
Makeup ������ on ��	�� 

� Fancy Push Relabel Algorithms 

��� Highest Label 

Highest label 
more sophisticated �fo�� 

� idea� avoid sending nonsaturating pushes down a path more than once 

� keep vertices arranged by distance label 
in buckets� 

� always discharge from highest label 
ow � a c c u m ulates� into fewer piles 

as moves towards sink�


� easy analysis� if n discharges without relabel� done�


� so � relabel every n discharges


� so O
n3 � d i s c harges	nonsaturating pushes�


� so O
n3 � time since relabels� sat pushes O
nm��


Keeping track o f l e v el� 

� like bucketing shortest paths algorithms 

� keep pointer to current highest level 

� raise when relabel if necessary 

� advance downward to �nd next nonempty b u c ket 

� total raising O
n2 � 

� also bound total descent� 

Better analysis� 

� consider phase between � relabels 

� each node does only � nonsaturating push 

� consider inforest of nonsaturating pushes in phase 

� decompose into �trajectories� 
paths� starting at leaves 

� note each l e a f m ust have recieved its excess due to a saturating push 

� phase short if max forest depth less than n�
p
m� long otherwise� 

� short phases� 

{ short path has O
n�
p
m� nonsat pushes 

� 



{ each startes with one of O�nm� sat pushes or relabels 

{ so O�n2 

p
m� total nonsat pushes 

� long phases�


{ de�ne length of phase to total drop in maximum distance


{ claim� sum of phase lengths O�n2 ��


� decreases must be balanced by increases 

� total increase �relabels� O�n2 � 

{ number of long phases at m ost n2 ��n�
p
m� � O�n

p
m� 

{ phase has only n pushes 

{ so total O�n2 

p
m� 

Best known strong poly bound for push�relabel without fancy data structs� 

��� Excess Scaling 

Way to achieve O�nm� without data structs� but must discard strong polyno
�
miality�


Basic idea� make s u r e y our pushes send lots of �ow�


Instead of highest level� do lowest level	


Can explain by bit shifts� but slightly cleaner to talk about 
�phases�


� starts with all excesses below 



� ends with all excesses below 
 ��


� initially 
 � U


� when 
 � �� done�


� O�log U � phases


� each takes O�nm� time


� so O�nm log U ��


Doing a phase� make sure pushes are big 

� large excess nodes have e�v� � 
�� 

� push maximum possible without exceeding 
 excess at destination 

� �turns some potentially saturating pushes nonsaturating� 

� to ensure big push� always push from large excess with smallest label 

� if push nonsaturating� has value at least 
�� 

{ large excess source has at least 
��� 

� 



{ small excess dest can receieve at least this much without going over 

� 

Claim� O�n2 � nonsaturating pushes per phase� 

� potential function 

X 

� � d�i�e�i��� 

� relabel increases by total of O��n2 ����� � O�n2 �


� saturating push decreases


� nonsaturating push sense ��� d o wnhill� decrease by � ��


� so O�n2 � nonsaturating pushes�


� note� in this alg	 saturating pushes form bottleneck� 

Deduce� O�nm 
 n2 log U � running time� 

��� Wrapup 

Text discusses practical choice	 argues for� 

� shortest aug path simple	 often good enough 

� highest label best in practice if time to code 

� excess scaling also good� 

Open� O�nm��ish without scaling	 data structs 

� Min�Cost Flow 

Many di�erent max�ows in a graph� How compare� 

� cost c�e� to send a unit of ow on edge e 

P 

� �nd max�ow minimizing c�e�f �e�


� costs may be positive or negative�


� note� pushing ow on cost c edge create residual cost �c edge�


� also easy to �nd min�cost ow of given value v less than max �add bottle
�
neck source edge of capacity v� 

Clearly	 generalizes max�ow� Also shortest path� 

� How sen d  ow � unit of ow� 

� 



� just use shortest path


� more generally� � o w decompose into paths and cycles


� cost of �ow is sum of costs of paths and cycles�


� each path costs at most nC �C � max cost�


� cost of �ow at most mU C


Min�cost circulation� 

� no source or sink 

� just �nd �ow satisfying balance everywhere� min�cost 

� if satisfy balance everywhere� all �ow m ust be going in circles	 

� more formally� circulation can be decomposed into just cycles� 

� hard to de�ne in max��ow perspective� but makes sense once allow nega�
tive cost arcs�


� reduction to min�cost �ow� add disconnected s� t�


� reduction from min�cost �ow�


{ add s�t arc of 
in�nite� capacity� 
in�nite� negative cost 

{ of course� circulation will push max possible through this edge 

{ how m uch can it� max s�t �ow 

{ so of course� su to assign capacity equal to max��ow v alue 

{ see later� su�cient to assign cost �nU �good for scaling� 

� another reduction from min�cost �ow� 

{ �nd any old max��ow f 

{ consider min�cost �ow f 

� 

{ dierence f 

� 

� f is a circulation �note� di of two equal capacity 

�ows is a circulation� 

{ so �nd circulation q in Gf 

� 

{ q � f is a �ow in G �note� �ow�circulation��ow of same capacity� 

{ cost is c�q� � c�f � 

{ so adding min�cost q in Gf 

yields min�cost �ow 

Deciding optimality� 

� given a max��ow� How decide optimal� 

� by a b o ve� optimal if min�cost residual circulation is � 

� 



� suppose not� so have negative cost circulation 

� decomposes into cycles of �ow 

� one must have negative c o s t � 

� so� if f nonoptimal� negative cost cycles in Gf 

� converse too� if negative cost cycle� have negative cost circulation� So 

min�cost� �� 

� 


