
Makeup ������ on ��	��

� Fancy Push Relabel Algorithms

��� Highest Label

Highest label
more sophisticated �fo��

� idea� avoid sending nonsaturating pushes down a path more than once

� keep vertices arranged by distance label
in buckets�

� always discharge from highest label
ow � a c c u m ulates� into fewer piles

as moves towards sink�

� easy analysis� if n discharges without relabel� done�

� so � relabel every n discharges

� so O
n3 � d i s c harges	nonsaturating pushes�

� so O
n3 � time since relabels� sat pushes O
nm��

Keeping track o f l e v el�

� like bucketing shortest paths algorithms

� keep pointer to current highest level

� raise when relabel if necessary

� advance downward to �nd next nonempty b u c ket

� total raising O
n2 �

� also bound total descent�

Better analysis�

� consider phase between � relabels

� each node does only � nonsaturating push

� consider inforest of nonsaturating pushes in phase

� decompose into �trajectories�
paths� starting at leaves

� note each l e a f m ust have recieved its excess due to a saturating push

� phase short if max forest depth less than n�
p
m� long otherwise�

� short phases�

{ short path has O
n�
p
m� nonsat pushes

�

{ each startes with one of O�nm� sat pushes or relabels

{ so O�n2

p
m� total nonsat pushes

� long phases�

{ de�ne length of phase to total drop in maximum distance

{ claim� sum of phase lengths O�n2 ��

� decreases must be balanced by increases

� total increase �relabels� O�n2 �

{ number of long phases at m ost n2 ��n�
p
m� � O�n

p
m�

{ phase has only n pushes

{ so total O�n2

p
m�

Best known strong poly bound for push�relabel without fancy data structs�

��� Excess Scaling

Way to achieve O�nm� without data structs� but must discard strong polyno
�
miality�

Basic idea� make s u r e y our pushes send lots of �ow�

Instead of highest level� do lowest level	

Can explain by bit shifts� but slightly cleaner to talk about
�phases�

� starts with all excesses below

� ends with all excesses below
 ��

� initially
 � U

� when
 � �� done�

� O�log U � phases

� each takes O�nm� time

� so O�nm log U ��

Doing a phase� make sure pushes are big

� large excess nodes have e�v� �
��

� push maximum possible without exceeding
 excess at destination

� �turns some potentially saturating pushes nonsaturating�

� to ensure big push� always push from large excess with smallest label

� if push nonsaturating� has value at least
��

{ large excess source has at least
���

�

{ small excess dest can receieve at least this much without going over

�

Claim� O�n2 � nonsaturating pushes per phase�

� potential function

X

� � d�i�e�i���

� relabel increases by total of O��n2 ����� � O�n2 �

� saturating push decreases

� nonsaturating push sense ��� d o wnhill� decrease by � ��

� so O�n2 � nonsaturating pushes�

� note� in this alg	 saturating pushes form bottleneck�

Deduce� O�nm
 n2 log U � running time�

��� Wrapup

Text discusses practical choice	 argues for�

� shortest aug path simple	 often good enough

� highest label best in practice if time to code

� excess scaling also good�

Open� O�nm��ish without scaling	 data structs

� Min�Cost Flow

Many di�erent max�ows in a graph� How compare�

� cost c�e� to send a unit of ow on edge e

P

� �nd max�ow minimizing c�e�f �e�

� costs may be positive or negative�

� note� pushing ow on cost c edge create residual cost �c edge�

� also easy to �nd min�cost ow of given value v less than max �add bottle
�
neck source edge of capacity v�

Clearly	 generalizes max�ow� Also shortest path�

� How sen d ow � unit of ow�

�

� just use shortest path

� more generally� � o w decompose into paths and cycles

� cost of �ow is sum of costs of paths and cycles�

� each path costs at most nC �C � max cost�

� cost of �ow at most mU C

Min�cost circulation�

� no source or sink

� just �nd �ow satisfying balance everywhere� min�cost

� if satisfy balance everywhere� all �ow m ust be going in circles	

� more formally� circulation can be decomposed into just cycles�

� hard to de�ne in max��ow perspective� but makes sense once allow nega�
tive cost arcs�

� reduction to min�cost �ow� add disconnected s� t�

� reduction from min�cost �ow�

{ add s�t arc of
in�nite� capacity�
in�nite� negative cost

{ of course� circulation will push max possible through this edge

{ how m uch can it� max s�t �ow

{ so of course� su to assign capacity equal to max��ow v alue

{ see later� su�cient to assign cost �nU �good for scaling�

� another reduction from min�cost �ow�

{ �nd any old max��ow f

{ consider min�cost �ow f

�

{ dierence f

�

� f is a circulation �note� di of two equal capacity

�ows is a circulation�

{ so �nd circulation q in Gf

�

{ q � f is a �ow in G �note� �ow�circulation��ow of same capacity�

{ cost is c�q� � c�f �

{ so adding min�cost q in Gf

yields min�cost �ow

Deciding optimality�

� given a max��ow� How decide optimal�

� by a b o ve� optimal if min�cost residual circulation is �

�

� suppose not� so have negative cost circulation

� decomposes into cycles of �ow

� one must have negative c o s t �

� so� if f nonoptimal� negative cost cycles in Gf

� converse too� if negative cost cycle� have negative cost circulation� So

min�cost� ��

�

