Discuss projects. People want extensions, see me.

1 Polynomial LP algorithms (cont)

Last time, saw ellipsoid and interior point.

1.1

Path Following

Potential function:

Define
P(n) = o —p'Y loga

minimize over Ax = b

When p is tiny, barrier is negligible except right at edge of polytope

so optimum is right near LP opt, just pushed away from boundary a bit.
For each p, some optimum z(u)

lim,, 0 P(u) is LP opt.

P(u) as p varies defines a function: central path

starts where p = oo, analytic center farthest from all boundaries.

Path following algorithm:

repeatedly optimizes P(u) for smaller and smaller
when g small enough, round to (optimal) vertex

need to start somewhere near central path—revise problem to make this
easy.

How optimize nonlinear P(u)? gradient descent (actually second order
taylor)

Path following step:

Suppose are at P(u)
take 7= (1 — B)u
Then P(iz) near P(u)

so gradient descent from z(u) should converge fast to z(i).

Actual implementation:



e don’t wait to converge to z(q).

e instead, trace out y(u) that “follows” path without being on it.
e suppose have y(u) near z(u)

e want y(z) near z(f)

e take a (second order) taylor expansion of P(f1) near y(u)

e since y(u) near z(x), Taylor “accurate” (need 8 ~ 1/+/n)

e take a “Newton step” from y(u) towards minimizing P(f)

e takes us closer to z(7)

e update @ and repear

e like potential method, O(y/nL) iterations halve potential.

e in practice, 9 iterations halve potential!

1.2 Randomized LP

New idea: focus on low dimension.

Standard incremental: O(n?) (poly!)

Randomization is crucial in geometry (actually everywhere; take class next
year).

Seidel Randomized incremental algorithm

T(n)<T(n—1,d) + %(O(dn) +T(n—-1,d—1)) = 0(dn)
Bring in other random sampling techniques: best bound
O(d*n + bvValeed]og n)

Best known bound on diameter (Kalai and Kleitman): n?t1ogd

2 Geometry
Field:
e We have been doing geometry

¢ But in computational geometry, key difference in focus: low dimension

d

e Lots of algorithms that are great for d small, but exponential in d



2.1 Convex Hull by RIC

o define

e good for: width, diameter, filtering
e assume no 3 points on straight line.
e output:

— points and edges on hull
— in counterclockwise order

— can leave out edges by hacking implementation
e Q(nlogn) lower bound via sorting
algorithm (RIC):
e random order p;
e insert one at a time (to get S;)
e update conv(S;_1) — conv(S;)

— new point stretches convex hull
— remove new non-hull points

— revise hull structure

Data structure:

— point pp inside hull (how find?)
— for each p, edge of conv(S;) hit by pop
— say p cuts this edge

To update p; in conv(S;—1):
— if p; inside, discard
— delete new non hull vertices and edges
— 2 vertices vy, va of conv(S;—1) become p;-neighbors

— other vertices unchanged.

To implement;:

— detect changes by moving out from edge cut by pgp.

— for each hull edge deleted, must update cut-pointers to p;i;, or p;vs
Runtime analysis

e deletion cost of edges:



— charge to creation cost
— 2 edges created per step
— total work O(n)

e pointer update cost
— proportional to number of pointers crossing a deleted cut edge

— BACKWARDS analysis

run backwards
delete random point of S; (not conv(S;)) to get S;—1
same number of pointers updated

* ¥ X %

expected number O(n/7)
- what Pr[update p]?
- Pr[delete cut edge of p]
- Pr[delete endpoint edge of p)

- 2/i

* deduce O(nlogn) runtime

¢ 3d convex hull using same idea, time O(nlogn),

2.2 Orthogonal Range Queries
What points are in this box?
e goal: O(n) space
e query time O(logn) plus number of points
e 1d: binary tree
Solve in each coordinate “separately”

e solve each coord, intersect too expensive.

2.2.1 kd trees
kd-trees:
e Split vertical, then horizontal
e size O(n)
e build time O(nlogn)
Query time:
e traverse subtree, descending into every node (region) that intersects query.

e pay one for each contained point



this also amortizes cost of visiting any region completely contained in the
box

so only need measure number of region intersecting but not contained in
region

these hit one of the 4 boundaries
let’s see how many regions hit one vertical boundary
vertical boundary on only one side of vertical split line

but (worst case) on both sides of horizontal one

s0 Q(n) = 2+ 2Q(n/4)0(v/n)

2.2.2 Range Trees

Basic idea:

Build binary search tree on z coords
Each internal node represents an interval containing some points
Our query’s z interval can be broken into O(logn) tree intervals

We want to reduce dimension: on each subinterval, range search y coords
only amound nodes in that z interval

Solution: each internal node has a y-coord search tree on points in its
subtree

Size: O(nlogn), since each point in O(logn) internal nodes

Query time: find O(logn) nodes, range search in each y-tree, so O(log? n)
(plus output size)

more generally, O(log® n)

fractional cascading improves to O(logn)

3 Plane Sweep Algorithms

Another key idea:

dimension is low,
so worth expending lots of energy to reduce dimension
we saw this idea in LP

plane sweep is a general-purpose dimension reduction



3.1

Run a plane/line across space
Study only what happens on the frontier
Need to keep track of “events” that occur as sweep line across

simplest case, events occur when line hits a feature

Segment intersections

We saw this one using persistent data structures.

Maintain balanced search tree of segments ordered by current height.
Heap of upcoming “events” (line intersections/crossings)

pull next event from heap, output, swap lines in balanced tree

check swapped lines against neighbors for new intersection events
lemma: next event always occurs between neighbors, so is in heap
note: next event is always in future (never have to backtrack).

so sweep approach valid

and in fact, heap is monotone!



