
����� Advanced Algorithms

Lecture �� September ��� ���� Lecturer� David Karger

Scribes� Jaime Teevan� Arvind Sankar� Jason Rennie

Splay Trees

��� Motivation and Background

With splay trees we a r e l e a ving behind heaps and moving on to trees� Trees allow one to perform

actions not typically supported by heaps� such as �nd element� �nd predecessor� �nd successor� and

print nodes in order� Binary trees are a common and basic form of a tree� As long as a binary tree

is balanced� it has logarithmic insert and delete time� The goal of a splay tree is to have the tree

maintain a logarithmic depth in an amortized sense by adjusting its structure with each access� This

creates a powerful data structure which can be proven to be� in the limit� as good as or better than

any static tree optimized for a certain sequence of accesses�

����� Previous Work

After binary search trees were �rst proposed� a numb e r o f v ariants were developed to improve o n

t h e i r p o o r w orst case behavior� These include AVL trees� ��	 trees� red�black trees and many more�

Each i m p r o ved the performance of a simple binary search tree� but left something to be desired� Most

require augmentation of the simple tree data structure and none can claim theoretical performance

as good as that of splay trees�

The two basic elements of splay trees� self�adjustment and rotation� are hardly new� Many v ariants

on binary trees use some form of rotation
 self�adjusting linked lists and heaps had been introduced

before splay trees� Splay trees were basically the right o r c hestration of ideas that were known for

some time� While variants on binary search trees often aggressively pursue maintaining a balance�

splay trees deal with the problem lazily� doing a little bit of work with each tree operation� but

making little obvious e�ort to maintain a nicely balanced tree�

����� Intuition

This laziness is instantiated in the splay tree�s self�modi�cation with every access� It would be nice

if we could show that the work done for accessing an element i s a t m o s t Olog n�� This isn�t possible�

so we do the next best thing� that is� we show that any additional work that we do beyond Olog n��

can b e accounted for by our past laziness� In other words� if we do work � O log n�� we want to

show that there were a lot of operations before this one where we did less work than we w ere allowed�

and thus� we can amortize away t h e w ork that is � O log n� b y spreading it around to previously

performed operations� As we all know b y know� this technique is called amortization�

���

Lecture �� September ��� ���� ���

If the path to �nd a node is long� it implies that the tree is poorly balanced� Thus� as you travel

from a node to a new node� most of the tree below is the new node� A double rotations distributes

some of the weight below the queried node over its siblings� The total amount o f i m balance� which

is measured by the sum of ranks� is a potential function against which w e c harge the cost of long

searches�

��� Tree Rotation

Tree rotation can b e thought of as a w ay t o move a node to a higher position in a binary search

tree without a�ecting the ordering properties� The simplest rotations are called single rotations �

they involve t wo nodes and their corresponding subtrees� Figure ��� displays such a simple rotation�

When read from left to right� the rotation brings node x to the top of the tree�

X

Y

B

C

A

X

A Y

B C

Figure ���	 A zig rotation

����� Double rotations

A slightly more complication rotation is a double rotation� Here� three nodes and their subtrees

are involved� a double rotation essentially performs two single rotations in sequence� Figure ��� is a

depiction of what is known as a zig�zig rotation� When following the arrow from left to right� the

node x is brought u p t wo levels to the top of the subtree� Figure ��
 is a depiction of what is known

as a zig�zag rotation� Any w eight b e l o w x is spread more evenly as x is brought to the root of the

subtree�

X

Y

Z

B

C

D

A

X

A Y

B Z

C D

Figure ���	 A zig�zig rotation

The double rotation is one of the key elements that make Splay T rees the success that they are� While

single rotations can move a queried element to the top of a tree without a�ecting key ordering� only

��� Lecture �� September ��� ����

B

A

C

X

Y Z

A B DC

Y

Z

D

X

Figure ���� A zig�zag rotation

double rotations allow yield the balancing properties that give splay trees static optimality and

O�log n� operations�

��� Running time

Splay trees run all basic operations in log�n� time� We can prove this through manipulation of

weights and potential function� We de�ne w�x� to be the weight o f n o d e x� Then�

X

s�x� � w�y�

y2descendants

r�x� � log s�x�

2X

	�DS � � w�x�

s�x� is the sum of the weights of all descendants of x
 including the weight o f x itself� r�x� is called

the rank of x� 	 is the potential function that we use for proving properties about splay trees� DS

represents the splay tree data structure� We can use this notation as a basis for proving the theorem

that underlies the log�n� running time of splay trees�

Theorem � �Access Theorem� The amortized time to access x from root t is at most ��r�t� �

r�x�� � ��

Proof� Using the simple lemma that we prove below
 we will show that the amortized cost of a

double rotation is � ��r�t� � r�x�� and the amortized cost of a single rotation is � ��r�t� � r�x�� � ��

We will show that a sequence of rotations yields a telescoping sum that results in the bound described

in the Access Theorem�

Lemma � Given b as a root with two children� a and c� r�a� � r�c� � r�b� � � ��

Proof� Consider the equivalent inequality among the sizes of the three nodes

�s�a�s�c� � s�b�2

Lecture �� September ��� ����	 ���

We know that

s�b� � s�a� � s�c� � w�b�

by de�nition� Since the weights are non�negative� we obtain

s�b� � s�a� � s�c�

Hence

�s�a� � s�c��2

� �s�a�s�c� � s�b�2

� �s�a�s�c�

or

�s�a� � s�c��
2

� s�b�2

� �s�a�s�c�

Since squares are always non�negative� we get the desired inequality

	 � s�b�2 � �s�a�s�c�

Consider the amortized cost of performing one rotation� Let
s say t h a t z is the root of a subtree and

that node x is either a child or grand child of z� If we c a n s h o w that the amotized cost of any double

rotation � ��r�z� � r�x�� and the amortized cost of any single rotation is � �� �� r�z� � r�x��� then

the amortized cost of splaying an element x0

to root xk

is

C � � � �� r�xk

� � r�xk�1

�� � ��r�xk�1

� � r�xk�2

�� � � � � � �� r�x1

� � r�x0

�� �����

� �	 � �� r�xk

� � r�x0

�� ����

where the xi

s �i � �� are roots of subtrees that are rotated�

Now we will show that the amortized time for each rotation involved in the splaying of node x is

0	 0at most ��r

0 �x� � r�x��� and the time for a single rotation is at most � � ��r �x� � r�x��� where r

denotes the rank of a node after the rotation� There are three cases to be considered�

ZIG	 This is the rotation shown in �gure ���� The nodes that change ranks are x and y� So the

amortized cost is

0� � r

0 �x� � r �y� � r�x� � r�y�

0But r

0 �x� � r�y�� and r

0 �y� � r �x�� So the cost is at most

� � r

0 �x� � r�x� � � � �� r

0 �x� � r�x��

ZIG�ZAG	 This is the double rotation shown in �gure ���� Now three nodes change rank� namely x� y

and z� The amortized cost is

0 0 � r �x� � r

0 �y� � r �z� � r�x� � r�y� � r�z�

We note that r

0 �x� � r�z�� and r�y� � r�x�� so that the cost is at most

0 � r

0 �y� � r �z� � r�x�

which w e rewrite as

0 0�r

0 �x� � r�x�� � r �y� � r �z� � r

0 �x� �

which b y the lemma is at most

0�r

0 �x� � r�x�� � ��r �x� � r�x��

Lecture �� September ��� ����	 ���

ZIG�ZIG	 The other kind of double rotation is shown in �gure ���� Again three nodes x� y and z change

ranks� The amortized cost is therefore

0 0� � r �x	 � r

0 �y	 � r �z	 � r�x	 � r�y	 � r�z	

We have r

0 �x	
 r�z	� so the cost simpli�es to

0� � r �y	 � r

0 �z	 � r�x	 � r�y	

0Since r

0 �x	 � r �y	� and r�y	 � r�x	� this expression is at most

0� � r

0 �x	 � r �z	 � �r�x	

We w ant this to be less than or equal to ��r

0 �x	 � r�x		� so we need to show th a t

0 r�x	 � r �z	 � �r

0 �x	 � � � �

This looks somewhat like the inequality w e proved in the lemma� so we try to see if that can

be applied� The proof depended only on the fact that the sum of the sizes of the two subtrees

was at most the size of the entire tree� Clearly� that remains true

0 s�x	 � s �z	 � s

0 �x	

So we can still apply the lemma� and get the desired inequality�

Now w e c a n s u m o ver all the rotations that are needed to splay x to the root� The sum telescopes�

and we get the desired bound�

Note that r�t	
 log s�t	 and r�x	
 log s�x	� so ��r�t	 � r�x		
 O�r�t	 � r�x		
 O�log�s�t		 �

log�s�x			
 O�log�

s(t)

s(x)

		� In the future� we will denote s�t	 as W � which is the sum of all of the

weights in the tree rooted at t� We also use wx

Note that

wx

� s�x	� As a result� the amortized time to splay a node�
x�

O W

wx

to denote the weight of a single node

�log� x� to the root� t� is 		�

Now w e will show that the basic tree operations insert and delete are O�log n	� We will do this by

de�ning two operations� split and join� that can be used to easily implement insert and delete�

Join�T1

� x� T2

� is a function of trees T1

� and T2

and element x where t1

� x � t 2

8t1

2 T1

� t 2

2 T2

�

Join�T1

� x� T2

� returns a tree where x is the root with T1

as its left subtree and T2

as its right

subtree� Join�T1

� x� T2

� has amortized cost O�log n	� Note that we can also join two trees T1

� T 2

can b e joined by splaying the rightmost element of T1

and making T2

its right subtree� This has

amortized cost O�log n 	�

Split�T � x� is a function of a tree T and an element x� Split�T � x� returns two trees T1

� x � T 2

�

Note that x simply de�nes a boundary between the two trees� x is not necessarily contained in T1

�

Split�T � x� is implemented by splaying the greatest element less than x to the root� We rem ove the

right subtree and call it T2

� The remaining tree is named T1

�

We a r e n o	w prepared to implelement insert and delete with O�log n	 amortized cost

T

Delete�T � x� is a function of a tree T and an element x� We perform split�T � x� to yield two subtrees�

1

and T2

� Note that since x was an element o f T � it m ust now be the root of T1

� Since the root of

��� Lecture �� September ��� ����

T1

does not have a left subtree� we m a y remove x in constant time� We then join the two trees T1

and T2

� Since we h a ve done a constant n umb e r o f O�log n� operations� the amortized cost for delete

is O�log n��

T

Insert�T � x� is a function of a tree T and an element x� We perform split�T � x� to yield two subtrees�

1

and T2

� We then join�T1

� x� T2

� to yield our resultant tree� The amortized cost for insert is

O�log n��

��� Applications

Corollary � In n�item tree� access time is O�log n� per operation� Let wx

� � �

X

W � wx

� n

x2nodes

This means that O�log

W � � O�log

n � � O�log n��

wx

1

Corollary � Splaying is �competitive� against any �xed b i n a r y tree� Imagine you have a the ideal

	

�d�xed binary tree� Every item in that tree is assigned a depth d� Let wx

� �

X X

W � wx

�
x	�d � �

x2nodes

x

1The amortized c ost to get a depth d item in a splay tree i s O�log

W � � O�log

3�d

� � O�d��

wx

Corollary � Static Optimality Theorem� Splaying is competitive against the best possible tree� m

is the total number of accesses to a tree� px

is the fraction of times that x will be a c cessed� making

px

� m the access frequency for item x� Optimal access time is

X �

��m px

log �

px

x2nodes

1 �Let the weight for item x be wx

� px� Amortized c ost for x is O�log

W � � O�log

pxwx

Any information theorist will recognize this sum as the entropy of a probability distribution� If we

think of code lengths for items instead of node depths� then the above equation is the the average

code length required to send information about m items given the underlying probability distribution�

As one might guess� we can use information theory to determine the optimal static tree for a given

access pattern�

Lecture �� September ��� ���� ���

Corollary � Static Finger Theorem� Suppose when you search for an element� you leave a �nger�

f � and begin the next search from f � We show that a splay tree p erforms as well�

�

wx

�

�� � �x � f ��2

X X �

wx

� O� � � O���

x2

x2nodes

x

1Amortized c ost for x is O�log

W � � O�log � � O�log jx � f j��1wx

(1+(x�f))2

Corollary � Working Set Theorem� Access item xj

at time j� Let tj

be the number of distinct

items since p r evious xj

access� Thus the amortized c ost of an access is O�log tj

��

��� Practicalities

A m a j o r d r a wback o f s p l a y trees is that they require modi�cation on every access	 Modern computer

systems normally use a cache to optimize for very fast read operations	 Frequent changes to the

data structure means frequent cache invalidations and an ine
ective c a c he	 There are several tricks

that can b e used to overcome this obstacle	 One is to splay for a while� and then to stop	 This

only works well when the access frequency of each node remains relatively constant	 Another trick

is to only splay on operations that require � log n units of work	 This allows splay tree accesses to

remain O�log n� while reducing the amount of tree modi�cation that must be performed	

