1

1.1

Geometry

Convex Hull

Build upper hull:

1.2

Sort points by = coord

Sweep line from left to right

maintain upper hull “so far”

as encounter next point, check if hull turns right or left to it

if right, fine

if left, hull is concave. Fix by deleting some previous points on hull.
just work backwards till no left turn.

Each point deleted only once, so O(n)

but O(nlogn) since must sort by = coord.

Halfspace intersection

Duality.

(a,b) = ax +by+1=0.
line through two points becomes point at intersection of 2 lines
point at distance d antipodal line at distance 1/d.

intersection of halfspace become convex hull.

So, O(nlogn) time.

2

Voronoi Diagram

Goal: find nearest athena terminal to query point.
Definitions:

point set p

V(p;) is space closer to p; than anything else
for two points, V(P) is bisecting line

For 3 points, creates a new “voronoi” point

And for many points, V (p;) is intersection of halfplanes, so a convex poly-
hedron



¢ And nonempty of course.
e but might be infinite
e Given VD, can find nearest neighbor view planar point location:
e O(logn) using persistent trees
Space complexity:

e VD is a planar graph: no two voronoi edges cross (if count voronoi
points)

¢ add one point at infinity to make it a proper graph with ends
e Euler’s formula: n, —ne +ny =2

e (n, is voronoi points, not original ones)

e Butny =n

e Also, every voronoi point has degree at least 3 while every edge has two
endpoints.

e Thus, 2n, > 3(n, + 1)

e rewrite 2(n + n, — 2) > 3(n, + 1)

e Son—2>(n,+3)/2,ien, <2n—7
e Gives n, <3n—6

Summary: V(P) has linear space and O(logn) query time.

2.1 Construction

VD is dual of projection of lower CH of lifting of points to parabola in 3D.
And 3D CH can be done in O(nlogn)
Can build each vornoi cell in O(nlogn), so O(n?logn).

2.2 Plane Sweep
Basic idea:
¢ Build portion of Vor behind sweep line.
e problem: not fully determined! may be about to hit a new site.

e What is determined? Stuff closer to a point than to line

boundary is a parabola

boundary of know space is pieces of parabolas: “beach line”



e as sweep line descends, parabolas descend too.

o We need to maintain beach line as “events” change it

Descent of one parabola:

e sweep line (horizontal) y coord is ¢

Equation (z —z7)* + (y — ys)? = (y — )*.
Fix x, find dy/dt

2(y —yy)dy/dt = 2(y — t)(dy/dt — 1)
Sody/dt=—(y—t)/(y — )

e Thus, the higher y; (farther from sweep line) the slower parabola descends.

Site event:

e Sweep line hits site

e creates new degenerate parabola (vertical line)

e widens to normal parabola

e adds
Claim: no

® case

arc piece to peach line.
other create events.
1: suppose one parabola passes through other

At crossover, two parabolas are tangent.
then “inner” parabola has higher focus then outer
so descends slower

so outer one stays ahead, no crossover.

e case 2: new parabola descends through intersection point of two previous
parabolas.

Summary:

At crossover, all 3 parabolas intersect

thus, all 3 foci and sweep line on boundary of circle with intersection
at center.

called circle event

“appearing” parabola has highest focus

so it is slower: won’t cross over

In fact, this is how parabola’s disappear from beach line

outer parabolas catch up with, cross inner parabola.



only site events add to beach line

only circle events remove from beach line.
n site events

so only n circle events

as insert/remove events, only need to check for events in newly adjacent
parabolas

so O(nlogn) time



