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Abstract— In bubble dynamics, an underwater bubble may
evolve from being singly-connected to being toroidal. Further-
more, two or more individual bubbles may merge to form a sin-
gle large bubble. These dynamics involve significant topological
changes such as merging and breaking, which may not be handled
well by front-tracking boundary element methods. In the level
set method, topological changes are handled naturally through a
higher-dimensional level set function. This makes it an attractive
method for bubble simulation.

In this paper, we present a method that combines the level set
method and the boundary element method for the simulation of
bubble dynamics. We propose a formulation for the update of a
potential function in the level set context. This potential function is
non-physical off the bubble surface but consistent with the physics
on the bubble surface. We consider only axisymmetric cavitation
bubbles in this paper. Included in the paper are some preliminary
results and findings.

I. INTRODUCTION

THE dynamics of underwater bubbles has been a subject of
interest for some time. Interesting observations include,

when a bubble is initiated close to a rigid boundary, the forma-
tion of a jet directed towards the rigid boundary [1], and when a
bubble is initiated close to the free surface, the formation of a jet
directed away from the free surface [2][3]. There are more com-
plex phenomena, such as a bubble becoming doubly-connected
[4] and multiple bubbles combining. An established method for
such simulations is based on an Eulerian-Lagrangian formula-
tion which combines the front-tracking method and the bound-
ary element method ([1][2][3], for example). The implemen-
tation of this method becomes more complicated as bubbles
merge or become doubly-connected, in particular for simula-
tions in 3D [5].

The level set method [6][7], which embeds the physical in-
terface in a higher-dimensional function, provides a natural way
of handling complex topological changes. The level set method
has been used in the simulation of bubbles ([8][9], for example),
together with the incompressible Navier-Stokes equation.

We know of only two published works which combine the
level set method and boundary integral formulation. Sethian
and Strain [10] used this method to model crystal growth. Li
and Cai [11] used the method to simulate dynamic powder con-
solidation of metals. In [11], the unknown on the boundary
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is computed based on given boundary conditions. In [10], the
unknown which the boundary integral equation is used to com-
pute, is off the boundary. A separate function defining a physi-
cal quantity on and off the boundary also serves as input to the
boundary integral equation.

In this paper, we develop a level set-boundary element for-
mulation for the simulation of an axisymmetric cavitation bub-
ble based on potential flow. This formulation differs from [11]
in that a separate potential function is evolved together with the
level set function. The potential function, defined in the level
set context, is evolved with the condition that the potential on
the zero level set is consistent with Bernoulli’s equation. This
then serves as the boundary condition to the boundary integral
equation from which the unknown, the normal velocity of the
bubble surface, is computed. Just as with the level set func-
tion, this potential function has no physical meaning off the
zero level set. This, together with the fact that the unknown
is on the boundary itself, differentiates our formulation from
that in [10].

In Section II, we present the mathematical formulation and
proposed update equation for the potential function. We give
an outline of the algorithm in Section III and details of the nu-
merical implementation in Section IV. Some preliminary results
are discussed in Section V before we conclude in Section VI.

Since the level set method and front-tracking method consid-
ered here both utilise the boundary element method, we shall
henceforth drop the “boundary element” from our references to
the two methods.

II. MATHEMATICAL FORMULATION

A. Velocity Potential and Boundary Integral Formulation

A schematic diagram of the problem is given in Fig. 1. As-
suming incompressibility and irrotationality, the liquid is then
governed by Laplace’s equation���������

with the liquid velocity given by	
 �����
where

�
is the velocity potential. The above may then be

formulated as a boundary integral problem governed by

�� ��� � � ��������� � ����������! "# �%$&� #('*),+� ���-� � �(������ "# �-$&� #(),+ (1)
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Fig. 1. Schematic Diagram of Problem.

where � is a load point, � is a field point, + denotes the bubble
surface and � is the direction normal to + away from the liquid
(Fig. 1). We refer the reader to [13] and [14] for details on
the axisymmetric boundary integral formulation for potential
problems.

The dynamic boundary condition on the bubble surface is
governed by the unsteady Bernoulli’s equation [15]� �� � � " $ "� # ��� # � $�� � ��� $�� � (2)

where
�

denotes time, � is the buoyancy parameter, � is the
depth (Fig. 1) and � is the inception depth of the bubble. All
the values in (2) has been non-dimensionalised.

B. Level Set Method

The level set method represents a physical interface implic-
itly as the zero level set in a higher-dimensional level set func-
tion [6][7]. The update equation for the level set function is
given by � �� � �
	 # � � # ��� (3)

where
�

is the level set function and 	 is the normal velocity
function. In this paper, the zero level set represents the bubble
surface.

C. Bernoulli’s Equation

The Eulerian form of the unsteady Bernoulli’s equation is
given by (2). The Lagrangian form is given by ([3], for exam-
ple)

) �) � � � �� � � ����� ���� " � "� # ��� # � $�� � ��� $�� �� (4)

The above update equation is based on the surface moving
with its material velocity. Alternatively, if the update equation

is based on the surface moving with its normal velocity, the
equation would then be

)�� �) � � � �� � ��� 
 � 	� � � ���� " $ "� # ��� # � $�� � ��� $�� � ��
 �� (5)

where ������ represents the time derivative following the surface
moving with its normal velocity, 
 � � ����� 	� and

	� is the unit
normal to the surface. We highlight that

�
, � and 
 � are values

pertaining to the bubble surface.

D. Proposed Potential Function and Update Equation

Let �� be the potential function defined in the level set con-
text. As with the level set function, we set �� to be a higher-
dimensional function with the condition

�� ��� � � ��� ��� � � (6)

where � � is any point that satisfies
� ��� � � � �

and
�

is
the velocity potential on the bubble surface consistent with
Bernoulli’s equation.

Since the level set function is propagated using the normal
velocity, we base our proposed formulation on (5). The aim
is to construct an update equation which maintains (6). The
proposed potential update equation is given by

� ��� � �
	  � ���� � �# � � # ' � " $ "��� � $�� � ����$�� ���
	 � (7)

where 	�� � and � are extension values such that

	! 
 � � �  # ��� # �"�# $� as
�  �  (8)

As stated in [12] for 	 , there is much flexibility in the choice
of 	�� � and � . Here, we construct extension values of the form

� 	 � � � ���� � � � � ���� � � � � ���
as given in [12]. A proof of consistency of the proposed

equation is given as follows. Because of (8), (7) may be written
as

� ��� � �
	&% � ���� 	� ' � " $ "� # ��� # � $�� � ��� $�� � ��
 �� (9)

on the bubble surface since (*)+ (*) + � 	� at
� � �

. If �� in
(9) is replaced by the true velocity potential

�
, (9) will then be

identical to (5), which concludes the proof.



III. OUTLINE OF NUMERICAL ALGORITHM

An outline of the proposed level set algorithm is given as fol-
lows. At time-step

�
, assume

���
and �� � are known. Perform:

1) Interpolate
���

and �� � to obtain the position of the bub-
ble surface and

� �
, the potential on the bubble surface

respectively. Please refer to Section IV.B. for details.
2) Based on the position of the bubble surface and

� �
, com-

pute the normal velocity 
 �� and the tangential velocity
 �� of the bubble surface using (1) and a cubic spline fit
respectively. Please refer to Section IV.C. for details.

3) Compute �� ��� � �� ��� � 
 �� � � ���(
 ��	� � , the magnitude of
material velocity of the bubble surface.

4) Extend 
 �� , �� ��� � �� and � � to all grid points to obtain 	 � ,� � and � � respectively. Please refer to Section IV.D. for
details.

5) Compute
�
����

and �� ���� using (3) and (7) respectively.
Please refer to Section IV.E. for details.

6) Set
� ���� � � � ��� � .

For the initial conditions, we specify a spherical bubble of
radius ��� centered at � � � � � with a constant potential

� � . From
these, we generate

� � and �� � , both being signed distance func-
tions, to begin the computation.

IV. DETAILS OF NUMERICAL IMPLEMENTATION

The numerical implementation details are given below. For
clarity, the superscript

�
denoting the time-step has been omit-

ted.

A. Grid Discretisation

There are essentially two grids, a moving grid for the bound-
ary element method and a fixed grid for the level set method. A
schematic diagram of the two grids at a particular time-step is
given in Fig. 2. The boundary element grid is represented by the
solid line with dots and changes at every time-step, following
the position of the bubble surface. The discretisation procedure
for the boundary element method is given in Section IV.C. The
fixed level set grid is represented by the dotted lines. The com-
putational domain is

������� "  � and $ "  ��� � � "  � with
grid size � � � � � � � .
B. Establishing the Position of and Potential on the Bubble Sur-
face

In order to establish the position of the bubble surface, we
find the points where

� � �
intersects the grid. We follow the

method given in [10] except that we make use of cubic interpo-
lation instead of linear interpolation. This is done by approxi-
mating

�
along the grid line by a third-order Newton’s divided

difference equation and computing the position of the root us-
ing Newton’s method. We refer to these points as intersection
points. Let ��� � � denote the number of intersection points, and� � � � and � � � � denote the position of the set of intersection points
found.

Having obtained the position of the intersection points, the
potential at these points is computed using a third-order New-
ton’s divided difference approximation of �� along the same grid
line. Let

� � � � denote these potential values.
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Fig. 2. Schematic Diagram of Boundary Element Grid and Level Set Grid.

C. Computation of the Normal Velocity and Tangential Velocity

The computation of normal velocity involves the discretisa-
tion of (1). Here, we follow the method given in [16] except
for the representation of the bubble surface and the computa-
tion of the tangential velocity. In [16], the bubble surface is
represented using linear elements. In this paper, we use a cubic
spline representation of the bubble surface. The procedure for
computing the normal velocity is given as follows.

1) From
� � � � and � � � � , compute the segment length between

each pair of intersection points based on the Euclidean
distance. Let � be the arc length parameter along the bub-
ble surface. Compute the value of � for each intersection
point by summing the individual segment lengths.

2) Use cubic splines [17] to interpolate
� � � � , � � � � and

� � � � .
Compute the position and potential at � � ��� � equidistant
points along � . We refer to these equidistant points as
knots and let the computed position and potential be de-
noted by

� � ��� � and � � ��� � , and
� � ��� � respectively.

3) Discretise (1) based on
� � ��� � ��� � ��� � and

� � ��� � using,
except for the representation of the bubble surface, the
method given in [16]. Here, we make use of the cubic
splines obtained previously with

� � � � and � � � � to com-
pute

� ��� �! #" %$ and  #& %$ at each quadrature point. Compute

the normal velocity at the knots 
 � ��� �� .
4) Use a cubic spline to interpolate 
 � ��� �� . The normal ve-

locity 
 � � � � at any point on the bubble surface may then
be obtained.

5) From the cubic spline that interpolates
� � � � , the tangen-

tial velocity 
 � � � � at any point on the bubble surface may
be obtained.

D. Extension Values

We compute the extension values 	 , � and � on all grid
points by extending 
 � ,

# ��� #
and � respectively from the ap-

propriate points on the bubble surface. This is done using the
higher-order method given in [18]. In this paper, we use a
second-order scheme.



E. Update Equations

We discretise (3) using the entropy-satisfying upwind
scheme given in [6]. We use a third-order ENO scheme to ob-
tain the spatial derivatives and a third-order Runge-Kutta TVD
scheme for the time-stepping [19]. We make use of the same
discretisation scheme for (7).

V. PRELIMINARY RESULTS AND DISCUSSION

In the test case, we use � � �  � � , � � ��� � � ���
, � � � �  ��� ,� �!�  � , ��� �!�  � and

� � � $ �  ������� with the level set code.
We compare the results from the test case to the results obtained
from the established front-tracking method based on (4) using
identical parameters. We further compare the results from the
test case to the results obtained from the front-tracking method
based on (5) using the same parameters.

The spatial discretisation of the front-tracking method used
for comparison follows that of [16] while the time discretisation
follows that of [3]. For the spatial discretisation, we make use
of
� " points (

� �
segments) to define the bubble surface. For the

time discretisation, we use � ��� �  � � with the front-tracking
code based on (4) to compute the time-step size � � . We make
use of the same � � in our level set code and the front-tracking
code based on (5) to facilitate comparison.

A comparison of the results from the level set code (rep-
resented by solid lines) to the results from the front-tracking
code based on (4) (represented by dots) is given in Figs. 3
through 10. The comparison of position of the bubble surface
at
� � �  � � �  ��� � � "  � � � and "  ��� � is given in Figs. 3, 5, 7 and

9 respectively while the comparison of potential, normal veloc-
ity and tangential velocity along the bubble surface is given in
Figs. 4, 6, 8 and 10 respectively.

Figs. 11 through 18 compare the results from the level
set code (represented by solid lines) to the results from the
front-tracking code based on (5) (represented by triangles).
The comparison of position of the bubble surface at

� ��  � � �  ��� � � "  � � � and "  ��� � is given in Figs. 11, 13, 15 and 17
respectively while the comparison of potential, normal veloc-
ity and tangential velocity along the bubble surface is given in
Figs. 12, 14, 16 and 18 respectively.

Since the front-tracking method based on (4) is well estab-
lished, we base our discussion on the comparison made against
this method. It is observed in Fig. 4 that there is a difference in
the normal velocities at

� � �  � . Because of the higher-order
representation of surface used, the normal velocity computed
by the level set code is, in fact, more accurate than the normal
velocity computed by the front-tracking code. This can be ver-
ified against the analytic solution. It is also observed in Fig. 4
that the tangential velocity from the level set code is oscillatory.
However, we note that the magnitude of these oscillations are
of O � " e $ " � � .In Figs. 5 through 8, the results from the two codes corre-
spond well to each other. Although the computed position of
the bubble surface from the two codes correspond well to each
other at

� � "  ��� � (Fig. 9), some oscillations are observed in
the normal and tangential velocities computed using the level
set code (Fig. 10).

From the results above, we observe that our present algo-
rithm works well during the initial and intermediate stages of

bubble evolution. Some instabilities begin to appear as the sim-
ulation progresses to an advanced stage of evolution.
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Fig. 3. Comparison of Position of Bubble Surface at �
	��� � . Front-Tracking
Method Based on (4).
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Fig. 4. Comparison of Potential, Normal Velocity and Tangential Velocity at
�
	��� � . Front-Tracking Method Based on (4).

VI. CONCLUSION

In this paper, we have presented an algorithm that combines
the level set method and boundary element method for the sim-
ulation of axisymmetric cavitation bubbles based on potential
flow. This includes a potential function in the level set context
together with an update equation that maintains consistency of
potential on the bubble surface. The use of this method allows
topological changes to be handled naturally, thereby facilitating
the simulation of complex bubble dynamics. We have shown in
our results that the algorithm works well during the initial and
intermediate stages of evolution. Our future work will be fo-
cused on eliminating the instabilities observed, thus ensuring
simulation of the bubble into the advanced stages of evolution.
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Fig. 5. Comparison of Position of Bubble Surface at � 	 �� ����� . Front-
Tracking Method Based on (4).
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Fig. 6. Comparison of Position of Bubble Surface at � 	 �� ����� . Front-
Tracking Method Based on (4).
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Fig. 7. Comparison of Position of Bubble Surface at � 	��  � ��� . Front-
Tracking Method Based on (4).
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Fig. 8. Comparison of Potential, Normal Velocity and Tangential Velocity at
�
	��  � ��� . Front-Tracking Method Based on (4).
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Fig. 9. Comparison of Position of Bubble Surface at � 	��  � � � . Front-
Tracking Method Based on (4).
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Fig. 10. Comparison of Potential, Normal Velocity and Tangential Velocity at
�
	��  � � � . Front-Tracking Method Based on (4).
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Fig. 11. Comparison of Position of Bubble Surface at �
	��� � . Front-Tracking
Method Based on (5).
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Fig. 12. Comparison of Potential, Normal Velocity and Tangential Velocity at
�
	��� � . Front-Tracking Method Based on (5).
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Fig. 13. Comparison of Position of Bubble Surface at � 	 �� ����� . Front-
Tracking Method Based on (5).
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Fig. 14. Comparison of Position of Bubble Surface at � 	 �� ����� . Front-
Tracking Method Based on (5).
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Fig. 15. Comparison of Position of Bubble Surface at � 	 �  � ��� . Front-
Tracking Method Based on (5).
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Fig. 16. Comparison of Potential, Normal Velocity and Tangential Velocity at
�
	��  � ��� . Front-Tracking Method Based on (5).
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Fig. 17. Comparison of Position of Bubble Surface at � 	 �  � � � . Front-
Tracking Method Based on (5).
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Fig. 18. Comparison of Potential, Normal Velocity and Tangential Velocity at
�
	 �  � � � . Front-Tracking Method Based on (5).
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