in each direction� The 

ellipsoid is de�ned by the point s e t � x � zT D�1 �x � z � �� where z is the center of the ellipsoid� 

�We note this is just a basis change of the unit sphere x2 � �� 

������ Outline of Ellipsoid Algorithm 

Our goal is to �nd a feasible point for P 	 Ax � b� We start with an ellipse containing P with 

center z� If z � P � w e are done� Otherwise� we � n d a h yperplane that separates z from P � and �nd 

a smaller ellipse which c o n tains the other half of the previous ellipse� We c o n tinue this process until 

we h a ve an ellipse whose center is in P � 

Consider the case of a sphere with separating hyperplane x 1 

	 � � Let the center be �a� �� �� � � � � We 

require that� 

P 

d�1 x2� d�1 �x � a2 � i�1 
i i 

� � 

1 1 

� constraint a t � � � �� �� d�1 �x � a2 	 � so d 	 �� � a2 

1 1 

� constraint a t � � � �� �� a2 ��� � a2 � d�1 	 � so d�1 	 � � a2 ��� � a2 � � � a2 

2 2 

The volume is about �� � a��� � a2 n�2 � If we set a about ��n� w e get �� � ��n as the ratio of the 

volumes� Thus� in O�n steps we can halve the size of the ellipse� 

Shrinking Lemma� 

Let E 	 � z�D  de�ne an n�dimensional ellipsoid� Consider the separating hyperplane ax � az� 

0Now de�ne the ellipsoid E0 	 � z 
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then 

E � x j ax � ez � E0 

vol �E0 � � e1�(2n+1) vol �E� 

For the proof� �rst show t h a t i t w orks with D � I and z � � � Then� for the new ellipse	 
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n � 
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I11 

� 

n2 � 
 n � 
 

and the volume ratio is easy to compute directly� 

For the general case� we can transform it to coordinates where D � I �using new basis B�� get the 

0new ellipse� transform it back to the old coordinates� and get �z 

0� D �� �Note that the transformation 

doesn�t aect volume ratios� so the ellipsoid shrinks�� Now w e n e e d t o p r o ve t wo things	 

� that we need not start in�nitely large� 

� that we can�t get in�nitely small� 

Starting size	 We m a y w orry about how to bound polyhedra� We recall that the size of vertices is 

polynomially bounded� so the coordinates of vertices are exponential but no larger� Thus� we c a n 

start with a sphere with a radius exceeding this exponential bound and this should be su�ciently 

large� This only uses polynomial values in the D matrix� 

Ending size	 It is convenient to assume that the polytope is full dimensional� If it is� it has n � 
 

a�nely independent v ertices� all of which h a ve polynomial size coordinates� So� they contain a box 

whose volume is a polynomial size number �computable as determinant o f v ertex coordinates�� 

Putting this all together� we h a ve	 

O(1)

� the starting volume is �n 

� the ending volume is ��n 

O(1) 

� each iteration reduces volume by a factor of e1�(2n+1) 

nSo �n � 
 iterations reduce by the volume by e� so nO(1) reduce by e
O(1) 

at which point the ellipse 

doesn�t contain P � This is a contradiction� We m ust have hit a point i n P before� 

Justifying full dimensionality� w h i c h w e assumed before	 Replace Ax � b with P 

0 � Ax � b � � for 

some tiny �� Any point o f P is an interior of P 

0 � so P 

0 is full dimensional� P is empty i P 

0 is because 

� is too small � the proof of this comes by looking at the linear program which tries to minimize �� 

and arguing that there is a solution which has an � using a polynomial number of bits� and w e can 

take an � which is smaller than that� We c a n t h us �round� a point o f P 

0 to P � 
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���� Separation vs Optimization 

Notice in the ellipsoid algorithm� we were only using one constraint at a time� Thus� it doesn�t 

matter how many constraints there are� and we don�t need to see all of them at once� All that is 

necessary is that each one can be represented in polynomial size� Thus� the algorithm works even if 

you have a h uge number of constraints� so long as you have a separation oracle which� given point 

not in P � �nds a separating hyperplane� Of course� we can convert feasibility to optimality� s o w e 

can optimize with this separation oracle too� This works on a polytope by polytope basis� If can 

separate a particular polytope� we can optimize over that polytope� 

This is very useful in many applications� Consider a network design problem� where you are trying 

to build a network with some redundancy such that for any pair of nodes there exists at least three 

separate paths from one to the other� This problem is NP�complete� but if we solve it fractionally 

it can be formulated as a linear program where we stipulate that �across every cut� the numb e r o f 

edges is greater than or equal to ��	 This speci�ces �n constraints on m edges� one per cut� Such 

a problem can b e solved by an ellipsoid algorithm where the separation oracle is a minimum cut 

algorithm and the equation for the separating hyperplane is 

P

edges along that cut�� �� 

���� Interior Point 

The ellipsoid algorithm has problems in practice 
O
n6 �� for one�� Thus� people have d e v eloped a 

di�erent approach that has been extremely successful� known as interior point methods� 

What goes wrong with the simplex algorithm It follows the edges of a polytope� where complex 

stuctures are� so it runs into walls� etc� Interior point algorithms stay a way from the walls� where 

the structure is simpler� Karmarkar developed the �rst such algorithm in ����� The one we w i l l b e 

discussing was published by Y e i n � � � � � 

������ The Potential Function 

Potential function� 

�	 Idea� use a 
nonlinear� potential function that is large when the current p o i n t is not optimal� 

then minimize the potential function via gradient descent� 

In Ye�s algorithm� we use the standard primal Ax � b� x � � and its dual yA � s � c� s � �� The 

duality gap is sx� By complementary slackness� at the optimal point xs�� 
so if xs is large� we a re 

in the wrong place�� We w ill u se a logarithmic barrier function� 

X X 

G
x� s� � q ln xs � ln xj 

� ln sj 

and try to minimize it� In the above formula for G
x� s�� the �rst term tends to move towards P P 

the optimum� while ln xj 

and ln sj 

tend to keep x� s � �� These barriers prevent u s f r o m e v er 

hitting the optimum� but as discussed above� just getting close will be enough because there exist 

algorithms to round the point to a vertex point w hich is no w orse� 
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We c hoose q so that the �rst term dominates� guaranteeing a good G is a good xs� The idea is that 

a sm all G�x� s� should mean xs is small� and if xs is large then G�x� s� is large as well� To do this� 

we let	 

� G 
 ln� xs�q � 

Q 

xj 

sj 

� xs � xj 

sj 

� so � xs�n � 

Q 

xj 

sj 

� So taking q � n makes the top term dominate� and G � ln xs� 

Since the �rst constraint w ants a big q� and the second wants a small q� w e compromise at n � 

p
n� 

giving us O�L
p
n� iterations� 

������ Reducing the Potential Function 

To minimize the potential function� we will use gradient descent� To d o this� we take the current 

point � x� s�� and take a linear approximation to the potential function around this point� By moving 

to where the linear approximation is smaller ��rxG�� we can deduce the potential also went d o wn� 

Of course� we can only use this direction for as far as the linear approximation holds� 

When minimizing our potential function� we n e e d t o s h o w that our solution still stays feasible� and 

that at each step a reasonable reduction in the p o t e n tial is achieved� We have that the gradient 

g 
 rx 

G� Observe that if the potential function is not minimized� we w i l l h a ve a reasonably large 

gradient� 

Problem �� What if g 
 rx 

G is not a feasible direction� 

Solution �� If g 
 rx 

G is very perpendicular to the feasible space of the primal then we m o ve i n 

the dual direction instead� so a small step will improve the potential a lot� Thus� we project G onto 

the nullspace�A� to get d� Then� A�x � d� 
 Ax 
 b� and for a suciently small step� x � �� 

Problem �� The potential reduction is proportional to the length of d� What if d too small� 

Solution �� In this case� we m o ve s �actually y� by g � d which will b e large if d is small� This 

leads us to the following claim	 

Claim � : We either take a big step in the primal or a big step in the dual� 

Proof� Consider if d �perpendicular to A� has Ad 
 �� then it is a good primal move� Conversely� 

the part spanned by A has g � d 
 wA � so we can choose y0 
 y � w and get s0 
 c � Ay0 
 

c � Ay � �g � d� 
 s � �g � d�� 

We note dG�dxj 


 sj 

��xs� � ��xj 

and dG�dsj 


 xj 

��xs� � ��sj 


 � xj 

�sj 

�dG�dxj 

� dG�dxj 


