I am thinking of taking advantage of our course web page in the following way:

1. announce problem set on tuesday as usual, but only on the web
2. expect some intrepid souls to read the web version and ask questions
3. hand out a revised version on paper in class thursday.

Thoughts?
Scribing sign-up sheet.

1 Dynamic Connectivity

Discuss history, henzinger-king.

1.1 Trees

Let's start with easy case: trees.
Insertions only easy (union find)
Deletions only

- start with all vertices labelled
- when delete edge, search smaller half, relabel
- claim: vertex relabeled $O(\log n)$ times
- proof: vertex's component halves on each relabel.
- total cost over full process (down to empty): $O(n \log n)$
- amortized $O(\log n)$ per operation, if finish with empty struct.

1.2 Non Trees

Deletions only non-tree.

- as before, label vertex with component
- with each vertex, store incident non-tree edges
- delete non-tree trivial
- if delete tree, must find replacement edge
- traverse smaller (relabeled) half
- find edge with original label on other endpoint
- note must connect to other half of broken tree
- if so, use to connect back up

Analysis.

- on failed search, tree edges get promoted.
- but note: can also promote failed non-tree edges (both endpoints in same piece)
- so, tree or non-tree, at most $\log n$ unsuccessful searches.

Problem:

- successful searches not paid for.
- must charge cost m
- but note: there was a "smaller half."
- some sampling approaches, but won't discuss
- Can we remember it somehow? Yes.

But first, a digression.

1.3 Euler Tours

Fully dynamic on trees (deletions+insertions).
Direct approach:

- just add/remove edges as inserted deleted
- great for those opps
- problem with connectivity queries: must search whole tree
- idea from union/find:
- root tree,
- do "find" to identify component for vertex
- unfortunately, cost equals depth of tree
- unlike union-find, cannot keep shallow
- solution:"encode" tree so it is shallow
- one idea (Sleator-Tarjan): compress paths in tree.
- simpler (Tarjan-Vishkin): represent tree as a list, use balanced search tree

ET structure:

- introduce Euler tour sequence
- each edge stores its two endpoint occurrences
- necessary operations: split, join, find-root on a sequence
- store in $2 n$ - 1 -node balanced search tree (eg splay, 2-3 tree)
- store one active copy of each vertex, point at from actual vertex
- supports "find" by walk up active vertex
- supports split, join by operations on tree
- time for ops: $O(\log n)$
- called ET-tree
- note: sequence is not initially ordered. Tree imposes order. So can't search, but who cares?
- note: unlike normal tree, path information is lost. Only connectivity information maintained.

1.4 Thorup's new method

Amplifies "repeated halving" concept.

- recall idea: when search a tree. look only in smaller half
- so tree edges get searched $O(\log n)$ times
- "failed searches are free" because all nontree edges move to smaller tree/different level
- thorup makes successful searches free too
- remembers smaller half, even on successful search
- $O\left(\log ^{2} n\right)$ time per operation

Idea:

- spanning forest F
- $L=\log n$ levels
- level i has trees of size $n / 2^{i}$
- F_{i} is F intersect edges at level i and higher (to L)
- all edges (including tree edges) start at level 0 , move up a level each time accessed
- so total promotions of any edge is $O(\log n)$

Data structure:

- ET-tree structures for F_{i}
- edges stored at (active copy of) vertex in ET-tree at their level

Invariants:

- $F_{0} \supseteq F_{1} \cdots F_{L}$ (note made up of edges from many levels)
- F_{i} spans all edges at level i or higher
- any tree in F_{i} has size at most $n / 2^{i}$

Operations:

- query: check in F_{0}
- insert: add to F_{0}
- delete nontree: remove from current level
- delete tree:
- remove from all L forests F_{j} where present
- find replacement edge at some level,
- add to all F_{j} below its level (ET-tree ops)
- $O(\log n)$ forests, so $O\left(\log ^{2} n\right)$ time (modulo searching work)

Finding replacement edge:

- as before, issue to find replacement edge for e
- deleted from level i (and below)
- replacement cannot be at higher level (would violate spanning invariant for level i)
- so start search at i.
- delete e, splits ET tree in 2
- check smaller half (by size of tree) until find replacement edge
- time is size of tree plus number of failed tests
- how pay?
- tree was $n / 2^{i}$. took smaller half T so $n / 2^{i+1}$
- move all its tree edges up a level
- subtlety: some of its edges might already be at higher level
- doesn't matter: final tree still has size $n / 2^{i+1}$
* tree above was subtree of broken tree
* so only edge leaving T 's above-edges was deleted
* so even if push T up, doesn't connect to anything else.
- failed tests: both endpoints in T
- so move up to next level (maintains spanning invariant)
- Note: we don't inspect tree edges, so promotions unneccessary except to maintain spanning invariant.

Runtime:

- an up-level move costs $O(\log n)$
- All examinations paid for by promotions of edges
- edge promoted at most $\log n$ times
- cost per edge: $O\left(\log ^{2} n\right)$

Can't afford to traverse half tree, because many of its edges were already promoted.

- Problem: can't tell smaller half
- Solution: augment ET-tree to maintain size of all subtrees
- maintain on rotations/rebalances

Problem: even if know smaller, can't traverse to find level- i edges

- Instead, traverse ET tree to visit only level i edges (tree and non-tree).
- augment ET tree: in each node, store if any level- i edge below
- deduce: time $O(\log n)$ to reach per edge (skips empty subtrees)
- already paid for

Minor tweak to $\log n$-way trees gives $\log \log n$ speedup.

2 Maximum Flow

2.1 Definitions

Tarjan: Data Structures and Network Algorithms
Ford and Fulkerson, Flows in Networks, 1962 (paper 1956)
Ahuja, Magnanti, Orlin Network Flows. Problem: do min-cost.
Problem: in a graph, find a flow that is feasible and has maximum value.
Directed graph, edge capacities $u(e)$ or $u(v, w)$. Why not c ? reserved for costs, later.
source $s, \operatorname{sink} t$
Goal: assign a flow value to each edge:

- skew symmetry: $f(v, w)=-f(w, v)$
- conservation: $\sum_{w} f(v, w)=0$ unless $v=s, t$
- capacity: $f(e) \leq u(e)$ (flow is feasible/legal)

Alternative formulation: no skew symmetry

- conservation: $\sum_{w} f(v, w)=0$ unless $v=s, t$
- capacity: $0 \leq f(e) \leq u(e)$ (flow is feasible/legal)

Equivalence: second formulation has "gross flow" g, first has "net flow" $f(v, w)=$ $g(v, w)-g(w, v)$. To go other way, sign of f defines "direction" of flow in g. We'll focus on net flow model for now.
Flow value $|f|=\sum_{w} f(s, w)$ (in net model).
Water hose intuition. Also routing commodities, messages under bandwidth constraints, etc. Often "per unit time" flows/capacities. Maximum flow problem: find flow of maximum value. Path decomposition (another picture):

- claim: any s - t flow can be decomposed into paths with quantities
- proof: induction on number of edges with nonzero flow
- if s has out flow, find an s - t path (why can we? conservation) and kill
- if some vertex has outflow, find a cycle and kill
- corollary: flow into t equals flow out of s (global conservation)

Cuts:

- partition of vertices into 2 groups
- s - t-cut if one has s, other t
- represent as (S, \bar{S}) or just S
- $f(S)=$ net flow leaving S
- lemma: for any s-t cut, $f(S)=|f|$ (all cuts carry same flow)

$$
\begin{aligned}
|f| & =\sum_{v \in S} \sum_{w} f(v, w) \\
& =\sum_{e \in S \times S} f(e)+\sum_{e \in S \times \bar{S}} f(e) \quad \text { (skew) } \\
& =\sum_{e \in S \times \bar{S}} f(e)
\end{aligned}
$$

Flows versus cuts:

- Deduce: $|f| \leq u(S)=\sum_{e \in S \times \bar{S}} c(e)$.
- in other words, max-flow \leq minimum $s=t$ cut value.
- soon, we'll see equal
- first, need more machinery.

Residual network.

- Given: flow f in graph G
- define G_{f} to have capacities $u_{e}^{\prime}=u_{e}-f_{e}$
- if f feasible, all capacities positive
- Since f_{e} can be negative, some residual capacities grow
- Suppose f^{\prime} is a feasible flow in G_{f}
- then $f+f^{\prime}$ is feasible flow in G of value $f+f^{\prime}$
- flow
- feasible
- Suppose f^{\prime} is feasible flow in G
- then $f^{\prime}-f$ is feasible flow in G_{f} (value - $\mathrm{f}^{\prime}-$ - $\mathrm{f}-$)
- corollary: max-flows in G correspond to max-flows in G_{f}
- Many algorithms for max-flow:
- find some flow f
- recurse on G_{f}

How can we know a flow is maximum?

- check if residual network has 0 max-flow
- augmenting path: s-t path of positive capacity in G_{f}
- if one exists, not max-flow

Max-flow Min-cut

- Equivalent statements:
- f is max-flow
- no augmenting path in G_{f}
$-|f|=u(S)$ for some S

Proof:

- if augmenting path, can increase f
- let S be vertices reachable from S in G_{f}. All outgoing edges have $f(e)=$ $u(e)$
- since $|f| \leq u(S)$, equality implies maximum

