
� Persistent Trees 

Full copy b a d �


Fat nodes method�


� replace each �single�valued� �eld of data structure by list of all values 

taken� sorted by time� 

� requires O��� space per data change �unavoidable if keep old date� 

� to lookup data �eld� need to search based on time� 

� store values in binary tree 

� checking�changing a data item takes O�log m� time after m updates 

� slowdown of O�log m� in structure access� 

Path copying� 

� much of data structure consists of �xed�size nodes conencted by pointers 

� can only reach n o d e b y traversing pointers starting from root 

� changes to a node only visible to ancestors in pointer structure 

� when change a node� copy it and ancestors �back to root of data structure )

� keep list of roots sorted by update time 

� O�log m� time to �nd right root �or const� if time is integers� 

� same access time as original structure 

� additive instead of multiplicative O�log m�� 

� modi�cation time and space usage equals numb e r o f ancestors� possibly 

huge	 

Combined Solution �trees only�� 

� in each node� store � extra time�stamped �eld 

� if full� overrides one of standard �elds for any accesses later than stamped 

time� 

� access rule 

� standard access� just check f o r o verrides while following pointers 

� constant factor increase in access time� 

� update rule� 

� when need to change�copy pointer� use extra if available� 

� 



{	 otherwise� make new copy of node with new info� and recursively 

modify parent� 

� Analysis 

{ live node� pointed at by current root�


{ potential function� numb e r o f full live nodes�


{ copying a node is free �new copy not full� pays for copy space�time�


{ pay for �lling an extra pointer �do only once� since can stop at that


p o in t��


{ amortized space per update� O����


Power of twos� Like Fib heaps� Show binary tree of modi�cations� 

Application� persistent trees� 

� amortized cost O�� � to change a �eld� 

� splay tree has O�log n� amortized �eld change per access� 

� O�log n� space per access� 

� drawback� rotations on access mean unbounded space usage� 

Red	black trees� 

� aggressive rebalancers 

� store red�black bit in each n o d e 

� use red�black bit to rebalance� 

� depth O�log n� 

� search� standard binary tree search
 no changes 

� update� causes changes in red�black �elds on path to item� O��� rotations� 

� result� �log n� space per insert�delete 

� geometry does O�n� c hanges� so O�n log n� space� 

� O�log n� query time� 

Improvement� 

� red	black bits used only for updates 

� only need current v ersion of red	black b i t s 

� don�t store old versions� just overwrite 

� only updates needed are for O��� rotations 

� 



� so O��� space per update 

� so O�n� space overall� 

Result� O�n� space� O�log n� query time for planar point location� 

Extensions� 

� method extends to arbitrary pointer�based structures� 

� O��� cost per update for any pointer�based structure with any c o n s t a n t 

indegree� s 

� full persistence with same bounds� 

� Su�x Trees 

Crochemore and Rytter� Text Algorithms 

Gus�eld� Algorithms on Strings� Trees� and Sequences� 

Weiner �	 
Linear Pattern�matching algorithms� IEEE conference on automata 

and switching theory 

McCreight �� 
A space�economical sux tree construction algorithm� JACM 

�	��� ���� 

Chen and Seifras �� 
Ecient and Elegegant Sux tree construction� in Apos�
tolico�Galil Combninatorial Algorithms on Words 

Another 
search� structure� dedicated to strings� 

Basic problem� match a 
pattern� to 
text� 

� goal� decide if a given string �
pattern�� is a substring of the text 

� possibly created by concatenating short ones� eg newspaper 

� application in IR� also computational bio �DNA seqs� 

� if pattern avilable �rst� can build DFA� run in time linear in text 

� if text available �rst� can build sux tree� run in time linear in pattern� 

First idea� binary 
tree on strings� Inecient because run over pattern many


times�


Tries�


� Idea like bucket heaps� use bounded alphabet �� 

� used to store dictionary of strings 

� trees with children indexed by 
alphabet� 

� time to search equal length of query string 

� insertion ditto� 

	 



� optimal� since even hashing requires this time to hash� 

� but better� because no �hash function� computed� 

� space an issue� 

{ using array increases stroage cost by j�j 

{ using binary tree on alphabet increases search time by l o g j�j 

{ ok for �const alphabet� 

� size in worst case� sum of word lengths �so pretty m uch s o l v es �dictionary� 

problem� 

� 

But what about substrings� 

� idea� trie of all n2 substrings 

� equivalent to trie of all n su�xes� 

� put �marker� at end� so no su�x contained in other �otherwise� some 

su�x can be an internal node� �hidden� by piece of other su�x	


� means one leaf per su�x


� Naive construction� insert each su�x


� basic alg� 

{ text a 1 

� � � am 

{ de
ne si 

� ai 

� � � 

{ for i � � to m 

{ insert si 

� 
time� space O�m2 	 

Better construction� 

� note trie size may b e m 

am 

uch smaller� aaaaaaa� 

� algorithm with time O�jT j	


� idea� avoid repeated work by �memoizing�


� �also shades of 
nger search tree idea	


� suppose just inserted aw


� next insert is w


� big pre
x of w might already be in trie


 



� avoid traversing� skip to end of pre�x� 

Su�x links� 

� any node in trie corresponds to string 

� arrange for node corresp to ax to point at node corresp to x 

� suppose just inserted aw� 

� walk up tree till �nd su�x link 

� follow link �puts you on path corresp to w� 

� walk down tree �adding nodes� to insert rest of w 

Memoizing� �save y our work� 

� can add su�x link to every node we w alked up 

� �since walked up end of aw� and are putting in w now�� 

� charging scheme� charge traversal up a node to creation of su�x link 

� traversal up also covers �same length� traversal down 

� once node has su�x link� never passed up again 

� thus� total time spent going up�down equals number of su�x links 

� one su�x link per node� so time O�jT j� 

Su�x Trees� 

� problem� maybe jT j is large �m2 � 

� compress paths in su�x trie 

� path on letters ai 

� � � aj 

corresp to substring of text 

� replace by edge labelled by � i� j� � implicit nodes� 

� gives tree where every node has indegree at least � 

� in such a tree� size is order numb er of leaves 	 O�m� 

� Search still works� 

{ preserves invariant� at most one edge starting with given character 

leaves a node 

{ store edges in array indexed by starting character� 

{ walk down same as trie� but use indexing into text to �nd chars 

{ called 
slow�nd� for later 

� 



Construction� 

� obvious� build su�x trie� compress 

� drawback� may take m
2 time and intermediate space 

� better� use original construction idea� work in compressed domain� 

� as before� insert su�xes in order s � � � � � s m1 

� compressed tree of what inserted so far


� to insert si 

� w alk down tree


� at some point� path diverges from what�s in tree 

� may force us to �break� an edge �show� 

� tack on one new edge for rest of string �cheap	� 

MacReight 
 � �  

� use su�x link idea of up�link�down 

� problem� can�t su�x link every character� only explict nodes


� want t o w ork proportional to real nodes traversed


� need to skip characters inside edges �since can�t pay for them� 

� introduced �fast�nd� 

{ idea� fast alg for descending tree if know string present in tree 

{ just check � r s t c har on edge� then skip numb e r o f c hars equal to edge 

�length� 

{ may land you in middle of edge �speci�ed o�set� 

{ cost of search� numb e r o f explicit nodes in path 

{ pay for with su�x links 

Analysis� 

� suppose just inserted string aw 

� sitting on its leaf� which h a s parent 

� invariant� every internal node except for parent of current leaf has su�x 

link to another explicit node 

� plausible�


{ suppose sj 

and sk 

diverge �creating explicit node� at v


 



{ claim sj +1 

and sk+1 

diverge at su�x�v�� creating another explicit 

node� 

{ only problem if sk+1 

not yet present 

{ happens only if k is current su�x 

{ only blocks parent of current leaf� 

� insertion step� 

{ consider parent pi 

and grandparent �parent of parent� gi 

of current 

node 

{ gi 

to pi 

link has string w1 

{ pi 

to li 

link w2 

{ go up to grandparent 

{ follow su�x link 

{ fast�nd w1


{ claim� know w1 

is present in tree�


{ create su�x link from pi 

�preserves invariant�


{ slow�nd w2 

�stopping when leave cu rren t tree�


{ break current edge


{ add new edge for rest of w2


Analysis� 

� Break into two costs� from suf�gi 

� to suf�pi 

� �w1 

�� then suf�pi 

� to pi+1 

�w2 

�� 

� slow�nd cost is time to get from suf�pi 

� to pi+1 

�plus const� 

� �note pi+1 

is descendant of suf�pi 

�� 

P 

� so total cost O� jpi+1 

� pi 

j � 	� 
 O�n� 

� what about time to �nd suf�pi 

�� 

� fast�nd costs less than slow�nd� so at most jgi+1 

j � j gi 

j to reach gi+1 

� 

Sums to linear 

� Done if gi+1 

below suf�pi 

� �double counts� but who cares� 

� what if gi+1 

above su f� pi 

�� 

� can only happen if suf�pi 

� 
 pi+1 

�this is only node below gi+1 

� 

� in this case� fast�nd takes 	 step to go from gi+1 

to pi+1 

�landing in middle 

of edge�


� only case where fast�nd necessary� but can�t tell in advance�


 



Weiner algorithm� insert strings �backwards�� use pre�x links� Ukonnen online 

version� 

Su�x arrays 

Applications� 

� preprocess bottom up� storing �rst� last� num� of su�xes in subtree 

� allows to answer queries� what �rst� last� count o f w in text in time O�jwj�� 

�	 enumerate k occurrences in time O�w 	 jkj� �traverse subtree� binary so 

size order of number of occurences� 

�	 longest common substring� work bottom up� deciding if subtree contains 

su�xes of both strings� Take deepest node satisfying� 


 


