
I am thinking of taking advantage of our course web page in the following way�

�� announce problem set on tuesday as usual� but only on the web

�� expect some intrepid souls to read the web version and ask questions

�� hand out a revised version on paper in class thursday�

Thoughts�

Scribing sign�up sheet�

� Dynamic Connectivity

Discuss history� henzinger�king�

��� Trees

Let�s start with easy case� trees�

Insertions only easy 	union
nd�

Deletions only

� start with all vertices labelled

� when delete edge� search smaller half� relabel

� claim� vertex relabeled O	log n� tim es

� proof� vertex�s component halves on each relabel�

� total cost over full process 	down to empty�� O	n log n�

� amortized O	log n� per operation� if
nish with empty struct�

��� Non Trees

Deletions only non�tree�

� as before� label vertex with component

� with each v ertex� store incident non�tree edges

� delete non�tree trivial

� if delete tree� must
nd replacement edge

� traverse smaller 	relabeled� half

�
nd edge with original label on other endpoint

� note must connect to other half of broken tree

� if so� use to connect back u p

�

Analysis�

� on failed search� tree edges get promoted�

� but note� can also promote failed non�tree edges �both endpoints in same

piece�

� so� tree or non�tree� at most log n unsuccessful searches�

Problem�

� successful searches not paid for�

� must charge cost m

� but note� there was a �smaller half��

� some sampling approaches� but won�t discuss

� Can we remember it somehow	 Yes�

But
rst� a digression�

��� Euler Tours

Fully dynamic on trees �deletions�insertions��

Direct approach�

� just add�remove edges as inserted deleted

� great for those opps

� problem with connectivity queries� must search whole tree

� idea from union�
nd�

{ root tree�

{ do �
nd� to identify component f o r v ertex

{ unfortunately� cost equals depth of tree

{ unlike union�
nd� cannot keep shallow

� solution� �encode� tree so it is shallow

{ one idea �Sleator�Tarjan�� compress paths in tree�

{ simpler �Tarjan�Vishkin�� represent tree as a list� use balanced search

tree

ET structure�

� introduce Euler tour sequence

each edge stores its two e n d p o i n t occurrences �

� necessary operations� split� join� �nd�root on a sequence

� store in �n � ��node balanced search tree �eg splay� ��� tree�

� store one active copy o f e a c h v ertex� point at from actual vertex

� supports 	�nd
 by w alk up active vertex

� supports split� join by operations on tree

� time for ops� O�log n�

� called ET�tree

� note� sequence is not initially ordered� Tree imposes order� So can�t

search� but who cares

� note� unlike normal tree� path information is lost� Only connectivity

information maintained�

��� Thorup�s new method

Ampli�es 	repeated halving
 concept�

� recall idea� when search a tree� look only in smaller half

� so tree edges get searched O�log n� tim es

� 	failed searches are free
 because all nontree edges move to smaller tree�di�erent

level

� thorup makes successful searches free too

� remembers smaller half� even on successful search

� O�log2 n� time per operation

Idea�

� spanning forest F

� L � log n levels

� level i has trees of size n��i

� Fi

is F intersect edges at level i and higher �to L�

� all edges �including tree edges� start at level �� move u p a l e v el each t i m e

accessed

� so total promotions of any e d g e i s O�log n�

Data structure�

�

� ET�tree structures for Fi

� edges stored at �active c o p y o f � v ertex in ET�tree at their level

Invariants�

� F0

� F1

� � � FL

�note made up of edges from many l e v els�

� Fi

spans all edges at level i or higher

� any tree in Fi

has size at most n��i

Operations�

� query� check i n F0

� insert� add to F0

� delete nontree� remove from current level

� delete tree�

{ remove from all L forests Fj

where present

{ �nd replacement edge at some level�

{ add to all Fj

below its level �ET�tree ops�

{ O�log n� forests� so O�log2 n� time �modulo searching work�

Finding replacement edge�

� as before� issue to �nd replacement edge for e

� deleted from level i �and below�

� replacement cannot b e at higher level �would violate spanning invariant

for level i�

� so start search a t i�

� delete e� splits ET tree in �

� check smaller half �by size of tree� until �nd replacement e d g e

� time is size of tree plus number of failed tests

� how pay�

{ tree was n��i � took smaller half T so n��i+1

{ move all its tree edges up a level

{ subtlety� some of its edges might already be at higher level

{ doesn	t matter� �nal tree still has size n��i+1

� tree above w as subtree of broken tree

� so only edge leaving T �s above�edges was deleted

� so even if push T up� doesn�t connect to anything else�

{	 failed tests� both endpoints in T

{	 so move up to next level �maintains spanning invariant�

{	 Note� we don�t inspect tree edges� so promotions unneccessary ex�

cept to maintain spanning invariant�

Runtime�

� an up�level move costs O�log n�

� All examinations paid for by promotions of edges

� edge promoted at most log n times

� cost per edge� O�log2 n�

Can�t a�ord to traverse half tree� because many of its edges were already pro�
moted�

�	 Problem� can�t tell smaller half

� Solution� augment ET�tree to maintain size of all subtrees

� maintain on rotations�rebalances

Problem� even if know smaller� can�t traverse to 	nd level�i edges

� Instead� traverse ET tree to visit only level i edges �tree and non�tree��

augment E T t r e e � in each node� store if any level�i edge below �

� deduce� time O�log n� t o r e a c h per edge �skips empty subtrees�

� already paid for

Minor tweak to log n�way trees gives log log n speedup�

� Maximum Flow

��� De�nitions

Tarjan� Data Structures and Network Algorithms

Ford and Fulkerson� Flows in Networks�
�� �paper
����

Ahuja� Magnanti� Orlin Network Flows� Problem� do min�cost�

Problem� in a graph� 	nd a �ow that is feasible and has maximum value�

Directed graph� edge capacities u�e� or u�v� w �� Why not c� reserved for costs�

later�

source s� sink t

Goal� assign a �ow value to each edge�

�

� skew symmetry� f �v � w � � �f �w � v �

P

� conservation� f �v � w � � � unless v � s� t

w

� capacity� f �e� � u�e� ��ow i s feasible�legal�

Alternative f o r m ulation� no skew symmetry

P

� conservation� f �v � w � � � unless v � s� t

w

� capacity� � � f �e� � u�e� ��ow is feasible�legal�

Equivalence� second formulation has �gross �ow� g� 	rst has �net �ow� f �v � w � �

g�v � w � � g�w � v �
 To go other way� sign of f de	nes �direction� of �ow i n g

We�ll focus on net �ow model for now
 P

Flow value jf j �

w

f �s� w� �in net model�

Water hose intuition
 Also routing commodities� messages under bandwidth

constraints� etc
 Often �per unit time� �ows�capacities

Maximum �ow problem� 	nd �ow of maximum value

Path decomposition �another picture��

� claim� any st �ow can be decomposed into paths with quantities

� proof� induction on number of edges with nonzero �ow

� if s has out �ow� 	nd an st path �why c a n w e� conservation� and kill

� if some vertex has out�ow� 	nd a cycle and kill

� corollary� �ow i n to t equals �ow out of s �global conservation�

Cuts�

� partition of vertices into � groups

� stcut if one has s� other t

� represent a s � S� S � or just S

� f �S � � net �ow leaving S

� lemma� for any st cut� f �S � � jf j �all cuts carry same �ow�

XX

jf j � f �v � w � ��ow conservation�

v2S w X X

� f �e� � f �e� �skew�

e2S�S e2S�S X

� f �e�

e2S�S

�

Flows versus cuts�

� Deduce� jf j � u�S� �

P

c�e��e2S�S

� in other words� max��ow � minimum s�t cut value�

� soon� we�ll see equal

� 	rst� need more machinery�

Residual network�

� Given� �ow f in graph G

� de	ne Gf

to have capacities u0 � ue

� fee

� if f feasible� all capacities positive

� Since fe

can be negative� some residual capacities grow

� Suppose f

0 is a feasible �ow i n Gf

� then f
 f

0 is feasible �ow i n G of value f
 f

0

� �ow

� feasible

� Suppose f

0 is feasible �ow i n G

� then f

0 � f is feasible �ow i n Gf

�value �f����f��

� corollary� max��ows in G correspond to max��ows in Gf

� Many algorithms for max��ow�

� 	nd some �ow f

� recurse on Gf

How c a n w e know a � o w is maximum�

� check if residual network has max��ow

� augmenting path� s�t path of positive capacity i n Gf

� if one exists� not max��ow

Max��ow Min�cut

� Equivalent statements�

� f is max��ow

� no augmenting path in Gf

� jf j � u�S� for some S

�

Proof�

� if augmenting path� can increase f

�	 let S b e v ertices reachable from S in Gf

� All outgoing edges have f �e� �

u�e�

� since jf j � u�S�� equality implies maximum

�

