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Splay Trees 

��� Motivation and Background 

With splay trees we a r e l e a ving behind heaps and moving on to trees� Trees allow one to perform 

actions not typically supported by heaps� such as �nd element� �nd predecessor� �nd successor� and 

print nodes in order� Binary trees are a common and basic form of a tree� As long as a binary tree 

is balanced� it has logarithmic insert and delete time� The goal of a splay tree is to have the tree 

maintain a logarithmic depth in an amortized sense by adjusting its structure with each access� This 

creates a powerful data structure which can be proven to be� in the limit� as good as or better than 

any static tree optimized for a certain sequence of accesses� 

����� Previous Work 

After binary search trees were �rst proposed� a numb e r o f v ariants were developed to improve o n 

t h e i r p o o r w orst case behavior� These include AVL trees� ��	 trees� red�black trees and many more� 

Each i m p r o ved the performance of a simple binary search tree� but left something to be desired� Most 

require augmentation of the simple tree data structure and none can claim theoretical performance 

as good as that of splay trees� 

The two basic elements of splay trees� self�adjustment and rotation� are hardly new� Many v ariants 

on binary trees use some form of rotation
 self�adjusting linked lists and heaps had been introduced 

before splay trees� Splay trees were basically the right o r c hestration of ideas that were known for 

some time� While variants on binary search trees often aggressively pursue maintaining a balance� 

splay trees deal with the problem lazily� doing a little bit of work with each tree operation� but 

making little obvious e�ort to maintain a nicely balanced tree� 

����� Intuition 

This laziness is instantiated in the splay tree�s self�modi�cation with every access� It would be nice 

if we could show that the work done for accessing an element i s a t m o s t Olog n�� This isn�t possible� 

so we do the next best thing� that is� we show that any additional work that we do beyond Olog n�� 

can b e accounted for by our past laziness� In other words� if we do work � O log n�� we want to 

show that there were a lot of operations before this one where we did less work than we w ere allowed� 

and thus� we can amortize away t h e w ork that is � O log n� b y spreading it around to previously 

performed operations� As we all know b y know� this technique is called amortization� 

��� 
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If the path to �nd a node is long� it implies that the tree is poorly balanced� Thus� as you travel 

from a node to a new node� most of the tree below is the new node� A double rotations distributes 

some of the weight below the queried node over its siblings� The total amount o f i m balance� which 

is measured by the sum of ranks� is a potential function against which w e c harge the cost of long 

searches� 

��� Tree Rotation 

Tree rotation can b e thought of as a w ay t o move a node to a higher position in a binary search 

tree without a�ecting the ordering properties� The simplest rotations are called single rotations � 

they involve t wo nodes and their corresponding subtrees� Figure ��� displays such a simple rotation� 

When read from left to right� the rotation brings node x to the top of the tree� 
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Figure ���	 A zig rotation 

����� Double rotations 

A slightly more complication rotation is a double rotation� Here� three nodes and their subtrees 

are involved� a double rotation essentially performs two single rotations in sequence� Figure ��� is a 

depiction of what is known as a zig�zig rotation� When following the arrow from left to right� the 

node x is brought u p t wo levels to the top of the subtree� Figure ��
 is a depiction of what is known 

as a zig�zag rotation� Any w eight b e l o w x is spread more evenly as x is brought to the root of the 

subtree� 
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Figure ���	 A zig�zig rotation 

The double rotation is one of the key elements that make Splay T rees the success that they are� While 

single rotations can move a queried element to the top of a tree without a�ecting key ordering� only 
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Figure ���� A zig�zag rotation 

double rotations allow yield the balancing properties that give splay trees static optimality and 

O�log n� operations� 

��� Running time 

Splay trees run all basic operations in log�n� time� We can prove this through manipulation of 

weights and potential function� We de�ne w�x� to be the weight o f n o d e x� Then� 

X 

s�x� � w�y� 

y2descendants 

r�x� � log s�x� 

2X 

	�DS � � w�x� 

s�x� is the sum of the weights of all descendants of x
 including the weight o f x itself� r�x� is called 

the rank of x� 	 is the potential function that we use for proving properties about splay trees� DS 

represents the splay tree data structure� We can use this notation as a basis for proving the theorem 

that underlies the log�n� running time of splay trees� 

Theorem � �Access Theorem� The amortized time to access x from root t is at most ��r�t� � 

r�x�� � �� 

Proof� Using the simple lemma that we prove below
 we will show that the amortized cost of a 

double rotation is � ��r�t� � r�x�� and the amortized cost of a single rotation is � ��r�t� � r�x�� � �� 

We will show that a sequence of rotations yields a telescoping sum that results in the bound described 

in the Access Theorem� 

Lemma � Given b as a root with two children� a and c� r�a� � r�c� � r�b� �  � �� 

Proof� Consider the equivalent inequality among the sizes of the three nodes 

�s�a�s�c� � s�b�2 
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We know that


s�b� � s�a� � s�c� � w�b�


by de�nition� Since the weights are non�negative� we obtain 

s�b� � s�a� � s�c� 

Hence


�s�a� � s�c��2 

� �s�a�s�c� � s�b�2 

� �s�a�s�c�


or


�s�a� � s�c��
2 

� s�b�2 

� �s�a�s�c�


Since squares are always non�negative� we get the desired inequality 

	 � s�b�2 � �s�a�s�c� 

Consider the amortized cost of performing one rotation� Let
s say t h a t z is the root of a subtree and 

that node x is either a child or grand child of z� If we c a n s h o w that the amotized cost of any double 

rotation � ��r�z� � r�x�� and the amortized cost of any single rotation is � �� �� r�z� � r�x��� then 

the amortized cost of splaying an element x0 

to root xk 

is 

C � � � �� r�xk 

� � r�xk�1 

�� � ��r�xk�1 

� � r�xk�2 

�� � � � � � �� r�x1 

� � r�x0 

�� ����� 

� �	 � �� r�xk 

� � r�x0 

�� ���� 

where the xi 


s �i � �� are roots of subtrees that are rotated� 

Now we will show that the amortized time for each rotation involved in the splaying of node x is 

0	 0at most ��r 

0 �x� � r�x��� and the time for a single rotation is at most � � ��r �x� � r�x��� where r 

denotes the rank of a node after the rotation� There are three cases to be considered� 

ZIG	 This is the rotation shown in �gure ���� The nodes that change ranks are x and y� So the 

amortized cost is 

0� � r 

0 �x� � r �y� � r�x� � r�y� 

0But r 

0 �x� � r�y�� and r 

0 �y� � r �x�� So the cost is at most 

� � r 

0 �x� � r�x� � � � �� r 

0 �x� � r�x�� 

ZIG�ZAG	 This is the double rotation shown in �gure ���� Now three nodes change rank� namely x� y 

and z� The amortized cost is 

0 0 � r �x� � r 

0 �y� � r �z� � r�x� � r�y� � r�z� 

We note that r 

0 �x� � r�z�� and r�y� � r�x�� so that the cost is at most 

0 � r 

0 �y� � r �z� � r�x� 

which w e rewrite as 

0 0�r 

0 �x� � r�x�� � r �y� � r �z� � r 

0 �x� � 


which b y the lemma is at most


0�r 

0 �x� � r�x�� � ��r �x� � r�x�� 
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ZIG�ZIG	 The other kind of double rotation is shown in �gure ���� Again three nodes x� y and z change 

ranks� The amortized cost is therefore 

0 0� � r �x	 � r 

0 �y	 � r �z	 � r�x	 � r�y	 � r�z	 

We have r 

0 �x	 
 r�z	� so the cost simpli�es to 

0� � r �y	 � r 

0 �z	 � r�x	 � r�y	 

0Since r 

0 �x	 � r �y	� and r�y	 � r�x	� this expression is at most 

0� � r 

0 �x	 � r �z	 � �r�x	 

We w ant this to be less than or equal to ��r 

0 �x	 � r�x		� so we need to show th a t 

0 r�x	 � r �z	 � �r 

0 �x	 � � � � 

This looks somewhat like the inequality w e proved in the lemma� so we try to see if that can 

be applied� The proof depended only on the fact that the sum of the sizes of the two subtrees 

was at most the size of the entire tree� Clearly� that remains true 

0 s�x	 � s �z	 � s 

0 �x	 

So we can still apply the lemma� and get the desired inequality� 

Now w e c a n s u m o ver all the rotations that are needed to splay x to the root� The sum telescopes� 

and we get the desired bound� 

Note that r�t	 
 log s�t	 and r�x	 
 log s�x	� so ��r�t	 � r�x		 
 O�r�t	 � r�x		 
 O�log�s�t		 � 

log�s�x			 
 O�log� 

s(t) 

s(x) 

		� In the future� we will denote s�t	 as W � which is the sum of all of the 

weights in the tree rooted at t� We also use wx 

Note that 

wx 

� s�x	� As a result� the amortized time to splay a node�
x� 

O W

wx 

to denote the weight of a single node 

�log� x� to the root� t� is 		� 

Now w e will show that the basic tree operations insert and delete are O�log n	� We will do this by 

de�ning two operations� split and join� that can be used to easily implement insert and delete� 

Join�T1 

� x� T2 

� is a function of trees T1 

� and T2 

and element x where t1 

� x � t 2 

8t1 

2 T1 

� t 2 

2 T2 

� 

Join�T1 

� x� T2 

� returns a tree where x is the root with T1 

as its left subtree and T2 

as its right 

subtree� Join�T1 

� x� T2 

� has amortized cost O�log n	� Note that we can also join two trees T1 

� T 2 

can b e joined by splaying the rightmost element of T1 

and making T2 

its right subtree� This has 

amortized cost O�log n 	� 

Split�T � x� is a function of a tree T and an element x� Split�T � x� returns two trees T1 

� x � T 2 

� 

Note that x simply de�nes a boundary between the two trees� x is not necessarily contained in T1 

� 

Split�T � x� is implemented by splaying the greatest element less than x to the root� We rem ove the 

right subtree and call it T2 

� The remaining tree is named T1 

� 

We a r e n o	w prepared to implelement insert and delete with O�log n	 amortized cost 

T

Delete�T � x� is a function of a tree T and an element x� We perform split�T � x� to yield two subtrees� 

1 

and T2 

� Note that since x was an element o f T � it m ust now be the root of T1 

� Since the root of 
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T1 

does not have a left subtree� we m a y remove x in constant time� We then join the two trees T1 

and T2 

� Since we h a ve done a constant n umb e r o f O�log n� operations� the amortized cost for delete 

is O�log n�� 

T

Insert�T � x� is a function of a tree T and an element x� We perform split�T � x� to yield two subtrees� 

1 

and T2 

� We then join�T1 

� x� T2 

� to yield our resultant tree� The amortized cost for insert is 

O�log n�� 

��� Applications 

Corollary � In n�item tree� access time is O�log n� per operation� Let wx 

� � � 

X 

W � wx 

� n 

x2nodes 

This means that O�log 

W � � O�log 

n � � O�log n�� 

wx 

1 

Corollary � Splaying is �competitive� against any �xed b i n a r y tree� Imagine you have a the ideal 

	 

�d�xed binary tree� Every item in that tree is assigned a depth d� Let wx 

� � 

X X 

W � wx 

� 
x	�d � � 

x2nodes 

x 

1The amortized c ost to get a depth d item in a splay tree i s O�log 

W � � O�log 

3�d 

� � O�d�� 

wx 

Corollary � Static Optimality Theorem� Splaying is competitive against the best possible tree� m 

is the total number of accesses to a tree� px 

is the fraction of times that x will be a c cessed� making 

px 

� m the access frequency for item x� Optimal access time is 

X � 

��m px 

log � 

px 

x2nodes 

1 �Let the weight for item x be wx 

� px� Amortized c ost for x is O�log 

W � � O�log 

pxwx 

Any information theorist will recognize this sum as the entropy of a probability distribution� If we 

think of code lengths for items instead of node depths� then the above equation is the the average 

code length required to send information about m items given the underlying probability distribution� 

As one might guess� we can use information theory to determine the optimal static tree for a given 

access pattern� 
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Corollary � Static Finger Theorem� Suppose when you search for an element� you leave a �nger� 

f � and begin the next search from f � We show that a splay tree p erforms as well� 

� 

wx 

� 

�� � �x � f ��2 

X X � 

wx 

� O� � � O��� 

x2 

x2nodes 

x 

1Amortized c ost for x is O�log 

W � � O�log � � O�log jx � f j��1wx 

(1+(x�f ))2 

Corollary � Working Set Theorem� Access item xj 

at time j� Let tj 

be the number of distinct 

items since p r evious xj 

access� Thus the amortized c ost of an access is O�log tj 

�� 

��� Practicalities 

A m a j o r d r a wback o f s p l a y trees is that they require modi�cation on every access	 Modern computer 

systems normally use a cache to optimize for very fast read operations	 Frequent changes to the 

data structure means frequent cache invalidations and an ine
ective c a c he	 There are several tricks 

that can b e used to overcome this obstacle	 One is to splay for a while� and then to stop	 This 

only works well when the access frequency of each node remains relatively constant	 Another trick 

is to only splay on operations that require � log n units of work	 This allows splay tree accesses to 

remain O�log n� while reducing the amount of tree modi�cation that must be performed	 


