
I am thinking of taking advantage of our course web page in the following way� 

�� announce problem set on tuesday as usual� but only on the web 

�� expect some intrepid souls to read the web version and ask questions 

�� hand out a revised version on paper in class thursday� 

Thoughts� 

Scribing sign�up sheet� 

� Dynamic Connectivity 

Discuss history� henzinger�king� 

��� Trees 

Let�s start with easy case� trees� 

Insertions only easy 	union 
nd� 

Deletions only 

� start with all vertices labelled 

� when delete edge� search smaller half� relabel 

� claim� vertex relabeled O	log n� tim es 

� proof� vertex�s component halves on each relabel� 

� total cost over full process 	down to empty�� O	n log n� 

� amortized O	log n� per operation� if 
nish with empty struct� 

��� Non Trees 

Deletions only non�tree� 

� as before� label vertex with component


� with each v ertex� store incident non�tree edges


� delete non�tree trivial


� if delete tree� must 
nd replacement edge


� traverse smaller 	relabeled� half 

� 
nd edge with original label on other endpoint


� note must connect to other half of broken tree


� if so� use to connect back u p


� 



Analysis� 

� on failed search� tree edges get promoted� 

� but note� can also promote failed non�tree edges �both endpoints in same 

piece� 

� so� tree or non�tree� at most log n unsuccessful searches� 

Problem� 

� successful searches not paid for� 

� must charge cost m


� but note� there was a �smaller half��


� some sampling approaches� but won�t discuss 

� Can we remember it somehow	 Yes� 

But 
rst� a digression� 

��� Euler Tours 

Fully dynamic on trees �deletions�insertions�� 

Direct approach� 

� just add�remove edges as inserted deleted 

� great for those opps 

� problem with connectivity queries� must search whole tree 

� idea from union�
nd� 

{ root tree� 

{ do �
nd� to identify component f o r v ertex 

{ unfortunately� cost equals depth of tree 

{ unlike union�
nd� cannot keep shallow 

� solution� �encode� tree so it is shallow 

{ one idea �Sleator�Tarjan�� compress paths in tree� 

{ simpler �Tarjan�Vishkin�� represent tree as a list� use balanced search 

tree 

ET structure� 

� introduce Euler tour sequence 

each edge stores its two e n d p o i n t occurrences � 

 



� necessary operations� split� join� �nd�root on a sequence 

� store in �n � ��node balanced search tree �eg splay� ��� tree� 

� store one active copy o f e a c h v ertex� point at from actual vertex 

� supports 	�nd
 by w alk up active vertex 

� supports split� join by operations on tree 

� time for ops� O�log n� 

� called ET�tree 

� note� sequence is not initially ordered� Tree imposes order� So can�t 

search� but who cares 

� note� unlike normal tree� path information is lost� Only connectivity 

information maintained� 

��� Thorup�s new method 

Ampli�es 	repeated halving
 concept� 

� recall idea� when search a tree� look only in smaller half 

� so tree edges get searched O�log n� tim es 

� 	failed searches are free
 because all nontree edges move to smaller tree�di�erent 

level


� thorup makes successful searches free too


� remembers smaller half� even on successful search


� O�log2 n� time per operation


Idea� 

� spanning forest F 

� L � log n levels 

� level i has trees of size n��i 

� Fi 

is F intersect edges at level i and higher �to L� 

� all edges �including tree edges� start at level �� move u p a l e v el each t i m e 

accessed 

� so total promotions of any e d g e i s O�log n� 

Data structure� 

� 



� ET�tree structures for Fi 

� edges stored at �active c o p y o f � v ertex in ET�tree at their level 

Invariants� 

� F0 

� F1 

� � � FL 

�note made up of edges from many l e v els� 

� Fi 

spans all edges at level i or higher 

� any tree in Fi 

has size at most n��i 

Operations� 

� query� check i n F0 

� insert� add to F0 

� delete nontree� remove from current level 

� delete tree� 

{ remove from all L forests Fj 

where present


{ �nd replacement edge at some level�


{ add to all Fj 

below its level �ET�tree ops�


{ O�log n� forests� so O�log2 n� time �modulo searching work�


Finding replacement edge� 

� as before� issue to �nd replacement edge for e 

� deleted from level i �and below� 

� replacement cannot b e at higher level �would violate spanning invariant 

for level i�


� so start search a t i�


� delete e� splits ET tree in �


� check smaller half �by size of tree� until �nd replacement e d g e


� time is size of tree plus number of failed tests


� how pay�


{ tree was n��i � took smaller half T so n��i+1 

{ move all its tree edges up a level 

{ subtlety� some of its edges might already be at higher level 

{ doesn	t matter� �nal tree still has size n��i+1 

� tree above w as subtree of broken tree 


 



� so only edge leaving T �s above�edges was deleted 

� so even if push T up� doesn�t connect to anything else� 

{	 failed tests� both endpoints in T 

{	 so move up to next level �maintains spanning invariant� 

{	 Note� we don�t inspect tree edges� so promotions unneccessary ex�

cept to maintain spanning invariant� 

Runtime� 

� an up�level move costs O�log n� 

� All examinations paid for by promotions of edges 

� edge promoted at most log n times 

� cost per edge� O�log2 n� 

Can�t a�ord to traverse half tree� because many of its edges were already pro�
moted� 

�	 Problem� can�t tell smaller half 

� Solution� augment ET�tree to maintain size of all subtrees 

� maintain on rotations�rebalances 

Problem� even if know smaller� can�t traverse to 	nd level�i edges 

� Instead� traverse ET tree to visit only level i edges �tree and non�tree�� 

augment E T t r e e � in each node� store if any level�i edge below � 

� deduce� time O�log n� t o r e a c h per edge �skips empty subtrees� 

� already paid for 

Minor tweak to log n�way trees gives log log n speedup� 

� Maximum Flow 

��� De�nitions 

Tarjan� Data Structures and Network Algorithms


Ford and Fulkerson� Flows in Networks� 
�� �paper 
����


Ahuja� Magnanti� Orlin Network Flows� Problem� do min�cost�


Problem� in a graph� 	nd a �ow that is feasible and has maximum value�


Directed graph� edge capacities u�e� or u�v� w �� Why not c� reserved for costs�


later�


source s� sink t


Goal� assign a �ow value to each edge�


� 



� skew symmetry� f �v � w � � �f �w � v � 

P 

� conservation� f �v � w � � � unless v � s� t 

w 

� capacity� f �e� � u�e� ��ow i s feasible�legal� 

Alternative f o r m ulation� no skew symmetry 

P 

� conservation� f �v � w � � � unless v � s� t 

w 

� capacity� � � f �e� � u�e� ��ow is feasible�legal� 

Equivalence� second formulation has �gross �ow� g� 	rst has �net �ow� f �v � w � � 

g�v � w � � g�w � v �
 To go other way� sign of f de	nes �direction� of �ow i n g
 

We�ll focus on net �ow model for now
 P 

Flow value jf j � 

w 

f �s� w� �in net model�



Water hose intuition
 Also routing commodities� messages under bandwidth


constraints� etc
 Often �per unit time� �ows�capacities



Maximum �ow problem� 	nd �ow of maximum value



Path decomposition �another picture��


� claim� any st �ow can be decomposed into paths with quantities 

� proof� induction on number of edges with nonzero �ow 

� if s has out �ow� 	nd an st path �why c a n w e� conservation� and kill 

� if some vertex has out�ow� 	nd a cycle and kill 

� corollary� �ow i n to t equals �ow out of s �global conservation� 

Cuts� 

� partition of vertices into � groups 

� stcut if one has s� other t 

� represent a s � S� S � or just S 

� f �S � � net �ow leaving S 

� lemma� for any st cut� f �S � � jf j �all cuts carry same �ow� 

XX 

jf j � f �v � w � ��ow conservation� 

v2S w X X 

� f �e� � f �e� �skew� 

e2S�S e2S�S X 

� f �e� 

e2S�S 

� 



Flows versus cuts� 

� Deduce� jf j � u�S� � 

P 

c�e��e2S�S 

� in other words� max��ow � minimum s�t cut value� 

� soon� we�ll see equal 

� 	rst� need more machinery� 

Residual network� 

� Given� �ow f in graph G 

� de	ne Gf 

to have capacities u0 � ue 

� fee 

� if f feasible� all capacities positive 

� Since fe 

can be negative� some residual capacities grow 

� Suppose f 

0 is a feasible �ow i n Gf 

� then f 
 f 

0 is feasible �ow i n G of value f 
 f 

0 

� �ow


� feasible


� Suppose f 

0 is feasible �ow i n G


� then f 

0 � f is feasible �ow i n Gf 

�value �f����f�� 

� corollary� max��ows in G correspond to max��ows in Gf 

� Many algorithms for max��ow� 

� 	nd some �ow f 

� recurse on Gf 

How c a n w e know a � o w is maximum� 

� check if residual network has  max��ow 

� augmenting path� s�t path of positive capacity i n Gf 

� if one exists� not max��ow 

Max��ow Min�cut 

� Equivalent statements� 

� f is max��ow 

� no augmenting path in Gf 

� jf j � u�S� for some S 

� 



Proof� 

� if augmenting path� can increase f 

�	 let S b e v ertices reachable from S in Gf 

� All outgoing edges have f �e� � 

u�e� 

� since jf j � u�S�� equality implies maximum 

� 


