1 Geometry

1.1 Convex Hull

Build upper hull:

- Sort points by x coord
- Sweep line from left to right
- maintain upper hull "so far"
- as encounter next point, check if hull turns right or left to it
- if right, fine
- if left, hull is concave. Fix by deleting some previous points on hull.
- just work backwards till no left turn.
- Each point deleted only once, so $O(n)$
- but $O(n \log n)$ since must sort by x coord.

1.2 Halfspace intersection

Duality.

- $(a, b) \rightarrow a x+b y+1=0$.
- line through two points becomes point at intersection of 2 lines
- point at distance d antipodal line at distance $1 / d$.
- intersection of halfspace become convex hull.

So, $O(n \log n)$ time.

2 Voronoi Diagram

Goal: find nearest athena terminal to query point.
Definitions:

- point set p
- $V\left(p_{i}\right)$ is space closer to p_{i} than anything else
- for two points, $V(P)$ is bisecting line
- For 3 points, creates a new "voronoi" point
- And for many points, $V\left(p_{i}\right)$ is intersection of halfplanes, so a convex polyhedron
- And nonempty of course.
- but might be infinite
- Given VD, can find nearest neighbor view planar point location:
- $O(\log n)$ using persistent trees

Space complexity:

- VD is a planar graph: no two voronoi edges cross (if count voronoi points)
- add one point at infinity to make it a proper graph with ends
- Euler's formula: $n_{v}-n_{e}+n_{f}=2$
- (n_{v} is voronoi points, not original ones)
- But $n_{f}=n$
- Also, every voronoi point has degree at least 3 while every edge has two endpoints.
- Thus, $2 n_{e} \geq 3\left(n_{v}+1\right)$
- rewrite $2\left(n+n_{v}-2\right) \geq 3\left(n_{v}+1\right)$
- So $n-2 \geq\left(n_{v}+3\right) / 2$, ie $n_{v} \leq 2 n-7$
- Gives $n_{e} \leq 3 n-6$

Summary: $V(P)$ has linear space and $O(\log n)$ query time.

2.1 Construction

VD is dual of projection of lower CH of lifting of points to parabola in 3D.
And 3D CH can be done in $O(n \log n)$
Can build each vornoi cell in $O(n \log n)$, so $O\left(n^{2} \log n\right)$.

2.2 Plane Sweep

Basic idea:

- Build portion of Vor behind sweep line.
- problem: not fully determined! may be about to hit a new site.
- What is determined? Stuff closer to a point than to line
- boundary is a parabola
- boundary of know space is pieces of parabolas:"beach line"
- as sweep line descends, parabolas descend too.
- We need to maintain beach line as "events" change it

Descent of one parabola:

- sweep line (horizontal) y coord is t
- Equation $\left(x-x_{f}\right)^{2}+\left(y-y_{f}\right)^{2}=(y-t)^{2}$.
- Fix x, find $d y / d t$
- $2\left(y-y_{f}\right) d y / d t=2(y-t)(d y / d t-1)$
- So $d y / d t=-(y-t) /\left(y-y_{f}\right)$
- Thus, the higher y_{f} (farther from sweep line) the slower parabola descends.

Site event:

- Sweep line hits site
- creates new degenerate parabola (vertical line)
- widens to normal parabola
- adds arc piece to peach line.

Claim: no other create events.

- case 1: suppose one parabola passes through other
- At crossover, two parabolas are tangent.
- then "inner" parabola has higher focus then outer
- so descends slower
- so outer one stays ahead, no crossover.
- case 2: new parabola descends through intersection point of two previous parabolas.
- At crossover, all 3 parabolas intersect
- thus, all 3 foci and sweep line on boundary of circle with intersection at center.
- called circle event
- "appearing" parabola has highest focus
- so it is slower: won't cross over
- In fact, this is how parabola's disappear from beach line
- outer parabolas catch up with, cross inner parabola.

Summary:

- only site events add to beach line
- only circle events remove from beach line.
- n site events
- so only n circle events
- as insert/remove events, only need to check for events in newly adjacent parabolas
- so $O(n \log n)$ time

