
Discuss projects� People want extensions� see me�

� Polynomial LP algorithms �cont�

Last time� saw ellipsoid and interior point�

��� Path Following

Potential function�

� De�ne

X

P ��� � cx � � log xi

� minimize over Ax � b

� When � is tiny� barrier is negligible except right at edge of polytope

� so optimum is right near LP opt� just pushed away from boundary a bit�

� For each �� some optimum x���

� lim�!0

P ��� is LP opt�

� P ��� as � varies de�nes a function� central path

� starts where � � 1� analytic center farthest from all boundaries�

Path following algorithm�

� repeatedly optimizes P ��� for smaller and smaller �

� when � small enough� round to �optimal� vertex

� need to start somewhere near central path�revise problem to make this

easy�

� How optimize nonlinear P ���� gradient descent �actually second order

taylor�

Path following step�

� Suppose are at P ���

� �take � �	 � ���

� Then P �� P ���

� x�� x����

� near

so gradient descent from � should converge fast to

Actual implementation�

	

� don�t wait to converge to x����

� instead� trace out y��� that �follows� path without being on it�

� suppose have y��� x���
near

� want y��� x���
near

� take a �second order� taylor expansion of P ��� near y���

� since y��� near x���� Taylor �accurate� �need � � ��
p
n�

� take a �Newton step� from y��� t o wards minimizing P ���

� takes us closer to x���

� update � and repear

� like p o t e n tial method� O�
p
nL� iterations halve potential�

� in practice� � iterations halve potential	

��� Randomized LP

New idea
 focus on low dimension�

Standard incremental
 O�nd � �poly	�

Randomization is crucial in geometry �actually everywhere� take class next

year��

Seidel Randomized incremental algorithm

d

T �n� � T �n � �� d � � �O�dn� � T �n � �� d � ��� O�d	n�

n

Bring in other random sampling techniques
 best bound

O�d� n � b
p
d log d log n�

Best known bound on diameter �Kalai and Kleitman�
 n��log d

� Geometry

Field

� We h a ve been doing geometry

� But in computational geometry� k ey di�erence in focus
 low dimension

d

� Lots of algorithms that are great for d small� but exponential in d

�

��� Convex Hull by RIC

� de�ne

� good for� width� diameter� �ltering

� assume no � points on straight l i n e �

� output�

{ p o i n ts and edges on hull

{ in counterclockwise order

{ can leave out edges by hacking implementation

� ��n log n � l o wer bound via sorting

algorithm �RIC��

� random order p i

� insert one at a time �to get S i

�

� update conv�S i�1

� ! conv�S i

�

{ new point stretches convex hull

{ remove new non�hull points

{ revise hull structure

� Data structure�

{ p oint p 0

inside hull �how �nd	�

{ for each p � edge of conv�S i

� hit by � p
0

p

{ say p cuts this edge

� To update p i

in conv�S i�1

��

{ if p inside� discard
i

{ delete new non hull vertices and edges

{
 v ertices v 1

� v of conv�S i�1

� become p i

�neighb o r s

{ other vertices unchanged�

� To implement�

{ detect changes by m o ving out from edge cut by � p

2

0

p �

{ for each h ull edge deleted� must update cut�pointers to � p i

v 2i

v 1

or � p

Runtime analysis

� deletion cost of edges�

�

{ charge to creation cost

{ � edges created per step

{ total work O�n�

� p o i n ter update cost

{ proportional to number of pointers crossing a deleted cut edge

{ BACKWARDS analysis

� run backwards

� delete random point o f Si

�not conv�Si

�� to get Si�1

� same number of pointers updated

� expected numb e r O�n�i�

� what Pr�update p��

� Pr�delete cut edge of p�

� Pr�delete endpoint e d g e o f p�

� ��i

� deduce O�n log n� ru n time

� �d convex hull using same idea� time O�n log n��

��� Orthogonal Range Queries

What points are in this box�

� goal� O�n� space

� query time O�log n� plus number of points

� 	d� binary tree

Solve i n e a c h coordinate
separately�

� solve each coord� intersect too expensive�

����� kd trees

kdtrees�

� Split vertical� then horizontal

� size O�n�

� build time O�n log n�

Query time�

� traverse subtree� descending into every node �region� that intersects query�

� pay one for each contained point

�

�

� this also amortizes cost of visiting any region completely contained in the

b ox

� so only need measure number of region intersecting but not contained in

region

� these hit one of the � boundaries

� let�s see how m a n y regions hit one vertical boundary

� vertical boundary on only one side of vertical split line

� but �worst case� on both sides of horizontal one

� so Q�n� � � � � Q�n�����
p
n�

����� Range Trees

Basic idea�

� Build binary search tree on x coords

� Each i n ternal node represents an interval containing some points

� Our query�s x interval can be broken into O�log n� tree intervals

� We w ant to reduce dimension� on each s u b i n terval	 range search y coords

only amound nodes in that x interval

� Solution� each internal node has a y
coord search tree on points in its

subtree

� Size� O�n log n�	 since each p o in t in O�log n�

� Query time� �nd O�log n� nodes	 range search

�plus output size�

� more generally	 O�logd n�

� fractional cascading improves to O�log n�

Plane Sweep Algorithms

Another key idea�

� dimension is low	

i n ternal nodes

in each y
tree	 so O�log2 n�

� so worth expending lots of energy to reduce dimension

� we saw this idea in LP

� plane sweep is a general
purpose dimension reduction

�

� Run a plane�line across space

� Study only what happens on the frontier

� Need to keep track o f � e v ents� that occur as sweep line across

� simplest case� events occur when line hits a feature

��� Segment intersections

We s a w this one using persistent data structures�

� Maintain balanced search tree of segments ordered by current h e i g h t�

� Heap of upcoming �events� �line intersections�crossings�

� p u l l n e x t e v ent from heap� output� swap lines in balanced tree

� check s w apped lines against neighbors for new intersection events

o ccu rs� lemma� next event alw ays between neighbors� so is in heap

� note� next event is always in future �never have t o b a c ktrack��

� so sweep approach v alid

� and in fact� heap is monotone�

	

