
A Framework for Non-Intrusive Load Monitoring

and Diagnostics

by

James Paris

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2006

@ Massachusetts Institute of Technology 2006.

Author .

Departme f Electrical Engineering and

All rights reserved.

MASSACHU)SETTS INSi1f
OF TECHNOLOGY

AUG 1 4 2006

..... -LBRARIES I
Computer 5cience

mary 26, 2006

Certified b...........

Professor of Electrical Engineering and
Steven B. Leeb

Computer Science
Thesis Supervisor

Certified by.......
Robert W. Cox

Candidate

Supervisor

Accepted by...
Arthur C. Smith

Chairman, Department Committee on Graduate Students

BARKER

2

A Framework for Non-Intrusive Load Monitoring and

Diagnostics

by

James Paris

Submitted to the Department of Electrical Engineering and Computer Science
on January 26, 2006, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The widespread use of electrical and electromechanical systems places increasing de-
mands on monitoring and diagnostic techniques. The non-intrusive load monitor
(NILM) provides a low-cost, low-maintenance way to perform this monitoring and di-
agnostics from a centralized location. This work critically evaluates the current state
of the NILM hardware and software in order to develop new techniques and a new
hardware and software framework in which to better apply the NILM to real-world
systems. New diagnostic indicators are developed on the USCGC SENECA using
an improved hardware and software platform. A database-driven framework with the
flexibility to create and implement these and future diagnostic indicators is presented.

Thesis Supervisor: Steven B. Leeb
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Robert W. Cox
Title: Doctoral Candidate

3

4

Acknowledgments

I would like to thank Professor Leeb for his continued guidance and support, and

acknowledge and thank Steve Shaw, Rob Cox, Chris Laughman, John Rodriguez,

Tom DeNucci, Bill Greene, Jip Mosman, Duncan McKay, and Mariano Alvira for

their contributions and assistance. I also extend my appreciation to all those who

contributed to the many open-source software packages that made this work possible.

This research was generously supported by The Grainger Foundation, the ONR

Electric Ship Research and Development Consortium, and NEMOmetrics Corpora-

tion, with additional valuable support from Mr. Ron Koo and Dr. Emmanuel Lands-

man.

5

6

Contents

1 Introduction 19

1.1 The NILM . 19

1.1.1 NILM Theory . 21

1.1.2 Power Envelope Generation 22

1.1.3 Steady-State Analysis Approach 25

1.1.4 Transient Analysis Approach 25

1.1.5 NILM system example . 27

1.2 Contributions and Organization . 29

2 Diagnostic Indicators 31

2.1 Cycling Systems . 34

2.1.1 SENECA Data . 36

2.1.2 Simulation . 41

2.1.3 Analysis . 50

2.1.4 Indicator . 59

2.1.5 Conclusions . 61

2.2 Mechanical Coupling Failure . 62

2.2.1 SENECA Data . 62

2.2.2 Simulation and Analysis . 65

2.2.3 Indicator . 66

2.2.4 Conclusions . 67

7

3 Data Acquisition

3.1 PCI-1710 card

3.2 Custom USB Module

3.2.1 Hardware

3.2.2 Firmware

3.2.3 Driver Implementation

3.2.4 Driver Usage

4 Support Software

4.1 Preprocessor.

4.1.1 Consolidated Text Input

4.1.2 Build System Improvements . . .

4.1.3 Improved Command-Line Options

4.2 Data Logging

4.2.1 Overview

4.2.2 Data Acquisition and Storage . .

4.2.3 Snapshots

4.2.4 CD and DVD Burning

4.3 Graphical Demonstration

4.3.1 Implementation

4.3.2 Developed Systems

5 NILM Software Framework

5.1 D esign

5.1.1 M etadata

5.1.2 Records

5.2 Implementation

5.2.1 Database Storage

5.2.2 Stream Interface Library

5.2.3 Client Programs

5.3 Example Modules

69

69

71

71

73

75

79

81

81

82

82

83

83

84

85

86

87

88

90

94

97

. 97

. 99

. 101

. 102

. 103

. 103

. 104

. 105

8

5.3.1 In sert .

5.3.2 E xtract .

5.3.3 Dump and Remove .

5.3.4 F ilter .

5.4 Usage and Applications .

5.4.1 System Control and Graphical Interfaces

5.4.2 Compatibility with Existing Hardware and Software

5.4.3 Interfacing with Matlab/Octave

6 Conclusions

6.1 NILM Applications on the SENECA

6.2 NILM Framework Improvements .

6.3 Future Work .

A Code Listings

A.1 Cycling Systems .

A.1.1 time-between.pl .

A .1.2 sim .m .

A.1.3 pumpleak.m .

A.1.4 sim-between.m .

A.2 USBADC .

A.2.1 adc.asm .

A.2.2 ftdi-adc .

A.2.3 convert .

A.3 Support Software .

A.3.1 menu-system components

A.3.2 nilmgui .

A.4 NILM Software Framework .

A.4.1 Database .

A.4.2 Library and Object Interface, libstream

A.4.3 Client Programs.

9

106

106

108

108

110

110

110

112

113

113

114

115

117

117

117

118

119

120

121

121

132

166

168

168

180

217

217

219

239

A.4.4 Matlab/Octave Functions . 254

B Hardware Design 257

B.1 USB ADC Board Layout . 257

B.2 USB ADC Schematic . 258

10

List of Figures

1-1 Typical system layout for non-intrusive monitoring of several loads.

Data acquisition and processing occurs at a central location. 20

1-2 Non-intrusive monitoring of multiple loads at a distribution panel. The

installation consists of a single current transducer to measure current,

and two leads to measure voltage. 21

1-3 Block diagram of typical NILM data processing stages. Fault diagnos-

tics often uses results from many of the earlier stages. 22

1-4 Raw AC voltage and current measurements taken during a motor

startup transient. 24

1-5 Result of applying the preprocessor to the data in Figure 1-4. These

spectral envelopes provide a much clearer view of the electrical power

usage. 24

1-6 Plot of measured AP and AQ values for various loads, used in steady-

state analysis. From [13]. 25

1-7 Plot of the power envelopes generated by turning an AC fan on and

off, showing two characteristic transient events. 26

1-8 Startup transient of a single device, consisting of three smaller tran-

sients with variable spacing. From [11]. 27

1-9 Photograph of a single-board NILM computer system, left, monitoring

and identifying various satellite loads, right. 28

1-10 Graphical user interface for the satellite load monitoring system. The

power waveforms are shown in the top half of the window. Identified

transients are listed at the bottom as they occur. 28

11

2-1 System identification results for a ventilation fan. The numeric tags on

the bottom contain estimated parameter information. The thicker line

in the plot is the result of a simulation with the estimated parameters.

From [13]. 33

2-2 Variable speed drive exhibiting large, slow oscillations after approxi-

mately 100 seconds. From [10]. 34

2-3 Diagram of a typical pneumatic cycling system. Solid lines are air, and

dotted lines are electrical connections 35

2-4 Operation of a cycling air-supply system. When pressure reaches H,

the compressor turns off and the system discharges as loads are used.

When pressure falls to L, the compressor runs and the system charges

ag ain . 35

2-5 Photograph of the twin pumps used to recharge the vacuum reservoir

on the USCGC SENECA. The reservoir is in the rear. 36

2-6 Power usage of the SENECA vacuum pump during a single charging

cycle. The transient is clear and easy to match. 38

2-7 Power usage of the SENECA vacuum pump during multiple charge/dis-

charge cycles over the course of an hour. 38

2-8 Histogram showing the distribution of the time between pump runs

over a two-week period during which no leaks were known to exist.

From [7]. 39

2-9 Histogram showing the distribution of the time between pump runs

over a two-week period during which the system had a large leak in a

faulty check valve. From [7]. 40

2-10 Three histograms corresponding to three different manually-induced

leaks in the SENECA. The peak of the histogram shifts to the left as

the leak rate is increased... .. . 40

2-11 Cumulative distribution function (CDF) of the random variable T rep-

resenting the time between flushes in the cycling system simulation. . 45

12

2-12 Histogram of the pump cycling data generated by the simulator with

no leak. The parameters for this simulation are as shown in Table 2.2

where RIeak = 0 in. Hg / hr. 48

2-13 Histogram of the pump cycling data generated by the simulator with a

small leak. The parameters for this simulation are as shown in Table 2.2

where Rleak = 4.5 in. Hg / hr. 48

2-14 Histogram of the pump cycling data generated by the simulator with

a medium-sized leak. The parameters for this simulation are as shown

in Table 2.2 where RIeak = 7 in. Hg / hr. 49

2-15 Histogram of the pump cycling data generated by the simulator with a

large leak. The parameters for this simulation are as shown in Table 2.2

where RIeak = 25 in. Hg / hr. 49

2-16 Plot of the Erlang distribution for q = 4 and varying A. This distribu-

tion, from Equation 2.34, corresponds to the sum of multiple Poisson

arrival times, and models the baseline distribution of crew usage with

no leak. 51

2-17 Plot of the Erlang cumulative distribution function from Equation 2.36

for A = 30/hr and varying I. 53

2-18 Plot of the CDF for the SENECA vacuum pump in the presence of

both crew usage and leaks, for A = 10/hr and T = 5 min. The q

for the pump system is 4. When t is a multiple of r, the pump CDF

"jumps" to follow the next Erlang CDF. 56

2-19 Calculated pump PDF plotted against simulated data. The system

and leak parameters are the same as in Figure 2-12. 57

2-20 Calculated pump PDF plotted against simulated data. The system

and leak parameters are the same as in Figure 2-13. 57

2-21 Calculated pump PDF plotted against simulated data. The system

and leak parameters are the same as in Figure 2-14. 58

2-22 Calculated pump PDF plotted against simulated data. The system

and leak parameters are the same as in Figure 2-15. 58

13

2-23 Plot of the the two leak cases from Figure 2-10, with the peak values

indicated at T5 0 = 8 and T30 = 12. 60

2-24 Data recorded on the SENECA during working and evening hours,

when crew usage was high. The peak corresponding to the leak still

shows up in nearly the same place despite the additional usage, as

expected. The T50 line from Figure 2-23 is shown for comparison. . . . 61

2-25 Diagram of the SENECA auxiliary seawater (ASW) system including

the two primary pumps. From [6]. 62

2-26 Photograph of one ASW motor and pump. A flexible rubber coupling

connects the two in the middle. From [6]. 63

2-27 Power usage measured at the motor during the startup of one of the

ASW pumps. A characteristic high-frequency oscillation is visible in

region R near the start of the transient 63

2-28 Plots of the spectral content of the high-frequency oscillation in five

ASW pump starts. The magnitude increases around 44 Hz as the

coupling progressively fails. From [7]. 64

2-29 Photographs of the degrading ASW pump coupling during failure. The

letters correspond to the pump starts shown in the spectral plots in

Figure 2-28. From [7]. 65

2-30 Model of the ASW motor, coupling, and pump system, as presented

in [7] . 6 6

3-1 Photograph of the Advantech PCI-1710 data acquisition card, used to

record voltage and current data into a desktop PC. 70

3-2 Photograph of the custom USB data acquisition module developed for

use with the NILM. The hardware was manufactured and provided by

Professor Steven R. Shaw of the Montana State University. 72

3-3 Data format used by the USBADC firmware to transfer data from the

ADC to the PC...................................... 75

4-1 Screenshot of the main menu-system interface. 84

14

4-2 Sequence of screenshots demonstrating control of the run-prep. pi

data collection process through the interactive menus. The prompts

are designed to easily guide inexperienced users who may need to con-

trol systems installed in the field. 86

4-3 Sequence of screenshots demonstrating the automated burning of snap-

shot data to CD through the burn-cd script. 88

4-4 Main window of the nilmgui graphical demonstration program. . . . 89

4-5 Screenshot of the "Exemplars" dialog in the nilmgui software. Five

transients have been recorded, and guided training of a sixth is in

progress. 90

4-6 Photograph of a demonstration platform built around the nilmgui

software. Here, the connected power strip allows the system to monitor

a lamp, a fan, and a heat gun. 94

5-1 Conceptual layout of a stream in the NILM software framework. . . . 98

5-2 Example of stream slicing in the NILM framework. Streams 1, 2, and

3 are recorded data from the same source. A request for data between

a and b is assembled and returned as Stream A, while a request for a

stream between c and d cannot be satisfied due to missing data. . . . 99

5-3 Layout of metadata within a stream in the NILM software framework. 100

5-4 Examples of potential data record formats in a NILM stream. 101

5-5 Diagram of the software layering in the NILM framework 102

5-6 Example of retrieving, manipulating, and storing data in the NILM

database from within Matlab/Octave. 112

15

16

List of Tables

2.1 Parameters for the simulation model of the SENECA cycling system. 42

2.2 Simulation parameters used in Figures 2-12 through 2-15. 47

3.1 Format of the command sent to the USB ADC hardware to configure

and start conversion. 74

3.2 List of the command-line options supported by the ftdi-adc program. 79

4.1 List of the command-line options available to the prep program. . . . 83

4.2 List of the possible event identifiers in the comments inserted into

recorded data streams by run-prep.pl 85

5.1 List of the command-line options common to all C++ client modules. 105

5.2 List of specific command-line options for the insert module. 107

5.3 List of specific command-line options for the extract module. 107

5.4 List of command-line options for the filter. pl script. 109

17

18

Chapter 1

Introduction

Electric systems can be found everywhere. Systems ranging from satellites to home

appliances rely on actuators, controls, and power sources that are often electrical or

electromechanical. As such systems grow more complicated, the task of monitoring

and detecting problems becomes difficult. One key to managing this complexity is

the observation that physically different events can be associated with different power

usage patterns, and that by recording and analyzing these power signatures, inferences

can be made about the state of the system. The non-intrusive load monitoring (NILM)

system provides a straightforward and inexpensive means for this measurement and

analysis.

This work examines the current state of the NILM system as presented in [11, 13],

and extends the non-intrusive approach with respect to load-monitoring techniques,

load identification and scheduling, and system diagnostics. Real-world systems and

applications are a particular focus, as is the definition and implementation of a gen-

eralized software and hardware framework to facilitate practical usage.

1.1 The NILM

Fundamentally, the NILM disaggregates the operation of individual loads from mea-

surements of the combined power usage for multiple loads. The typical system layout,

depicted in Figure 1-1, allows for simultaneous measurements of all connected loads

19

Electrical '
Power Source Computer

- - - ---------------- ----
Data Acquisition

Load Load Load

Figure 1-1: Typical system layout for non-intrusive monitoring of several loads. Data
acquisition and processing occurs at a central location.

from one central point. This is non-intrusive in that no modifications or measure-

ments need to be made at the individual loads. For a single-phase system, the instal-

lation involves just one voltage measurement and one current transducer, as shown

in Figure 1-2. The collected aggregate power data can be used as-is to determine the

overall state of the system, including total real power consumption, reactive power

consumption, and harmonic production, but it is typically disaggregated to allow for

specific analysis of particular loads. The methods for disaggregation vary. For events

that are temporally disjoint, this may be as straightforward as separating the data

in time. Other situations may involve subtracting out constant or predictable pat-

terns, or grouping the data by harmonic content. The ability of NILM to distinguish

between different loads in the collected data is discussed in [8].
Once separated, the power signatures for loads may be analyzed individually.

Since virtually every aspect of a system's physical behavior involves the use of power

in some form, the collected electrical power data conveys useful information about

nearly all monitored systems. Measured characteristics of the power usage can be

used to apply models and make deductions about the state of the loads. One typical

use of the NILM system is for load identification and scheduling, where the uniqueness

20

Figure 1-2: Non-intrusive monitoring of multiple loads at a distribution panel. The
installation consists of a single current transducer to measure current, and two leads
to measure voltage.

of startup transients or steady-state usage can be used to determine what loads are on

and at what times they run. The disaggregated data is also very useful for diagnostics

that determine faults or failures; some types and methods of diagnostics are explained

and developed further in Chapter 2.

1.1.1 NILM Theory

There are several approaches to performing diagnostics and identification through

non-intrusive monitoring. A diagram of a typical NILM signal processing workflow

is shown in Figure 1-3. In general, data is first preprocessed to create power spectral

envelopes, as described in §1.1.2. Then, load-specific methods are used to analyze

systems. One scheme, used in the non-intrusive appliance load monitor (NALM)

in [3, 13] and described in §1.1.3, is to classify the power consumption in steady-

state. The non-intrusive transient classifier (NITC) in [13], on the other hand, focuses

on the shapes and characteristics of transient power usage, using methods described

21

Raw Input

Spectral Envelope
Preprocessor

Steady-State _Transient
Analysis Analysis

Load Identification Fault Diagnostics

Figure 1-3: Block diagram of typical NILM data processing stages. Fault diagnostics
often uses results from many of the earlier stages.

in §1.1.4. Such methods are not exclusive and may be combined or modified to create

a particular diagnostic indicator.

1.1.2 Power Envelope Generation

The NILM hardware usually measures raw current and voltage. For load monitoring

and diagnostics, the primary interest lies in power usage. For a direct-current load, the

transformation from one to the other is straightforward, as the power is proportional

to the measured current. Alternating-current loads, on the other hand, often exhibit

behaviors that are synchronous with the AC line frequency, and it is usually desirable

to extract out the power envelopes from this for analysis. This envelope generation is

done by the preprocessor, so named because it is almost always the first step before

classification and other processing on the recorded data.

The goal of the preprocessor is to extract spectral envelopes, which are short-term

averages of harmonic content present at each of the harmonics of the incoming line

frequency. As reviewed in [13], the in-phase spectral envelopes ak of an input current

22

signal x(t) are

ak(t) = - t(T) sin(kCr) (1.1)
T t_T

where k is the harmonic index, and the quadrature spectral envelopes are

bk(t) = - fx(T)cos(kT)dT (1.2)
T t_T

For NILM purposes, the time t is referenced such that the term sin(wT) in Equation 1.1

is phase-locked to the voltage measurement, which can be achieved using a Kalman

filter [14]. The averaging interval T is one or more periods of the line frequency. Under

these conditions, the spectral envelopes are computed as Pk = ak and Qk = - bk,

and these are the outputs of the preprocessor. The outputs are defined in this way

so that the values P and Qi correspond to the conventional definitions of real and

reactive power.

Figures 1-4 and 1-5 demonstrate the utility of using the preprocessor for AC

loads. The first plot is the raw input from a data acquisition board connected to

a computer. The second shows P and Q, as computed by the preprocessor. The

preprocessed output provides a much clearer view of the electrical power usage. For

example, a glance at Figure 1-5 shows that this load draws more reactive than real

power, a fact that was not immediately apparent in the raw data.

The implementation of the preprocessor has changed over the years. Because it is

a relatively complex but fixed operation, hardware implementations have been used

to efficiently compute the spectral envelopes from the incoming analog signals [11].

Newer hardware implementations have included digital filters and implementation on

dedicated digital signal processors [13]. Today, the availability of inexpensive and

fast general-purpose computers makes a purely software implementation attractive.

Writing the preprocessor as a software component also allows for greater flexibility

in controlling the parameters of the envelope extraction. The current NILM system

uses the preprocessor developed in [13], with improvements as described in §4.1.

23

0.8

0

N

0

0

S
0
1-4

0

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)

Figure 1-4: Raw AC voltage and current measurements taken during a motor startup
transient.

1

0
N

0

1-4

0

0

0.8

0.6

0.4

0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

Figure 1-5: Result of applying the preprocessor to the data in Figure 1-4. These
spectral envelopes provide a much clearer view of the electrical power usage.

24

Current
Voltage ----- -

- -

-Pi - -

'-'-^
-'-.

- IIIII ~

AP

R Heater

Induction machine

* Incandescent

Figure 1-6: Plot of measured AP and AQ values for various loads, used in steady-
state analysis. From [13].

1.1.3 Steady-State Analysis Approach

Once power spectral envelopes are computed, approaches such as steady-state analysis

can be applied to identification and diagnostics. Steady-state analysis looks at the

long-term step changes in P and Q that occur when a particular load turns off or

on. An example plot in AP and AQ space is shown in Figure 1-6. As demonstrated,

these step changes form clusters based on the loads. Since this method looks only

at changes from settled values, these clusters can be formed and differentiated even

when many loads are present and drawing power. Steady-state analysis is particularly

good for identification of loads. In addition, deviation from the expected clusters can

indicate faults, but more complicated diagnostics are often difficult with this method

because of the limited state space.

1.1.4 Transient Analysis Approach

Another approach is to use the short-term transient power usage as shown in Figure 1-

7 to identify loads and perform diagnostics. Transients are associated with any event

in which the power usage of the system changes quickly. Typically, this occurs when

a load turns on and off, and may also occur with certain types of failures such as

25

P1

Time

Figure 1-7: Plot of the power envelopes generated by turning an AC fan on and off,
showing two characteristic transient events.

the physical breaking of a link. Transients can often convey more information than

steady-state data, because it is more likely that they will differ between types of

loads. Furthermore, if more detail is desired on a particular transient event, a higher

sampling rate or resolution can be used when acquiring data. As a result, even very

slight and brief changes in the shape of a transient can be analyzed. Transients are

particularly good for diagnostics, as many mechanical systems use the most power

during startup, and mechanical faults can show up more easily there. The diagnostic

developed in §2.2 is based on characteristics found in the transient.

For basic identification and load scheduling, statistical and heuristic based ap-

proaches can be used to match transients to exemplars. The most straightforward

approach is to create exemplars manually by selecting them from an envelope wave-

form, as was done for the NILM software in [13], or by having the computer detect a

manually-triggered transient as does the software in §4.3. Once transient waveforms

are stored, a least-squares or similar fit can be applied to determine when the transient

shape is seen again. For more complicated transients, like the one shown in Figure 1-

8, there may be multiple areas of interest with variable spacing in time. Software like

26

/I I I

I II

Time

Figure 1-8: Startup transient of a single device, consisting of three smaller transients
with variable spacing. From [11].

the system presented by [13] can be configured to match cases like this by matching

the smaller sections and combining them into a larger match when appropriate.

Additional matching strategies can include a classifier-based approach in which the

software automatically recognizes previously untrained transients as being generated

by the same source. The software framework in Chapter 5 facilitates this sort of

learning by providing a generalized database backend for storage of classifier data as

well as the transients themselves. The manual training step would then be reduced

to the task of merely naming the detected events.

1.1.5 NILM system example

Using the above components, a basic NILM system can be built. The satellite load

monitoring system pictured in Figure 1-9 is one example that was constructed as part

of this work. This particular system, which performs identification of transients based

on manual training, uses a number of new and unconventional hardware components

that makes it an useful platform for designing and testing the flexibility of the NILM.

The system consists of a number of low-power DC loads fed by a single source.

27

Figure 1-9: Photograph of a single-board NILM computer system, left, monitoring

and identifying various satellite loads, right.

Figure 1-10: Graphical user interface for the satellite load monitoring system. The

power waveforms are shown in the top half of the window. Identified transients are

listed at the bottom as they occur.

28

The current from the source is measured by the USB-based data acquisition module

developed in §3.2, which connects to a single-board 266 MHz CM-i686M Computer-

on-Module. The user interface software, pictured in Figure 1-10 and further described

in §4.3, receives this data and shows the running plot of power usage versus time along

the top. The system was previously trained to recognize particular transients, and

these transients are matched with a least-squares fit and identified on the bottom of

the screen as they occur. This particular system is DC, but can easily be adapted for

AC loads by using a preprocessor to compute spectral envelopes.

1.2 Contributions and Organization

The wide variety of application-specific methods that can be profitably applied in

a NILM system necessitates a flexible framework for signal processing. In order to

develop the software and hardware for that framework, we begin with a survey of

indicators and methods used in practice. The requirements of the NILM are moti-

vated through the development of new diagnostic methods, with a particular focus on

cycling systems and mechanical coupling failures in Chapter 2. The data-acquisition

hardware improvements that were developed to facilitate data collection are described

in Chapter 3. Support software for diagnostic development, including improvements

to the preprocessor, a data recording and retrieval system, and a basic graphical

interface, are presented in Chapter 4.

This work serves to demonstrate what is needed in the NILM framework. The

relative disconnect between the data acquisition, storage, processing, and reporting

stages becomes particularly apparent. The NILM software framework, presented in

Chapter 5, unifies this. It provides for database-driven storage and tagging of data,

with a generalized facility for processing this data through filters. Chapter 5 concludes

with example client modules that demonstrate functionality.

29

30

Chapter 2

Diagnostic Indicators

One of the more useful features of any monitoring system is the ability to detect

and report on performance characteristics that indicate operational failures or short-

comings. Such diagnostic abilities are central to systems like the Navy's Integrated

Conditional Assessment System (ICAS) [9] and are the motivation for many NILM

installations. In many cases, purely electrical monitoring of electromechanical sys-

tems has demonstrated the ability to both detect subtle problems and predict failures

before they occur [4, 7, 9, 12, 13]. As a result, support for a wide variety of diagnostic

indicators is a primary goal of the NILM software.

The flexibility of electrical monitoring has allowed for the development of a num-

ber of diagnostic methods. Transient classifiers as presented in [11, 13] can provide

straightforward diagnostics like "motor B is off" or "the pump ran four times" by

recognizing the power transients associated with on/off events. The satellite load

monitoring system shown in Figure 1-10 is one example of identification-based diag-

nostics. With sufficient data and training, a transient classifier can also recognize

anomalous events like a mechanical jam in an electromechanical actuator. However,

it is generally limited to providing indicators based on easily distinguishable transient

events, which is a category that many failure modes do not fit.

Another method for electrically determining the physical state of a system using

the NILM is through modeling and parameter estimation as developed in [13]. This

method involves creating a mathematical model for measurable quantities like current

31

and voltage, based on the physical characteristics and parameters of the mechanical

system. The model predicts the shape of power transients, and optimization meth-

ods can be used to infer original mechanical parameters based on observed transient

shapes. The high sampling rate and resolution of the NILM hardware provides the

ability to apply such modeling in the non-intrusive context, and this has been demon-

strated with the determination of load characteristics of fans and pumps, as shown

in Figure 2-1.

The NILM framework in [13] provides both of these identification and diagnostic

techniques. However, field testing has shown that transient analysis and parameter

estimation are not sufficient to cover all detectable conditions. For example, variable

speed drive (VSD) controls on fans exhibit long-term steady-state behaviors that

reflect physical conditions but do not involve individual on/off transients, as shown

in Figure 2-2 [10]. The cycling systems in [7, 9] and §2.1 utilize a transient classifier

to identify pump starts, but require further statistical analysis on a large set of pump

starts to develop an indicator. Furthermore, complex systems like those in [7] and §2.2

can be difficult to model for parameter estimation.

To improve on the variety of diagnostic indicators that can be handled by the

NILM software, a closer examination of real-world diagnostics and systems was un-

dertaken in order to evaluate and understand the methods and tools required to

compute such indicators. This analysis included a wide variety of systems used in

satellites, automobiles, and building services, with a particular focus on diagnostics

in the context of naval systems. The work with cycling systems in §2.1 and mechan-

ical coupling failure in §2.2 demonstrated particular functionality and features that

the NILM software needs to have. In the process, we also reveal some exciting new

techniques for creating diagnostics for systems that are relatively disjoint from their

electrical input.

The approaches developed here suggest a common process for finding and devel-

oping such diagnostic metrics. First, we examine the system and create a simulation

model based on the underlying mechanics and physics. Then, we simulate the phys-

ical problems we are trying to diagnose and observe the effects they have on the

32

Figure 2-1: System identification results for a ventilation fan. The numeric tags on
the bottom contain estimated parameter information. The thicker line in the plot is
the result of a simulation with the estimated parameters. From [13].

33

10

5

o

-5
0 20 40 60 80 100 120 140

Time (s)

Figure 2-2: Variable speed drive exhibiting large, slow oscillations after approximately
100 seconds. From [10].

electrical power usage. These simulation results are then verified against real-life

data by closely monitoring the behavior of the system in the field under normal and

abnormal conditions. Based on this field testing, we refine our model as necessary,

and repeat the process of simulating and testing until our results converge. Finally,

the diagnostic metrics observed and verified through this process are implemented in

the new NILM software framework as an available indicator.

2.1 Cycling Systems

It is common in both naval vessels and in buildings to make use of compressed air

and vacuum systems to power machinery and tools, manage waste and dust, create

delivery systems, and more. To ensure instant availability and to provide for tem-

porarily large demands, these systems usually rely on a pressure storage reservoir

periodically charged by an electromagnetic actuator like a pump or compressor. A

typical system layout is shown in Figure 2-3. Loads may draw from the reservoir

both continuously and intermittently, and it is the job of the control and pump to

maintain a pressure range in the reservoir. From an electrical point of view, this

behavior creates a cycling system, where the power usage follows a regular cycle of

charging and discharging based on pressure. A diagram of one such cycle is shown in

Figure 2-4.

Cycling systems create unique and interesting problems for the non-intrusive mon-

itoring system because the loads under consideration are only indirectly powered by

the electric charging unit. In many cases, only a small fraction of total time is spent

34

Control

Pump or
Compressor

Figure 2-3:
dotted lines

Diagram of a typical pneumatic cycling system. Solid lines

are electrical connections.

are air, and

H-

0

CI7~
0

a
1-4
0
rj~
0
I-i

II

II

- - - - - - - - - - - - ----- - --

discharging charging
time

Figure 2-4: Operation of a cycling air-supply system. When pressure reaches H, the
compressor turns off and the system discharges as loads are used. When pressure falls
to L, the compressor runs and the system charges again.

35

Air/Vacuum
Reservoir

Load

Load

Load

Figure 2-5: Photograph of the twin pumps used to recharge the vacuum reservoir on

the USCGC SENECA. The reservoir is in the rear.

actively recharging the system, and so the electrical system is likely to be completely

idle when some particular failure, leak, or other event occurs, making transient clas-

sification and transient parameter estimation alone ineffective. Instead, we show that

the NILM system can use statistical techniques to still create a highly detailed view

of the system loads and their state. The ability to perform load monitoring and di-

agnostics on cycling systems demonstrates an intriguing new application of electrical

monitoring on these primarily non-electrical systems.

2.1.1 SENECA Data

Our primary testbed for the development of cycling system diagnostics is the USCGC

SENECA, a 270-foot U.S. Coast Guard cutter. The SENECA uses a vacuum air

wastewater disposal system. The vacuum reservoir is evacuated by two pumps,

shown in Figure 2-5, which can run individually or simultaneously depending on

the measured and desired vacuum pressure. Valves are located in bathrooms and

sinks throughout the ship, and upon opening, allow waste to be drawn through the

36

system and into a collection unit. Like many pneumatic systems, the SENECA's

vacuum system is plagued by air leaks, which results from breaks in the plumbing

and improperly sealed valves. On several occasions, high leak rates have caused the

evacuating pumps to overload and run too frequently, resulting in system failure [7].

The NILM was applied to this situation with the goal of detecting leaks early, so

that they may be identified and fixed before becoming a serious problem. The primary

job of this cycling system diagnostic, therefore, is to differentiate between leaks and

legitimate usage patterns. This is a difficult problem, as usage can be expected to

vary by hour, day, crew size, and crew behavior. A metric based strictly on overall

flow is inconclusive. Furthermore, due to the disconnect between the electrical and

pneumatic system, the NILM cannot directly monitor individual load usage. Instead,

we rely on statistical approaches.

To gather baseline data for analysis and verification, a load monitoring system

based on the hardware in §3.1 and the software in §4.2 was installed on the SENECA.

A flow meter was installed on a vacuum collection tank gauge line, and the throttle

valve on the flow meter was used to introduce controlled fixed leaks [7]. The recorded

AC waveform data was converted to power spectral envelopes by the preprocessor

in §4.1. From this, transients corresponding to the individual pump runs are readily

apparent. A single pump run is shown in Figure 2-6, and a collection of pump runs

over the course of an hour is shown in Figure 2-7. The lengths of the discharge times

between pump runs is computed by the script time-between. p1 in Appendix A. 1.1.

The statistical distribution of these discharge times, which are measured between a

pump shutdown and the subsequent pump restart, are the basis of our analysis.

Initial data was collected while the SENECA was at sea for a month, with no

artificial leaks inserted through the flow meter. The resulting histogram of the time

between pump runs, shown in Figure 2-8, covers a two-week period of that data, and

follows the shape demonstrated to be indicative of system behavior when no leaks are

present [6, 7].

The data presented in Figure 2-9, on the other hand, corresponds to a two-week

period during which the system had an unplanned large leak due to a faulty check

37

12

10 -

0

0

8

6

4

2

0

I I I I I I I I

0 2 4 6 8 10 12 14 16
Time (s)

Figure 2-6: Power usage of the SENECA vacuum pump during a single charging
cycle. The transient is clear and easy to match.

12

10

0

0

8

6

4

2

0

10 20 30 40 50 60
Time (min)

Figure 2-7: Power usage of the SENECA vacuum pump during multiple charge/dis-
charge cycles over the course of an hour.

38

0

_ II __ ___

1000

900 -

800 -

- 700 -

,600 --

500 --

400

300

200

100-

0- -
0 5 10 15 20 25

Time Between Pump Runs (min)

Figure 2-8: Histogram showing the distribution of the time between pump runs over
a two-week period during which no leaks were known to exist. From [7].

valve. It is clear from the difference between the two histograms that such leaks have

a large effect on the distribution of pump times; in particular, nearly all runs occur

within two minutes of the previous cycle in the high-leak case.

Further tests with variable leak rates were undertaken to determine how distin-

guishable different leaks might be. These tests used the flow meter with a variable

throttling valve to set three different leak rates: no leak, 30 standard cubic feet per

hour (SCFH), and 50 SCFH. For each leak, data was collected for four days during

the hours of 2200-0600 local time. This experiment was carried out while the ship

was in port and at night in order to minimize influence by crew usage. The resulting

histograms, presented in Figure 2-10, shows a shifting effect similar to the underway

data in Figures 2-8 and 2-9, where the pump runs more frequently and with less

discharge time as the magnitude of the leak increases.

These tests and data show that the effects of a leak can be detected and quantified

based on electrical monitoring alone. What they do not demonstrate, however, is

whether the NILM is also capable of distinguishing between the predictable loss of a

39

12000

'10000

8 8000

6000

4000

2000

0 5 10 15 20 25
Time Between Pump Runs (min)

Figure 2-9: Histogram showing the distribution of the time between pump runs over

a two-week period during which the system had a large leak in a faulty check valve.

From [7].

90
No Leak

80 - 30 SCFH Leak ----- -
50 SCFH Leak -------

70 -
CO

S60 -

50 --

40

30 --

20 -

0

5 10 15 20 25 30
Time (min)

Figure 2-10: Three histograms corresponding to three different manually-induced
leaks in the SENECA. The peak of the histogram shifts to the left as the leak rate is

increased.

40

steady leak and the randomized aspect of crew usage. To explore the creation of such

a metric, a simulation model of the system was created.

2.1.2 Simulation

The experimental setup on the SENECA provides for a manually-induced overall leak

rate. There are a number of other important parameters like crew usage that have a

large effect on the system, but, since the SENECA is an active vessel, these variables

cannot be controlled directly. Instead, the observed baseline data was used to create

and verify a simulation model of the vacuum system.

The developed software, listed in Appendix A.1, simulates three primary aspects

of the sewage system, described in detail in the following section:

1. Pump characteristics and control system behavior

2. Vacuum loss due to constant leaks in the system

3. Vacuum loss due to crew usage, modeled as discrete "flush" events

Design

The pump characteristics, pump control, and leak behavior is designed to match the

behavior of the physical twin pumping system. There are six configurable param-

eters for the pumps and constant leak, which are included in the parameter list in

Table 2.1. The pressures are measured as the difference between atmospheric and

reservoir pressures, so a higher "pressure" in the simulation represents a higher vac-

uum. The pumping rates and leak rate are assumed to be constant over the expected

pressure ranges. Measurements of system pressure over time have verified that this

is a reasonable assumption.

In normal operation, only one pump is used, and it turns on when Po, is passed,

and turns off when Phigh is reached. If the leak rate is very high, or a large number

of flush events arrive at once, then the action of one pump is insufficient, and so the

vacuum pressure of the system may continue to drop. If the pressure falls below Piower,

the second pump starts, and both pumps turn off together when Phigh is reached.

41

Name Description Units
T Simulation time hours

Pump characteristics and control:

Pow Low pressure point at which one pump turns on in. Hg
Piower Low pressure point at which both pumps turn on in. Hg
Phigh High pressure point at which running pumps turn off in. Hg

R1 Pumping rate of the first pump in. Hg / hr

R 2 Pumping rate of the second pump in. Hg / hr

Loss due to fixed leak:

Rleak [_Constant leak rate in. Hg / hr

Loss due to flush events:

Pflush Pressure drop caused by a single flush event in. Hg
A Average expected rate of flushes flushes / hr

Table 2.1: Parameters for the simulation model of the SENECA cycling system.

Constant leaks in the system are approximated as a single constant Rleak. Note that

if RIeak is higher than the combined rate of both pumps R, + R 2, then the system

cannot maintain pressure and the simulator generates an error.

The vacuum loss due to the crew is modeled as discrete flush events. The occur-

rence of these events is approximated as an M/D/oo queue [17], which is equivalent

to a Poisson arrival process. The Poisson process is used to describe events that are

randomly spaced in time, and is often used to model natural arrival-type stochastic

processes [2]. The work in [6, 7] confirms experimentally that the Poisson process is a

close match for the crew usage aboard the SENECA. Table 2.1 includes the variables

used in simulating crew flush events.

Simulating the Poisson arrival process

The simulation, written as a Matlab/Octave script and provided in Appendix A.1.2,

is built around the primary function of simulating the Poisson arrival process of the

crew usage. Let X be a Poisson random variable that represents the number of events

per unit time, with an average rate of A. By definition [2], the probability that X

42

equals some constant k for a Poisson variable is

P(X = k) = Ak (2.1)

To compute the probability of the number of events Xt per non-unit time t, we can

scale the rate A by multiplying it by t to get

P(Xt = k) = (At)(2.2)
k!

For simulation purposes, we need to model the time between flush events. Let the

random variable T represent the time before the next flush. The probability that T

is greater than some value t is equal to the probability that we get no events in that

time, so

P(T > t) = P(Xt = 0) (2.3)

Substitute Equation 2.2 and solve to get

P(T > t) = (At)e (2.4)
0!

= e~At (2.5)

We can find F(t), the cumulative distribution function (CDF), using the total prob-

ability theorem:

F(t) = P(T < t) (2.6)

= 1 - P(T > t) (2.7)

Substitute Equation 2.5 into this to get

F(t) = 1 - e') (2.8)

43

The probability distribution function (PDF), f(t), can be found by taking the deriva-

tive of the CDF from Equation 2.8:

f(t) = P(T =t) dF(t) (2.9)
dt

d
- -- (1 - e-At) (2.10)

dt

f(t) = Ae-At (2.11)

This f(t) tells us the distribution of the time between flush events. We can compute

the expected value E(t) of this distribution by integrating over all time:

E(t) = j f (t)dt (2.12)
0o

= j etdt (2.13)

',[-Aet]~ (2.14)A/ 0
1

e- e) (2.15)
A

(2.16)

This result verifies that the variable A represents the expected number of flushes per

unit time.

The CDF of the random variable T, F(T), is graphed in Figure 2-11. In order to

synthesize values of T for the simulation, we can choose a random value R uniformly

from [0, 1] and return the inverse CDF, F-1(t). Graphically, this is equivalent to

choosing a point on the vertical axis of Figure 2-11 and returning the corresponding

value of t from the horizontal axis.

To prove that these synthesized values have the correct distribution, first assume

that we create a new random variable T, as described:

T, = F-(R) (2.17)

44

1

VI

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6 7 8

t

Figure 2-11: Cumulative distribution function (CDF) of the random variable T rep-
resenting the time between flushes in the cycling system simulation.

The CDF of this new variable is

P(T9 < t) = P(F--1(R) < t)

Apply F to the inequality on the right hand side to obtain

P(Ts < t) = P(R < F(t))

Since R is uniformly distributed on [0, 1],

(2.18)

(2.19)

(2.20)P(R < k) = k

45

A = 1
A 2 ------
A 4 ---------

Substitute Equations 2.20 and 2.6 into Equation 2.19 to obtain

P(Ts < t) F(t) (2.21)

P(T < t) (2.22)

which indicates that our synthesized T, does follow the same distribution as the

original random variable T.

To compute values with the same distribution as T directly, we can therefore use

Equation 2.17. To find T, we first invert the CDF F(t):

R = F(t) (2.23)

R = 1 - e-A (2.24)

t = - ln(1 - R)/A (2.25)

If we define R' = 1 - R, this can be simplified to

t = - ln(R')/A (2.26)

The new variable R' has the same distribution as R and so can be also chosen uni-

formly from [0, 1]. The result in Equation 2.26, combined with a uniform pseudoran-

dom number generator, is used by the simulation to synthesize the crew flushes.

Implementation and Simulation Results

Flush events are the basis of the simulator. The main simulation loop, listed in

Appendix A.1.2 as sim.m, generates the new time tf at which the next flush event

occurs. The supplemental script pumpleak.m is then used to calculate the effects of

the twin pumps and the loss due to the constant leak, as described in §2.1.2, until

the time tj passes. At this point, the pressure drop Pflush is applied to the reservoir

pressure, and the simulation continues in the same fashion until the next flush event.

The output of the simulator is the two vectors pump-on and pump-off, which

46

Name Value
T 120 hr

Pio 14 in. Hg
Piower 10 in. Hg
Phigh 18 in. Hg

R1 1100 in. Hg / hr
R 2 1000 in. Hg / hr

Rleak varied
Pflush 1 in. Hg

A 40 flushes / hr

Table 2.2: Simulation parameters used in Figures 2-12 through 2-15.

contain the times at which either pump turned on and the times at which both pumps

turned off, respectively. The script sim.between.m in Appendix A.1.4 can be used to

transform this output to the a single vector matching the format of time-between. pl.

A histogram can then be computed and plotted. An example of the output of the

simulator when no leaks are present is shown in Figure 2-12.

The simulator was run multiple times with the parameters shown in Table 2.2

and varying leak rates. The histograms corresponding to four such runs are shown

in Figures 2-12 through 2-15. These four figures are representative of the behavior

of the leaks. The simulated no-leak case in Figure 2-12 is similar to the real-world

SENECA data from in Figure 2-8 where the system was healthy. The high-leak case

in Figure 2-15, on the other hand, is approaching the form of the SENECA data in

Figure 2-9 where a large leak was present.

The simulation results show a characteristic asymmetric distribution that is rel-

ative unchanged as the leak rate varies. Experiments with changing the parameters

in Table 2.2 shows that this underlying distribution does vary with crew usage. The

introduction of leaks, on the other hand, shows sharp "spikes" in the histogram. This

can be seen in Figure 2-13, for example, at around 13 minutes. These spikes grow in

magnitude and number and shift to the left as the leak rate is increased.

In order to understand how this distribution and these spikes arise, and whether

they can be used to differentiate between crew usage and leaks, we can analyze the

behavior of the simulator in order to explain their source.

47

60

50

40

30

20

10

0
2 4 6 8 10 12

Time (min)

Figure 2-12: Histogram of the
no leak. The parameters for
RIeak = 0 in. Hg / hr.

60

50

40

30

20

10

0

14 16 18 20

pump cycling data generated by the simulator with
this simulation are as shown in Table 2.2 where

2 4 6 8 10 12
Time (min)

14 16 18 20

Figure 2-13: Histogram of the pump cycling data generated by the simulator with
a small leak. The parameters for this simulation are as shown in Table 2.2 where
Rleak = 4.5 in. Hg / hr.

48

0
0

0

0

0

No Leak

- -I~

0
0

0

0

Small Leak

-A I

160

140 k

2 4 6 8 10 12 14 16 18 20
Time (min)

Figure 2-14: Histogram of the pump cycling data generated by the simulator with
a medium-sized leak. The parameters for this simulation are as shown in Table 2.2
where Rleak = 7 in. Hg / hr.

Large Leak

2 4 6 8 10 12 14 16 18 20

Time (min)

Figure 2-15:
a large leak.

Histogram of the pump cycling data generated by the simulator with
The parameters for this simulation are as shown in Table 2.2 where

Rleak = 25 in. Hg / hr.

49

Medium Leak

cn

0
Q

Q

0

0

120

100

80

60

40

20

0

500

400

300

200

0
C.)

C)

0

0

100

0

2.1.3 Analysis

Crew Usage Alone

First, let us consider the case where there are no leaks, in order to determine the

nature of the baseline distribution shown in Figure 2-12. Since the pumps turn on

after a fixed pressure point is passed, and each flush causes the loss of a fixed amount

of vacuum pressure, the number of flushes that must occur between pump runs is a

constant. Assume for simplicity that this constant is an integer, and call it ij. Then,

the time Tp from the end of one pump run until the beginning of the next is the same

as the time it takes for q flushes to occur:

Tp =T1 + T2 + +Tj (2.27)

From Equation 2.11, we know that the PDF of each flush time is equal to

f (t) = Ae-At (2.28)

The PDF fp(t) of the summed variable Tp is equal to the convolution of the PDFs

for the individual flushes [2]:

fp(t) = f (t) * f(t) * .. * f (t) (2.29)

To solve for fp(t), first substitute Equation 2.28 in Equation 2.29 and apply the

unilateral Laplace transform to both sides:

fp(t) = (AeA') * (AeA') * - * (Ae-A t) (2.30)

L[fp(t)] = L[(Ae-') * (Ae-A) * - * (Ae-At) (2.31)

50

0.16 1
A 40/hr -----

0.14 A=30/hr
A 20/hr -----

0.12

0.1

0.08

0.06 -

0.04

0.02 / -

0 -
0 5 10 15 20 25

Time (min)

Figure 2-16: Plot of the Erlang distribution for r/ = 4 and varying A. This distribution,
from Equation 2.34, corresponds to the sum of multiple Poisson arrival times, and
models the baseline distribution of crew usage with no leak.

which, using standard Laplace transformations and properties, simplifies to

L[f(t)] = A (2.32)
(s + A)R

Then apply the inverse Laplace transform:

-[L[f(t)]] = L [(A 1 (2.33)
I(s + A)771

and simplify to find fp(t):

fp (t, T1, A) = At e (2.34)
(r7 - 1)!

This distribution, shown in Figure 2-16 for fixed rq and varying A, is known as the

Erlang distribution. The Erlang is a form of the more general Gamma distribution,

which allows for non-integer r/ [15].

51

The CDF of the Erlang distribution is computed as the integral of the PDF:

Fp(t, r, A) = An' e A d 7 (2.35)
J 0 (q - 1)!

This integral has the transcendental solution [16]

- y(r7 At)
F(t, q, A) (,) (2.36)

(Iq - 1).

where -y is the incomplete gamma function, defined' as

-y(x, a) = -ita-l dt (2.37)

The function Fp(t, T,1 A) from Equation 2.36, which represents the cumulative distri-

bution of the time between pump runs due to crew usage with no leaks, is shown in

Figure 2-17 for fixed A and varying 1.

Effect of Leaks

In the previous section, we assumed that each flush causes a fixed drop Pflush in

vacuum pressure, and that some integer number of flushes 17 are necessary to cause

the pump to run. That is, the total drop P in vacuum pressure that occurs before

the pump will run is

PO = P -flush (2.38)

Now consider the pressure drop of the system at time t when a leak is present. Let

N represent the number of flushes that have occurred so far since the last pump run,

and let Reak represent the leak rate. The pressure drop at time t is

P = N - Pflush + t * Rleak (2-39)

'There are conflicting definitions of the incomplete gamma function. Equation 2.37 is used by
Mathematica and Maple. Matlab, Octave, Gnuplot, and many other mathematical programs use
the definition -y(x, a) = (1/1F(a))f x etta-dt, where F(a) is the complete gamma function.

52

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 5 10 15 20 25

Time (min)

Figure 2-17: Plot of the Erlang cumulative distribution function from Equation 2.36
for A = 30/hr and varying r1.

As before, the pump will run when the drop equals or exceeds PO:

P > PO (2.40)

and so, substituting Equations 2.38 and 2.39, the pump will run when

N - Pfush + t* Rleak >- r * Pfush (2.41)

We can rearrange this to separate the flushing from the leaking:

t - Rieak

Fflush

flushes leak term

(2.42)

This equation, which indicates when the pump will run, describes an interesting

behavior. Since N and r are both integers, the fractional portion of the leak term has

no effect on the inequality. In other words, the leak will only affect the pump runs at

53

r =
r=3 --- -
r=4 -------
= 5 - -

-

the times when the leak term is a positive integer:

t Rea{ {1, 2,3,... (2.43)
Pflush

Solve for these times t to get

t = {r,2T, 3r,. - - (2.44)

where

Pflush (2.45)
Rleak

Intuitively, this makes sense. In effect, the combined pressure drop from the steady

leak after time T has added up to equal a single flush. Until that happens, leaks have

no effect, because we need an integer number of flushes to cause a pump run. For

times before T, we still require all 17 flushes to cause the pump to run. For times

after r, only q - 1 actual flushes are required. After 2T, only q - 2 actual flushes are

required, etc.

Now let us consider how this affects the complete probability distribution fc(t) of

the time between pump runs. For t < T, the leak has no effect, and so the pump will

behave according to the Erlang distribution derived earlier in Equation 2.34, with ij

required flushes:

fc(t) = fp(t, 77, A) (2.46)

fc (t) = A1 e- for t < T (2.47)

At time t = T, the effect from the leak will have added up to the amount of single

extra flush. Thus, if ?j - 1 flushes have already occurred before t = T, the pump

will run immediately at T. That means that there is an additional probability of

the pump running at r, and this probability is equal to the accumulated probability

54

that we had at least q - 1 but not r/ pump runs during t < T. Using the CDF from

Equation 2.36, we can write this extra probability as

P(N = (TI - 1))1t- r Fp(T, / -1, A) - Fp(T, r/, A) (2.48)

(r - 1, AT) _ (rq, AT) (2.49)
(T - 2)! (7 - 1)!

The total probability of the pump running at t = T is then the base probability from

Equation 2.47 plus the extra probability from Equation 2.49:

fc(t) eAt ± (TI 1, AT) -y +(q, AT) for t = T (2.50)
(rq - 1)! (7- 2)! (77 - 1)!

For T < t < 2T, we only need 77 - 1 actual flushes to cause a pump run. Like

t < T, this will follow the Erlang distribution, but now with the parameter 77 - 1:

fc(t) = fp(t, r T- 1, A) (2.51)

fc(t) A(7-1 eAt for T < t < 2T (2.52)
(T7 -2)!

At this point, it is useful to consider the CDF of the complete pump distribution,

which is

Fe(t) = fc(t')dt' (2.53)

For time t< T, the fc(t) is just an Erlang PDF, so Fe(t) is the Erlang CDF with the

same parameter r. At t = T, the added probability from Equation 2.49 corresponds

exactly to the difference between Fp(t, rI- 1, A) and Fp(t, r7, A). Effectively, this means

that on Fe(t), there is a corresponding "jump" from the 77 curve to the rI - 1 curve.

For t > T, fc(t) is also an Erlang PDF, and Fe(t) will therefore continue to follow the

CDF of the Erlang with parameter 77 - 1.

This behavior is shown graphically in Figure 2-18. Fe(t) is a piecewise function

that begins on the Erlang CDF corresponding to the initial number of flushes needed

for a pump to run, which in this example is TI = 4. At every multiple of T, the system

55

1

0.8

0.6

0.4

0.2

U
0 T 2r7 37 4T

q= 3

=I 4

5T

Time

Figure 2-18: Plot of the CDF for the SENECA vacuum pump in the presence of both
crew usage and leaks, for A = 10/hr and T = 5 min. The 77 for the pump system is 4.
When t is a multiple of T, the pump CDF "jumps" to follow the next Erlang CDF.

now behaves as if one fewer actual flush had been required all along, and so it follows

the Erlang CDF corresponding to the next lower 77 parameter.

Following the form of Equations 2.47, 2.50, and 2.52, we can write the complete

pump PDF as follows, where k takes integer values from 1 to q inclusive:

fc (t, 7, A) =

A (7k) t(-k) e-At for (k - 1)T < t < kT(77-k)!e

A(q-k) t(,~k) e-At + y(7-k,Ar) _ ((?-k)+1,Ar) for t = kT k < i((kk)!e -k)-1)! (-k)!

e~A + 1-(1 AT) for t = 7T

0 otherwise

(2.54)

This function is plotted in Figures 2-19 through 2-22, using the same parameters

as the simulation data from before. The zero-width impulses at t = kT have been

widened to match the bucket size used in the simulation histograms, but their areas

are unchanged. The simulation data is also included for reference.

56

Erlang CDF ------

Pump CDF

/

/ /
/ /

/ /
/ /

/ /
- /

/

-
- -

5 10
Time (min)

15 20

60

50

40

30

20

10

Figure 2-19: Calculated pump PDF plotted against simulated data. The system and
leak parameters are the same as in Figure 2-12.

Calculated, Small
Simulated, Small

Leak
Leak ---

I I

I I~ /
- ~ VII

II ~I ~ I

I I
-' I II

- ~I I

II
II

~I ~

10
Time (min)

Figure 2-20: Calculated pump PDF plotted against simulated data. The system and
leak parameters are the same as in Figure 2-13.

57

Calculated, No Leak
Simulated, No Leak -----

-I

'''

4-

0.2

0.15

a-)

0.1 0

0.05

00
0

60

50 k I'
I'

0
Q

C.)

0

i
-e
0

-s
cn

40

30

20

10

0.2

0.15

0.1

0.05

00
0 5 15 20

- -.-

160

40

75

C)

40

140

120 -

100 -

80

60

40

20

0
0 5 10 15 20

Calculated, Medium Leak -
Simulated, Medium Leak --

Time (min)

Figure 2-21: Calculated pump PDF plotted against simulated data. The system and
leak parameters are the same as in Figure 2-14.

Calculated,
Simulated,

5

Large Leak
Large Leak ------

10 15

-1

0.8

- 0.6 4

- 0.4 r

- 0.2

- 0
20

Time (min)

Figure 2-22: Calculated pump PDF plotted against simulated data. The system and
leak parameters are the same as in Figure 2-15.

58

0.5

0.4

0.3

0.2 4

0.1

0

I'

p
1

- I ~I

- I-'

500

400

300

200

100

cJ~

0
0

0

0

0
1-4

-e
0

-S
II~

0
0

- . - -- - -

2.1.4 Indicator

As shown in §2.1.3, the simulation of the SENECA cycling system in §2.1.2 can be

modeled using a piecewise function consisting of Erlang distributions and impulses.

One method of using this as a diagnostic indicator is to perform a fit from the model

fc(t) to the histogram of the recorded data in order to determine the 7, 77, and A

parameters. The quality of such a fit relies on having low noise in the histogram,

which can require collecting data for many days taken while the crew behavior is

relatively constant.

A simpler method is to locate the peaks in the histogram caused by the leak.

They will be located at approximately T, 2T, etc, and the first will typically be the

largest and easiest to locate for leaks that are relatively low compared to crew usage.

We can solve Equation 2.45 for Rleak:

Reak Pflush (2.55)
T

Since the pressure drop per flush Pflush will be relatively constant, this indicates that

the overall leak rate will be proportional to 1/T. Furthermore, we can rearrange this

equation to find the relationship between two different leak rates Rleakl and Reak2,

assuming a constant flush drop:

Rleakl -1 = Pflush (2.56)

Rleak2 -2 = Pflush (2.57)

Rleakl = 1 (2.58)
Rleak2 -2

This method can be used to cross-verify the leak data that was presented in

Figure 2-10, without necessarily knowing the Pflush or the system constant 77. The

locations of the peaks for the two leak cases are noted in Figure 2-23. For a leak rate

of 30 SCFH, the corresponding peak is at T3 0 = 12. For a larger leak of 50 SCFH, the

59

ci~

0
Q

Q

1.-I

Figure 2-23:
indicated at

90 -

80

70

60

50

40 -

30 -

20

10

0-
0

Plot
T50 =

4 8 12
Time (min)

16

of the the two leak cases from Figure 2-10, with the
8 and T30 = 12.

20

peak values

peak moves to T50 = 8. The ratio from Equation 2.58 is therefore

30 - _3 30. 12
___ _ 0.9

50- 5 0 50-8

which indicates that our measured values of T are relatively consistent with the mea-

sured leak rates. The small discrepancy can be explained by the presence of a pre-

existing leak in the system while we conducted our tests. An existing leak of just

10 SCFH would explain this particular discrepancy.

The data in Figure 2-23 was taken during the night, when crew usage was minimal.

The developed model for the system indicates that crew usage should not affect the

location of the peak. To demonstrate this, we collected pump data from the SENECA

during working and evening hours with a variety of introduced leaks. Figure 2-

24 shows such data collected over approximately 48 hours with an added leak of

50 SCFH. While the general shape of the distribution has changed compared to the

nighttime data, the location of the peak corresponding to the new T has changed only

slightly, as predicted.

60

30 SCFH ------
50SCFH

70
50 SCFH

60

50 -

40 --

;z:-3-

20-

10-

0
0 4 8 12 16 20

Time (min)

Figure 2-24: Data recorded on the SENECA during working and evening hours, when
crew usage was high. The peak corresponding to the leak still shows up in nearly the
same place despite the additional usage, as expected. TheT5-s line from Figure 2-23
is shown for comparison.

2.1.5 Conclusions

The diagnostic indicator developed here for the SENECA's vacuum system leads to

two primary conclusions. The first is that electrical non-intrusive load monitoring

and diagnostics can be applied to pneumatic cycling systems with excellent results.

With statistical methods like those developed here, usage due to expected loads and

unexpected leaks can be detected and differentiated without the need for additional

instrumentation on the air system.

Second, this work demonstrates a number of necessary capabilities of the NILM

framework. For example, the large amounts of test data collected from the SENECA

required a disconnected system capable of unattended recording, storage, and transfer

of data, which is presented in @4.2. The diagnostic itself, which applies new statis-

tical methods on top of previously developed techniques like AC preprocessing and

transient identification, demonstrates how new forms of analysis can be developed

through the flexible use of existing tools. The software framework in Chapter 5 has

been created with this in mind.

61

Check Heat Load

Valves Throttling

Inlet frLoad

Strainers Pumps Overboard
Throttling

Overboard

Figure 2-25: Diagram of the SENECA auxiliary seawater (ASW) system including

the two primary pumps. From [6].

2.2 Mechanical Coupling Failure

The Auxiliary Seawater (ASW) system on the USCGC SENECA provides another

informative example of the types of diagnostic indicators the NILM can create. The

ASW pumps were experiencing premature failure of a motor coupling that was proving

to be a maintenance burden [6], and so the NILM was employed to detect this coupling

failure before it occurred. The methods developed for this diagnostic demonstrate a

new class of frequency-based analysis for the NILM framework to support.

A diagram of the ASW system is shown in Figure 2-25. It has a pair of pumps, each

driven by an induction motor in the configuration shown in Figure 2-26. The motors

are connected to the pumps through a flexible rubber coupling to provide controlled

failure in the case of blockage or other mechanical problems. These couplings were

observed to tear and fail more often than expected, after only 8-13 pump starts [6].

To investigate these failures, the NILM was used to record voltage and current, and

power spectral envelopes were computed using the preprocessor.

2.2.1 SENECA Data

Figure 2-27 shows the power transient of one pump start. It was observed that this

startup transient contains a brief region of high-frequency oscillation as denoted in

62

ROM

Induction Motor

Coupling (inside cage)

Seawater Pump

Figure 2-26: Photograph of one ASW motor and pump.
connects the two in the middle. From [6].

0

200

180

160

140

120

100

80

60

40

20

0

A flexible rubber coupling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

Figure 2-27: Power usage measured at the motor during the startup of one of the
ASW pumps. A characteristic high-frequency oscillation is visible in region R near
the start of the transient.

63

P1

- -

- -

- I

- I

R
- -

- -

- -

- -

N

b0

Q

-d

.5

1-
Pump Start A

35 40 5 40 55
1-

Pump Start B

0
35 40 45 50 55

1-
Pump Start C

0
35 40 45 50 55
1

P Start D

0
35 40 45 50 55
1

Pump Start E

0
35 40 45 50 55

Frequency (Hz)

Figure 2-28: Plots of the spectral content of the high-frequency oscillation in five ASW
pump starts. The magnitude increases around 44 Hz as the coupling progressively
fails. From [7].

region R of the figure. Furthermore, empirical testing indicated that the magnitude

of this "ripple" changed as the coupling degraded [7]. In order to better visualize

this change, a 16-point data vector corresponding to the region R was extracted

from a fixed offset in each startup transient. As detailed in [6] and [7], a 128-point

windowed discrete Fourier transform (DFT) was then used to extract the frequency

spectrum. This showed that the observed spectral content was concentrated around

approximately 44 Hz.

Figure 2-28 shows the relevant portion of the frequency spectrum corresponding

to five pump starts as the coupling progressively fails. Pictures of the physical cou-

pling failure during these tests are provided in Figure 2-29. These results verify that

the magnitude of the observed high-frequency oscillation does increase as the cou-

pling fails. Furthermore, as the plots show, the frequency of the oscillation does not

significantly change, which simplifies tracking of this trend.

64

Figure 2-29: Photographs of the degrading ASW pump coupling during failure. The
letters correspond to the pump starts shown in the spectral plots in Figure 2-28.
From [7].

2.2.2 Simulation and Analysis

The spectral content around 44 Hz is a measurable quantity that appears to be

strongly related to the physical state of the coupling between the induction motor

and the pump. For this to be used as a reliable diagnostic indicator, it is important

to verify that this effect is still present when the coupling fails in different ways and

to determine the dependence on the motor and other system parameters. As with

the cycling system in §2.1, this verification was performed through simulation.

The model used for the mechanical simulation is shown in Figure 2-30. The

coupling is modeled as a damper and spring between two independent inertias. The

derivation of the state equations based on this and an electrical model of an induction

motor is detailed in [7], as are the particular parameters used for this simulation.

The simulation showed that the system behaves as predicted by earlier analy-

sis. See [6] and [7] for complete results. Specifically, decreasing either the damping

coefficient or the spring stiffness, which are effects that would be expected as the

coupling fails, increases the magnitude of the peak seen in the spectral content of the

65

L)r, Or Damper, D

JIV JP

Spring, k WP OP
Motor Pump

Figure 2-30: Model of the ASW motor, coupling, and pump system, as presented
in [7].

power envelopes. Adjusting motor or pump parameters does cause this peak to move

slightly, but it remains at an effectively constant frequency for any given motor and

pump combination. Furthermore, it was determined from the simulation that the

peak can be expected to be present somewhere between 30 Hz and 60 Hz on a typical

system [6, 7].

2.2.3 Indicator

The final process for computing the indicator for the state of the mechanical coupling

is as follows [7]:

1. Find the spectral envelopes of real power usage using the AC preprocessor as

described in §1.1.2.

2. Locate the transients corresponding to pump starts using techniques as in §1.1.4.

3. Use the DFT to compute the spectral content X[k] of a 16-point region following

the start of the transient.

4. In X[k], determine the frequency w, of peak spectral content between 30 Hz

and 60 Hz.

5. Approximate the energy E contained in X[k] in a small frequency band centered

at wp.

This energy E is the diagnostic indicator, and larger values are an indication of higher

coupling degradation.

66

2.2.4 Conclusions

The ASW coupling failure can be detected by a diagnostic indicator that, like the

indicator for pneumatic cycling systems, utilizes interesting new techniques. In this

case, we apply the Fourier transform to find the spectral content of the power usage,

which itself is already the spectral envelope of the recorded signal. For the data

recorded on the USCGC SENECA, this leads to a highly accurate indicator that can

reliably predict coupling failure [7].

Furthermore, this "transform of a transform" technique may be useful for other

systems exhibiting oscillations, such as variable speed drive control of fans. The

process outlined for computing it also demonstrates some of the required functionality

for the NILM framework, and suggests that a general-purpose language for specifying

these indicators would be useful. The modules presented in §5.3 provide this ability

by allowing for any external program, such as a Matlab or Octave script, to be used

to process data.

Unlike the cycling system indicator, which requires many hours of recorded data

and long-term statistical output, this indicator is computed from a single transient

and can be returned immediately after a pump starts. The framework defined in

Chapter 5 supports both of these cases equally well by not placing any particular

restrictions on the amount of data processed or the rate of output of any particular

indicator.

67

68

Chapter 3

Data Acquisition

Data acquisition is the first step of any monitoring and diagnostic system. In a

typical NILM installation for AC data that will be passed to the preprocessor, we

require a single voltage measurement and one current measurement per line phase.

For software-based classification and diagnostics, a sampling rate of approximately

8 KHz per measurement is typical, and a resolution of at least 12 bits is desired. This

resolution translates to approximately 80 mV per bit when sampling voltage from

120 volt AC service.

The hardware used for data acquisition has evolved with the computers that do the

processing. Early work with software-based load monitoring and diagnostics at MIT

used an Advantech PCL-818 acquisition card interfaced via the Industry Standard

Architecture (ISA) bus of standard personal computers. The Peripheral Component

Interconnect (PCI)-based Advantech PCI-1710, described below, was in use when this

work was started. To support future computer hardware, a new Universal Serial Bus

(USB) module was developed for this thesis and is described in §3.2 below.

3.1 PCI-1710 card

The Advantech PCI-1710 is a PCI card for a standard PC. It provides 16 single-ended

channels or 8 differential channels of 12-bit analog input at an overall acquisition rate

of 100 kilosamples per second. The card connects to an ADAM-3968 interface board,

69

Figure 3-1: Photograph of the Advantech PCI-1710 data acquisition card, used to
record voltage and current data into a desktop PC.

which provides terminal connections for each channel, through a 68-pin SCSI-II cable.

The software driver for the PCI-1710 provides a configuration and data interface

for the Linux operating system through the /dev/pci1710 character device node.

The output from this device is the recorded data expressed as 16-bit signed integers.

Typically, the program pci2asc is used to convert this raw data into a stream of

ASCII numbers formed into columns, where each column contains numbers from 0 to

4095 representing the measured data. Minor additions and changes to the software

were made as part of the development of the data recording system in §4.2 to improve

driver support for the Linux 2.4 kernel.

Using this PCI card demonstrated a number of practical drawbacks. The most

significant is that it requires a computer with an available PCI slot. This makes

it difficult to use the card in small and application-specific computers that do not

provide the same expansion capabilities as a desktop PC. It also precludes the use of

a laptop, which would add convenience when doing initial testing in remote locations.

Other drawbacks of the PCI-1710 include the high hardware cost, the limited

length of the SCSI connection cable, and the difficulty in using more than one acqui-

sition card per computer. There is also a need to continuously update the drivers to

70

track changes in the Linux kernel, and this has not been done for the latest kernel

series, Linux 2.6. To address these issues, a custom USB-based module was developed

as a replacement.

3.2 Custom USB Module

A custom data acquisition module, the USBADC, was developed in conjunction with

Professor Steven R. Shaw at the Montana State University as a replacement for ex-

isting cards like the PCI-1710. This new module utilizes the common Universal Serial

Bus (USB) interface, which is available on nearly every computer system currently

available. New USB standards have remained backwards compatible with previous

ones, indicating that USB is a stable interface for use with future systems as well.

Full-speed USB provides a bidirectional interface with a theoretical bandwidth of

up to 12 Mbps. It supports up to 127 devices connected to one host, and provides up

to 2.5 W of power to each device. USB cables are thin and flexible with a maximum

length of 5 m, or 30 m with repeaters [5]. These features satisfy the requirements for

NILM data acquisition well.

3.2.1 Hardware

Our USBADC hardware is shown in Figure 3-2. It consists of a Parallax (formerly

Ubicom, Scenix) microcontroller, an FTDI USB interface module, and an Analog De-

vices ADC. A detailed board layout and circuit schematic are presented in Appendices

B.1 and B.2.

The analog input is digitized by the Analog Devices AD7856, a 14-bit single supply

analog to digital converter with a total throughput of 285 kilosamples per second. It

supports eight single-ended analog inputs and communicates with the microcontroller

through a serial interface. In this module layout, we expose the inputs of the ADC

directly to the external header on the board, which means that the proper input

range of the system matches the AD7856 range of 0-4.096 V. To allow for the highest

signal quality, no additional protection circuitry was added to these lines, and so it

71

Figure 3-2: Photograph of the custom USB data acquisition module developed for use
with the NILM. The hardware was manufactured and provided by Professor Steven
R. Shaw of the Montana State University.

is important that applied voltages to the module do not go outside this range.

The Parallax SX28AC provides the logic and control for the board. This series

of microcontrollers is based on the Microchip PIC architecture and supports clock

speeds of up to 100 MHz. The SX28 has 20 bidirectional digital I/O lines and is

programmed using an external interface connected to the clock input. Our module

uses a 50 MHz oscillator and provides a connector to allow quick firmware reprogram-

ming both during development and in the field. The firmware, described in §3.2.2,

synchronizes and controls the sampling of the ADC and handles the data transfers

between the ADC and the USB module.

USB communication is performed through the DLP-USB245M module from Fu-

ture Technology Devices International (FTDI). This convenient interface is built

around the FT245BM chip and implements much of the low-level USB protocol by

providing a fixed function first-in, first-out (FIFO) interface for transferring simple

streams of bytes. The physical DIP layout of the module abstracts away connector,

layout, and noise issues associated with the USB physical interface. Using this module

72

also avoids the cost and inconvenience of needing to apply for a custom USB vendor

identifier (VID) from the USB Implementers Forum, as it comes preconfigured to use

the FTDI VID. The DLP-USB245M communicates using an 8-bit parallel interface

to the SX28 microcontroller and automatically buffers and packages outgoing data to

conform with the USB Bulk Transfer specification. Signals are available to the micro-

controller to indicate when the 384-byte transmit and receive buffers in the FT245BM

are full or empty. The module also provides for a persistent identification tag to be

set and queried through USB Control Transfers, which is useful for differentiating

between multiple USBADC boards connected to a single machine.

3.2.2 Firmware

The firmware, listed in Appendix A.2.1 as adc. asm, receives commands from the

computer via USB. Because the DLP-USB245M abstracts away the USB interface and

provides a simple FIFO, the microcontroller sees a simple command stream consisting

of sequential bytes of data. There are three primary states in which the firmware can

be running.

Stop

This state is the default on power up and when the reset button is pressed. It is

also entered on reception of the character S from the PC. The microcontroller will do

nothing and wait for another command.

Benchmark

The character B begins a benchmark. Benchmarking is useful to test and verify the

capabilities of the firmware, software driver, computer, and any hubs and repeaters,

particularly when using multiple devices. In this mode, the microcontroller continu-

ously sends a repeating string of 27 characters to the USB FIFO as quickly as it will

accept them.

73

Command: A x y y
A Literal ASCII character 'A'.
X Number of channels, ASCII '1' through '8'.

yy Sampling divisor, as a two-character hexadecimal number.

Table 3.1: Format of the command sent to the USB ADC hardware to configure and
start conversion.

Run

This is the primary mode of the device. The command to enter this mode is a four-

byte string of ASCII characters following the format shown in Table 3.1. x indicates

the number of ADC channels that will be read and returned. yy represents the

sampling rate divisor, which must be nonzero. The actual per-channel sampling rate

is computed as:

R 200 KHz (3.1)
x * yy

The sampling rate can vary, therefore, from a maximum of R = 200 KHz/1 = 200 KHz

for a single channel, to a minimum of R = 200 KHz/(8 - 255) 98 Hz per channel

when sampling from all eight.

Upon entering the Run state, the firmware first sets up a timer-based interrupt to

occur at rate R. The on-board LED is lit to indicate that acquisition has started. At

each interrupt, the next analog channel from 1 through x is captured and converted.

While conversion is in progress, the firmware avoids changing any outputs on the SX28

I/O lines in order to minimize potential interference and noise on the board. After

conversion completes, the result is read out sequentially through the serial interface

of the ADC.

Each 14-bit channel measurement is packed into two 8-bit bytes as shown in

Figure 3-3. The highest bit is used to denote the pair corresponding to the first

channel, for synchronization purposes on the computer. Each pair of bytes is then

sent to the USB FIFO for transfer to the PC.

If the USB transmit buffer is full when the firmware has data to send, it will wait

until the buffer empties. If the buffer is still full when an interrupt occurs, indicating

74

Byte 1

C 0 D 13 D 12 D11 Dio D9 D8

Byte 2

D7 D6 D5 D4 D 3 D2 D1 Do

C: 1 for the first channel, 0 otherwise

D 13 ... Do: 14-bit data from the ADC

Figure 3-3: Data format used by the USBADC firmware to transfer data from the
ADC to the PC.

that another conversion should start, the firmware will turn off the on-board LED to

indicate that data has been lost. This condition indicates that the computer did not

request to receive the data from the USB FIFO quickly enough. The driver software,

described below, tries very hard to ensure that this does not happen.

3.2.3 Driver Implementation

One of the initial benefits expected from using the DLP-USB245M module was that

software drivers already exist for a number of operating systems including Windows

and Linux, as the FT245BM is a relatively common part. The drivers provide a

virtual serial port that provides a transparent FIFO interface to the computer similar

to that at the microcontroller.

Unfortunately, the existing drivers in Linux 2.4 and 2.5 turned out to be insuf-

ficient for our needs. In particular, the ftdi-sio driver was written with relatively

low-speed uses in mind, and is not particularly careful regarding throughput and la-

tency. Extensive benchmarking showed that the transfer performance varied greatly

between versions of Linux and the model of USB host controller in the computer. A

small selection of high-end external USB 2.0 hubs were found to sometimes improve

the situation by splitting large USB high-speed requests from the computer and sub-

mitting multiple smaller full-speed requests to the module, but even this technique

75

did not work on all tested systems.

To improve the stability and performance, a new custom software driver called

ftdi-adc was written specifically for the USBADC. An in-kernel replacement for the

existing ftdi-sio was considered, but due to the rapid development of Linux, it was

apparent that the maintenance of this driver could pose difficulties for future systems.

Instead, the open-source libusb library is used. Libusb provides a stable cross-platform

interface that exposes all of the details of each USB transfer to programs running in

userspace outside of the kernel, providing a large amount of flexibility in the processing

that is done.

The main components of the ftdi-adc source code are listed in Appendix A.2.2.

Particular implementation details are explained in the following sections.

USB Transfers

All USB transfers are initiated by the host. If a device like the USBADC has data to

send, it must wait for a USB Request Block (URB) from the PC that requests data

on the proper endpoint. Requests and transfers on a USB endpoint occur in discrete

frames at regular intervals. For a full-speed USB chip like the FT245BM using bulk

transfers, the frame interval is 10 ms and the data payload consists of up to 64 bytes

per transfer per frame. Multiple transfers may occur in one frame.

When the host wants to request more than 64 bytes of data, the host controller

interface (HCI) driver layer will divide the request into multiple transfers as necessary.

For example, a request from the host for 640 bytes may be translated into ten 64-

byte requests and sent in a single frame. Upon receipt of the data, the HCI will then

combine the responses before returning them to the requesting program.

Even when sufficient bandwidth is available, the USBADC has a potential data

loss condition that can occur between two requests, which is a major issue for the

software driver. Recall from @3.2.1 that the transmit buffer of the FT245BM chip

is 384 bytes in size. Consider the case where the command A104 has been sent to

the firmware, indicating that the module should begin sampling and returning one

channel of data at 100 KHz. Each sample consists of two bytes, which means that

76

the amount of time until the transmit buffer fills is

384 bytes 1 sample 1 second
buffer 2 bytes 100 kilosamples

In other words, the transmit buffer will fill, and data will be lost, if only 1.92 mil-

liseconds pass between two requests from the computer for data. This places two

conditions on the PC driver for reliable transfer:

1. There must be multiple URBs presented to the bus during each USB frame,

since the fixed frame interval indicates that the next may not occur for up to

10 Ms.

2. There can be little to no delay between the time when all existing URBs are

fulfilled and new URBs are submitted, or an entire USB frame opportunity may

be "missed".

These goals are met by the driver through asynchronous URB submission and schedul-

ing delay minimization, described below.

Multiple URB Submission

The functions for submitting URBs through libusb are synchronous, meaning that

the program blocks while waiting for a response. This prevents the userspace driver

from having multiple URBs reach the HCI at once, since it must wait for a previous

response before sending a new one. Instead, the ftdi-adc program bypasses libusb

for URB submission, and uses the underlying Linux usbdevf s driver directly. This

virtual filesystem provides a stable interface to the HCI in much the same fashion as

libusb, but supports asynchronous operations as well.

Up to 16 URBs are submitted by the driver at any given time. Each URB requests

4 kB of data, which gets further subdivided by the HCI to fit in the 64 byte maximum

bulk transfer size. This large number of pending requests ensures that the host

controller will be able to immediately respond to a completed transfer by beginning

77

another. URBs are recycled and resubmitted immediately upon notification of their

completion.

Delay Minimization

Even with multiple asynchronous URB submissions queued at the HCI, they will still

eventually run out if they are not resubmitted by ftdi-adc. Most of the time, this

is not a problem. However, all user-space programs are subject to process scheduling

and preemption in the Linux kernel, which means that the kernel can switch to

another kernel or user process at any time. Worse, there are no guarantees of when

a stopped process will be resumed. Factors such as I/O load and dynamic metrics of

process behavior are considered by the kernel, and scheduling delays can easily range

from microseconds to seconds or longer. For a userspace program like the USBADC

driver, this problem cannot be fully solved, but there are a two main techniques that

are used to minimize the delays and the subsequent USBADC data loss they might

incur.

The first is to increase the process priority significantly. Linux provides the ability

to assign processes to one of a number of scheduling queues in the kernel. The driver

utilizes SCHED-FIFO, which provides the most aggressive scheduling available. Placing

a process in this group ensures that it will always preempt all other user processes

when it needs to run.

Secondly, the USB URB processing is fully separated from the data output. The

driver runs a second thread at normal priority that handles all output to disk or

other programs. The incoming USB data is sent to this thread using shared memory

segments protected by mutual exclusion locks. The default size of this memory buffer

is 4 MB, which is sufficient to handle even long I/O delays.

Results

Using these techniques, ftdi-adc driver works very well. Due to the use of the

usbdevf s driver and aggressive scheduling policies, only Linux systems are supported,

but this does not pose a problem with the systems currently in use. It has been tested

78

Option Description
-- id string ID of which USBADC to use. If not specified, the first

available is chosen.
-- set-id string When only one USBADC is connected, set its ID to the

given string and exit.

-- list List all detected and available USBADC devices and exit.
-- command string Initial command to send the device. Overrides the Axyy

default.

-- channels 1 - 8 Number of channels of data to sample and receive.
-- divisor 1 - 255 Sampling rate divisor.
-- retry Keep retrying if the device is disconnected. This allows

the USBADC to be temporarily unplugged if necessary.
-- verbose Print additional diagnostic and informative messages to

stderr.

Table 3.2: List of the command-line options supported by the ftdi-adc program.

to work on Linux 2.4 and 2.6 series kernels, and is expected to work without change on

future kernels. It handles multiple devices through the use of persistent, configurable

device ID strings, and works under moderately heavy system load without losing data.

If necessary, the buffer sizes and submitted URB count can be increased to provide

even more protection against data loss.

3.2.4 Driver Usage

The ftdi-adc program uses the command-line arguments shown in Table 3.2 to

control its behavior. Output is sent directly to the stdout stream in the 16-bit

format shown in Figure 3-3. An associated program named convert, listed in Ap-

pendix A.2.3, is typically used as a filter to convert this binary format into a colum-

nated ASCII form similar to that of pci2asc for the PCI-1710. The driver will

continue to receive and output data until the process is terminated by a keyboard

interrupt or other signal, or until the USB hardware is disconnected.

An example typical invocation of the program is:

ftdi-adc -- channels 2 -- divisor 10 -- verbose I convert > raw.txt

This will record two channels of data at a rate of 10 KHz each, convert the result into

a two-column list of ASCII numbers, and write the output to the file raw. txt.

79

80

Chapter 4

Support Software

A number of support software components were developed as part of this work to facil-

itate data collection, processing, and storage, as well as to demonstrate the potential

of the NILM system. Along with the driver software written for the data acquisition

hardware discussed in Chapter 3, this software provided the primary environment for

the majority of the work presented in this thesis.

4.1 Preprocessor

The preprocessor, prep, is the program that computes spectral power envelopes from

the raw current and voltage measurements as described in §1.1.2. The basis of the

preprocessor is the code written by Professor Steven R. Shaw of the Montana State

University and presented in [13].

The architecture of the existing prep contained a number of issues that made it

inconvenient to use. In particular, the program relied on compiled binary modules

dynamically linked at run-time to perform input and data processing. While this

allowed for the input type and processing to be changed easily, it also complicated the

build process, reduced portability, and required that multiple binary objects be kept

together and installed wherever the package was used. Another design drawback of the

program is that certain mathematical constants in the spectral envelope computation

were hard-coded and required recompilation from source to change.

81

Specific changes were made to the preprocessor to address these issues and to

match observed typical usage. The major areas that were modified are outlined in

the following three sections.

4.1.1 Consolidated Text Input

The existing hardware-specific input methods were removed from the preprocessor.

Instead, a single input method was created that takes ASCII-formatted numerical

data. Each text-based line of input contains two floating-point values representing the

instantaneous measured voltage and current. A fixed offset is accepted and the zero

point can be specified as a command-line option. Both the PCI-1710 and USBADC

data acquisition hardware drivers in Chapter 3 can be configured to present output

in this form.

Besides simplifying the code in the preprocessor, text input also provides a more

convenient interface for processing data generated by other programs like the ASW

pump simulation in §2.2.2, and allows the preprocessor to fit more easily into the

framework of Chapter 5. For backwards compatibility with existing installations, an

option to handle the binary data format of the PCI-1710 data acquisition card is

provided.

4.1.2 Build System Improvements

The requirement that the input and processing code be provided in a separate dy-

namically linked object was removed. With the consolidated input method, only one

function is needed to process input data, and so prep is now built as a single bi-

nary containing the frontend, input, and processing components. This does limit the

flexibility of any particular build of prep with regards to future preprocessing meth-

ods. However, the built binary is very small on a typical Linux system, and multiple

versions can be developed for specific tasks if this is found to be necessary. This pro-

vides similar functionality to the previous implementation, is more straightforward,

and allows for better control of algorithm-specific configuration options.

82

Option Description
-- harm n Number of odd harmonics for which to compute spectral

envelopes.

-- basis n Number of points in basis (internal parameter).
-- inc n Number of points to increment (internal parameter).
-- rows n Number of rows in matrix (internal parameter).
-- lines n Process n lines of output, then exit.
-- annotate Annotate the output with the line numbers of the corre-

sponding input.

-- pci1710 Use the old PCI-1710 binary data format.
-- zero v Zero point for text input format.

Table 4.1: List of the command-line options available to the prep program.

The custom build system was also replaced with a system based on the GNU

Autotools (Autoconf, Automake, and Libtool). This change allows for easier integra-

tion with existing packaging systems, provides features to allow better customization

of where and how the program is built and installed, and improves portability. For

example, this new build system will allow prep to be more easily cross-compiled for

a Windows system from a Linux host.

4.1.3 Improved Command-Line Options

Several constants that were previously hard-coded in the binary are now exposed as

command-line options. These include the number of harmonic indices for which to

compute spectral envelopes and other tunable internal parameters. It is expected that

future configurable aspects of the preprocessor will be exposed through command-

line options rather than requiring changes to the source code, when possible, in or-

der to better facilitate flexible preprocessing by the NILM framework. The current

command-line options are shown in Table 4.1.

4.2 Data Logging

Development of NILM diagnostics and concepts often requires large amounts of real-

world data for analysis and cross-verification. An early problem identified as part of

83

Figure 4-1: Screenshot of the main menu-system interface.

this work was that such long-term data collection was often difficult to perform due

to the wide variety of systems and conditions in which they were being monitored.

Indicators like those developed in Chapter 2 on the USCGC SENECA may require

months of reliable unattended data collection, while experiments on system models

in the lab may require more interactive control of the collection process. To this end,

a menu-driven system was created to automate and simplify data acquisition while

providing a suitable level of interactive control.

4.2.1 Overview

The menu-system software package, listed in Appendix A.3.1, is a set of scripts and

modifications to a standard Linux system to facilitate data collection, processing,

storage, and retrieval. The software utilizes the preprocessor in §4.1 and the PCI-

1710 data acquisition hardware in §3.1.

The user interface is based around the full-screen menu shown in Figure 4-1. This

menu is created by the shell script menu-system and is based on interface components

provided by the open-source software project zenity. The menu is loaded automati-

cally at boot, and allows the user to both monitor and interact with the system via

the keyboard. Specific features are detailed in the following sections.

84

Identifier Description
start Started recording preprocessed data.
startraw Started recording raw data.
stop Stopped recording data.

reopening About to close this file and reopen it.

reopened Reopened this output file. Continuing to record.

Table 4.2: List of the possible event identifiers in the comments inserted into recorded
data streams by run-prep.pl.

4.2.2 Data Acquisition and Storage

The user may choose to record raw voltage and current data, or to pass the incoming

data through the preprocessor and store the spectral envelope data instead. Recording

preprocessed data is generally preferred when applicable because the storage require-

ments are an order of magnitude lower.

Data recording and processing is performed as a background process controlled

by the Perl script run-prep.pl. This script collects data from the PCI-1710 card,

optionally executes the preprocessor, and stores the output to a standard ASCII text

file. The process can be controlled from the menu-system script through signals that

cause it to start and stop collection and switch output to a new file.

The generated data file is annotated with timestamps and comments indicating

the source of data as well as any changes that may affect continuity. Each comment

is formatted as follows:

<hostname> <event> = <timestamp>

where <hostname> is the name of the computer that recorded this file, <timestamp>

is the date and time that this comment was added, and <event> is one of the iden-

tifiers described in Table 4.2.

The primary purpose of these comments is to clarify later analysis by reducing

misidentification of data. They also provide a complete record of every time collection

was stopped or started, which can assist greatly in determining how data may have

been affected by unexpected power outages and other temporary failures.

The reopening and reopened events in Table 4.2 are caused by an external signal.

85

Figure 4-2: Sequence of screenshots demonstrating control of the run-prep. pl data
collection process through the interactive menus. The prompts are designed to easily
guide inexperienced users who may need to control systems installed in the field.

This signal indicates that run-prep. pl should close the current data file and reopen

it, without pausing or stopping data collection, which allows for accurate archival.

The snapshot script described in §4.2.3 makes use of this functionality.

Figure 4-2 shows a typical sequence of starting data collection interactively. The

first line of the main menu in Figure 4-1 indicates the current state of data collection.

4.2.3 Snapshots

A "snapshot" is an archive containing of all of the data stored by run-prep. pl for

a given length of time. These snapshots are the files that are periodically retrieved

from the system for later processing. They are an important part of the collection

process because they ensure that the current recorded data file does not grow unman-

ageably large. Furthermore, snapshots are individually compressed to reduce storage

requirements by a factor of 3 or more.

Snapshots are generated by the snapshot-data script. This script renames the

current data file to the form snapshot-YYYYMMDD -HHMMSS denoting the date and

time at which the snapshot was taken. Then, run-prep.pl is signalled to indicate

86

that it should close and reopen its output, causing it to stop writing to this file and

begin writing to a new one. Finally, the snapshot data is compressed with gzip or

bzip2 and stored in the data subdirectory for later retrieval.

By default, snapshots are generated at the top of every hour by a scheduled cron

job. They can also be created at any time by interactive request from the menu. The

comments embedded in the recorded data, described in §4.2.2, resolve any ambiguity

that may arise from sporadic or inconsistent snapshots.

The main menu in Figure 4-1 displays information pertaining to snapshots. This

includes the current date and time, the approximate date range of snapshot data

stored on this computer, the total amount of data stored in snapshots, and any data

that may have been recorded but not yet placed in a snapshot. It also provides an

estimation of the number of optical media disks required to retrieve the snapshot

data.

4.2.4 CD and DVD Burning

A primary feature of the menu system is to facilitate and simplify data retrieval. The

monitoring systems we have installed include a CD-R or DVD+R(W) drive to which

snapshot data can be copied. In some cases, this is done to provide rapid access to

the data for analysis, but a more typical use is to account for storage limitations on

the PC, which may only have the space to hold a few weeks' or months' worth of

data.

The script burn-cd handles the selection of an appropriate number of snapshot

files, the building of a disk image, and the process of burning the image to disk. To

simplify operation, the data to burn is automatically chosen starting with the oldest

snapshot data. Screenshots of the process of burning a CD through the interactive

menus are shown in Figure 4-3.

Once a disc has been burned, an option is provided to burn additional copies of

the same data. Then, the recorded snapshots are removed from the data directory

and placed in a temporary queue that is automatically purged when disk space runs

low. This temporary queue has been found to be useful for manual data recovery in

87

Figure 4-3: Sequence of screenshots demonstrating the automated burning of snapshot
data to CD through the burn-cd script.

the case of lost CDs or other unexpected situations.

In practice, the CD and DVD burning abilities have proven to be very useful. Data

collected from the USCGC SENECA while underway, for example, was periodically

written to CD by crew members and returned via mail for analysis. The software has

been successfully used to collect hundreds of gigabytes of preprocessed and raw data

from various systems.

4.3 Graphical Demonstration

The graphical demonstration software first introduced in §1.1.5 is a tool for visualizing

the process of capturing data and identifying loads. The primary goal of this software

is to introduce NILM concepts and features within a clean interactive interface that

automates and simplifies the transient-based training and identification described

in §1.1.4. Incoming data from a hardware acquisition card is classified based on

trained exemplars, and the software provides indication of any recognized events.

88

Program options and modes Currently visible waveforms
Realtime scrolling data display

Matched event: (0.805467, 0.973208) Computer On
Matched event: (0.803945, 0.966634) Heat Gun Off
Matched event: (0.81 8343, 0.994653) Computer Off
Matched event: (0.81 3625, 0.987590) Fan Off
Matched event: (0.800546, 0.987660) Computer On

Running list of detected transient events

Figure 4-4: Main window of the nilmgui graphical demonstration program.

These events typically correspond to the turning on or off of some particular load,

but can more generally be associated with any unique rapid change in the power

consumption of some device.

Figure 4-4 highlights the features of the main nilmgui window. The software

performs capture, preprocessing, and real-time display of power envelopes in the top

half of the screen. These waveforms scroll to the left as new data is added to the

right, similar in fashion to a continuous strip chart recorder. In the lower half of the

screen, a text display provides a running log of detected matches between the incoming

data and previously recorded transient exemplars. Matches are determined using the

method described in @4.3.1, and matching is performed simultaneously against all

existing exemplars.

These recorded exemplars can be viewed, created, and modified from within the

"Exemplars" dialog, shown in Figure 4-5. This dialog provides the user with the

89

Figure 4-5: Screenshot of the "Exemplars" dialog in the nilmgui software. Five
transients have been recorded, and guided training of a sixth is in progress.

ability to view, rename, and delete existing exemplar waveforms. To create a new

exemplar, an interactive process of recording the transient is performed. First, the

user selects the "train new" option and provides a name. The nilmgui software waits

for the incoming data signal to settle, and the user is prompted to trigger the desired

event by, for example, physically turning the device on or off. Then, when a transient

is detected, the software again waits for the signal to settle. Finally, the software

automatically extracts a small region around the detected power transient and stores

it as a new exemplar. Once the system has been trained in this fashion, the recorded

exemplars can be saved to disk for later use.

4.3.1 Implementation

The code for the NILM graphical interface is provided in Appendix A.3.2. It is written

in C++ and utilizes the Trolltech Qt toolkit library. The scrolling plot that displays

the current power waveforms is based on functions provided by the Qt Widgets for

Technical Applications library, Qwt.

90

Input Plugins

The nilmgui software utilizes a plugin architecture for data input. Each plugin,

which is a shared object module linked by nilmgui at run-time, provides a struc-

tured interface for configuration and data transfer. The current systems utilizing this

software are based on the cmdline plugin, which generates data using any existing

command-line program as the source. Through this plugin, the data acquisition hard-

ware and software described in Chapter 3 can be used. The command to execute is

provided through the plugin configuration interface, allowing it to be changed without

recompilation.

Transient Matching

As data arrives from the input plugin, the P and Q, waveforms are individually

matched against each of the transient exemplars by computing metrics based on the

least-squares error. The incoming waveform is first used to create a data vector 5 of

the same length n as the corresponding exemplar vector e. The least-squares error E

between the two is defined as

n

E = Z(xi - e)2 (4.1)
i=1

This expression can be expanded and then separated:

n

i=1
n n n

= Z -2 xiei + e (4.3)

The norm of a vector i is defined as

n

= x (4.4)
i:=1

91

and the dot product between vectors Y and C is defined as

n

i=1

Substitute Equations 4.4 and 4.5 into 4.3 to obtain:

E = 512 + 12 2 - 2 C F

Instead of computing this error term directly, we can

and C:

first normalize the vectors Y

2:
2: (4.7)

These new vectors ± and 6 have magnitude 1, and so we can compute the error term

for the normalized vectors as

E = |_|2 + 12 - 2: e (4.8)

= 1 + 1 - 2± - 8 (4.9)

= 2 - 2. - 8 (4.10)

Define the "score" s as

s= I e (4.11)

Substitute s into Equation 4.10 to obtain

E = 2 - 2s (4.12)

This indicates that the error E decreases as s increases; that is, larger scores indicate

a closer correlation between the two input data vectors. The maximum value of s is

92

(4.5)

(4.6)

equal to the maximum dot product between two unit vectors, which is s = 1, and this

corresponds to a perfect match in shape between the incoming data and the exemplar.

The score s is computed using normalized vectors. This metric is therefore inde-

pendent of magnitude differences, and is effectively comparing only the shape of the

exemplar and the incoming data. To account for magnitude, we also consider the

ratio r of the magnitudes of the original vectors:

{ = 1/!11 if I I < I 1 (4.13)

1j/|4 if Iz > |

As with s, larger values of r indicate a better match, with equal magnitudes at r = 1.

The matching algorithm in nilmgui performs this computation of score and ratio

for every exemplar at every data point of the input. Each metric is computed twice,

once for each of the Pi and Q, waveforms. The scores sp and sQ are then combined to

the single weighted score s, based on the relative magnitudes of P and Q1. Similarly,

the weighted ratio r, is calculated from rp and rQ.

Using a heuristic, these weighted values s, and r, are then compared to a config-

urable threshold. An exemplar match is considered to have occurred if both values

are above the threshold. The heuristic also allows for one value to be slightly below

the threshold as long as the other is slightly above it. For example, with a threshold

of 0.95, matches may be considered to occur if any of the following three conditions

are met:

(1) (2) (3)

sw > 0.97 sw > 0.95 sw > 0.93

rw > 0.93 rw > 0.95 rw > 0.97

Further details of this heuristic can be found in classif ier. cpp in Appendix A.3.2.

Once suitable exemplar matches have been found, the match with the highest

weighted score s, and ratio rw is displayed on the main NILM window along with the

name of the matching exemplar. Additional matches are then inhibited for a short

time to prevent spurious matches against the same data.

93

Figure 4-6: Photograph of a demonstration platform built around the nilmgui soft-

ware. Here, the connected power strip allows the system to monitor a lamp, a fan,
and a heat gun.

4.3.2 Developed Systems

The nilmgui software was created and used to build two similar but independent

systems in order to demonstrate the performance and capabilities of the NILM in

different situations. One, the "satellite" demo, was introduced in §1.1.5. In a satellite

environment, there is often a strong desire to reduce weight and power consumption,

and the processor available to run the NILM algorithms was therefore very limited.

Furthermore, the components being monitored are small DC loads with power usage

that is quite dissimilar to typical NILM diagnostics like those explored in Chapter 2.

A tuned version of nilmgui was developed that incorporates optimizations for low-

speed CPUs, reduced memory requirements for embedded systems, and additional

filtering for DC power waveforms with a low signal-to-noise ratio. The resulting

software successfully demonstrated the applicability of NILM techniques to specialized

environments.

Figure 4-6 shows another demonstration system built around the nilmgui soft-

ware. This particular setup, referred to as the "scotland" demo, consists of a standard

94

PC in the MicroATX form factor, an interface box containing power supplies and the

data acquisition hardware, and a universal power strip that accepts many standard

plug types. It can be powered from either 110 or 220 volts, and monitors all devices

connected through the included power strip. Because the software runs with one

common set of training and matching parameters, this system provides an excellent

example of how generalized matching algorithms can automatically adapt to a wide

variety of loads and power systems.

95

96

Chapter 5

NILM Software Framework

The NILM software framework is a collection of programs, libraries, and databases

designed to annotate, store, retrieve, and manipulate the data measured by non-

intrusive load monitoring systems. It is a modular and extensible package that that

defines and implements common data formats and interfaces to support sharing and

interchange between various NILM hardware and software components.

This chapter introduces the concepts and design behind the NILM framework in

§5.1. The implementation of the framework is presented in §5.2 and §5.3, and the

usage of this implementation is discussed and demonstrated in §5.4.

5.1 Design

The primary concept of the framework is that everything is represented as a stream,

which represents either measured data or the results of some particular computation

over a period of time. The raw voltage and current data from a data acquisition card,

for example, would be stored in one stream, and the computed spectral envelopes

from the AC preprocessor would be another. A list of detected power transients

might be a third.

Streams are annotated lists of records and their associated metadata, as depicted in

Figure 5-1. The records are the primary data storage element of the stream, and can

contain any amount of data, but are typically used to store just one set of samples or

97

Stream

Metadata

Record

Record

Record

Record

Figure 5-1: Conceptual layout of a stream in the NILM software framework.

one data point. The metadata notes the origin, type, and timespan of data contained

within the stream's records, and facilitates general-purpose tagging and indexing of

streams.

Streams contain information for exactly one contiguous block of time. This block

may be absolute ("today, noon to 3 pm") or relative ("first three seconds of a training

pattern"), but data with time gaps must be represented as multiple streams. The

software and libraries understand that two streams with matching metadata represent

different time-slices of the same information, and can split and join them as required

to fulfill a request. For example, if one process stores streams consisting of adjacent

ten-minute blocks of recorded data, another process can request an entire hour and

have the smaller streams transparently assembled. This process of stream slicing,

depicted in figure 5-2, allows flexibility in analysis that is independent of how data

was recorded or the behavior of any earlier processing steps. Stream slicing also allows

the underlying data storage methods to choose an optimal way to store data without

exposing such details to the rest of the framework.

98

Stream 1 Stream 2 Stream 3

Stream A No Stream

- - - - tim e

a b c d

Figure 5-2: Example of stream slicing in the NILM framework. Streams 1, 2, and
3 are recorded data from the same source. A request for data between a and b is
assembled and returned as Stream A, while a request for a stream between c and d
cannot be satisfied due to missing data.

5.1.1 Metadata

Metadata associated with a stream serves to uniquely identify the source, type, and

timing of the data records within the stream. The metadata format is designed to

provide a minimum required amount of information to the library and storage layers

to allow for flexible storage and retrieval, while also supporting additional custom

annotations to be used by software built on the NILM framework. The general

metadata layout is shown in figure 5-3. It consists of the following fields:

Tag

The tag is a free-form string that provides a unique identifier for the stream.

Streams that are from the same source but representing different periods of time

would typically be given the same tag. No two streams with identical tags and

types may overlap in time. Example tags include "Building entry, phase A

raw"), "Pump #3 transients", and "Training exemplar #1401".

Type and Flags

The type and flags fields serve to identify the format of records stored in the

stream. The type is an integer or predefined string used by high-level programs,

modules, and filters to denote the type of data in the stream. Different stream

types might represent measured voltage and current, computed spectral en-

velopes, or a list of when some particular event occurred. These type identifiers

99

Metadata

Required:

Tag Type and Flags

Start time End time

Optional:

Keyl Valuel

Key2 Value2

Figure 5-3: Layout of metadata within a stream in the NILM software framework.

can be defined in an application-specific way and do not affect the underlying

storage or retrieval. The flags, on the other hand, indicate fundamental features

of the stream that must be commonly defined throughout the framework. For

example, one flag marks whether slicing may be performed on this stream.

Start and End Time

The time fields indicate the period of time over which the records in this stream

are defined. These fields may represent either absolute times and dates, times

relative to some reference, or simply the length of data stored in the stream.

The correct interpretation of the timestamps is designated in the stream flags.

Key/Value pairs

Depending on the stream type, programs that utilize the NILM framework

may wish to add additional annotations to a stream. The framework supports

this through arbitrary <key, value> pairs. Spectral envelopes from the AC

preprocessor, for example, can be annotated with the tag of the stream from

which they were computed. Keys provide a textual description of the additional

information, while values may contain either text-based or binary data.

100

Raw Data:

Timestamp Voltage Current

Spectral Envelopes:

Timestamp Pi Qi P3 Q3 As Q5

Detected Events:

Timestamp Event Identifier

Power Spectrum:

Frequency Power Density

Figure 5-4: Examples of potential data record formats in a NILM stream.

5.1.2 Records

Each record consists of a timestamp and associated data. The format of this asso-

ciated record data is flexible and can be interpreted based on the stream type and

stream flags. The record data may be strings, integers, floating point numbers, lists

of these, or any application-specific binary data. The timestamp field is used by the

framework for stream slicing, and may alternatively be used to hold other monotoni-

cally increasing unique identifiers for streams where slicing is not supported and true

timestamps are not applicable.

Representative examples of the record formats corresponding to various stream

types are shown in Figure 5-4 and described below. These formats are by convention,

and neither the format nor the length of the record data is enforced by the storage

or library layers of the framework.

Raw data: Raw voltage and current data, as measured by the data acquisition

hardware. The scaling is arbitrary and may be noted in the stream metadata.

Spectral envelopes: Spectral envelopes could contain any number of harmonics.

The particular stream type or custom metadata within the stream could be

used to indicate the number of elements per record.

101

Client programs and modules

Insert Filter Extract

Stream Interface Library

Data Storage

SQL Database File-Based

Figure 5-5: Diagram of the software layering in the NILM framework.

Detected events: A transient event detector can generate a new stream with

records that note the time and identification of any matches.

Power Spectrum: For some data sets, such as a power spectrum computed over a

length of time, the timestamp can be replaced with a more appropriate entry like

frequency. A stream containing records like this would not support automatic

stream slicing.

5.2 Implementation

The implementation of the NILM software framework uses logically separate layers to

facilitate future changes and alternate configurations. This layering is shown graph-

ically in Figure 5-5. The core software component is the Stream Interface Library

(SIL), which provides a stable interface through which individual modules and client

programs can access the underlying data storage.

A reference implementation that provides database-backed storage, an object-

oriented SIL, and command-line client programs is included in Appendix A.4. Specific

details of these components are described in the following sections.

102

5.2.1 Database Storage

The stream metadata format is designed for straightforward implementation in a re-

lational database such as MySQL, following closely the specifications in section 5.1.1.

This allows complex queries to be performed on the streams in a standard and well-

known language. Stream metadata, records, and key/value pairs, are stored in the

database in separate tables, with primary and foreign keys linking them together. A

MySQL database schema for such an implementation is listed in Appendix A.4.1.

Depending on the amount of data present and the required processing speed,

the stream records may be stored either in or out of the database. When storing

in the database, different record types may be assigned to different tables that are

optimized for their particular structure. This is primarily a decision that can be made

at the interface library and database layers, although such specialized tables would

necessarily constrain the format of data provided by high-level modules.

Very large datasets may be more optimally stored outside the primary database.

In this case, the database entry for the stream might contain the names of external

files or pointers to additional databases that contain the record data, and the library

layer would handle the details of retrieving the data from the external source.

5.2.2 Stream Interface Library

The Stream Interface Library provides a number of library functions designed to build

abstractions for database access, supply tools for manipulation of stream, metadata,

and record objects, and create a facility for selecting and querying streams based on

metadata and key/value pairs. Client programs are provided with an object-oriented

view of the data and streams, and it is the job of the library to convert these objects

to and from their respective database representations.

An implementation of the SIL as a C++ library, libstream, is presented in Ap-

pendix A.4.2. This library uses the MySQL++ API to connect to and perform queries

and operations against the MySQL database backend. It supports flexible connec-

tion options that include authentication and accessing a database over the network.

103

Record transfer between the library and the clients can efficiently handle large data

sets through the use of producer and consumer callback functions, and future storage

methods can be added that use the same client interface. The client interface is fur-

ther stabilized by ensuring that all queries and operations are performed through the

stream objects and that internal SQL statements are not exposed outside the library.

The features presented to client programs by the SIL include:

" A "stream" object containing stream metadata and methods to manipulate the

stream data.

" A "database" object that initializes and accesses the database.

" Methods to insert and extract streams and associated data from the database,

with automatic stream slicing when applicable.

" Methods to compare streams and query the database for streams with particular

parameters.

" Enforcement of specifications, such as the rule that no two streams with the

same tag and type can overlap in time.

5.2.3 Client Programs

Client programs, or modules, are the tools that provide and use the information in

the streams. They include data input methods, filters, classifiers, and diagnostic indi-

cators. The focus in client programs is the implemented algorithms and functionality,

and they build upon the library interface to provide access to streams and records with

a minimal amount of code. These modules may also build upon each other to provide

additional levels of abstraction. For example, the "filter" program in §5.3.4 reuses

the "insert" and "extract" programs rather than interfacing directly through the

SIL.

The intention is that each client program performs one primary operation, and

that separate clients are written for each processing task. This keeps the code simple,

104

Option Description
-- db name Name of the NILM database, default "nilmdb".
-- host host Hostname of the database server, default "localhost".
-- user user Database authentication username, default "nilmdb".
-- pass pass Database authentication password, default empty.

-- version Display program name and version info.
-- help Display summary of options and usage.

Table 5.1: List of the command-line options common to all C++ client modules.

and provides more flexibility in allowing clients to be reused in different situations.

Methods of controlling individual clients and how they link together are discussed

in §5.4.1.

For most simpler clients, like those presented in the following section, command-

line arguments are the preferred method of selecting and specifying streams and op-

tions. This design fits in particularly well with existing NILM hardware and software,

as detailed in §5.4.2. Alternatively, programs might utilize a more robust configura-

tion file or XML specification, depending on complexity and intended use.

5.3 Example Modules

Several C++ and script-based clients have been written and are presented in Ap-

pendix A.4.3. These clients build on the Stream Interface Library and each other to

provide the core functionality necessary for data collection and diagnostics within the

NILM software framework.

Parameter common to all of the C++ modules are shown in Table 5.1. These

parameters primarily control database access, and their parsing is handled by the

shared library libopt. In addition, each module shares a common format and routines

for interpreting timestamps. The simplest specification is an arbitrary floating-point

number, while streams dealing with absolute dates can more easily be specified with

a string of the form "Sun Dec 4 16:22:17 2005".

105

5.3.1 Insert

The insert program in Appendix A.4.3 creates streams and data records in the

database. Command-line arguments are used to specify the new stream tag, type,

flags, and metadata, and the data records are supplied as text input on stdin. The

SIL checks the supplied parameters and dates to ensure that the new stream is well-

formed and does not conflict with any existing streams in the database.

Because the record specification requires that all data include a corresponding

timestamp, insert provides four options for controlling how this timestamp gets

generated. The available options are:

1. Provide a fixed time step At. The timestamp is increased by At for each record.

2. Provide a total number of records that will be supplied. This is used to compute

a At such that records are evenly distributed over the stream interval.

3. Specify that the data is being supplied in real-time and that timestamps should

be generated by insert based on when the data arrives.

4. Annotate the input with a timestamp on each line. This provides the most

flexibility for the program supplying the data.

A table of command-line arguments that control this behavior and specify the stream

metadata is presented in Table 5.2.

5.3.2 Extract

The extract program in Appendix A.4.3 is the logical opposite of insert, and it

provides the ability to retrieve and print the records in the database corresponding

to a specified stream. Output data follows the same format in which it was originally

supplied to insert. Timestamps from the database are generally used for stream

slicing and then discarded, but may also be optionally included in the output.

Like insert, this program makes use of command-line arguments to specify the

stream parameters. In this case, however, many of these arguments are optional and

106

Option Description

-- tag string Tag to use for the new stream.

-- start datespec Starting time for this stream.

-- end datespec Ending time for this stream.

-- type typespec Type of data in the stream.

-- metadata key=val Extra metadata to add to the stream.

-- noslice Mark this stream so it cannot be sliced.

-- delete Delete the partial stream if an error occurs.

-- step time At for each line of input.

-- lines count Total lines of input that will be supplied.

-- realtime Data is supplied in real-time.

-- annotate Incoming data is annotated with timestamps.

Table 5.2: List of specific command-line options for the insert module.

Option Description

-- tag string Tag of the stream to extract.
-- type typespec Type of data in the stream.

-- start datespec Starting time of the data (optional).

-- end datespec Ending time of the data (optional).

-- metadata key=val Extra metadata to match (optional).

-- annotate Annotate output data with timestamps.

-- quiet Match the stream only, no data output.

Table 5.3: List of specific command-line options for the extract module.

are used to narrow the selection of streams from the database. If more than one

stream matches the given specifications, an error message is printed. The available

arguments are listed in Table 5.3.

This program demonstrates the use of the automatic stream slicing feature of the

Stream Interface Library. If an exact match for the specified metadata and time

interval is not available in the database, the SIL searches all streams with matching

metadata and attempts to assemble streams that cover the requested time interval. If

this is possible, a new sliced stream is dynamically created in memory and returned

to the extract client. The client does check and report whether the stream was sliced

for informative purposes, but otherwise treats it identically to any other stream.

107

5.3.3 Dump and Remove

The dump and remove programs in Appendix A.4.3 are supplementary clients provided

for stream identification and removal. The first, dump, requests and displays the

metadata for all streams currently in the database. Each dumped stream is displayed

with a database-specific unique identifier, which can then be supplied to the remove

utility to fully delete the stream and any associated data from the database.

Both clients accept the standard arguments in Table 5.1, and remove requires

one additional argument to specify which stream to remove. Because they are rela-

tively simple programs, these client modules provide a good example of the ease of

performing stream manipulation through the Stream Interface Library.

5.3.4 Filter

An important feature of the NILM software framework is the ability to process data.

Data streams can be selected from the database, modified in any way, and placed

back into the database with a new tag. There are a number of ways that this can

be done. Like the other modules, a data processing filter could utilize the Stream

Interface Library directly. It could also invoke programs like extract and insert to

manage stream storage. A third method is for this invocation to be done instead by an

external process, which allows the filter to focus entirely on algorithms and methods.

This is the method supported by the Perl script f ilter.pl in Appendix A.4.3.

This script is supplied three sets of arguments: the parameters for stream extrac-

tion, the parameters for subsequent re-insertion, and a pointer to a filtering applica-

tion that reads data records on stdin and writes the processed data to stdout. The

filtering application is responsible for calculating spectral envelopes, performing tran-

sient identification, computing diagnostic indicators, or applying any other desired

operations to the data.

While some filters can perform processing based entirely on the supplied data,

others may need to read and control the stream timestamps. For example, a median

filter can be applied to a stream independent of timestamps, while an event identifier

108

Option Description
-- in string Tag, type, flags, and metadata of the input stream, in

the same form as arguments to extract.
-- out string Tag, type, flags, and metadata of the output stream, in

the same form as arguments to insert.
-- f ilter command Command to execute as the filter.
-- start datespec Starting time of the input and output streams.
-- end datespec Ending time of the input and output streams.
-- annotate Use timestamp annotations in input and output.
-- tempfile Use temporary files for data storage.

Table 5.4: List of command-line options for the f ilter.pl script.

would want to report the times at which detected events occur. The f ilter. pl script

supports two methods of dealing with timestamps:

1. The filtering application deals with raw data only, and filter. pl generates

equally-spaced timestamps for the output data based on the stream's time in-

terval and the number of data records created by the filter.

2. The filtering application understands and expects timestamps on input, and

generates them on output. In this case, filter. pl passes the existing times-

tamps from extract to the filter, and the new timestamps from the filter to

insert.

The former provides better support for existing filter applications like the preprocessor

in §4.1, while the latter is more robust and extensible for new development.

Some filters, like those that invoke a Matlab or Octave function, may prefer to

transfer data in temporary files rather than through the stdin and stdout file han-

dles. If requested, f ilter . pl will use temporary files for storage and pass their names

as arguments to the specified filter command. The option to control this behavior is

included in the full list of command-line arguments shown in Table 5.4.

109

5.4 Usage and Applications

Practical and flexible usage is one of the design goals of the NILM software framework.

The software provides functionality without specifying policy or enforcing any par-

ticular usage model. The following sections discuss particular aspects and examples

of working within this framework.

5.4.1 System Control and Graphical Interfaces

The clients presented here take the form of separate programs that can be chained

together to apply a full suite of processing and analysis to an incoming data stream.

The manner in which these tools are invoked and combined can be specified manually

by the user in a command shell, or overall control of the system can be performed

by other applications. The majority of programming languages include the ability

to spawn external programs, making the NILM framework clients easily accessible to

nearly all applications in the system.

The level of control and configuration of the framework can vary with intended use.

For systems that collect and process a single datastream in a fixed way, a simple shell

script or Perl script may suffice, while more complicated dynamic setups may utilize a

custom control program with scheduled jobs that manage the various NILM processes.

Individual client programs may also be controlled via graphical interfaces, which

may be desirable for realtime analysis and reporting. Such an interface could range

from a web-based reporting and configuration tool to an integrated KDE/Gnome

application that utilizes both external clients and the Stream Interface Library to

provide advanced features.

5.4.2 Compatibility with Existing Hardware and Software

All of the hardware and software components presented in Chapters 3 and 4 are still

usable within the new NILM framework. For data acquisition, the existing PCI-1710

and USBADC drivers already support creating output in an ASCII text format that

matches the expected data format of the insert module. The "--realtime" option of

110

insert is especially appropriate for data acquisition, as it will automatically generate

timestamps based on when the data arrives. Alternatively, the "--step" option can

be used to set a known sampling interval, which helps avoid timing inaccuracies that

may arise through buffering and other transport delays.

Similarly, the new consolidated text input feature described in §4.1.1 for the AC

preprocessor matches the format required by the insert and extract tools. The

preprocessor can therefore be used in conjunction with the f ilter. pl script to easily

convert a stream of raw data to corresponding spectral envelopes.

There are several ways that the menu-system data logging software in §4.2 can

work with the framework. For existing installations where the primary use is recording

data and burning it to CD, the software can remain unchanged, and the resulting data

snapshots can be manually transferred and inserted directly into a NILM database

elsewhere for processing. Another option is to modify the snapshot-data script to

place the data directly within a local NILM database rather than creating individual

snapshot files on the hard drive. This would allow more precise selection of what data

is stored and transferred from the recording system. Finally, if a network connection

is available, this modified snapshot-data script could transparently transfer data to

a remote machine by utilizing the "--host" option of insert, connecting directly to

a centralized NILM database and precluding the need to physically transfer CDs to

retrieve data.

The plugin architecture of the nilmgui graphical demonstration described in §4.3

allows for a similarly straightforward interface with the NILM framework. The main

difference between nilmgui and other applications it that it requires data to be

supplied in real-time for proper interactive graphical display. This can be achieved

through an additional wrapper script or a modification of the extract program that

would delay the output of data records based on the stored timestamps. Periodic

polling of new streams would support the continuous display of incoming data as it

is stored by a data acquisition process.

111

data = extract(['--tag "Voltage" -- type Raw
'--start "Sun Dec 4 16:22:17 2005" ' ...
'--end "Sun Dec 4 17:22:17 2005" ']);

data = data;
insert(data, ['--tag "Inverted Voltage" -- type Raw

'--start "Sun Dec 4 16:22:17 2005"
'--end "Sun Dec 4 17:22:17 2005"
'--lines ' num2str(size(data,1))]);

Figure 5-6: Example of retrieving, manipulating, and storing data in the NILM
database from within Matlab/Octave.

5.4.3 Interfacing with Matlab/Octave

Matlab and Octave provide an excellent language for the implementation of diagnostic

indicators and other processing algorithms. They deliver a wide variety of tools and

functions that simplify and assist calculations, and the script-based nature of the

language allows for rapid development and testing. The majority of analysis for

the diagnostic indicators developed in Chapter 2, for example, was carried out with

Matlab, and extending the NILM framework to this environment creates a powerful

tool for future work.

The most straightforward way to access the NILM database from within a Matlab

script is to utilize the existing insert and extract clients by executing them directly

using the "system" function. The results from extract can be stored to a file and

subsequently loaded into Matlab for manipulation, and the input to insert can

similarly be provided by first saving Matlab variables to a temporary file.

Two scripts which automate these tasks, insert. m and extract. m, are listed in

Appendix A.4.4. They each provide a simple Matlab function that manages spawning

the appropriate client and transferring data to and from Matlab variables. All of the

flexibility and features of the clients are available, including the automatic stream

slicing. The arguments used to specify streams match the command-line arguments

shown in Tables 5.2 and 5.3.

As an example of using these functions, Figure 5-6 shows the Matlab commands

used to retrieve a particular stream from the database, negate all of the values, and

store the data in a new stream.

112

Chapter 6

Conclusions

The non-intrusive load monitor has widespread applications. It provides the ability

to accurately identify and track the behavior and state of multiple electromechanical

systems without requiring physical modification or custom instrumentation of each

load. Any system that uses electric power can potentially benefit from this cost-

effective and robust monitoring, and this work has demonstrated that benefit.

6.1 NILM Applications on the SENECA

The successful development of NILM diagnostics techniques for systems aboard the

USCGC SENECA in Chapter 2 indicates that this non-intrusive approach is not

merely academic. Real systems with real problems were located, their electrical power

usage was monitored, and specific diagnostic indicators were created to explore and

explain the observed faults.

For the leaks in the SENECA vacuum wastewater disposal system, Chapter 2

presented measurements and simulation results that verified the applicability of the

NILM to the problem of pneumatic failures in cycling systems. Subsequent analy-

sis demonstrated that new statistical interpretations of this data can be accurately

applied to not only detect the leaks, but also to distinguish them from normal crew

usage.

The analysis of the pump coupling failures on the SENECA further demonstrated

113

the flexibility of the NILM. Using the same monitoring hardware, a metric was created

that provides an accurate indication of the coupling health after observing as few as

one pump start. Although the presented frequency-based approach is considerably

different from the statistical approach used with cycling systems, the NILM scales

well to both.

6.2 NILM Framework Improvements

This work has reevaluated and improved upon every aspect of the NILM, from initial

data acquisition and storage to retrieval, processing, and presentation. The results

include new hardware and software tools as well as a general framework for the

application and development of future components that will unify and simplify the

practical usage of non-intrusive load monitoring in real-world systems.

Chapter 3 described the development of the USB data acquisition hardware and as-

sociated driver software. This new device reduces the cost and increases the accuracy

of power monitoring hardware. More importantly, it extends the NILM platform to

a wide variety of computers and devices that did not support the previous PCI-based

hardware, including laptops and embedded systems. The utility of the USBADC was

successfully demonstrated with its application to the satellite load monitoring sys-

tem, and it will continue to be a key component in the development of future NILM

systems.

The supporting software tools presented in Chapter 4 proved to be highly use-

ful. Improvements to the AC preprocessor allowed this fundamental component to

continue to be applied alongside new hardware and analysis techniques. The menu-

driven data storage and retrieval system supported the development of diagnostic in-

dicators aboard the SENECA and elsewhere, and allowed for both long-term storage

and timely retrieval of the recorded data. The creation of a graphical user interface

for transient event training and identification explores, demonstrates, and suggests

methods for future reporting and control.

All of this work is brought together by the software framework introduced in

114

Chapter 5. This new data storage and manipulation framework creates a centralized

database for use by all other NILM components. It unifies different hardware, storage

requirements, and processing techniques while increasing flexibility and compatibility

with existing and upcoming tools. Clients and scripts such as the Matlab/Octave

interface have been provided which make working with streams in the database as

easy as loading data from a file, facilitating practical use. The system was designed

to accommodate all of the the techniques and requirements demonstrated by ear-

lier diagnostic work, and future development of diagnostic indicators can take place

entirely within the new framework.

6.3 Future Work

Future work will involve extending and building functionality on top of the NILM

hardware and software framework, including the development of a unified interface

through which diagnostic indicators can be applied and results can be analyzed. This

interface will provide the ability and means to install a system that will automatically

monitor and report the state of electrical loads. Such a system could find immediate

usage on the USCGC SENECA and other locations for which fault metrics have

already been created.

The NILM will always benefit from the creation of new identification and diag-

nostic methods, including both generalized and system-specific techniques. Future

utilization of improvements such as the increased resolution of the USBADC hard-

ware should help expose new ways of applying non-intrusive monitoring to a growing

variety of loads. The stream-based software framework will facilitate this exploration

by allowing more efficient reuse and extension of existing algorithms and routines.

The work on the SENECA systems shows high potential for extension and addi-

tional exploration. For example, the cycling system diagnostic opens new possibilities

for using non-intrusive electrical load monitoring to investigate pneumatic faults. Fur-

ther verification and improvement of the models presented here is currently taking

place, and similar statistical analysis and simulation is being used to apply these

115

concepts to other cycling systems.

Finally, the USB data acquisition hardware and satellite load monitoring system

mark the first among what is expected to be many developments in the miniaturiza-

tion and specialization of NILM hardware for embedded use. Single-board computers

can increase in prevalence as algorithms are optimized for these platforms. Using

the flexibility of the software framework, specific tools can be recreated in hardware

using a field-programmable gate array (FPGA) or other reconfigurable device. This

can lead to the creation of a single module or even single-chip solution that includes

every aspect of NILM diagnostics from acquiring data to reporting results.

116

Appendix A

Code Listings

A.1 Cycling Systems

A.1.1 time-between.pl

Computes the discharge times between pump runs from preprocessed input.

#!/usr/bin/perl
$Id: time-between.pl 2412 2005-12-06 22:09:59Z jim $

Computes time between pump runs for data given on stdin.

$edge-time = -1;
$last-val = 0;
$val = 0;
$last-rawval = 0;
$lines = 0;
while(<>)
{

($junk, $raw) = split(/\s+/);

$val should be 1 if the pump is on,
0 if the pump is off.
On/off is determined by whether the power draw is above/below 1000
but only if it stays there for 2 seconds or longer

if($raw > -1000) {
$rawval = 0;

} else {
$rawval = 1;

}
if ($rawval != $last-rawval) {

immediate change; reset the count
$count = 0;

117

$last-rawval $rawval;
} elsif ($rawval $val) {

raw value staying constant, increment count
$count++;
if($count > 240) {

stable, keep it
$val = $rawval;

}
}

if($val == 1 && $last-val == 0) {
if($edge-time >= 0) {

$diff = ($lines - $edgetime);
print " $diff \n";

}
}
if ($val == 0 && $last-val == 1) {

$edgetime = $lines;

}

$last-val = $val;
$lines ++;

}

A.1.2 sim.m

Main loop of the cycling system simulator. Generates flush events and runs the

pumping/leaking simulation between them.

%% $Id: sim.m 2413 2005-12-06 22:26:58Z jim $
%% Parameters
global pumpl-rate pump2-rate pump-low pump-lower pump-high leak;
T = 120; % simulation time (hours)
flush-drop = 1; % pressure drop of single flush
pump1 rate = 19 * 60; % rate for first pump, hg/hour
pump2-rate = 17 * 60; % rate for second pump, hg/hour
pump-low = 10; % one pump turns on
pump-lower 7.5; % both pumps turn on
pump-high 15; % both pumps turn off
leak = 15; % leak rate, hg/hour
lambda = 150; % average flushes per hour

%% Initialization
pressure pump-high;
pump-on
pump-off [3;

%% Simulate flushes for
t = 0;
lastt = 0;

% times that either pump turned on
% times that either pump turned off

the entire time period

118

while (t < T),
%% Run the pumping/leaking simulation to get us caught up

[pressure, tmpon, tmpoff] = pumpleak(pressure, t - lastt);

pump-on = [pump-on, tmpon + lastt];
pump-off = [pump-off, tmpoff + lastt];

%% Now we're caught up with pumping, so flush the toilet.

pressure = pressure - flush-drop;

% Jump forward to next flush

lastt t;
t = t - log(rand) / lambda;

end

% Results are in pump-on and pump-off

A.1.3 pumpleak.m

Computes the effect of of pumps and leaks between flush events for the cycling system

simulator.

function [pressure, turnons, turnoffs] - pumpleak(pressure, T)
%% Simulate the pumping / leaking for 't' hours
%% $Id: pumpleak.m 2413 2005-12-06 22:26:58Zjim $
global pumplrate pump2-rate pump-low pump-lower pump-high leak;

persistent pumps-running;
if (T == 0)

pumps-running = 0;
end

if (pressure < 0)
error('Pressure-is -negative! -. Too-much-lushing?\n');

end

t = 0;
turnons
turnoffs
while(t < T),

left = T - t;

%% Figure out the current pressure rate
if (pressure <= pump-lower I pumps-running 2)

rate = pumplirate + pump2-rate - leak;
if(pumps-running != 2)

turnons = [turnons, t];
pumps-running = 2;

end
elseif (pressure <= pump-low I pumps-running == 1)

rate = pumplrate - leak;

119

if(pumps-running != 1)
turnons = [turnons, t];
pumps-running = 1;

end
else

rate = -leak;
if(pumps-running != 0)

turnoffs = [turnoffs, t];
pumps-running = 0;

end
end

%% Now jump forward until we run out of time or something may change
if (rate == 0)

t = T;
else

if (pumps-running == 2 && rate < 0)
error ('Both-pumps._running-and._stillosing-pressure-dueto -leak!');

elseif (pumps-running == 1 && rate < 0)
%% Run until we need two
stop = pump-lower;

elseif (rate < 0)
%% Run until we need one
stop = pump-low;

elseif (rate > 0)
%% Run until we need none
stop = pump-high;

end

turnoff = (stop - pressure) / rate;
if (t + turnoff < T)

t = t + turnoff;
pressure = stop;
if(pumps-running != 0)

turnoffs = [turnoffs , t];
pumps-running = 0;

end
else

t = T;
pressure = pressure + rate * left;

end
end

end
end

A.1.4 sim-between.m

Converts the output of sim.m to match the output of time-between.pl.

function [intervals] = simibetween(pump..on, pump-off)
%% $Id: sim-between.m 2413 2005-12-06 22:26:58Z jim $

120

%% pump-on is a sorted array of times that either or both pumps turn on

%% pump.off is a sorted array of times that all running pumps turn off

%% Compute and return the lengths of each interval between the time

%% the pumps turn off and either pump turns back on (that is,
%% the lengths of each interval where no pump is running)

%% For example, if
%% pump-on = 1, 3, 5, 10]
%% pump-off = 2, 7, 15 J
%% this returns
%% intervals = 1, 3]
%% because the pumps are off from 2-3 and 7-10

lenmon = length(pump-on);
len-off = length(pump-off);
ion = 1;
intervals =[;

for iLoff = 1 : len-off

%% Find the next turn-on after this off
while(imon <= len-on)

if(pump.on(i-on) > pump-off(i-off))
break;

end
ion = Lion + 1;

end

%% If there was none, we're done
ifi(Lon > lenon)

break;
end

%% Otherwise, record it and go to the next turn off

intervals [intervals, pump-on(i-on) - pump-off(i-off)];

end

end

A.2 USBADC

A.2.1 adc.asm

Firmware for the SX28AC microcontroller on the USBADC.

;;; USB ADC firmware
;;; Written by Jim Paris <jim @jtan. com>

121

;;; Based on code by S. R. Shaw <sshawgalum.mit.edu>
;;; Compiles with gpasm

; ;;,

The actual sampling rate for each channel is
200 kHz / (num-channels * sample-div)
Sample-div must be at least 3 for reliable operation.

Three states, switchable by sending a command via USB:
Axyy = begin ADC conversion,

x = num-channels (ascii digit, 1 through 8)
yy = sample-div (ascii hex, 01 through FF)
The ADC stream starts immediately.

B = begin bandwidth test
Response is stream of 'abcdefghijklmnopqrstuvwxyz.\n'

S = stop stream
No further data is sent; idle (default state)

On error, OxE? 0xFF is sent, where ? depends on the error.

Note that the error response is not valid ADC output, since
you will never get two bytes in a row with bits 7 and 6 set
for a 14-bit ADC.

LED indicates status. It turns on when benchmarking or capturing
ADC data, and will turn off on stop. If it turns off at any other
point, that means we overflowed (ADC is sending too fast for the USB)

processor sx28
include "sxdefs.inc"
radix dec
;; This
;; and

device equ
id

vec-interrupt
vec-reset

clock-freq
int-clocks

;; base
data-global
data-bankO
data-banki

interrupt-entry:
org
page
goto

reset-page0:
page
goto

code still fits into 1 page, so use pages1banksl
set vec-reset = 0x1ff to speed programming.
pins28+oschs2+turbo+pagesIbanksI+bor26+stackoptx

'U , ' , 'B , ' , 'A , 'D , 'C ,' '

equ 0x000
equ 0x1ff ; Ox3ff for pages2, Ox7ff for pages4

equ 50000000
equ (clock-freq /200000)

of data
equ
equ
equ

memory
0x08 ; accessible in all banks
OxiD
0x30

vec-interrupt
interrupt
interrupt

start
start

;;; Pin definitions

122

#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

usb-rxf
usb-txe
usb-wr
usb-rd
usb-data
usb-sleep

adc-sclk
adc-dout
adc-din
adc-sync
adc-busy
adc-cnvst

#define LED

porta,3
porta,2
porta1
porta,O
porte
portb,6

portb,O
portb, 1
portb,2
portb,3
portb,4
portb,5

portb,7

input
input
output
output

communications clock for AD7856 (SX output)
adc data out line (SX input)

adc data in line (SX output)
sync for serial comm (SX output)
adc busy status line (SX input)
adc conversion start (SX output)

;; Variables
cbock data-global

ADC-lo
ADC-hi
ADC-ch
byte-wr
byte-rd
temp
irq-count
irq-stat

endc

cbock data-bankO

string
num-channels
sample-div
hexe

; data to/from ADC

channel code

; Number of channels to scan, 1-8
; Sampling rate divisor.

endc

; ;;
Interrupt handler

interrupt :
decfsz irq-count, f
goto skip
movf sample-div, w
movwf irq.count

; execute every sample-div times

irq-stat was zero, start a new conversion
irq-stat , f
status, zf
adc-cnvst

;; Now

123

; ; if
movf
btfsc
bcf

- we are doing a conversion, so delay 100ns
- no conversion, so turn off LED

;; Also increment irq-stat while we're waiting.
btfss status,zf ; 20ns
bcf LED ; 20ns
nop ; 20ns
nop ; 20ns
incf irq-stat , f ; 20ns
bsf adc-cnvst

skip: movlw -int-clocks
retiw

;;; Static data

-test de "abcdefghijklmnopqrstuvwxyz!",10,0

;;; Main entry point

start:
; initialize pin values and directions
mode OxOf
movlw b'00000001'
movwf porta
movlw b'11111100'
tris porta

movlw b'00101101'
movwf portb
movlw b'01010010'
tris portb

; set usbwr low, usb-rd high

; and make them outputs

set initial ADC state

; set ADC i/o directions

movlw b'00000000' ; set usb pins all low
movwf portc
movlw b'11111111' ; and all inputs
tris portc

;; Wait for ADC calibration
calib: btfsc ade-busy

goto calib

; num-channels and sample-div will be set and the
;; timer interrupt will be enabled when we get the

appropriate command via USB.

;;; Main loop

mainloop:
;; Wait for irq-stat to increment.
movf irq-stat , f
btfss status, zf ; irqstat zero?

124

interrupt in int-clocks (since last)

goto readadc ; not zero, go read the ADC

; ; Check for incoming USB data
btfss usbrxf ; usb data available ?
goto readusb ; yes, go read it

goto mainloop

readade:
;; Setup new control registers while waiting for conversion
movlw b'11100000'
movwf ADC-hi
btfsc ADC-ch,0
bsf ADC-hi,4
btfsc ADCch,2
bsf ADC-hi,3
btfsc ADCch,1
bsf ADChi,2
clrf ADC-Io

;; Wait for conversion to finish
adbusy: btfsc adc-busy

goto adbusy

;; Get the result and set up the next conversion
call adcio

;; Reset irq-stat ; turn LED off if overflow
decfsz irq-stat , f
bcf LED
clrf irq-stat

;; Mark if this was channel 0, then increment, wrapping as
movf ADC-ch, f
btfsc status, zf
bsf ADChi, 7 ; Set channel mark flag

incf ADC-ch, f ; increment channel
movf num-channels, w
xorwf ADCch, w ; xor with num-channels
btfsc status, zf ; if zero, we hit num-channels
clrf ADC-ch ; so reset adc-ch to zero

;; Send data out via USB (little - endian)
movf ADC-Io, w
movwf byte-wr
call send-byte
movf ADC-hi, w
movwf byte-wr
call send-byte

goto mainloop

125

necessary

;;; Subroutines
;-----------

;;; Send "byte-wr" to PC via USB.
send-byte:

btfss usb-rxf ; c
goto readusb y

; 5;s
btfsc usb-txe ; c
goto send-byte ; T

mode
movlw
tris

OxOF
b'00000000
portc

an we read?
es, go do it.

It 's OK to jump out of the call frame like this,
ince the stack doesn't overflow.
an we transmit?
o, wait

; por

bsf usb-wr
nop
movf byte-wr, w
movwf portc ; set
nop
bcf usb-wr ; lat
return

;-;-------
;;; Send "hexc" to PC via USB in A
send-bytelhex:

swapf hexc, w
call send-byte-hex-lookup
movwf byte-wr
call send-byte
movf hexc, w
call send-byte-hex-lookup
movwf byte-wr
call send-byte
return

send-byte-hex-lookup:
andlw OxOF
incf wfile, f
addwf pcl, f
dt "0123456789ABCDEF"

; ;; -----------
;;; Get "byte-rd" from PC via USB and return with CF=O,
;;; or return with CF=1 if no byte is available within
;;; a short amount of time. The reason for this function
;;; is because even if two bytes are immediately available,
;;; there 's a short period of time between reading the
;;; two where usb-rxf will remain high.
get-bytetmout:

bcf status, cf
clrf temp

get bytetmout-loop:

126

t C = all output

output

ch on falling edge

SCII; for debugging.

usbrxf
get-byte-inner
temp, f
get-byte tmout-loop
status, Cf

;; - --- -- - --
Get "byte-rd" from I

get-byte:
btfsc usbrxf
goto get-byte

get-byte-inner:
mode
MovlW
tris

bcf
nop
nop
movf
movwf
bsf
return

OxOF
b'111111
porte

C via USB

; data available ?
; nope, wait for it

port C = all input
11'

usb-rd

portc, w
byte-rd
usb-rd

;;; - - -- ---
;;; Send null-terminated
send-string:

movwf string
mode OxOO
iread
mode OxOf

data at mem address 000:w to PC via USB

; save copy of w
; high address bits = 0
; read m:w into m:w

reset mode to normal value

xorlw 0
btfsc status, zf
return

movwf
call
incf
goto

; is it null?

; yes, we're done

byte-wr
send-byte
string, w
send-string

;;;-
;;; Convert hexc from ascii hex and return in hexc with CF=O
; ;; or return with CF=1 on error
from-hex:

'0'
hexe, f
status, Cf
from-hex-error

convert from ascii

zs it negative?
yes, error

;is it > 9?

127

btfss
goto
decfsz
goto
bsf
return

moviw
subwf
btfss
goto

movlw OxOa
subwf hexc, w

btfss
goto

bcf
mov'Wv
subwf
btfss
goto

movlw
subwf
btfsc
goto

status, cf
fromiex-done

hexc, 5
-'0'

hexc, f
status, cf
from-hex-error

0x06
hexc, w
status, cf
from-hex-error

; no, we're done

convert to uppercase
convert to decimal

; is it negative?
; yes, error

is it greater than 6 ('F')

yes, error

movlw OxOa
addwf hexe, f

from-hex-done:
bcf status, cf
return

from-hex-error:
bsf
return

status, Cf

;---- ----
;;; Perform ADC I/O.
;;; Control data in [ADC-hi ADC-lo] is written to the device,
;;; and the ADC result is stored in the same registers.

; ;;

;;; Total time at 50MHz, including call/return:
;;; 180ns/bit * 16 bits + 100ns extra + 120ns call/return = 3100 ns
adc-io:

adc-sync
; adc-sync low to first sclk low = 80ns

Macro to do a single bit of I/O.
This is just about optimal:
one bit = 180ns
lo sclk = 100ns = 55%
hi sclk = 80ns = 44%
Fsclk = 5.55 MHz

dobit macro
bcf
bcf
btfsc
bsf
nop

bsf
bcf
btfsc
bsf
endm

reg, bit
adc-sclk
adc-din
reg, bit
adc-din

adc-sclk
reg, bit
adc-dout
reg, bit

SCLK fall
assume din = 0
wrong?
din = 1
meet Tsetup for din
SCLK rise
assume output = 0
wrong?
then set output = 1

128

bcf
nop
nop

nop

dobyte macro reg, bit
dobit reg, bit
if (bit > 0)

; do all bits from 'bit ' down to zero

dobyte reg, bit-1
endif
endm

;; Send/receive all 16 bits, unrolled for speed
dobyte ADChi, 7
dobyte ADClo, 7

bsf adc-sync

return

; ;; Receive command from USB and parse it.

readusb:
;; See top for the command format

;; Turn off interrupts
movlw b'11111111' ; disable interrupts
option
;; (re-) initialize ADC
movlw b'11100000' ; control reg, single-ended, chO, no power down
movwf ADC-hi
movlw b'00000000'
movwf ADC Io
clrf ADC-ch
clrf irq-stat
call adc-io
bcf LED ;turn off LED

call get-byte-tmout
movlw OxEO
btfsc status, cf
goto readusb-error

movlw 'A'
subwf byte-rd, w
btfsc status, zf
goto readusb-a

movlw 'B'
subwf byte-rd, w
btfsc status, zf
goto readusb-b

moviw 'S'
subwf byte-rd, w
btfsc
goto

; read a byte if possible

timed out?
; yes: error

; is it A ?

; is it B?

; is it S?

status, zf
readusb-s

movlw OxEl ; fall through

129

readusb-error:
;; Error code OxEG-OxEF should already be in W
movwf byte-wr
call send-byte
movlw OxFF
movwf byte-wr
call send-byte
;; fall through: stop after error

;;; stop
readusb-s:

goto mainloop ; main loop will do nothing but check USB

;;; bandwidth test
readusbb:

bsf LED
bwtest:

btfss usb-rxf ; usb data available ?
goto readusb ; yes, go read it
movlw _test
call send-string ; send test string
goto bwtest

; ;; ADC start
readusb-a:

;; Read num-channels and verify range
call get-byte-tmout ; read a byte if possible
movlw OxE2
btfsc status, Cf ; timed out?
goto readusb-error ; yes: error
movf byte-rd, w
movwf numchannels

movlw '0' ; convert to decimal
subwf num-channels, f
movlw OxE3

btfsc status, zf ; is it zero?
goto readusb-error

movlw 0x09 ; is it 9 or higher?
subwf num-channels, w
movlw OxE4
btfsc status, cf
goto readusb-error ; yes: error

;; Read sample-div and ensure nonzero
High nibble:

call get-byte-tmout ; read a byte if possible
movlw OxE5
btfsc status, cf ; timed out?
goto readusb-error ; yes: error
movf byte-rd, w

130

status, cf
readusb-error

movf hexc, w
movwf sample-div
swapf sample-div, f

;; Low nibble:
call get-byte-tmout
movlw OxE7
btfsc status, cf
goto readusb-error
movf byte-rd, w

movwf hexc
call from-hex
movlw OxE8
btfsc status, cf
goto readusb-error
movf hexc, w
iorwf sample-div, f

;; Ensure nonzero
movlw OxE9
btfsc status, zf
goto readusb-error

convert to decimal

; did it work?

; read a byte if possible

; timed out?
; yes: error

convert to decimal

did it work?

; is it zero?

;; If we want to send a header to start the ADC stream,
; this is the place to do it, via send-byte

;; Set up and enable interrupts, and let 's go
movf sample-div, w
movwf irq-count
bsf LED
movlw b'10011111' ; enable timer interrupt
option

goto mainloop ; start

; ;;
reset-entry:

org vec-reset
errorlevel -306
goto reset-pageO

don't complain about not setting page,
since we must assume zero on reset

end

131

movwf hexc
call from-hex
movlw OxE6
btfsc
goto

A.2.2 ftdi-adc

The following code listings are the primary components of the ftdi-adc USBADC

driver software.

ftdi. c

Main application which initializes and controls the capture process.

7*
* ftdi-adc
* Copyright (c) 2003 Jim Paris <jim~jtan. com>
*

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.
*/

#define _GNUSOURCE /* for asprintf *7
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <pthread.h>
#include <usb.h>
#include <err.h>
#include <sched.h>
#include "ftdiusb.h"
#include "ftdirom.h"
#include "opt.h"
#include "debug.h"
#include "version.h"
#include "buffer.h"

struct options opt [] = {
{ 'i', "id", "string", "chip.id-to-use-(default:.first .avail)" },
{s 's',"set-id", "string", "set -chip-id -(if -single._.device found)" },

{ '1', "list ", NULL, "list-all-available .. devices" },
{ 'k', "command", "string", "initiaL command-to-send-to-device" },
{ 'c', "channels", "1-8", "number.}ofDC-channels-to-sample-(default:.2)"
{ 'd', "divisor", "3-255", "sampling-rate.divisor-(see.below;-default:..5)" },
{ 'r', "retry", NULL, "retryindefinitely-_if.-device-disappears" },
{ 'h', "help", NULL, "this-help" },
{ 'v', "verbose", NULL, "be-verbose" },

'V', "version", NULL, "show..version-number.and..exit" },
{ 0, NULL, NULL, NULL }

132

int verb-count = 0;

int do-setid(chipid-t id);
int dolist (FILE *out);
int do-adc(char *command, chipid-t id, int retry);

void ftdi-realtime (void);
void ftdi-normal(void);

#define NCHARS (4096)

int main(int arge, char *argv[])
{

int optind;
char *optarg;
char c;
FILE *help = stderr;
chipid-t id;
int setid = 0;
int gotid = 0;
int retry = 0;
int list = 0;
int channels = 1;
int divisor = 5;
int setparms = 0;

char *command = NULL;

id [0]=0;

opt init (&optind);
while((c=opt_parse(argc,argv,&optind,&optarg,opt))!=0) {

switch(c) {
case v:

verb-count++;
break;

case '1':
list ++;
break;

case 's':
setid++;
gotid- -;
/* fall through */

case ':
gotid++;
if(strlen(optarg)>sizeof(chipid-t)) {

fprintf (stderr ,"id-too-ong:-%s\n",optarg);
goto printhelp;

}
strcpy(id,optarg);
break;

case ':
if (command) free(command);

133

command = strdup(optarg);
break;

case 'c':
channels = strtol(optarg, NULL, 0);
if (channels < 1 I channels > 8) {

fprintf (stderr ,"channels-must-be-between-"

"1-and-8-nclusive\n");
goto printhelp;

}
setparms++;
break;

case 'd':
divisor = strtol(optarg, NULL, 0);
if (divisor < 1 I channels > 255) {

fprintf (stderr , " divisor _must -be-between-"
"1-and.255Anclusive\n");

goto printhelp;

}
if(divisor < 3)

fprintf (stderr ,"warning:._divisor_is .probably."
"too-low-to-work._properly\n");

setparms++;
break;

case 'r':
retry++;
break;

case 'V':
printf (" ftdi -adc-" VERSION " \n");
printf ("Writtenby-Jim-Paris.<jimdjtan.com>\n");
printf (" This-program-comes-witho-warranty-and-s-"

provided-under-the._GPLv2.\n");
return 0;
break;

case 'h':
help=stdout;

default:
printhelp:

fprintf (help," Usage:-%s-[options] \n" ,*argv);
opt-help (opt,help);
fprintf (help," Read-data-rom-the-specified-USB-ADC."

"board-via-ibusb.-See-README.for-details.\n"
"Actual-per-channel-sampling-xate:-"
"200-kHz-/-(channels.* -divisor)\n")

return (help==stdout)?0:1;

}

if(optind<argc) {
fprintf (stderr ,"Error: .too-many.arguments_(%s) \n\n",

argv[optind 1);
goto printhelp;

I

if ((list + setid + gotid)>1) {

134

fprintf (stderr ,"Error: -1, _-s, -and-i.are-exclusive\n\n");
goto printhelp;

}

if ((setid list) && (setparms command)) {
fprintf (stderr ,"Error: -command/channel/divisor-may-ot.be-used-with-"

" -l-or_-s\n\n");
goto printhelp;

}

if(setparms && command) {
fprintf (stderr ,"Error: -_Specifiy .either -channel/divisor-or "

"command, -not-both\n\n");

goto printhelp;

}

ftdi-init (;

if(setid)
return do-setid(id);

if (list)
return do-list (stdout);

if (command == NULL)
asprintf (&command," A%d%02x", channels, divisor);

return do-adc(command, id, retry);

}

int do-list (FILE *out)

{
chipid-t chipid [128];
int n, i;

verb(" Scanning-for.chips\n");
n = ftdi-scan(chipid, 128);
verb(" %d.found\n",n);

if(n) {
fprintf (out," Detected.deviceJDs:\n");
for(i=O;i<n;i++)

fprintf (out," __'%s'\n",chipid [i]);
} else fprintf (out," No-devices-detected.\n");
return 0;

}

int do-setid(chipid-t id)

{
chipid-t chipids [128];
usb-devlhandle *h;
uint8-t rom[FTDIROMSIZE];
ftdi-rom r;
int ret;

135

verb(" Attempting-to.-set-id-to-'%s'\n",id);
if ((ret=ftdi-scan(chipids,128))!=1) {

fprintf (stderr , "Error:-can-only-set _D-when._exactly-one-"
"device-.is -present.\ n"
"The-following-devices-are-currently- available:\ n");

do.list (stderr);
return 1;

}
verb(" found-device-with-chipJd-'%s'\n",chipids [0]);

if ((h=ftdi-open-chipid(chipids[0])) ==NULL) {
fprintf (stderr ," Error-opening-USB-device\n");
return 1;

}

verb(" opened-successfully\n");

if(ftdi-read eeprom(h,rom)<0) {
fprintf (stderr ,"Error-reading-EEPROM-from-device\n");

ftdi-close (h);
return 1;

}

verb(" EEPROM-oaded\n");

ftdi-romifromibuffer(&r, rom);

if(strcmp(r. serial-string ,chipids [0])!=0) {
verb(" Serial -string -doesn't-match-the-oneJoundin\n");
verb(" EEPROM-('%s'); -corrupt-data?\n",r.serialstring);
verb(" Resetting-entire-EEPROM-to-defaults.\n");
ftdi-rom-init (&r);

} else {
verb(" Serial .string -in-EEPROM-matches.\n");

}

strcpy(r. serial-string ,id);
ftdi-rom-to-buffer (&r, rom);

verb(" Writing-.new-EEPROM\n");

if(ftdi-write eeprom(h,rom)<0) {
fprintf (stderr ,"Error-writing-EEPROM-to.device.\n");
ftdi-close (h);
return 1;

}

verb(" Resetting-device\n");
if(usb.reset (h) <0)

verb(" Reset-failed; .ignoring\n");

/* h is no longer valid */

printf ("ID._successfully -changed-rom-'%s'_to-'%s'\n",chipids [0],id);

136

return 0;

}

pthreadrmutex-t writer-mutex = PTHREAD-MUTEXJINITIALIZER;
int writer-can-write = 0;

void *writer thread(void *arg)

{
struct buffer-pool *bp = (struct buffer-pool *)arg;
uint8-t *buffer;
int buflen;
int saved, i, len;

for(;;) {
pthread testcancel ();
buffer = buffer-get-filled (bp, &buflen);
pthread-testcancel ();

/* Decode FTDI format in-place */
saved = 0;
for(i = 0; i < (buflen - 2); i += 64) {

len = buflen - i - 2;
if (len > 62) len = 62;
memmove(&buffer [saved],

&buffer[i+2],
len);

saved += len;

}
LOCK(writer-mutex,{

if(writer-can-write) {
fwrite(buffer, saved, 1, stdout);
fflush (stdout);

}
else

debug("writer.thread.discarding-%d..bytes\n",saved);

});

buffer-mark-empty(bp, buffer);

}
}

/* Read data until it stops. Return <0 if data doesn't seem to stop. */
#define timediff(a,b) (((a). tv.sec -(b).tv-sec)*1000000+(a).tv-usec-(b).tv-usec)

int read-until-stop (usb-dev-handle *h)

{
/* Consider successfully stopped if:

1) We receive nothing for more than 0.2 seconds
Give up if:
1) We get more than 32k of data
2) We receive for more than 1 second

*/
struct timeval start, empty, now;
uint8-t buf [4096];

137

int ret;
int total = 0;
int gotdata = 1;

gettimeofday(&start, NULL);
for(;;) {

ret = ftdi-read(h, buf, 4096);
if(ret > 0) {

/* Got data. Too much? *7
gotdata = 1;
total += ret;
if(total > 32768)

return -1;
/* Too long? */
gettimeofday(&now, NULL);
if(timediff (now,start) > 1000000)

return -1;
} else if(ret==-ETIMEDOUT 11 ret==0) {

/* No data: has it been more than 0.2 seconds? *7
if(gotdata) {

gettimeofday(&empty, NULL);
gotdata = 0;

} else {
gettimeofday(&now, NULL);
if (timediff (now,empty) > 200000)

return 0;

}
} else

/* Error *7
return -1;

}
}

int do-adc(char *command, chipid-t id, int retry)

{
usb-dev-handle *h = NULL;
struct ftdi-async *ah = NULL;
int printed = 0;
int ret;
uint8_t *buf;
uint8-t tmp[4096];
int gotany = 0;
struct buffer-pool bp;
pthread-t writer;

/* Initialize buffer pool and start writer thread.
Note that the writer stays at normal priority. *7

if ((buffer-init (&bp, 4096) != 0) 11
(pthread-create(&writer, NULL, writer-thread, (void *)&bp) 0))

{
fprintf (stderr ," Can't- initialize -write -thread\n");
return 1;

}

138

for(;;) {
verb(" attempting-to-open-chipid-'%s'\n",id);
h = ftdi-open-chipid(id);
if(h==NULL && !retry) {

fprintf (stderr,
" Can't-find-chipi%s'; -aborting\n",
id [0]?id:" (any)");

ret = 1;
goto out;

}
if (h==NULL) {

if(! printed) {
fprintf (stderr, "Can't-ind-chipi%s'; "

" sleeping\n",id [0]? id:" (any)");
printed=1;

}
sleep (1);
continue;

}
printed=0;
fprintf (stderr ,"Device-opened.\n");
/* If there was no ID specified, set it, so that

we try to always get the same device if we need to
reopen it. *7

if (!id [0]) {
if(ftdi-get-chipid (h,id)<0)

id [0]=0;
verb(" going.to-use-d%s'Jrom-now-on\n",id);

}

/* Tiny sleep to ensure all of the previous USB stuff
has finished fully. Just an attempt to avoid races *7

usleep(1000);

/***** Now do the ADC-specific stuff. *

verb(" sending-ADC-stop..command\n");
/* The very first packet sent after open is sometimes

lost, if the FTDI's transmit buffer is full, so
just send enough S(top) commands to ensure we use
two packets. */

memset(tmp, 'S', 65);
ret = ftdi-write(h, tmp, 65);
if (ret != 65) {

fprintf (stderr, "Failed..to-send..stop-command\n");
ftdi-close (h);

h NULL;
if (!retry) { ret=1; goto out; }
continue;

}

verb(" waiting-for-ADC-to-stop\n");
if(read-until-stop (h) < 0) {

139

fprintf (stderr, "Failed-to.get..ADC-to..stop\n");
ftdi-close (h);

h = NULL;
if (!retry) { ret=1; goto out; }
continue;

}

verb(" queueing._.up._.async._.receives\n");
if ((ah=ftdi_asyncstart(h, &bp))==NULL) {

fprintf (stderr , "Failed-to- start -transfers \n");
ftdi-close (h);
if (! retry) { ret=I; goto out; }
continue;

}

/* Finish printing all text and enter realtime, then
start sending data. */

verb(" sending-start-command._%s',-.and..reading.data\n",
command);

ftdi-realtime ();
if(ftdi-async-send (h, command, strlen(command)) < 0) {

ftdi-normal ();
fprintf (stderr ,"Failed.-to -send-command\n");
ftdi-async-stop (ah);
ftdi-close (h);
if (!retry) { ret= 1; goto out; }
continue;

}

/* Read the data now. The reaped URB from that command
will get ignored. */

LOCK(writer..rnutex,{ writer-can-write = 1; });
while((ret = ftdi.async-next(ah, &buf)) >= 0) {

buffer-mark-filled (&bp, buf, ret);

}
LOCK(writer-mutex,{ writer-can-write = 0; });

if(ret==-ENOMEM) {
fprintf (stderr ,"Ran-out-of-buffers.. "

"TryJncreasingJ3UFFERPOOL.\n");
/* We probably shouldn't retry in this case. *7
retry = 0;

}
else

verb("read.failed :-%d\n", ret);

if ((ret = ftdi async-stop(ah)) < 0)
verb(" ftdi-async-stop -returned_%d\n",ret);

ftdi.normal (;

if (!retry) {
fprintf (stderr , "Read-failed; ..exiting \n");

140

ftdi-close (h);
ret = !gotany;
goto out;

}

fprintf (stderr ," Read-failed;._sleeping \n");
ftdi-close (h);

h = NULL;
sleep (1);

}
out:

pthread-cancel(writer);
pthread-join(writer, NULL);
buffer-free (&bp);
return ret;

}

void ftdi-realtime (void)

{
volatile char tmp[16384];
struct sched-param sp;

verb("*** .realtime: -start \n");

/* Disable paging and ensure stack allocation *7
mlockall(MCLCURRENTIMCLYFUTURE);
memset((char *)tmp,0,sizeof(tmp));

/* Give ourselves priority over all user processes *7
sp. sched-priority = 50;
if(pthread-setschedparam(pthread-selfo, SCHEDFIFO, &sp) 0) {

fprintf (stderr , "Warning:-can't-set-SCHEDFIFO\n"

"You-will-likely .lose -data.--"

" Try,_xunning-this-as-root.\n");

}
}
void ftdi-normal(void)

{
struct sched-param sp;
int policy;

/* Return to normal scheduling. *7
sp. sched-priority = 0;
if(pthread-setschedparam(pthread-selfo, SCHEDOTHER, &sp) != 0) {

fprintf (stderr , "Warning:-can't-set-SCHEDOTHER\n");
/* If we're SCHEDFIFO, bail out. Otherwise, we could

hang the system by not resetting to SCHED-OTHER. *7
if(pthread getschedparam(pthread-self(, &policy, &sp) != 0 |

policy != SCHED-OTHER) {
fprintf (stderr ,"But-we're-still._.SCHED FIFO:-abort\n");
abort(;

}
}

141

/* Reenable paging */
munlockall ();

verb(" ***-realtime:stop\n");

}

asyncusb.h

Asyncronous USB layer on top of libusb and the Linux usbdevf s driver, header file.

* ftdi -- adc
* Copyright (c) 2003 Jim Paris <jimP)jtan.com>
*

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.

#ifndef ASYNCUSBH
#define ASYNC-USBIH

#include <usb.h>
#include <inttypes.h>
#ifndef _-user
#define _user
#endif
#include <linux/usbdevicefs.h>

/* Gross hack to convince 2.4 UHCI driver to queue bulk transfers.
We attempt to submit the URB with this flag, and resubmit
without it if that fails . */

#ifndef USBDEVFSURBQUEUEBULKHACK
#define USBDEVFSURBQUEUEBULK_HACK OxlO
#endif

/* Mirror the definition of usb-dev-handle in libusb */
struct async usb dev-handle {

int fd;

/* more libusb-dependent fields that we don't need */
};

int async-usb-fill-bulk (int ep, uint8_t *bytes, int size,
struct usbdevfs-urb *uurb);

int async-usb-set-buffer (struct usbdevfs-urb *uurb, uint8_t *buffer);
uint8-t * async-usb-get-buffer (struct usbdevfs-urb *uurb);
int async-usb-endpoint(struct usbdevfs-urb *uurb);
int async-usb-bulkgetdata(struct usbdevfs-urb *uurb, uint8_t **bytes);
int async usb-submit (usb dev-handle *dev, struct usbdevfs-urb *uurb);
int async-usb-resubmit(usb-dev-handle *dev, struct usbdevfs-urb *uurb);

142

int async usb-discard (usb-dev-handle *dev, struct usbdevfs-urb *uurb);
int async usb-reap (usb-dev-handle *dev, struct usbdevfs-urb **uurb);

const char *async-usb-strerror(int error);

#endif

asyncusb. c

Asyncronous USB layer on top of libusb and the Linux usbdevf s driver, implemen-

tation.

* ftdi -adc
* Copyright (c) 2003 Jim Paris <jim@jtan. com>
*

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <err.h>
#include "debug.h"
#include "asyncusb.h"

/* Fill a uurb for bulk transfer.
int async-usb-fillbulk (int ep, uint8_t *bytes, int size,

struct usbdevfs-urb *uurb)

{
if(size < 0 size > 4096)

return -EINVAL;
if (!bytes)

return -EINVAL;

memset(uurb, 0, sizeof(struct usbdevfs-urb));
uurb->type = USBDEVFS URB-TYPE-BULK;
uurb->endpoint = ep;
uurb->flags = 0;
uurb->buffer = bytes;
uurb->buffer-length = size;
uurb->status = 0;

return 0;

}

/* Fill only the buffer ; assume same len as before */

143

int async usb-set-buffer (struct usbdevfs-urb *uurb, uint8_t *buffer)

{
uurb->buffer = buffer;
return 0;

}

uint8_t * async-usb-get-buffer (struct usbdevfs-urb *uurb)

{
return uurb->buffer;

}

int async-usb-endpoint(struct usbdevfs.urb *uurb)
{

return uurb->endpoint;

}

/* Extract data from reaped uurb. Return number of bytes, or <0 on error.
int async-usb-bulk-getdata(struct usbdevfs-urb *uurb, uint8_t **bytes)
{

if(uurb==NULL)
return -EPROTO;

if (uurb->status!=0) {
debug(" URB..eports-error:_%s\n",

async-usb-strerror (uurb- >status));
return uurb->status;

}

if(uurb->actual-length > uurb->buffer-length) {
debug(" URB-tooiat?!-actual=%d, -buffer=%d\n",

uurb->actualhlength, uurb- >buffer-length);
return -EOVERFLOW;

}

*bytes = uurb->buffer;
return uurb->actual-length;

}

/* Re-submit an already-filled uurb; non-blocking. */
int async-usb-resubmit(usb-dev-handle *dev, struct usbdevfs-urb *uurb)

{
int ret;

if((ret = ioctl (((struct async-usb-devihandle *)dev)->fd,
USBDEVFSSUBMITURB, uurb)) < 0)

return ret;

return 0;
}

/* Submit an already-filled uurb; non-blocking. This differs
from -resubmit in that it attempts to deal with _QUEUEBULK-HACK.

int async usb-submit (usb dev-handle *dev, struct usbdevfs-urb *uurb)

{

144

* 2.4 kernels with UHCI driver need the QUEUEBULK flag set.
2.6 kernels choke on it. Try it, and if it fails , clear it. *7

static int explained = 0;

uurb->flags 1= USBDEVFSURBQUEUEi3ULK_HACK;
if(async-usb-resubmit(dev, uurb) >= 0) return 0;
if (!explained) {

debug(" bulk-queuing.rejected,-.trying._.normal\n");
explained=1;

}
uurb->flags &= ~USBDEVFS_URBQUEUE_BULK_HACK;
return async-usb-resubmit(dev, uurb);

}

/* Discard (cancel) URB *7
int async usb-discard(usb dev-handle *dev, struct usbdevfs-urb *uurb)

{
int ret;

if ((ret = ioctl (((struct async-usb-devlhandle *)dev) - >fd,
USBDEVFS-DISCARDURB, uurb)) < 0) {

/* debug("Error discarding urb: %s\n",strerror(errno)); *7
return ret;

}

return 0;
}

/* Block and return the next completed URB *7
int async-usb.reap(usb-devhandle *dev, struct usbdevfs-urb **uurb)

{
int ret;

retry:
if ((ret = ioctl (((struct async-usb-devlhandle *)dev)->fd,

USBDEVFSREAPURB, uurb)) < 0) {
if(errno==EINTR) goto retry;
debug(" Error-reaping-urb:...%s\n",strerror(errno));
return ret;

}

return 0;
}

/* Nonblocking reap. Returns -EAGAIN if nothing is available. *7
int async.usbreap-nonblock(usb-devihandle *dev, struct usbdevfs-urb **uurb)
{

int ret;
ret = ioctl(((struct async-usb-dev-handle *)dev)->fd,

USBDEVFS-REAPURBNDELAY, uurb);
if(ret < 0 11 ret != -EAGAIN)

debug(" Error-reaping-urb:-%s\n",strerror(errno));
return ret;

}

145

char *async-usb-strerror(int error)

* Codes for uurb->status */
switch(error) {
case 0: return "Transfer-completedsuccessfully";
case -ENOENT: return "URB-cancelled-by-usb-unlink-urb";
case -EINPROGRESS: return "URB-still-pending";
case -EPROTO:
case -EILSEQ:
case -EPIPE:
case -ECOMM:
case -ENOSR:
case -EOVERFLOW:
case -EREMOTEIO:
case -ETIMEDOUT:
case -ENODEV:
case -EXDEV:
case -EINVAL:
case -ECONNRESET:
default:

}

return "InternaLUSB-error";
return
return
return
return
return
return
return
return
return
return
return
return

"CRC -mismatch";
"Endpoint.stalled";
"Buffer-overrun-during-.read";
"Buffer-underrun-duringwrite";
"Babble-on-endpoint";
"Short -packet-detected"
"Timed-out";
"Device-was-removed";
"ISO-not-complete";
"ISO-madness:Jog-off.and._go-iome";
"URB-being-unlinked-asynchronously"
strerror(-error);

f tdiusb. h

USB routines specific to the FT245BM chip, header file.

* ftdi -adc
* Copyright (c) 2003 Jim Paris <jim@jtan.com>
*

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.

#ifndef FTDIUSBH
#define FTDIUSBIH

#include <usb.h>
#include <inttypes.h>
#include <unistd.h>
#include "buffer.h"
#include "asyncusb.h"

#define FTDKVID 0x0403
#define FTDKPID 0x6001

typedef char chipid-t[64];

146

const

{

I

void ftdi-init (void);
void ftdi-rescan-bus (void);
void ftdi-close (usb-dev-handle *h);
usb-dev-handle *ftdi-open-chipid(chipid-t chipid);
usb-dev-handle *ftdi-open-dev(struct usb-device *dev);

int ftdi-get-chipid (usb-dev-handle *ftdi, chipid-t chipid);
int ftdi-scan (chipid-t *chipids, int n);

int ftdi-read-eeprom(usb-dev-handle *h, uint8_t *b);
int ftdi-write-eeprom(usb-devihandle *h, uint8.t *b);
ssize-t ftdi-read (usb-dev.handle *h, void *buf, sizet count);
ssize-t ftdi-write (usb-devlhandle *h, void *buf, sizet count);

/* Async stuff */

#define FTDIQUEUE 16
struct ftdi-async {

usb-dev-handle *dev;
struct buffer-pool *bp;
struct usbdevfs-urb uurb[FTDI-QUEUE];

} ftdi-asynct ;

struct ftdi-async * ftdi-async-start (usb.dev-handle *h, struct buffer-pool *bp);
int ftdi-async-next (struct ftdi-async *ah, uint8t ** filled);
int ftdi-async-stop (struct ftdi-async *ah);
int ftdi-async-send(usb-dev-handle *h, char *buf, int len);

#endif

f tdiusb. c

USB routines specific to the FT245BM chip, implementation.

7*
* ftdi -adc
* Copyright (c) 2003 Jim Paris <jim@jtan. com>
*

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.

*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <string.h>
#include <usb.h>
#include <err.h>
#include <errno.h>
#include "debug-h"
#include "ftdiusb.h"
#include "ftdirom.h"

147

#define FTDIVID 0x0403
#define FTDIPID 0x6001

int ftdi-busses ;
int ftdi-devices

void ftdi-init (void)

{
ftdi-busses = 0;
ftdi-devices = 0;

usb-init 0;
}

void ftdi-rescan-bus (void)
{

ftdi-busses += usb-find-busses();
ftdi-devices += usbifind-devices();

/* Older libusb always returns zero, so don't bother
with this warning. *7

if(0) {
if(ftdi-busses ==0)

warnx(" no-USB-busses-found");
if(ftdi-devices ==0)

warnx(" no-USB-devices-found");

}
}
void ftdi-close (usb-devlhandle *h)

{
if(h) {

usb-release-interface (h, 0);
usb-close (h);

}
}

/* Set up the chip. Returns -- 1 on error, 0 on success.
Called by open-chipid */

int ftdi-setup (usb-dev-handle *h)

{
/* Send reset command */
if (usb-control-msg(h, 0x40, 0, 0, 0, NULL, 0, 100) != 0) {

warnx(" error-resetting-chip");
return -1;

}

/* Set baudrate to 921600 baud */
if(usb-controlmsg(h, 0x40, 3, Ox8003, 0, NULL, 0, 100) != 0) {

warnx(" error-settingbaudrate");
return -1;

}

return 0;

148

}

usb-dev-handle * ftdi-open dev (struct usb-device *dev)

{
usb-devlhandle *h;

if ((h=usb_open(dev))==NULL) {
warnx(" can't-open -device");
return NULL;

}

if(usb-claim-interface (h, 0)) {
/* Already open and claimed (or we have no permission) */
usb-close (h);
return NULL;

}
return h;

}

/* Open and return a handle to the first available device
with the given chipid, or just the first available
device if chipid[O]=O.
Returns NULL if no matching chips found.

usb-dev-handle *ftdi-open-chipid(chipidt chipid)

{
struct usbbus *bus;
struct usb-device *dev;
usb-devlhandle *h;
int found=O;
chipidt id;

ftdi-rescan-bus 0;

for (bus = usb-busses; bus; bus = bus->next) {
for (dev = bus->devices; dev; dev = dev->next) {

if(dev- >descriptor.idVendor == FTDIVID &&
dev- >descriptor.idProduct == FTDIPID) {

found++;
if ((h ftdi-open-dev(dev))! =NULL)
{

if(ftdi-get-chipid (h,id)>=0)
if (chipid[0]==0 11

strcmp(chipid,id)==0)
if(ftdi-setup (h)>=0)

return h;
ftdi-close (h);

}
}

}
}
return NULL;

}

149

/* Read the chipid stored as ascii text in the "serial"
string of the device. Return -1 if it cannot be read. */

int ftdiget-chipid (usb-dev-handle *h, chipid-t chipid)

{
if(usb-get-string-simple (h, 3, chipid, sizeof(chipid-t))>=O)

return 0;
return -1;

I

/* Scan the USB bus, return up to n chipids of available devices.
Returns the number of detected chips

*/

int ftdi-scan (chipidt *chipids, int n)

{
struct usb-bus *bus;
struct usb-device *dev;
usb-dev-handle *h;
int found=0;
int i=0;

ftdi-rescan-bus 0;

for (bus = usbbusses; bus; bus bus->next) {
for (dev = bus->devices; dev; dev = dev->next) {

if(dev- >descriptor.idVendor == FTDIVID &&
dev- >descriptor.idProduct == FTDIPID) {

found++;
if (((h = ftdi-open-dev(dev))!=NULL) && i<n)
{

if (ftdi-get-chipid (h, chipids [i)> =0)
i++;

ftdi-close (h);

}
}

}
}
if(found>i) {

found-=i;
warnx(" found-%d-device%s-that-could-not.be.opened",

found,(found==1)?"" :"s");

}
return i;

}

/* Read the EEPROM from the device into b, which must have size
FTDLROMSIZE. Returns -1 on error, 0 otherwise. */

int ftdi-read-eeprom(usb-dev-handle *h, uint8_t *b)
{

unsigned int i;
int r;

for (i =0;i<FTDI_ROMSIZE/2;i++) {
if ((r=usbcontromsg(h, OxCO,0x90,0, i, (char *)&b[i<<1], 2, 100))!=2) {

verb(" read-eeprom:-control-returned-%d\n",r);

150

return -1;

}
}
return 0;

I

/* Write the EEPR OM from b, which must have size FTDLROMSIZE,
into the device. Returns -1 on error, 0 otherwise. *7

int ftdi-write-eeprom (usb-dev-handle *h, uint8_t *b)

{
int i;
int r;
uint16t *w = (uintl6_t *)b;

for(i=0;i<FTDIROM_SIZE/2;i++) {
if ((r=usbcontrolmsg(h, 0x40, 0x91, LE(w[i]), i, 0, 0, 100))!=0) {

verb(" write eeprom: -control.returned-%d\n",r);
return -1;

return 0;
}

/* Write up to count bytes. Returns number of bytes actually
written, or <0 on error. */

ssizet ftdi-write (usb-devlhandle *h, void *buf, sizet count)
{

/* Break writes up into 64-byte segments; there's some
maximum size before the FTDI chokes, and 64 bytes is
reasonable since we don't care about write throughput. *7

size-t written = 0;
size-t len;
int ret;

do {
len = count - written;
if(len > 64)

len = 64;
ret = usb-bulk-write(h, 2, buf+written, len, 100);
if(ret <0)

return written?:ret;
written += ret;

} while(written<count);

return written;

}

/* Read up to count bytes. Returns number of bytes actually
read, or <0 on error/timeout. */

ssizet ftdi-read (usb-devihandle *h, void *buf, sizet count)
{

/* Try to read the requested number of actual data bytes,
rounded such that we're asking the FTDI for a multiple of
64 bytes. This is ugly because of the necessary

151

stripping of the 2-byte status header from each 64-byte
packet. */

static uint8t b[4096];
uint8_t *dest = (uint8_t *)buf;
int ret, saved=0, req, len, i;
int count-blocks;

count-blocks = (count - saved) / 62;
if (count-blocks==0) {

fprintf (stderr , " code-bug:-must.read-at-east-62-bytes\n");
return -1;

}
do {

req = count-blocks * 64;
/* Kernel requests for more than 4096 bytes may be broken up *7
if (req > 4096)

req = 4096;

ret = usbibulk-read(h, 1, (char *)b, req, 100);
/* Error, or timed out *7
if(ret < 0)

return saved ? : ret;
/* We always expect at least the status bytes *7
if(ret < 2)

return saved ? : -EINVAL;

for(i = 0; i < (ret - 2); i += 64) {
len = ret - i - 2;
if(len > 62) len = 62;
memcpy(&dest[saved],

&b[i + 2],
len);

saved += len;

}
count-blocks (count - saved) / 62;

} while(ret == req && count-blocks > 0);

return saved;

}

/* Async stuff: *7

/* Start receiving data. Return pointer to struct ftdi-async, or NULL
on error. */

struct ftdi-async * ftdi-async-start (usb-dev-handle *h, struct buffer-pool *obp)
{

int i;
struct ftdi-async *ah;

if ((ah=(struct ftdi-async *)malloc(sizeof(struct ftdi-async))) ==NULL) {
verb(" Out-ofrmemory\n");
return NULL;

}

152

if(h==NULL I obp==NULL) {
verb(" params-areJNULL\n");
goto out;

}

ah->bp = obp;

/* The device doesn't like requests that aren't multiples of 64 */
if ((ah->bp->buflen%64)!=O) {

verb(" ftdi-asyncstart :-buffer -pool-buflen%%64_rmust..beA\n");
goto out;

}

ah->dev=h;

/* Allocate and fill uurbs */
for(i=O;i<FTDLQUEUE;i++) {

uint8_ *buf = buffer-get-empty(ah->bp);
if(buf==NULL) {

verb(" Can'tget-buffer_%d\n",i);
goto out;

}
if(async-usblfill-bulk (1 I USB-ENDPOINTIN,

buf, ah->bp->buflen,
&ah->uurb[i])<O) {

verb(" Error. filling _URB_%d\n",i);
goto out;

}
}

/* Submit them *7
for (i =O;i<FTDLQUEUE;i++) {

if(asyncusb-submit(ah->dev, &ah->uurb[i])<0) {
verb("Error-submitting..URB..%d\n",i);
goto outdiscard;

}

/* All done *7
return ah;

outdiscard:
for(i -- ;i>=0;i--)

asyncusb_discard(ah->dev, &ah->uurb[i]);
out:

free (ah);
return NULL;

I

/* Get the next block of data from the device. Blocks until data is
available . Puts filled (raw) buffer in ** filled , and returns the
actual number of bytes read, or negative on error.
Requests a new buffer via buffer-get-empty and resubmits. */

153

int ftdi-async-next (struct ftdi-async *ah, uint8t ** filled)

{
int ret;
static struct usbdevfs-urb *uurb;
uint8-t *buf;
int len;

if(ah==NULL 11 ah->dev==NULL 11 ah->bp==NULL)
return -EINVAL;

/* Reap URB. Blocks. *7
another:

if ((ret=asyncusbreap(ah->dev, &uurb)) < 0)
return ret;

/* If it wasn't data coming in, free it and reap another instead.
This is to catch the outgoing command. */

if (!(asyncusb_endpoint(uurb) & USBENDPOINTIN)) {
free (uurb);
goto another;

I

/* Get the data */
if ((en=async-usb-bulk-getdata(uurb, filled))<0)

return len;

/* Request a new buffer *7
if ((buf = buffer-get-empty(ah- >bp)) == NULL)

return -ENOMEM;
async usb-set-buffer (uurb, buf);

/* All done. Resubmit the URB and return. *7
if ((ret=async-usb-resubmit(ah->dev, uurb)) < 0) {

verb(" Error-resubmitting-URB.\n");
return ret;

I

return len;

}
int ftdi-async-stop (struct ftdi-async *ah)

{
int i;
int ret;
static int printed;;

if(ah==NULL 11 ah->dev==NULL ah->bp==NULL)
return -EINVAL;

/* Wait a little bit . If we have pending URBs, it's better
to let them complete on their own than kill them here

(causes occasional kernel oops on 2.4.20) */
usleep(100000);

154

printed = 0;
for(i =0;i<FTDLQUEUE;i++) {

buffer _mark-empty(ah- >bp, async-usb-get-buffer(&ah- >uurb[i]));
if ((ret = asyncusb_discard(ah->dev, &ah->uurb[i])) < 0) {

if(!printed) {
debug(" Error-discarding-URBs:");
printed=1;

}
else debug(" _%d",i);

}
}
if(printed) debug(" \n");
free (ah);

return 0;
}

int ftdi-async-send(usb-dev-handle *h, char *buf, int len)

{
static struct usbdevfs-urb *uurb;

if ((uurb=(struct usbdevfs-urb *)
malloc(sizeof(struct usbdevfs-urb))) ==NULL) {

verb(" Error-allocating-send-URB\n");
return -- 1;

}

if (async-usbfill-bulk (2, (unsigned char *)buf, len, uurb)<0 ||
async-usb-submit(h, uurb)<0) {

verb(" Error-submitting-send-URB\n");
free (uurb);
return -1;

I

return 0;
}

buffer .h

Thead-safe buffer pool management, header file.

* ftdi -adc
* Copyright (c) 2003 Jim Paris <jim(Pjtan. com>
*

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.

#ifndef FTDI-BUFFER-H

155

#define FTDIBUFFER-H

#include <pthread.h>
#include <inttypes.h>

#define LOCK(mutex,x) do { \
int r ; \
if ((r=pthread-mutexlock(&(mutex)))!=0) \
{ verb("Cannot-ock-" #mutex ":_%d\n",r); return 0; } \
x; \
if ((r=pthread-mutex-unlock(&(mutex)))!=O) \
{ verb("Cannot-unlock-" #mutex ":%d\n",r); return 0; } \

} while(0)

/* How many data buffers available (must be > FTDLQUEUE) *7
/* They are 4k in size, so 1024 = 4 megs *7
#define BUFFERPOOL 1024

/* Four operations:
- get empty buffer (return next available buffer, NULL if not available)
- mark buffer as filled (move to filled queue, send signal)
- get filled buffer (return next filled buffer, blocks until ready)
- mark buffer as empty (remove from filled, push on empty)
Implemented with two queues for simplicity; between them we always
have between 0 and BUFFER-POOL items.

Filled needs also to keep track of length, so keep track separately.

*7

struct buffer-pool {
int buflen;

/* Empty buffers, ready to be put in URB *7
uint8-t *empty[BUFFER-POOL];
int empty-offset, empty-len;
int min-empty;

/* Filled with data, awaiting output */
uint8-t * filled [BUFFERPOOL;
int filledbuflen [BUFFER-POOL];
int filled-offset , filledlen

/* Mutex for entire structure *7
pthread-mutext mutex;

/* Signal when filled gets data *7
pthread-cond-t cond;

} out-pool-t;

int buffer-init (struct buffer-pool *bp, int nbuflen);
int buffer-free (struct buffer-pool *bp);

156

uint8-t *buffer-get-empty(struct buffer-pool *bp);
int buffer-mark-filled (struct buffer-pool *bp, uint8_t *buffer, int buflen);
uint8.t * buffer-get-filled (struct buffer-pool *bp, int *buflen);
int buffer..mark-empty(struct buffer-pool *bp, uint8-t *buffer);

#endif

buff er.c

Thead-safe buffer pool management, implementation.

7*
* ftdi -adc
* Cbpyright (c) 2003 Jim Paris <jimdjtan.com>
*

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see CBPYING.

*/

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <inttypes.h>

#include "buffer.h"
#include "debug.h"

int buffer-init (struct buffer-pool *bp, int nbuflen)
{

int i;

bp->buflen = nbuflen;

/* Allocate empty buffers *7
for(i = 0; i < BUFFER-POOL; i++) {

if ((bp->empty[i] = (uint8.t *)malloc(bp->buflen * sizeof(uint8_t)))
NULL) {
verb(" Outof-memory-allocating-buffer-%d\n",i);
goto out-freei;

}
}
bp->empty-offset = 0;
bp->empty-len BUFFER-POOL;
bp->min-empty BUFFER-POOL;

/* No filled buffers */
bp->filled-offset = 0;
bp->filled len = 0;

pthreadmutex-init(&bp->mutex, NULL);
pthreadcond-init(&bp->cond, NULL);

157

debug(" pool: -%d-buffers-initialized \n", BUFFER-POOL);
return 0;

i BUFFERPOOL;
out-freei

for(i--; i >= 0; i--)
free (bp->empty[i);

return -1;
}

#define WRAP(x) ((x) % BUFFERPOOL)

int buffer-free (struct buffer-pool *bp)

{
int i;
pthread cond-destroy(&bp- >cond);
pthreadrmutex-destroy(&bp->mutex);

/* We can only free buffers that have been placed back in
either the empty or filled lists

for(i = 0; i < bp->emptyilen; i++)
free (bp->empty[WRAP(i + bp->empty_offset)]);

for(i = 0; i < bp->filled-len; i++)
free (bp- >filled[WRAP (i + bp->filled-offset)]);

return 0;
}

uint8_t *buffer-get-empty(struct buffer-pool *bp)

{
uint8_t *ret
LOCK(bp->mutex,{

if(bp->empty-len == 0) {
ret = NULL;

} else {
/* Pop from empty */
ret = bp->empty[bp->empty-offset];
bp->empty-offset = WRAP (bp- >empty-offset + 1);
bp->emptylen--;
if(bp->emptylen < bp->min-empty)

bp->min-empty = bp->empty-len;
}

return ret;

}

int buffer-mark-filled (struct buffer-pool *bp, uint8_t *buffer, int bufien)

{
int ret;
LOCK(bp->mutex,{

if ((bp->emptylen + bp->filledilen) >= BUFFER-POOL) {
verb(" tried -to-add- filled -buffer , -but-already-full ?\n");
ret -1;

} else {

158

/* Push to filled */
int off = WRAP(bp->filled-offset + bp->filled-len);
bp->filled[off] =buffer;
bp->filledbuflen[off] buflen;
bp->filled-len++;
pthread-cond-signal(&bp- >cond);
ret = 0;

}

return ret;

}

uint8-t * buffer-get-filled (struct buffer-pool *bp, int *buflen)

{
uint8-t *ret;
LOCK(bp->mutex,{

/* Wait for data *7
while(bp->filled-len == 0)

pthread-cond-wait(&bp->cond, &bp->mutex);
/* Pop from filled */
ret = bp- >filled[bp- >filled-offset];
*buflen = bp->filled-buflen[bp->filled-offset];
bp->filled-offset = WRAP(bp->filled-offset + 1);
bp->filledlen--;

});
return ret;

}

int buffer-mark-empty(struct buffer-pool *bp, uint8_t *buffer)

{
int ret;
LOCK(bp->mutex,{

if ((bp->empty-len + bp->filled-len) >= BUFFER-POOL) {
verb(" tried -to-add.empty.buffer,.but.already-full?\n")
ret -1;

} else {
/* Push to empty *7
bp- >empty[WRAP(bp- >empty-offset + bp->empty-len)]

= buffer;
bp->empty len++;
ret = 0;

}
});
return ret;

}

f tdirom. h

Routines to manipulate the data in the FT245BM EEPROM chip, header file.

159

* ftdi -adc
* Copyright (c) 2003 Jim Paris <jim jtan. com>

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.
*7

#ifndef FTDI-ROM
#define FTDIROM

#include <inttypes.h>

#define FTDIROMSIZE 128

#define ROMRELEASE-NONE OxOOOO
#define ROMRELEASEAM 0x0200
#define ROMRELEASEBM 0x0400

#define ROMUSBCONFIGBASE 0x80
#define ROM-USBCONFIG-SELFPOWER 0x40
#define ROM-USBCONFIGREMOTE-WAKE 0x20

#define ROM-CONFIG-NONE OxOO
#define ROM-CONFIGINISO 0x01
#define ROMCONFIG-OUTJISO 0x02
#define ROMCONFIG-SUSPENDYPULLDOWN 0x04
#define ROM-CONFIG-USE-SERIAL 0x08
#define ROM-CONFIG-CHANGEVER 0x10

#define LE(x)

register uint16t in = x;
uint16_t out;
((uint8.t *)&out)[0] = in & Oxff;
((uint8t *)&out)[1] = (in >> 8)
out;

& Oxff;\

typedef struct {
uint16_t vid;
uint16_t pid;

uint16_t release;
uint8-t usbconfig;
uint8-t max-power;
uint16-t config;

uint16it usbver;

char manufistring[64];
char prod-string [64];
char serial-string [64];

} ftdi-rom;

/* See ROM-RELEASE_* */
/* See ROMUSBCONFIG* */
/* times 2mA
/* See ROMCONFIG-*

/* If ROMCONFIG-CHANGEVER set */

/* Null-terminated; must all *7
/* fit within maximum eeprom length */

160

void ftdi-rom-init (ftdi-rom *r);
void ftdi-rom-print(ftdi-rom *r);
void ftdi-rom-from-buffer(ftdi-rom *r, uint8_t *b);
int ftdirom-to-buffer (ftdi-rom *r, uint8it *b);

#endif

f tdirom. c

Routines to manipulate the data in the FT245BM EEPROM chip, implementation.

7*
* ftdi -adc
* Copyright (c) 2003 Jim Paris <jim@jtan. com>
*

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.

*7

#include "ftdirom.h"
#include <err.h>
#include <stdio.h>
#include <string.h>

uintl6t ftdi-rom-checksum(uint8_t *b)

{
int i;
uintl6_t c;
uintl6t *w = (uintl6t *)b;

c = OxAAAA;
for(i=0;i<63;i++) {

c ^= LE(w[i);
c = (c << 1) 1 (c >> 15);

}
return c;

}

void ftdirom init (ftdirom *r)

{
/* Use the defaults on the DLP- USB245M board,

plus whatever we want for manuf, prod, serial *7
r->vid = 0x0403;
r->pid = 0x6001;
r->release = ROM-RELEASE-BM;
r->usbconfig = ROM-USBCONFIGBASEIROM-USBCONFIG-REMOTEWAKE;
r->max-power = 22;
r->config = ROM-CONFIG -NONE;
r->usbver = xOWOO;

161

strcpy (r ->manufstring,"FTDI");

strcpy (r->prod-string,"FT245BM");
strcpy(r->serialstring,"");

}

void ftdi-rom-print(ftdi-rom *r)

{
printf ("EEPROM-contents:\n");
printf ("---- VID:0x%04x\n",r->vid);

printf ("----- PID:_0x%04x\n",r->pid);
printf ("---Release:");
if (r->release & ROMRELEASE-AM) printf("-am");
if (r->release & ROMRELEASEBM) printf(" _bm");
if (r ->release ==ROMRELEASENONE) printf(" -none");
printf (" \n");
printf ("USB-config:-x%04x",r->usbconfig);
if (r->usbconfig & ROM-USBCONFIGSELFPOWER) printf("-self-power");
if (r - >usbconfig & ROMUSBCONFIGREMOTE-WAKE) printf(" -remote-wake");
if (r->usbconfig = =ROMUSBCONFIG-BASE) printf(" -none");
printf (" \n");
printf ("-Max-power:_%d-mA\n", r- >max-power*2);

printf (-----nConfig:") ;
if(r->config & ROM-CONFIGINISO) printf(" -in-iso");
if (r->config & ROM-CONFIGOUTISO) printf(" -out -iso");
if(r->config & ROMCONFIGSUSPEND_PULLDOWN) printf(" -suspend-pulldown");
if(r->config & ROMCONFIGUSE-SERIAL) printf("-use-serial");
if(r- >config & ROMCONFIGCHANGEVER) printf(" -change-version");
if (r- >config ==ROM CONFIGNONE) printf(" -none");
printf (" \n");
printf ("-USB-ver:-Wx%04x\n",r->usbver);
printf (" -- Manuf:i%s'\n",r- >manuf-string);
printf ("--Product:-'%s'\n",r- >prod string);

printf ("---Serial: _%s'\n",r->serial_string);

}

void ftdi-rom-from-buffer(ftdi-rom *r, uint8_t *b)

{
uint16t *w = (uint16_t *)b;
int i, off, len;

if(ftdi-rom-checksum(b) != LE(w[63])) {
warnx("eeprom-checksumis-invalid:-got-Ox%04x,-wanted-Ox%04x",

ftdi-rom-checksum(b), LE(w[63]));
warnx(" using-defaults");
ftdi-rom-init (r);

} else {
r->vid = LE(w[1]);
r->pid = LE(w[2]);
r->release = LE(w[3]);
r->usbconfig = b[8];
r->max-power = b[9);
r->config LE(w[5]);
r->usbver LE(w[6]);

162

#define grab-string(name, index)
r->name[] = 0;
off b[index] - 0x80;
len (b[index+1] - 2) >> 1;
if(off <0x80 && len>0 && len<0x40 &&

b[off]==(len<<1)+2 && b[off+1]==0x03) {
for(i=0;i<len;i++)

r->name[i] = b[i*2+off+2];
r->name[i]=0;

}

grab~string (manufistring, 14);
grab-string (prod-string, 16);
if(r->config & ROMCONFIGJUSESERIAL) {

grab-string(serial-string , 18);
} else

r->serial-string [0]=O;
#undef grab-string

}
}

/* Returns -1 if the strings don't fit.
int ftdi-rom-to-buffer (ftdi-rom *r, uint8_t *b)
{

int i;
uint16_t *w = (uintl6_t *)b;
int n, len;

if((28 +
2*strlen (r->manuf-string) +
2*strlen (r->prod-string) +
2*strlen (r->serial-string))>=128) {

return -1;
}

memset(b, 0, FTDIROMSIZE);

w[0] = 0;
w[1] = LE(r->vid);
w[2] = LE(r->pid);
w[3] = LE(r->release);
b[8] = r->usbconfig;
b[9] = r->max-power;
w[5] = LE(r->config);
w[6] = LE(r->usbver);

n = 20;
#define emit-string(name,index)

len = strlen(r->name);
b[index] = n I0x80;
b[index+1] = (len << 1) + 2;
b[n++] = (len << 1) + 2;
b[n++] = 0x03;
for(i=0;i<len;i++) {

163

b [n++] =r- >namei;\
b[n++]=0;\

}
emit-string (manufistring, 14);
emit-string (prod-string, 16);
emit-string(serial-string , 18);

#undef emit-string

w[63] = LE(ftdi-rom-checksum(b));

return 0;

}

opt .h

Command-line option parsing, header file.

* SCopyright (c) 2003 Jim Paris <ji~m@jtan.com>

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.

#ifndef OPTH
#define OPTIT

#include <stdlib.h>

struct options {
char shortopt;
char *longopt;
char *arg;
char *help;

};

void opt-init(int *optind);

char opt-parse(int argc, char **argv, int *optind, char **optarg,
struct options *opt);

void opt-help(struct options *opt, FILE *out);

#endif

164

opt. c

Command-line option parsing, implementation.

7*
* Copyright (c) 2003 Jim Paris <jim0@jtan.com>
*

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "opt.h"

void opt-init(int *optind) {
*optind=O;

}

char opt-parse(int argc, char **argv, int *optind, char **optarg,
struct options *opt) {

char c;
int i;

(*optind)++;
if(*optind>=argc)

return 0;

if(argv[*optind][0]==-' &&

argv[*optind][1]!=' ' &&
argv[*optind][1]!=0) {

/* Short option (or a bunch of 'em) *7
/* Save this and shift others over *7
c=argv[*optind] [1];
for(i=2;argv[*optind][i]!=0; i++)

argv[*optind] [i -1]=argv[*optind] [i];
argv[*optind] [i -1]=0;

if (argv[*optind] [1]!=0)
(*optind) --

/* Now find it */
for(i =0;opt[i]. shortopt!=0;i+ +)

if (opt [i]. shortopt==c)
break;

if (opt[i]. shortopt==0) {
fprintf (stderr ,"Error: -unknown-option-'- %c'\n",c);
return '?';

}
if (opt[i]. arg= =NULL)

return c;

(*optind)++;
if(*optind>=argc 11 (argv[*optind][0]=='-' &&

argv[*optind][1]!=0)) {

165

fprintf (stderr ,"Error: -option-'- %c'.requires-an_"
" argument\n",c);

return '?';

}
(*optarg)=argv[*optind];
return c;

} else if (argv[*optind] [0]=='-' &&
argv[*optind][1]=='-' &&
argv[*optind][2]!=0) {

* Long option */
for(i=0;(c=opt[i].shortopt)!=0;i++)

if (strcmp(opt[i]. longopt,argv[*optind]+2)==0)
break;

if (opt[i]. shortopt==0) {
fprintf (stderr ,"Error: -unknown-option_'%s'\n",

argv[*optind]);
return '?';

}
if (opt[i]. arg==NULL)

return c;

(*optind)++;
if(*optind>=argc 11 (argv[*optind][0]=='-' &&

argv[*optind][1]!=0)) {
fprintf (stderr ,"Error: -option-_'%s'-requires -an-"

" argument\n"argv[*optind-1]);

return '?';

}
(*optarg)=argv[*optind];
return c;

} else {
/* End of options *7
return 0;

}
}

void opt-help(struct options *opt, FILE *out) {
int i;
int printed;

for(i=0;opt[i]. shortopt!=0;i++) {
fprintf (out," -- %c, -- %s%n",opt [i].shortopt,

opt[i]. longopt,&printed);
fprintf (out,"% .%-*s%s\n",30-printed,

opt [i]. arg?opt[i]. arg:"",opt [i]. help);

}
}

A.2.3 convert

Converts the ftdi-adc output to a text-based ASCII format.

166

* convert.c
*

* Converts USB ADC data to ASCII
*

* copyright (c) 2003, Montana State University
* Copyright (c) 2003 Jim Paris <jim@jtan.com>
*

* Written by Steven R. Shaw, (sshaw@alum.mit.edu)
* Modified by Jim Paris <jim()jtan. com>
*

* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)

* any later version.

* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*

#include <stdio.h>

int getrow(unsigned short *data, FILE *f)

{
unsigned short datum;
size-t rval;
int k = 0;

do {
rval = fread(&datum, sizeof(unsigned short), 1, f);

if(rval) {
data[k] = datum & Ox3fff;
k++;

}
} while(k < 8 && rval && !feof(f) && (datum&0x8000) 0);

if ((datum&0x8000) == 0)
k = -1; /* if not a full row

return k;

}

void printrow(unsigned short *d, int m)

{
int i;

if(m > 0) {
for(i = 0; i < m; i++)

printf ("%d\t", d[i]);

167

printf (" \n");
fflush (stdout);

}
}

int main(int argc, char *argv[])

{
unsigned short d1[8],d2[8];
unsigned char a, b;
int n,m;

/* Try forever; whatever is feeding us may reconnect to the
device, making the stream discontinuous */

while(!feof(stdin))

{
/* Read two rows, since first might be incomplete */
n getrow(dl, stdin);
m getrow(d2, stdin);

if (n == m)
printrow(dl,n);

do {
printrow(d2,m);
m = getrow(d2,stdin);

} while(m > 0);
}

}

A.3 Support Software

A.3.1 menu-system components

The following scripts are the primary components of the menu system used for data

collection.

nilm-init

Startup script that initializes the hardware and restores state.

#! /bin/sh
/etc/init. d/nilm

Written by Jim Paris <jim~djtan.com>

set -e

168

case "$1" in
start)

echo -n "Loading-NILM-modules:-"
insmod /home/nilm/lib/pci171O.o
echo "done."
$0 reload | true
echo -n "Restoring-last-state:-"
su nilm -c "'cat /home/nilm/last-command"' true
echo "done."

stop)
echo -n "Stopping-capture:-"
su nilm -c /home/nilm/scripts/stop-run true
echo "done."
echo -n "Unloading-NILM-modules:-"
rmmod pcil71O
echo "done."

restart)
$0 stop
$0 start

reload force -reload)
echo "Setting-up-PCI1710:-"
/home/nilm/bin/setl7lO -d /dev/pcil71O <
echo "done."

echo "Usage: -$0-start stop restart I reload}"
exit 1

/home/nilm/nilmcfg.pci

esac

exit 0

menu-system

Loads and displays the main menu.

#!/bin/sh

menu-system 2003-06-06
2005-01-05 added dvd count
Jim Paris <jim@jtan.com>

Simple menu interface to the data collection

unset DISPLAY

while /bin/true ; do

169

cd /home/nilm

Redirect stdout to a temporary file
trap "rm--fLmenu-system.tmp.$$;-exit" 0 1 2 11 15
exec 3>&1
exec >menu-system.tmp.$$

Write the message
echo -n "Data-collection.Js..currently-"
if killall -q -0 run-prep.pl ; then

running= 1
runmsg=" Stop-collection"
echo running.

else
running=0
runmsg=" Start -collection.- ->"

echo stopped.
fi

date +" Currenttime.is-%Y%m%d-%H%M%S"

if ! Is data I grep -q snapshot ; then
totalsize =0

echo "No-snapshot-files.available."
else

echo -n "Earliest-non-empty-snapshotis'"
basename "'ls--r-data/snapshot*-j -tail--1' .gz
echo -n "-Latest -non-emptysnapshots.is"
basename "'ls-data/snapshot*-._ taiL- 1"' .gz

totalsize ='du -scl -- apparent-size -k data/snapshot* I tail -1 I cut -f 1'
[$totalsize = 0] && totalsize=1
echo -n "TotaLsize-ofLcompressed-snapshots..is$ {totalsize} K("
cds=$(((totalsize+649999)/650000))
if [$cds= 1] ; then

echo -n "1-CD-or-"
else

echo -n "$cds..CDs-or."
fi
dvds=$(((totalsize+4499999)/4500000))
if [$dvds= 1] ; then

echo -n "1-DVD"
else

echo -n "$dvds-DVDs"
fi
echo ")"

fi
if [-e data/current] then

echo -n "'du--k-data/current-I .cut-- Li'K-ofLcurrent-data."
echo "not-yet-included-insnapshots"

else
echo "Alldata.is -included -n-.snapshots"

fi

170

Message complete, redirect stdout back
exec 1>&3 3>&-

title ="NILM-('hostname-2>/dev/null')" 11 title=" NILM"

IFS=" gdialog -- title " $title" -- menu "'catxnenu-system.tmp.$$" 17 74 5 \
1 "Refresh-this-screen" \
2 "$runmsg" \
3 "Create_asnapshot-now" \
4 "Burn.snapshot.data-to-CD.orDVD" \
5 "Shell-prompt" 2>menu-system.tmp.$$

result='cat menu - system.tmp.$$'
rm -f menu-system.tmp.$$

case -$result in
_1)

Refresh

_2)
if [$running = 0]; then

IFS=" gdialog -- title 'Start Collection' -- menu
"Choose.the-type-of-collection. -Preprocessing
is -typically .used.and-has.a-ow.data-ate.-Raw-data
is .for .special -testing ._andcomes-at-a-very-highate." \

12 60 3 \
1 "Collect -preprocessed-data" \
2 "CollectLraw.-.data" \
3 "Go-back" 2>menu-system.tmp2.$$

result2 ='cat menu-system.tmp2.$$'
rm -f menu-system.tmp2.$$

case _$result2 in
_1)

Preprocessed
gdialog -- infobox \

"Starting-data..collection ,.please..wait..." 3 60
sh scripts /start -run

2)
Raw
if IFS=" gdialog -- title "CollectJRaw.Data" -- yesno\

"Are..you.sure?- This-will.generate-aJot.of-data."\
4 60 ; then

gdialog -- infobox \
"Starting-raw.data.collection, -please -wait... " 3 60

sh scripts /start -run raw
fi

go back

esac

171

else
gdialog -- infobox "Stoppingdata._collection,._please -wait..." 3 60
sh scripts /stop-run

fi

gdialog -- infobox " Creating-and -compressing.snapshot, .please-wait..." \
3 60

sh scripts /snapshot-data

_3)

_4)

-5)

esac

done

run-prep.pl

Executes the capture and preprocessor and adds comments to the output.

#!/usr/bin/perl -w

run-prep.pl 2003-06-05
Jim Paris <jimCjtan.com>

Run preprocessor on the PC11710 output, saving data to a file.
A modified version of prep is used that flushes the output buffer
after each line. A SIGHUP will cause this script to reopen the

output file .

Give an argument of "raw" to skip the preprocessor and store raw data.

If the output file exists, it will be appended to.

When this script starts, is sent a SIGHUP, or terminated with

SIGTERM or SIGINT, it includes a header or footer giving a
timestamp. Header and footer lines are prefixed with '#'

Timestamp labels:
start - first start capture

172

sh scripts /burn-cd

clear
echo "Type-'exit'..to-return-to-the-menusystem"
echo "Type.'halt' _.to..shut-.down.the-computer"
SKIPMENU=1 /bin/bash -login

Cancel, or some error; just die (init should restart us)
exit

startraw - first start capture (raw data)
stop - ending capture
reopening - about to start writing to a new file
reopened - just started writing to a new file

use strict ;
use POSIX qw(strftime);

Prep may generate a gmon.out, so go somewhere that it can be written.
chdir "/home/nilm";

my $rawmsg="";

my $hostname='hostname' 11 "nilm"; chomp $hostname;

my $prepcmd="/home/nilm/bin/prep-/dev/pci171O--p-/home/nilm/lib/prep-msufp.so";

if($ARGV[0] eq 'raw') {
$rawmsg = "-raw";
$prepcmd = "/bin/sh--ci/bin/dd-if=/dev/pci171O..-/home/nilm/bin/pci2asc"'

}

Where to put the output
my $output = "/home/nilm/data/current";

$1=1;

open(PREP,$prepcmd "I")
or die "can't-execute-'$prepcmd':$"

sub write-timestamp {
my $desc = shift;
print OUTPUT "#-$hostname-$desc-=-".

strftime (" %Y%m%d-%H%M%S",localtime) "\n";
}

sub open-output {
open(OUTPUT,">>" .$output)

or die "can't-append-to-$output:X$!";

};

sub reopen-output {
write-timestamp("reopening$rawmsg");
open-output;
write-timestamp(" reopened$rawmsg");

} ;

sub term-handler {
write-timestamp(" stop$rawmsg");
close OUTPUT;
close PREP;
print "Terminating.\n";
exit;

173

$SIG{HUP} = \&reopen-output;
$SIG{TERM} = $SIG{INT} \&term-handler;

open-output;
print OUTPUT "#_$hostname-prepcmd-=.-$prepcmd\n";
write timestamp(" start$rawmsg");

print "Running.\n";

print OUTPUT $_ while(<PREP>);

print "Warning: eached._EOF\n";

write timestamp(" stop$rawnsg");

close OUTPUT;
close PREP;

start-run

Starts the run-prep. pl process if it is not already running.

#!/bin/sh

start-run 2003-06-05
Jim Paris <jim@jtan.com>

Start executing run-prep.pl in the background if it 's not already running.

preplog=/home/nilm/logs/run-prep

Redirect to output
exec > >/home/nilm/logs/start-run 2>&1

echo /home/nilm/scripts/start-run $1 > /home/nilm/last-command

if killall -q -0 run-prep.pl ; then
echo Error: run-prep.pl is already running on 'date'
exit 1

fi

/home/nilm/scripts/ initialize
/home/nilm/scripts/run-prep.pl $1 >>"$preplog" 2>&1 &

sleep 2 # give it time to start

174

stop-run

Stops the run-prep. pl process if it is running.

#!/bin/sh

stop- run 2003- 06-05
Jim Paris <jim~jtan. com>

Stop executing run-prep.pl if it 's running

Redirect to output
exec > > /home/nilm/logs/stop-run 2>&1

echo /home/nilm/scripts/stop-run > /home/nilm/last-command

if ! killall -q -TERM run-prep.pl then
echo Error: run-prep.pl isn\'t running on 'date'
exit 1

fi

sleep 2 # give it time to stop

snapshot-data

Creates, names, and compresses a snapshot of the current capture data.

#!/bin/sh

snapshot- data 2003-06-05
Jim Paris <jim@jtan.com>

Take a "snapshot" of the prep output.
This is meant to be run on a regular basis via cron, or
manually (creates a lock)

prep-output=" /home/nilm/data/current"
snapshot-dir=" /home/nilm/data"
snapshot-name='date +" snapshot-%Y%m%d-%H%M%S"'

Redirect to output
exec > >/home/nilm/logs/snapshot-data 2>&1

#duh
if killall -q -0 snapshot-data ; then
echo "snapshot-data already running; not creating $snapshot.name"
sleep 1
exit

#fi

if [! -e "$prep.output"] then

175

echo "Nooutput _found; not-creating..$snapshot-name"
sleep 1
exit

fi

Move the output and tell run-prep to start making a new one.
mv -- "$prep-output" "$snapshot-dir/$snapshot-name"
killall -q -HUP run-prep.pl # OK if this fails.

Compress it
gzip -- "$snapshot dir/$snapshot-name"

And we're done.
sleep 1 # so they can't snapshot more than once per second

burn-cd

Interactively compiles and burns CD and DVD images.

#!/bin/sh

burn-cd 2003-06-06
2005-01-05 added dvd support
Jim Paris <jimgjtan.com>

Put snapshots into an ISO image on a CD and remove them,
with interactive dialogs.

unset DISPLAY

exec 2>>/home/nilm/logs/burn-cd

echo "burn- cd-starting-on-'date"' 1>&2

Gather a list of snapshots in name-order that will fit.
first-snapshot =
last-snapshot=
snapshotlist
total-size =0

cd /home/nilm
if ! Is data I grep -q snapshot ; then

gdialog -- title "Error" -- msgbox "No-snapshot.files-available." 5 50
exit

fi

IFS=" gdialog -- title 'Burn Disc' -- menu
"Would-you-like-to-burnaCD.or-DVD?" \
12 60 3 \
1 "Burn-CD-R" \
2 "Burn.DVD+R-orW)VD+RW" \
3 "Go.back" 2>menu-system.tmp2.$$

176

result2 ='cat menu-system.tmp2.$$'
rm -f menu-system.tmp2.$$

case -$result2 in
_1)

disc=CD
discdesc=" CD-R"
discsize =650000

_2)
disc=DVD
discdesc="DVD+RoriDVD+RW"
discsize =4500000

exit

esac

for snapshot in 'Is data/snapshot*'; do
[x$first-snapshot = x] && first snapshot=$snapshot;
size='du -k -- apparent-size $snapshot I cut -f 1'
[$size = 0] && size=1
if [$(($size + $totalisize)) -It $discsize 3 ; then

last-snapshot $snapshot
snapshotlist =" $snapshot list$snapshot"
total-size =$(($totalsize + $size))

else
break

fi
done

if ["x$snapshotlist" = "x" 3 ; then
gdialog -- title "Error" -- msgbox "Snapshots-too-big-for.$disc!" 5 50
exit

fi

trap "rm--rf.burn-cd-tmp-$$;-echo-exiting..>&2;-exit" 0 1 2 11 15
cat >burn-cd-tmp-$$ <<EOF

First file : 'basename $first.snapshot'
Last file 'basename $last-snapshot'

Total files 'echo $snapshot-list I we -w I tr -d
Total size: ${ total-size }K

EOF
if ! IFS=" gdialog -- title "Build.$disc-image?" \

-- yesno "'catburn-cd-tmp-$$" 8 60 ; then
exit

fi

Link to them in a temporary directory
trap "rm.-rLburn-cd- {tmp,tmpdir} -$$;-echo-exiting.. .. >&2;-exit" 0 1 2 11 15
if ! mkdir -p burn-cd-tmpdir-$$; then

gdialog -- title "Error" \

177

-- msgbox 'Error making temporary directory; try again' 5 60
exit

fi
for i in $snapshotlist ; do in -f $i burn-cd-tmpdir-$$/'basename $i' done

Build the ISO filename
eg snapshot- 20030601-123456- through- 20030603- 012345. iso
isofirst ='cd burn-cd-tmpdir-$$;ls head -1 1 sed -e 's/snapshot-//"
isofirst ='basename $isofirst .gz'
isolast ='cd burn-cd-tmpdir-$$;ls tail -1 1 sed -e 's/snapshot-//"
isolast ='basename $isolast .gz'
isoname="snapshot- $isofirst-through- $isolast.iso"

isopath=" burn-cd-tmpdir-$$/$isoname"

echo "iso-$isoname-containing-iles- $snapshot-iist " 1>&2

Run mkisofs
if ! IFS=" mkisofs -gui -J -r -no-cache-inodes -o $isopath \

$snapshotiist 2>&1 \
perl -e '$|=1;while(<>){/ *(\d+)[.\d+% done/ and print "$1\n";}' \
gdialog -- title "Building..$discimage,..please.wait..." \

-- guage "'cat-burn-cd-tmp-$$" 9 60 0 ; then
echo "mkisofs-returned-error-code-$?" 1>&2
gdialog -- title "Error" \

-- msgbox "An.error.occured.while-generating-the-$disc-mage." 5 60
exit

fi
sleep 1 # so the dialog box stays up for a sec

OK, now we have CD image in $isopath -- let's burn it.

* Make sure the dudes insert a CD
if ! gdialog -- title "Ready" -- msgbox "The-$discJmageis-ready-toburn.-\
Please.insert .a.$discdesc-in -the._drive-\
and.hitENTER-to-continue." 7 60 ; then

echo "ctrl-c-before-burn" 1>&2
exit

fi

Do this in a loop so they can burn it again in case of problem, etc.
burned=0
while true ; do

clear
B="\033[;1m" # Bold
N="\033[;0m" # Normal
echo -e "${B}Writing-datato.$disc.--Please-wait.${N}"
eject -t /dev/scd0
if [$disc = CD] ; then

if cdrecord dev=0,0,0 speed=24 gracetime=O -v $isopath ; then
echo "cdrecord-success,-return-code-$?" 1>&2
success=1

else
echo "cdrecord.failed, -error -code-$?" 1>&2
success=0

178

fi
else

if growisofs -speed=4 -dvd-compat -Z /dev/scd0=$isopath ; then
echo "growisofs-success, .return ..code.$?" 1>&2
success=1

else
echo "growisofs-failed , -error -code-$?" 1>&2
success=0

fi
fi
eject /dev/scd0

if [$success = 0 then
sleep 2 # so the error doesn't vanish immediately
if ! gdialog -- title "Error.burning-$disc" -- yesno "An-error-\

occured-whileburning-the-$disc. --There-may-be.a.problem-with.the.-media,-\
or._this may-j ust-be-a...temporary_.problem. -Would-you-liketo-tryagain?" \

7 60 ; then
echo "user-wants-togive_up" 1>&2
break

fi
echo "user -wants-to-keep-trying" 1>&2
retrytitle ="Retry"

fall down
else

burned=$(($burned + 1))
if ! gdialog -- title 'Success!' \

-- yesno "The-$disc...was-successfully-written. -It.now.contains-\
snapshot-data.from...$isofirst-through-$isolast .- Would-you.like-to.burn-\
a-duplic ate-$ disc..cont aining-the-s amesnapshot.dat a?" 8 60 ; then

echo "user-doesn't-want-any.more-cds" 1>&2
break

fi
retrytitle ="Duplicate"

fi
if ! gdialog -- title $retrytitle -- msgbox "Please-insert-a-new-\

$discdesc-in-the-drive-and-hit-ENTER-to-continue." 6 60 ; then
echo "ctrl - c.efore..etry-or-duplicate.-burn" 1>&2
break

fi
done

if [$burned -gt 0] ; then

Do we want to give them this option?
count="$burned CDs";
[$burned -eq 1] && count="1 CD";
if ! gdialog -- title 'Remove old snapshots'\
-- yesno "Snapshot data from $isofirst through $isolast has now
#been archived to $count. Would you like to remove this data from the \
#active directory? It needs to be removed before you can burn later \
#snapshots to CD." 9 60 ; then
echo "user wants to save files " 1>&2
exit

179

gdialog -- title "Please-wait" -infobox "Removing-old-snapshots..." 3 50

Move the burned iso into /home/nilm/burned
mv -f $isopath /home/nilm/burned/'basename $isopath'

And remove the snapshots.
rm -rf burn-cd-tmpdir-$$
for i in $snapshotlist ; do rm $i ; done

sleep 1 # so the dialog box stays up for a sec
fi

echo "burn- cd-ending-on-'date', -burned= $burned" 1>&2

che ck-diskspace

Periodically checks available space and removes outdated files as necessary.

#!/bin/sh

check-diskspace 2003-06-06
Jim Paris <jim@jtan.com>

If disk space is low (less than a gig), remove an old burned ISO

exec >>/home/nilm/logs/check-diskspace 2>&1

if ['df -m /dev/hdal I awk '/hdal/{print $4}" -It 1024] then
rmfile='ls -tr /home/nilm/burned/*iso I head -1'
echo "Disk-space-is-low;-xemoving-burned-file-$rmfile"
rm -f $rmfile

fi

A.3.2 nilmgui

nilmplugin.h

Header file describing the nilmgui plugin architecture and interface.

#ifndef NILMPLUGINJH
#define NILMPLUGINIH

/* Plugin structures are filled in by each plugin.
Nonexistant or unimplemented functions should be set to NULL */

typedef struct {

180

fi

char *name;
/* The "value" pointers will be deallocated on a destroy, so

free it and dynamically allocate the memory when changing *
char *value;

} plugin config-item;

typedef struct {
int numitems;
pluginconfig-item *pci;

} plugin-config ;

/* Functions that return int return nonzero on success *7
typedef struct {

char *name;
char *desc;

/* Initialize ; called before anything *7
int (* init)(void);

/* Deinitialize ; called after everything *7
void (*destroy)(void);

/* Plugin configuration; call set-config to inform the
plugin after making changes. */

plugin-config * (* get config)(void);
int (* set-config)(void);

/* Start or stop capturing data */
int (*start)(void);
int (*stop)(void);

/* Optional fd to watch; if non-NULL, host will
call process whenever it has data available *7

int *watchfd;
int (*process)(void);

/* Query how many items can be read *7
int (*query)(void);

/* Read at least 1 and up to n records; returns number
actually read (blocking) */

int (*read)(int n, float (*data)[8]);
} inputplugin;

#endif

cmdline . c

Implementation of the cmdline input plugin for nilmgui data.

#include "cmdline.h"

181

#include
#include
#include
#include
#include
#include

<sched.h>
<stdlib.h>
<string.h>
<stdio.h>
<signal.h>
"xpopen.h"

#ifndef max
#define max(a,b) ((a)>(b)?(a):(b))
#endif
#ifndef min
#define min(a,b) ((a)<(b)?(a):(b))
#endif

int initialize (void);
void destroy(void);
pluginconfig * get -config (void);
int set-config (void);
int start (void);
int stop(void);
int process(void);
int query(void);
int pluginread(int n, float (*data)[8]);
int watchfd;
FILE *output;
int childpid;
int running;

#define MAXLEN 1024
char buf[MAXLEN+1];
int buflen=0;
float databuf[MAXLEN] [8];
int databufstart=O, databufend=0;

inputplugin plugin-info
.name
.desc =
Sinit =
.destroy =
. get-config =
. set-config =
. start =
.stop =
.watchfd =
.process =
.query
.read =

= {
"cmdline",

" Execute-the-given-shell-commands..to-generate._data",
& initialize
&destroy,
&get-config,
&set-config,
&start,
&stop,
&watchfd,
&process,
&query,
&pluginread,

inputplugin * get-iplugininfo (void) { return &plugin-info; }

plugin-config pc;

int initialize (void)

182

{
watchfd=-1;

pc.num-items = 1;
pc.pci = (plugin-config-item *)malloc(sizeof(plugin-config item) * pc.num-items);
if(pc.pci==NULL)

return 0;
Pc.pci [0]. name=" Commandline";
pc. pci [0]. value=strdup(" /bin/false");

running=0;

return 1;

}

void destroy(void)

{
if(pc.pci (0]. value!=NULL)

free (pc.pci [0]. value);
if (pc.pci!=NULL)

free (pc.pci);

I

pluginconfig * get-config (void)

{
return &pc;

I

int set-config (void)

{
printf ("new-commandline:-%s\n",pc.pci[0].value);
if (running) {

if (!stop())
return 0;

if (! start ())
return 0;

}
return 1;

}

int start (void)

{
if (running) stop ();

running=0;

if ((output =xpopen(pc.pci[0].value," r",&childpid)) ==NULL) {
perror(" popen");
return 0;

I
sched-yield 0;
if (waitpid(childpid,NULL,WNOHANG)==childpid) {

fprintf (stderr ,"Subprocess-exited..prematurely\n");
return 0;

183

I
watchfd=fileno(output);

running=1;

return 1;

}
int stop(void)

{
if (!running) return 1;

(void) kill (childpid , SIGHUP);
sched-yield ();
(void) kill (childpid , SIGKILL);
xpclose(output,childpid);

running=0;

return 1;
}

int process(void)

{
int len;
char *c;
static int justwarned=0;

if(feof (output)) {
printf (" reached-end-oL file , -closing -pipe\n");
pclose (output);
return 0;

}

if (!running | feof(output) buflen>=MAXLEN) {
printf (" process-eturning, -can't -read\n");
return 0;

I

if ((len=read(fileno(output),buf+buflen,MAXLEN-buflen)) <=0) {
if(len==0) {

printf (" called -process-but-o-data-was-ready\n")
return 0;

} else {
printf ("read-failed :-error =%s\n",strerror(errno));
return 0;

}

buflen+=len;

buf[bufien] =0;
while((c=strchr(buf,'\n'))!=NULL) {

int i;
int off =0, j;

184

*C='7\0' ;
for(i=0;i<8;i++){

j =0;
if (sscanf(buf+off," %f%n",

&databuf[databufend][i],&j)<1) {
fprintf (stderr ,"malformed-input\n");
return 0;

// databuf[databufend][i]=O;
}
off+=j;

}
if (((databufend+1)%MAXLEN)==databufstart) {

if (!justwarned)
fprintf (stderr ," buffer -overflow; "

"discarding-data\n");
justwarned=1;

}
else {

databufend=(databufend+1)%MAXLEN;
justwarned=0;

I

buflen-=(c+1-buf);
memmove(buf,c+1,buflen);
buf[buflen]=0;

}
return 1;

int query(void)

{
return ((databufend+MAXLEN)-databufstart)%MAXLEN;

I

int pluginread(int n, float (*data)[8])

{
int ij;
int len = min(n,query();
for(i=O;i<en;i++)

for(j=0;j<8;j++)
data[i][j]=databuf[(i+databufstart)%MAXLEN][j];

databufstart = (databufstart + len)%MAXLEN;
return len;

}

nilmgui .cpp

Main nilmgui application implementation.

#include <qapplication.h>

185

#include <qtextedit.h>
#include <qfile.h>
#include <unistd.h>
#include <signal.h>

#include <iostream>
using namespace std;

#include <nilmimp.h>

int main(int argc, char *argv[])

QApplication app(arge, argv);
app.connect(&app, SIGNAL(lastWindowClosedo), &app, SLOT(quit());

NilmImp *win = new NilmImp(;
win->showo;

printf ("input .plugin-dir: -%s\n",INPUTPLUGIN.DIR);

return app.exec(;

}

nilmimp. h

Main window drawing and event handling, header file.

#ifndef NILMIMP-H
#define NILMIMP-H

#include "nilmwindow.h"
#include "trainingparameters.h"
#include <nilmplugin.h>
#include <qsocketnotifier.h>
#include "classifier. h"
#include <qarray.h>
#include "nilmtypes.h"

class ExemplarDialog;

class Nilmlmp : public NilmWindow

{
Q-OBJECT

public:

Nilmlmp(QWidget* parent = 0, const char* name 0, WFlags f 0);
~NilmImp(;

public slots:

//
void fileSave ();

186

void fileExit ();
void editUndo(;
void editRedo(;
void helpAbout(;
void menubar-activated(int);
void doInit ();
void doSave(;
void doLoado;
void inputDataAvailable(;
void doExemplaro;
void doPause(bool);
void doConfig(;
void zoomFito;
void matchFound(QString name,

double quality, double scale);

signals :
void newData(QArray<dataPoint> da);

private:
ExemplarDialog *ed;
QSocketNotifier *sn;
inputplugin *ip;
void *handle;
Classifier * classify

public:
TrainingParameters trainingparameters;
double classify-tolerance;

#endif

nilmimp. cpp

Main window drawing and event handling, implementation.

#include "nilmimp.h"
#include <qvalidator.h>
#include "nilmwindow.h"
#include "nilmconfigbase.h"
#include "plot.h"
#include <qtextedit.h>
#include <qmessagebox.h>
#include "trainingparameters.h"
#include <qsocketnotifier.h>
#include <qfiledialog.h>
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

187

#include <string.h>
#include <unistd.h>
#include <sys/select.h>

#include <signal.h>
#include <qstring.h>
#include "nilmtypes.h"

#include "exemplardialog.h"
#include <qvariant.h>

#include <qpushbutton.h>
#include <qlabel.h>
#include <qlineedit.h>
#include <qlayout.h>
#include <qtooltip.h>
#include <qwhatsthis.h>
#include <qsplitter.h>

#define infobox(...) infoBox- >append(QString().sprintf(_VA-ARGS))
#define info(...) do{printf(_VAARGS_-);printf(" \n"); }while(0)

Nilmlmp::Nilmlmp(QWidget* parent, const char* name, WFlags f)
NilmWindow(parent, name, f)

{
ip=NULL;
classify tolerance = 0.95;

ed = new ExemplarDialog(this," Exemplars",false);

QValueList<int> sizes;
sizes << height(*2/3 << height(*1/3; // to start
NilmWindow::splitter2- >setSizes(sizes);

doInit 0;
}

Nilmlmp::~NilmImp()

{
delete ed;

}

void Nilmlmp::fileSave() {}
void Nilmlmp::fileExit() {}
void NilmImp::editUndo() {}
void NilmImp::editRedo() {}
void NilmImp::helpAbout() {}
void Nilmlmp::menubar-activated(int) {}

void Nilmlmp::doConfig()
{

NilmConfigBase *cfg = new NilmConfigBase(this,"Config",true);
// QDouble Validator doesn't actually prevent them from going out of range,
// but it keeps characters outta there.
cfg - >varianceEdit- >setText (QString:: number (trainingparameters. settle _variance-max));
cfg - >extraEdit- >setText(QString::number(trainingparameters.extra-transient iength));
cfg - >matchEdit- >setText(QString: :number(classify-toler ance));

188

cfg - >varianceEdit- >setValidator(new QDoubleValidator(O,1e9,10,cfg->varianceEdit));
cfg - >extraEdit- >setValidator(new QlntValidator(0,500,cfg->extraEdit));
cfg ->matchEdit->setValidator(new QDoubleValidator(0,1,10,cfg->matchEdit));
if (cfg->exec() == QDialog::Accepted) {

double tmp;
int tmp2;
bool ok;
tmp = cfg- >varianceEdit->text().toDouble(&ok);
if (ok && tmp > le-6 && tmp < 1e6)

trainingparameters.settle-variance-max = tmp;
tmp2 = cfg- >extraEdit- >text().toInt(&ok);
if(ok && tmp2>0 && tmp2<500)

trainingparameters. extra-transient-length tmp2;
tmp = cfg- >matchEdit->text().toDouble(&ok);
if(ok && tmp > 0 && tmp < 1)

classify-tolerance tmp;

}
delete cfg;

}

void NilmImp::doExemplaro

{
if (ed->isVisibleo)

ed->hideo;
else

ed->showo;

}

void NilmImp::inputDataAvailable()

{
if (! ip ->processo) {

info ("Processing-failed -(end-of-data?);-shutting-down-input-plugin");
ip->stopO;
ip->destroyO;
dlclose (handle);
ip=NULL;
delete sn;

// delete classify;
disconnect(this, SIGNAL(newData(QArray<dataPoint>)) ,0,0);
return;

}

while(ip->queryO>0) {
float d [128][8];
int count = ip->read(128,d);
QArray<dataPoint> da(count);
for(int i=0;i<count;i++)

for(int j=0;j<8;j++)
da[i][j]=d[i][j];

newData(da);
// plotBox-> addData(d, count);

}
}

189

void Nilmlmp::doPause(bool p)

{
plotBox- >setPause(p);

}

void Nilmlmp::zoomFit()

{
plotBox->zoomFitO;

}

void Nilmlmp::doSave()

{
if(ip==NULL classify==NULL) return;
int size = classify -- >getExemplars(.size(;
if(size ==O) {

QMessageBox::warning(this," Save"," No-exemplars.to.save!",
QMessageBox::Ok,QMessageBox::NoButton);

return;

}
trysaveagain:

QString filename = QFileDialog::getSaveFileName(
QString:: null,
"Exemplars.(*.ex);; All-Files._.*)",
this,
"save-dialog",

QString(). sprintf (" Save-% d._exemplar%s._in... ",size, (size==1I)?"":s"));

if(filename==QString::null) return;

if (QFile:: exists (filename) &&
QMessageBox::question(this, "SaveExemplars",

filename + "-already.exists. -Overwrite?",
"&Yes", "&No")==1)

goto trysaveagain;

printf ("saving!n_%s\n", (const char *)filename);

QFile out(filename);
QString errormessage = "Can't-create-" + filename;
if(out.open(I0-WriteOnly)) {

QTextStream stream(&out);
stream << "NILM-Exemplar-File-Format-v1.O\n";
stream << size << "\n";
for(int i=;i<size;i++) {

if(classify - >getExemplars() [i] ->write(stream)==false) {
errormessage = "Error-writing-to-" + filename;
goto saveerror;

}
}
out. close (;
infobox(" Saved.%d..exemplar%s.in-%s",size,

(size ==1)?"":"s",(const char *)filename);
return;

}

190

saveerror:
QMessageBox:: critical(this," Save",errormessage,

QMessageBox::Ok,QMessageBox::NoButton);

}

void Nilmlmp::doLoad()

{
if(ip==NULL I classify==NULL) return;
int size = classify ->getExemplarso.size();
if(size!=0) {

QString num;
if (size1==) num=" exemplar";
else num.sprintf("%d-exemplars",size);
if (QMessageBox::question(this, "Load-Exemplars",

"Loading._wilLoverwrite._the-" + num +
".currently-in-memory.-Continue?",
"&Yes", "&No")==1)

return;

}

QString filename = QFileDialog::getOpenFileName(
QString:: null,
"Exemplars.-(*. ex);; All._.Files()"
this,
"load-dialog",
"Load-exemplars-rom...");

if (filename==QString::null) return;

QPtrVector<Exemplar> e;

printf ("loading-from.%s\n",(const char *)filename);

QFile in(filename);
QString errormessage = "Can't.open" + filename;
if(in.open(I0_ReadOnly)) {

errormessage = "Error.parsing-contents-ofi" + filename;

QTextStream stream(&in);
QString t;

if ((t=stream.readLine())==QString::null I
t!="NILM-Exemplar-File.Jormat-v1.0") goto loaderror;

int size = 0;
stream >> size;
if(size <=0 II !e. resize (size)) goto loaderror;

for(int i=0;i<size;i++) {
printf (" loading-exemplar..%d/%d\n",i,size);
e. insert (i, new Exemplar();
if (!e [i]->read(stream)) {

for(int j=0;j<=i;j++)
delete e[i];

191

goto loaderror;

}
}
in. close (;
for(unsigned int i=O;i<classify->getExemplars().size();i++)

delete classify ->getExemplars()[i];
classify ->setExemplars(e);

ed->setExemplars(e);
infobox(" Loaded-%d._exemplar%sfrom_%s",size,

(size ==1)?"":"s",(const char *)filename);
return;

}
loaderror:

QMessageBox::critical(this," Save",errormessage,
QMessageBox::Ok,QMessageBox::NoButton);

}

void Nilmlmp::matchFound(QString name,
double quality, double scale)

{
infobox("Matched._event:." +

QString(). sprintf ("(%Mf, -%If) \t",
quality, scale) +

name);

}

void Nilmlmp::dolnit()

{
printf ("in-dolnit ()\n");

if(ip!=NULL) {
info ("Already._initialized !\n");
return;

}

inputplugin *(* get-iplugin-info)(void);
plugin-config *pC;
char *error;

info ("opening..%s/libcmdline.so",INPUTYPLUGIN-DIR);
handle=dlopen(INPUT.PLUGINDIR "/libcmdline.so", RTLD-NOW);
if (!handle) {

info (dlerror ());
return;

}

get-iplugininfo = (inputplugin *(*)()dlsym(handle, " get-iplugininfo");
if ((error=dlerror()! =NULL) {

info (error);
return;

}

ip (* get iplugin-info)(;

192

info ("name:-%s",ip->name);
info (" description: %s",ip->desc);

ip->init(;

pc=ip->getconfig(;
info ("plugin-has_%d-configJtems",pc- >num-items);

{
int i;
for(i=0;i<pc->num_items;i++) {

printf (" %d-name:-%s\n",i,pc- >pci[i].name);

printf ("-value: _%s\n",pc->pci[i].value);
if(strcasecmp(pc- >pci [i].name," Commandiine")==) {

char *mycmd = " /usr/local/bin/nilmgui-data";
info (" setting -commandline-to:-%s",mycmd);
free (pc->pci[i].value);
pc- >pci [i].value =strdup(mycmd);

}
}

}
ip->setconfig(;

info (" starting..plugin");
if(ip->start()==0 | ip->watchfd= =NULL 11 *ip->watchfd<0) {

info (" start- failed , -can.command-be-executed?");
ip ->destroyo;

ip=NULL;
diclose (handle);
return;

}

info ("requesting. notifications -on-fd.%d",*ip->watchfd);

sn = new QSocketNotifier(*ip->watchfd, QSocketNotifier::Read, this);
QObject::connect(sn, SIGNAL(activated(int)), this, SLOT(inputDataAvailable());

info ("creating... classifier .object");
classify = new Classifier(& classify-tolerance);

info ("connecting-data-to-receiver,._ classifier , .and.trainer");
connect(this,SIGNAL(newData(QArray<dataPoint>)),

plotBox,SLOT(addData(QArray<dataPoint>)));
connect(this,SIGNAL(newData(QArray<dataPoint>)),

classify ,SLOT(addData(QArray<dataPoint>)));

connect(this,SIGNAL(newData(QArray<dataPoint>)),
ed,SIGNAL(newData(QArray<dataPoint>)));

info ("connecting.ExemplarDialog::newExemplars-to.Classifier::setExemplars");
connect(ed,SIGNAL(newExemplars(QPtrVector<Exemplar>)),

classify ,SLOT(setExemplars(QPtrVector<Exemplar>)));

info ("connecting-natch-event.to-us");
connect(classify , SIGNAL(matchFound(QString,double,double)),

193

this, SLOT(matchFound(QString,double,double)));

info (" telling -ed-to- tell - classifier -about-exemplars");
ed->refreshExemplars(;

info(" Initialization -complete.");
infobox(" Initialized .");

}

plot .h

Graphical window providing the scrolling waveform plot, header file.

#ifndef PLOT-H
#define PLOTJH

#include <qwt/qwt-plot.h>
#include "nilmtypes.h"
#include <qarray.h>

const int plotpoints = 1024;

class NilmPlot: public QwtPlot

I
QOBJECT

public:
NilmPlot(QWidget *parent, const char *title);
~NilmPlot();

public slots:
void addData(QArray<dataPoint>);
void setPause(bool);
void zoomFit(bool shrink=true);
void toggleCurve(long key);

protected:
void drawCanvas(QPainter *p);

private:
void updateCurvePens(;

double miny, maxy;

bool paused;

long curveley[8];
bool curve-shown[8];

double *t, **data;

194

#endif

plot. cpp

Graphical window providing the scrolling waveform plot, implementation.

#include "plot.h"

#include <qwt/qwt-plot-canvas.h>
#include <qwt/qwt-plot-dict.h>
#include <qwt/qwt-legend.h>

const QString curvetitle [8] =
{1 "P", 1"Q", "VP", "3Q", "5P", "5Q", "7P"7, "7Q" }
const QColor curve-color[8] =
{ Qt::yellow, Qt::cyan, Qt::green, Qt::red,

Qt::magenta, Qt::darkCyan, Qt::blue, Qt::darkMagenta };

NilmPlot::NilmPlot(QWidget *parent, const char *title):
QwtPlot(parent)

{
(void) title;

connect(this,SIGNAL(legendClicked(long)),this,SLOT(toggleCurve(long)));

setCanvasBackground(black);
legend() ->setPaletteBackgroundColor(Qt::black);

legend() ->setPaletteForegroundColor(Qt::white);

// legend
setAutoLegend(FALSE);
enableLegend(FALSE);
setLegendPos(Qwt::Right);
setLegendFrameStyle(QFrame::Boxl QFrame::Sunken);

// grid
setGridMajPen(QPen(gray, 0, SolidLine));

/7 axes
setAxisTitle (QwtPlot::xBottom, " Time-(s)");
setAxisScale(QwtPlot::xBottom, 0, 10.24);
setAxisTitle (QwtPlot::yLeft, "Power");

for(int i=0;i<8;i++) {
curve-key[i] =insertCurve(curvetitle [i]);
setCurveYAxis(curve-key[i], QwtPlot::yLeft);
curve-shown[i] = false;

}
curve-shown[0] = true;
curve-shown[1] = true;

195

updateCurvePens(;

t = new double[plotpoints];
data = new double * [8];
for(int j=0;j<8;j++)

data[j] = new double[plotpoints];

for(int i=;i<plotpoints;i++) {
for(int j=0;j<8;j++)

datalj][i]=0;

t [i]=i/100.0;

miny = 0;
maxy = 500;

paused=false;

QArray<dataPoint> tmp;
addData(tmp);

}

void NilmPlot::toggleCurve(long key)

{

if (curvekey[i]==key)
curve.shown[i]=!curve-shown[i];

updateCurvePens(;
zoomFit(false);

}

void NilmPlot::updateCurvePens()

{
for(int i=0;i<8;i++){

setCurvePen(curve-key [i], QPen(curve-color[i], 0,
curve-shown[i] ? SolidLine NoPen));

setCurveTitle(curve-key[i], curvetitle [i] +
(curve-shown[i) ? QString("-*") : QString("")));

}

NilmPlot::~-NilmPlot(

{
delete[] t;
for(int j=0;j<8;j++)

delete[] data[j];
delete[] data;

disconnect(this, SIGNAL(legendClicked(long)),this,SLOT(toggleCurve(long)));

}

void NilmPlot::setPause(bool p)

{
paused =p

196

}

void NilmPlot::zoomFit(bool shrink)

{
if(shrink) {

miny 0;
maxy 100;

}
for(int i=0;i<8;i++){

if(curve-shown[i]) {
if(curve(curve-key[i])- >maxYValue() > maxy)

maxy = curve(curveley[i]) - >maxYValue();
if (curve(curveley[i]) - >minYValue() < miny)

miny = curve(curve.key[i])->minYValueo;

}
}
setAxisScale(QwtPlot::yLeft, miny- (maxy-miny)*0.05, maxy+(maxy-miny)*0.05);
replot 0;

}

void NilmPlot::addData(QArray<dataPoint> dp)
{

int count = dp.size(;
double tmp;
int i, j;

if(count> =plotpoints) count= plotpoints;

for(j=0;j<8;j++)
memmove(&data[j] [0],

&data[j] [count],
(plotpoints -count)*sizeof(**data));

for(j=0;j<8;j++) {
for(i=0;i<count;i++) {

tmp = dp[i][j];
if(curve-shown[j]) {

if (tmp<miny) miny=tmp;
if (tmp>maxy) maxy=tmp;

}
data[j][plotpoints -count+i]=tmp;

}
}
if(paused) return;

setAxisScale(QwtPlot::yLeft, miny-(maxy-miny)*0.05, maxy+(maxy-miny)*0.05);

for(j=0;j<8;j++) {
setCurveData(curvelkey[j], t, data[j], plotpoints);

}
replot 0;

}

/* This function is mostly identical to that in QwtPlot,

197

but draws curves in reverse order */

void NilmPlot::drawCanvas(QPainter *p)
{

QwtDiMap map [axisCnt];
for (int axis = 0; axis < axisCnt; axis++)

map[axis] = canvasMap(axis);

QRect rect = canvas ()->contentsRect(;

//
draw grid

//
if (grid(). enabled() &&

axisEnabled(grid(.xAxis()) &&
axisEnabled(grid 0.yAxis()))

{
grid (). draw(p, rect, map[grid().xAxis ()] map[grid(.yAxis 0]);

}

//
// draw curves

/
QwtPlotCurveIterator itc = curvelteratoro;
if (itc.count(> 0) {

QwtPlotCurve **curvelist = new QwtPlotCurve *[itc.count(];
int cc = 0;
for (QwtPlotCurve *curve = itc.toFirst(; curve != 0; curve = ++itc)

curvelist [cc++] curve;
for(cc--;cc>=O;cc--) {

QwtPlotCurve *curve = curvelist[cc];
if (curve->enabled() &&

axisEnabled(curve->xAxis()) &&
axisEnabled(curve->yAxis())

{
curve->draw(p, map[curve- >xAxis(], map[curve- >yAxis(]);

}
}
delete[] curvelist;

}

//
// draw markers

//
QwtPlotMarkerIterator itm = markerIteratoro;
for (QwtPlotMarker *marker itm.toFirst(; marker != 0; marker ++itm)
{

if (marker->enabled())
{

marker->draw(p,
map [marker- >xAxis ()].transform(marker- >xValue())
map[marker- >yAxis()].transform(marker- >yValue(),
rect);

198

}
}

}

nilmtypes .h

Definitions of the Exemplar and dataPoint types, header file.

#ifndef NILMTYPESAI
#define NILMTYPESH

#include <qstring.h>
#include <qlistbox.h>
#include <qarray.h>

#ifndef min
#define min(a,b) (((a)<(b))?(a):(b))
#endif
#ifndef max
#define max(a,b) (((a)>(b))?(a):(b))
#endif

class QTextStream;

class dataPoint

{
public:

double& operator[](int n) { return d[n]; }
private:

double d[8];
};

class Exemplar

{
public:

Exemplar (QString newdesc=" Unnamed")
: desc(newdesc) {}

Exemplar (QArray<dataPoint> &newx, QString newdesc=" Unnamed")
: desc(newdesc), x(newx) {}

QString desc;
QArray<dataPoint> x;
dataPoint norm; // of each component individually, before it was normalized

bool write(QTextStream &out);
bool read(QTextStream &in);

#endif

199

nilmtypes .cpp

Definitions of the Exemplar and dataPoint types, implementation.

#include "nilmtypes.h"

#include <qfile.h>

bool Exemplar: :write(QTextStream &out)

{
out << desc << "\n";
out << x.size() « "\n";
for(unsigned int i=O;i<x.sizeo;i++) {

for(int j=O;j<8;j++) {
out << x[i][jl << ((j==7)?"\n":"i");

}
}
for(int j=O;j<8;j++)

out << norm[j] << ((j==7)?"\n":"-);

return true;

}

bool Exemplar::read(QTextStream &in)

{
int size=0;
desc = "";
// Might get the tail of the previous line, so keep trying

while(desc=="") {
if ((desc = in.readLine())==QString::null) {

printf (" no-description\n");
return false;

}
}
size =0;
in >> size;
if (size==) {

printf ("no-size\n");
return false;

}
x. resize (size);
for(int i=O;i<size;i++)

for(int j=0;j<8;j++)
in >> x[i][j 3;

for(int j=O;j<8;j++)
in >> norm[j];

return true;

}

exemplardialog.h

The "Exemplars" dialog window, header file.

200

#ifndef EXEMPLARDIALOGH
#define EXEMPLARDIALOGH

#include "exemplardialogbase.h"
#include "nilmtypes.h"
#include <qlistbox.h>
#include <qarray.h>
#include <qptrvector.h>

class ExemplarItem : public QListBoxText

{
public:

ExemplarItem(Exemplar *ne) : e(ne) { setText(e->desc); }
Exemplar *e;

public:
void rename(QString s) { e->desc=s; setText(s); }

};

class ExemplarDialog : public ExemplarDialogBase

{
Q-OBJECT

public:
ExemplarDialog(QWidget *parent=O, const char *name 0, WFlags f 0);

public slots:
void doTraino;
void doRename(;
void doDelete(;
void drawExemplaro;
void refreshExemplars(;
void setExemplars(QPtrVector<Exemplar>);

signals:
void newExemplars(QPtrVector<Exemplar>);
void newData(QArray<dataPoint>);

private:
void makeExemplars(void);
void refreshList ();

QPtrVector<Exemplar> ex;
};

#endif

exemplardialog. cpp

The "Exemplars" dialog window, implementation.

#include "exemplardialog.h"
#include "nilmimp.h"
#include <qtextedit.h>

201

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <qstring.h>
#include "nilmtypes.h"
#include <qwt/qwt-plot.h>

#include <qmessagebox.h>
#include <qinputdialog.h>
#include "traindialog.h"

ExemplarDialog::ExemplarDialog(QWidget* parent, const char* name, WFlags f)
ExemplarDialogBase(parent, name, f)

{
plot - >setCanvasBackground(black);
plot - >enableOutline(false);
plot ->enableLegend(false);
plot - >setAxisMaxMajor(plot- >yLeft,4);
plot - >setAxisMaxMajor(plot- >xBottom,3);
plot - >setGridMajPen(QPen(gray,0,SolidLine));

}

void ExemplarDialog::doTrain(void)

{
int i=0;
QString suggest;
QString prompt=" Please-enter-a-name-or-the-new.exemplar:";

do suggest=QString().sprintf(" Unnamed%d" ,++i);
while(list - >findItem(suggest,Qt::ExactMatch)! =0);

bool ok;
retry:

QString s = QlnputDialog::getText("Train-New-Exemplar",prompt,
QLineEdit::Normal, suggest, &ok, this);

if(!ok) return;
/* Qt::ExactMatch is not case-sensitive */
if(list ->findItem(s,Qt::ExactMatch)!=O) {

prompt=QString().sprintf(" An.exemplar-called-'%s'-already-exists.\n"
Pleaseenter-aname-or-the-ew-exemplar:",

(const char *)s);
suggest=s;
goto retry;

}

printf (" Starting-training , .name=%s\n",(const char *)s);

Exemplar *n = NULL;
TrainDialog *train = new

TrainDialog(this,&n,&((Nilmlmp *)parento) ->trainingparameters);
QObject::connect(this,SIGNAL(newData(QArray<dataPoint>)),

train , SLOT(addData(QArray<dataPoint>)));
train ->execO;

QObject::disconnect(this,SIGNAL (newData(QArray<dataPoint>)),
train , SLOT(addData(QArray<dataPoint>)));

202

delete train;

if(n==NULL) {
printf (" training .cancelled -or- failed \n");
return;

} else {
n->desc = s;
ExemplarItem *ei = new ExemplarItem(n);
list ->insertltem(ei);
list ->sort(;
list ->setCurrentItem(ei);
drawExemplaro;
makeExemplars(;

}
}
void ExemplarDialog::doRename(void)

{
ExemplarItem *ei = (ExemplarItem *)list->selectedltem(;
if(ei==NULL) {

QMessageBox::warning(this," Rename"," No-exemplar-selected!",
QMessageBox::Ok,QMessageBox::NoButton);

return;

}

bool ok;
QString s = QInputDialog::getText("Rename-Exemplar",

"Please.enter.a.new.name.for-'" + ei->textO + "':",

QLineEdit::Normal, ei->texto, &ok, this);
if (! ok) return;

ei ->rename(s);

makeExemplars(;

}

void ExemplarDialog::doDelete(void)

{
ExemplarItem *ei = (ExemplarItem *)list- >selectedItemO;
if (ei==NULL) {

QMessageBox::warning(this," Delete"," No-.exemplar-selected!",
QMessageBox::Ok,QMessageBox::NoButton);

return;

}
if (QMessageBox::warning(this," Delete"," Are.you.sure-you-wish.to-delete-"

+ ei->textO,
QMessageBox::Yes,QMessageBox::No)!=QMessageBox::Yes)

return;

/* Save a copy of the exemplar
(shouldn't destroy it until we notify classifier) */

Exemplar *saved = ei->e;
delete ei;

203

makeExemplarso;

delete saved;
}

void ExemplarDialog::drawExemplar(void)

{
plot - >removeCurveso;
plot - >replot();

ExemplarItem *ei = (ExemplarItem *)list->selectedltem(;
if(ei==NULL 11 ei->e->x.size)==O)

return;

long crvi, crv2;
unsigned int len = ei->e->x.sizeO;
double *p, *q, *t;
unsigned int i;

if ((p = new double[len])==NULL I
(q = new double[len]) ==NULL 11
(t = new double[len]) ==NULL) return;

crv2 = plot->insertCurve("Q");
plot - >setCurvePen(crv2, QPen(cyan));
plot - >setCurveYAxis(crv2, QwtPlot::yLeft);

crvi = plot->insertCurve("P");
plot - >setCurvePen(crv1, QPen(yellow));
plot - >setCurveYAxis(crvl, QwtPlot::yLeft);

double minx, maxx, miny, maxy;
minx=maxx=miny=maxy=O;
for(i=O;i<len;i++) {

p[i]=ei->e->x[i][0];
q[i]=ei->e->x[i][1];
t [i]=i;
miny - min(miny, p[i]);
maxy max(maxy, p[i]);
miny min(miny, q[i]);
maxy max(maxy, q[i]);
minx = min(minx, t[i]);
maxx max(maxx, t[i]);

}
double yextra = (maxy-miny)*0.05;
miny-=yextra;
maxy+=yextra;
double xextra = (maxx-minx)*0.05;
minx-=xextra;
maxx+=xextra;
plot - >setAxisScale(plot- >yLeft,miny,maxy);
plot - >setAxisScale(plot- >xBottom, minx, maxx);
plot - >setCurveData(crvl, t, p, len);
plot - >setCurveData(crv2, t, q, len);

204

plot->reploto;

delete p;
delete q;
delete t;

}

void ExemplarDialog::makeExemplars(void)

{
QPtrVector<Exemplar> ev(list->count();
for(unsigned int i=O;i<list->count();i++)

ev. insert (i ,((ExemplarItem *)list->item(i))->e);
emit newExemplars(ev);

}

void ExemplarDialog::refreshExemplars()

{
makeExemplarso;

}

void ExemplarDialog::setExemplars(QPtrVector<Exemplar> e)
{

unsigned int i;
list ->clearO;

for(i=0;i<e.size (); i±±) {
ExemplarItem *ei new ExemplarItem(e[i]);
list ->insertItem(ei);

}
list ->sort(;
list ->setCurrentItem(0);

drawExemplaro;

}

runningstats .h

Routines to compute and store running statistics on incoming data, header file.

#ifndef RUNNINGSTATSH
#define RUNNINGSTATSH

/* Keep running statistics over a window of points */
/* Also keep statistics on two smaller windows on left and right */
class RunningStats {
public:

RunningStats(int windowsize = 100,
int leftsize 10,
int rightsize 10,
bool dovariance = true);

~RunningStats(;

205

void add(double v);

public:
double Imean, lvariance;
double rmean, rvariance;
double mean, variance;
bool addedenough;

int size ;

// Stored in a circular buffer fashion, so
// if the order matters, you MUST use
/ orderedvalue and orderedacvalue

double *values;
double *acvalues;
double orderedvalue(int i) { return values[(i-+offset)%size]; }
double orderedacvalue(int i) { return acvalues[(i+offset)%size]; }

private:
bool dovariance;
int added;
int Isize , rsize , offset

#endif

runningstats .cpp

Routines to compute and store running statistics on incoming data, implementation.

#include "runningstats.h"
#include <math.h>
#include <stdio.h>

RunningStats::RunningStats(int windowsize, int leftsize, int rightsize , bool dv)

{
size =windowsize;
Isize = leftsize ;
rsize =rightsize;
if(isize >size) isize =size;
if(rsize>size) rsize=size;
if (size <1) Isize=1;
if(rsize <l) rsize=1;
values = new double[size];
acvalues = new double[size];
for(int i=O;i<size; i++) values[i]=acvalues[i]=0;
offset =0;
added=O;
mean=lmean=rmean=0;
variance=lvariance=rvariance=O;
dovariance=dv;

206

}

RunningStats:: RunningStats(void)

{
delete[] values;
delete[] acvalues;

}

void RunningStats::add(double v)

{
/* Update means *7
/* 0 1 2 3 4 5 6 7 *7
/* ^-- offset (new value replaces old here) */
/* for mean, subtract 2 then add (2+size)%size */
/* for imean, had 23 needs 34 so subtract 2 add 4 */
/* for rmean, had 01 needs 12 so subtract 0 add 2 *7

added++;
if (added>size) addedenough=true;

mean- values [offset] /size;
Imean -values [offset]/ isize;
rmean -=values[(size+offset -rsize) %size] /rsize;

values [offset]=v;

mean+= values [offset] /size;
lmean+=values[(offset+lsize)%size]/ isize;
rmean+=values [offset] /rsize;

offset ++;
offset %=size;

for(int i=0;i<size;i++)
acvalues [i]=values[i]-mean;

if(dovariance) {
/* Fully recalculate variances (not optimal) *7
variance=O;
for(int i=0;i<size; i++)

variance+ =acvalues [i] * aevalues [i];
variance/=size;

lvariance =0;
for(int i=O;i<lsize; i++)

ivariance +=(values [i] -imean) *(values [i] -imean);

ivariance/=lsize;

rvariance=O;
for(int i=size-rsize;i <size; i++)

rvariance+=(values [i] -rmean) *(values [i] -rmean);
rvariance/=rsize;

}
}

207

trainingparameters .h

Header file specifying the tunable parameters used in exemplar training.

#ifndef TRAININGPARAMETERS
#define TRAINING-PARAMETERS

class TrainingParameters

{
public:

TrainingParameters() {
// Lengths are in samples (100/sec in current version of prep)

7/ length of long statistic window (for finding primary mean and variance)
long-window-length = 200;

// length of short statistic window (for detecting start/end of transient)
short-window-length = 20;

// how many samples before and after the transient event to save
extra-transient-length = 50;

// maximum variance for a settled signal == this times absolute mean
settle-variance-max = 2;

7/ Two ways that a transient is detected:
7/ 1) take (mean(short window) - mean(long window)) ^2/variance (long window)
/7 and see if this has changed by more than max-delta-score

/7 (ie. the square of the z-score is higher than max-delta-score)
/7 2) check variance(short window)/variance(long window)
7/ and see if this is greater than max-variance-ratio
/7 (ie. the variance has changed by a factor of more
/7 than max-variance-ratio)
max-delta-score = 5;
max-variance-ratio = 50;

// Maximum exemplar length (safety net)
max-exemplar-length = 500; // 5 seconds

}

int long-window-length, short-window-length;
int extratransient-length ;
double settle-variance-max;
double max-delta-score, max-variance-ratio;
unsigned int max-exemplar length;

#endif

208

classif ier.h

Exemplar matching and classification algorithm, header file.

#ifndef CLASSIFIER.I
#define CLASSIFIERH

#include <qobject.h>
#include <qarray.h>
#include <qptrvector.h>
#include "nilmtypes.h"
#include "runningstats.h"

class Classifier : public QObject

f
Q_OBJECT

public:
Classifier (double *newtolerance);

public slots:
void setExemplars(QPtrVector<Exemplar>);
void addData(QArray<dataPoint>);

signals :
void matchFound(QString name,

double quality, double scale);

public:
QPtrVector<Exemplar> getExemplars(void);

private:
void addPoint(dataPoint d);
QPtrVector<Exemplar> ex;
RunningStats **rsp;
RunningStats **rsq;

int match;
double matchscore, matchratio, matchtime;

double *tolerance;

#endif

classifier.cpp

Exemplar matching and classification algorithm, implementation.

#include "classifier. h"
#include "nilmtypes.h"
#include "nilmimp.h"

209

#include <math.h>

Classifier :: Classifier (double *newtolerance)

{
tolerance = newtolerance;
printf (" classifier -startup\n");
ex = QPtrVector<Exemplar>();
setExemplars(ex);

}

QPtrVector<Exemplar> Classifier::getExemplars(void)

{
return ex;

}

void Classifier :: setExemplars(QPtrVector<Exemplar> e)
{

unsigned int i;
printf (" classifier -got-new-exemplars-(%d) \n",e.size());
if (ex. size()>0) {

for(i =;i<ex.size (); i++) {
delete rsp[i];
delete rsq[i];

}
delete rsp;
delete rsq;

}
ex = e;
if(ex. size()>) {

rsp = new RunningStats *[ex.size(];
rsq = new RunningStats *[ex.size(];
for(i=O;i<ex.size 0; i++) {

rsp [i] = new RunningStats(ex[i] - >x.size() ,1,1 ,false);
rsq[i] = new RunningStats(ex[i] - >x.size() ,1,1 ,false);

}
}

}

void Classifier :: addPoint(dataPoint d)
{

unsigned int i;

if(matchtime > 0) {
matchtime--;
if (matchtime == 0)

emit matchFound (ex [match] - >desc, matchscore, matchratio);
}

for(i=0;i<ex.size (); i+±) {
rsp [i]->add(d0]);
rsq[i]->add(d[1]);
if (!rsp[i]->addedenough 11 !rsq[i]->addedenough)

continue;

210

// Normalize P and Q individually
double normp=0, normq=0;
for(int j=0;j<rsp[i]->size;j++) {

normp += rsp[i]->acvalues[j] * rsp[i]->acvalues[j];
normq += rsq[i]->acvalues[j] * rsq[i]->acvalues[j];

}
normp = sqrt(max(normp,le-8)); // avoid divide by zero
normq = sqrt(max(normq,le-8));

// Test the match by computing dot product
double dp=0, dq=0;
for(int j=0;j<rsp[i]->size;j++) {

dp += ex[i]->x[j][0] * rsp[i]->orderedacvalue(j);
dq += ex[i]->x[j][1] * rsq[i]->orderedacvalue(j);

}
dp /= normp;
dq /= normq;

double ratiop = normp/ex[i]->norm[0];
double ratioq = normq/ex[i] ->norm[1];
if (ratiop >1) ratiop= I/ratiop;
if(ratioq>1) ratioq=I/ratioq;

double weightp = (normp+ex[i] ->norm [0])/2;
double weightq = (normq+ex[i] ->norm[1])/2;

if ((weightp+weightq)< 250) continue;

double weightedscore = (dp*weightp + dq*weightq)/(weightp+weightq);
double weightedratio = (ratiop*weightp + ratioq*weightq)/(weightp+weightq);

double tol = *tolerance;
double lowtol 1 - ((1 - tol) * 0.2 / 0.15);
double hightol 1 - ((1 - tol) * 0.1 / 0.15);
double supertol = 1 - ((1 - tol) * 0.05 / 0.15);
if((weightedscore > tol && weightedratio > tol) ||

(weightedscore > hightol && weightedratio > lowtol) ||
(weightedscore > lowtol && weightedratio > tol) II
(normp > 100 && dp > supertol && ratiop > hightol) |
(normq > 100 && dq > supertol && ratioq > hightol))

{
if(matchtime <= 0) {

/* Report this match after a little bit of time *7
matchtime = rsp[i]->size;
match = i;
matchscore = weightedscore;
matchratio = weightedratio;

}
else {

/* Make this match the best one, if it 's better
than previous. Better is defined as having
a higher weightedscore with weightedratio
at least 95% as good */

if ((weightedscore > matchscore) &&
(weightedratio > (0.95 * matchratio))) {

211

match = i;
matchscore weightedscore;
matchratio weightedratio;

}
}

}
}

}

void Classifier :: addData(QArray<dataPoint> d)

{
for(unsigned int i=O;i<d.size();i++) addPoint(d[i]);

}

traindialog.h

Training logic and dialog window, header file.

#ifndef TRAINDIALOGH
#define TRAINDIALOGH

#include "traindialogbase.h"
#include "nilmtypes.h"
#include "runningstats.h"
#include <qarray.h>
#include "trainingparameters.h"

class TrainDialog : public TrainDialogBase

{
QOBJECT

public:
TrainDialog(QWidget *parent, Exemplar **ne, TrainingParameters *newtp);
~TrainDialog(;

public slots:
void addData(QArray<dataPoint>);

signals :

private:
void addSinglePoint(dataPoint);

Exemplar **dest;
Exemplar *e;

enum TrainStatus {
None, /7 Waiting for first data point
Fill, /7 Waiting to fill data buffers
Pre, 7/ Waiting for quiet signal
Trans, /7 Waiting for transient to start
Post, 7/ Waiting for transient to end
Done, 77 Recording trailing edge of transient

212

Temp // Do nothing

TrainStatus state;

TrainingParameters *tp;
RunningStats *rs[2]; // p and q

#endif

traindialog. cpp

Training logic and dialog window, implementation.

#include "traindialog.h"
#include <qlabel.h>
#include <math.h>
#include "nilmtypes.h"

const int debugState = 0;

TrainDialog::TrainDialog(QWidget* parent, Exemplar **ne, TrainingParameters *newtp)
TrainDialogBase(parent, "Train", 0)

{
dest=ne;
*dest=NULL;
e = new Exemplar(;
status- >setText("No..data-received.");
state = None;
tp = newtp;
for(int i=0;i<2;i++) {

rs [i]=new RunningStats(tp->long-window-length,
tp->short-window-length,
tp->short-windowilength);

}
}
TrainDialog::~TrainDialog()
{

if (*dest==NULL)
delete e;

for(int i=0;i<2;i++){
delete rs[i];

}
}

bool settled(double variance-max, RunningStats *rs)
{

/7 See if the signal has settled by determining if the
/7 variance/(abs (mean) +100) is less than variance-max.

213

double m = rs->variance / (fabs(rs->mean)+100);
if (debugState) printf(" settle : ..gotvariance.%lf,._maximum..%lf\n", m, variance-max);

return m < variancenax;

}

bool transient(double variance-ratio, double delta-score, RunningStats *rs, bool left)

{
left = true if we're looking for when it started (use left edge of statistics)
left =false if we 're looking for when it started (use right edge of statistics)

Wait for transient to start:

1) take (mean(short window) - mean(long window)) ^2/variance (long window)

and see if this has changed by more than delta-score

(ie. the square of the z-score is higher than delta-score)
112) check variance(short window)/variance (long window)

and see if this is greater than variance-ratio

(ie. the variance has changed by a factor of more than variance-ratio)
double longVariance = max(rs->variance,0.01); // don't divide by <0.01

double tmpl (left?rs->lmean:rs->rmean) - rs->mean;
tmpl = tmpl * tmpl / longVariance;
double tmp2 (left?rs->lvariance:rs->rvariance) / longVariance;

if(debugState) {
printf (" transient: ..got.score-%lf,..wanted-%lf\n", tmpl, delta-score);
printf (" _---. .---got._.ratio_%lf,_.wanted_%lf\n", tmp2, variance-atio);

}
if(tmpl > delta-score) {

printf (" transient -detected -on-delta-score=._.%If\n",tmp1);

}
if(tmp2 > variance-ratio) {

printf (" transient .detected-on.variance-ratio.=-%lf\n",tmp2);

}
return (tmpl > delta-score I tmp2 > variance-ratio);

}

void TrainDialog::addSinglePoint(dataPoint d)

{
unsigned int i;
static int fillcount
static unsigned int exemplar-length;
static int last transient-exemplar -ength;

for(i=0;i<2;i++)
rs [i]->add(d[i]);

if(debugState) {
printf ("lmean=%lf-rean=%lf-rmean=%lf\n",

rs [0]- >lmean,rs[0] - >mean,rs [0] - >rmean);
printf (" lvariance=%lf.variance=%f._rvariance=%lf\n",

rs [0]- >lvariance,rs [0] - >variance,rs[0] - >rvariance);
printf (" ivariance=%lf-variance=%lf..variance=%lf\n",

rs [1]- >lvariance,rs [1]- >variance,rs[1] - >rvariance);

i

if (state==Fill ||state==rPre II state==zTrans) {

214

// Copy data into exemplar, pushing all other values back in the array
dataPoint *dp = e->x.data(;
memmove(&dp[0],&dp[1],sizeof(dataPoint)* (tp- >extr a-transient-length- 1));
dp[tp- >extra-transient-length- 1] =d;

}

if(state==Post 11 state==Done) {
Append data to exemplar, growing array in chunks as necessary

(so we can't trust e->x.size())
if ((exemplar-length+1) >=e- >x.size())

e- >x.resize(exemplarlength+ 100);
e->xlexemplarlength = d;

// sanity check on length of exemplar
if(exemplar-length < tp- >max-exemplar-length) {

exemplar length++;
} else {

state = Done;
}

}

switch(state)

{
case None:

// Create exemplar long enough to hold pre-transient-length samples
e->x.resize(tp- >extratransient-length);
fillcount =0;

exemplar-length=tp- >extratransient-length;
lasttransient-exemplar-length = 0;
status->setText("Waiting-or.data.buffers-tofill.");
state = Fill;
break;

case Fill:
//Let buffers fill up
fill-count ++;
if (debugState) printf(" Fill :, -got-%d\n",fill-count);
if(fill-count >= tp->extratransient-length &&

fill-count >= tp->ong-window length &&
fill-count >= tp->short-windowilength) {

status- >setText("Waiting -or .signal.to..settle.");
state = Pre;

}
break;

case Pre:
if(settled (tp- >settle-variance-max,rs[0]) &&

settled (tp->settle-variance-max,rs[1]))
{

status - >setText("Waiting Jor.transient..to-begin.\n"
"Please.trigger -the-event.now.");

state = Trans;

}
break;

case Trans:
if(transient (tp- >max-variance-ratio,tp- >max-delta-score,rs[0],false)

215

transient (tp - > max-variance-ratio,tp - > max-delta-score,rs [1] ,false))

{
status - >setText(" Recording-transient-andi"

"waiting-for -signal -to- settle .");

state = Post;

}
break;

case Post:
Find the last transient before settle

if (transient (tp->max-variance-ratio,tp->max-delta-score,rs[O],true)
transient (tp- >max-variance-ratio,tp- >max-delta-score,rs [1] ,true))

last transient exemplar-length =
exemplar length - tp->long-windowiength;

Move onto next state only after transient and settle

if(last-transient-exemplar length > 0 &&
settled (tp->settlevarianceemax,rs[0]) &&
settled (tp->settle-variance-max,rs[1]))

{
// Chances are we've already recorded enough data, but we'll see.

status - >setText(" Recording-trailing-data.");
state = Done;

}
break;

case Done:

{
int extra = exemplar-length - last transient exemplar length;
// Make sure we have at least last-transient-exemplarilength + extra

if (debugState) printf("Done:-have-%d -extra\n" ,extra);
if (extra > tp->extratransientlength) {

// All done. Clean up the exemplar and close.
if(debugState)

printf (" resizing -to_%d_(last-is_%d)\n",
last transient-exemplar length +
tp->extratransientiength,
last-transient-exemplar length);

e - > x. resize (last transient-exemplar length +
tp- >extratransientiength);

double total;
int j;

//Fix offset:
// Calculate and subtract mean from all 8 components
for(j=0;j<8;j++) {

total = 0;
for(i=0;i<e->x.size();i++)

total += e->x[i][j];
total /= i;

for(i=0;i<e->x.size();i++)
e->x[i][j] -= total;

}

216

// Normalize apparent power: sqrt(P ̂ 2+Q ̂ 2)1 = 1
total = 0;
fOr (i=0;-i<e--x8ize();i++)

total += (e->x/i][0] * e->x[i/0])
+ (e->x[i/1] * e->x[ij[]);

total = sqrt(max(total, le-8)); // don't divide by zero
for(j=0;j<8;j++)

for(i=O;i<e->x.size();i++)
e->x[i][j] /= total;

*7

/7 Normalize each component individually for now.
for(j=O;j<8;j++) {

total=0;
for (i =0;i<e- >x.size ();i+ +)

total+=e->x[i][j] * e->x[i][j];
total = sqrt(max(total, le-8));
e->norm[j] = total;
for(i =O;i<e- >x.sizeO;i++)

e->x[i][j] /= total;
}

7/ Set the result and close this dialog
*dest = e;
done(Accepted);
state = Temp;

}
}
case Temp:

break;

}
}

void TrainDialog::addData(QArray<dataPoint> d)
{

for(unsigned int i=O;i<d.sizeO;i++)
addSinglePoint(d[i]);

}

A.4 NILM Software Framework

A.4.1 Database

nilmdb. sql

MySQL schema for the NILM database

217

-- $Id: nilmdb.sql 1569 2006-01-18 07:09:39Z jim $
- NILM Database Schema

-- Jim Paris <jimdjtan.com>

-- Database parameters

CREATE TABLE 'nilmdb' (
'key' CHAR(255)
'value' CHAR(255)

DEFAULT CHARSET=utf8;
INSERT INTO 'nilmdb' VALUES

NOT NULL PRIMARY KEY,
NOT NULL

('schema', '1');

Streams

-- Times are stored as doubles, so they can be pretty much anything.
CREATE TABLE 'stream' (

'id'
'tag'
'type'
'flags'
'starttime'
'endtime'

INT UNSIGNED PRIMARY KEY AUTOINCREMENT,
VARCHAR(4095) NOT NULL,
INT UNSIGNED NOT NULL default '0',
BIGINT UNSIGNED NOT NULL default '0',
DOUBLE NOT NULL,
DOUBLE NOT NULL

) DEFAULT CHARSET=utf8;

-- Key value pairs, to go with stream metadata

CREATE TABLE 'metadata' (
'id' INT UNSIGNED PRIMARY KEY
'stream-id' INT UNSIGNED NOT NULL,
'ascii' BOOL NOT NULL,
'key' VARCHAR(4095) NOT NULL,
'value' BLOB

) DEFAULT CHARSET=utf8;

AUTOINCREMENT,

CREATE INDEX 'metadata-idxl' ON 'metadata' ('stream-id', 'key'(255));

-- Records, associated with each stream, very similar to the metadata

CREATE TABLE 'record' (
'id' INT UNSIGNED PRIMARY KEY AUTO-INCREMENT,
'stream-id' INT UNSIGNED NOT NULL,
'timestamp' DOUBLE NOT NULL,
'value' BLOB

) DEFAULT CHARSET=utf8;

218

A.4.2 Library and Object Interface, libstream

nilmdb.h

Database access, matching, and manipulation object, header file.

#ifndef NILMDBLI
#define NILMDBJI

#include <mysql++.h>
#include <string>
#include "record.h"
#include "exception.h"

using namespace std;
using namespace mysqlpp;

class Stream;

class Nilmdb

{
public:

typedef unsigned int StreamId;

Nilmdb(const char *db "nilmdb",
const char *host "localhost",
const char *user "nilmdb",
const char *pass

~Nilmdb();

public:
/* Create a new stream in the database. Updates the database
* ID in the stream object. */

void CreateStream(Stream &s);

/* Append data records to a stream, using a callback to
* provide data. Callback returns false when there's no data
* left. */

int AppendData(Streamld id, Record::recordCallback source);

/* Return a list of all streams in the database */
vector <Stream> FindAllStreams(void) { return FindMatchingStreams(" true"); }

/* Delete the given stream object from the database, and
* records associated with it. It must be a simple stream
* object (not sliced) */

void DestroyStream(Stream &s);

7*
* Update s with a possibly -sliced stream that matches the
* parameters in the provided stream

*/
void MatchStream(Stream &s);

219

/* Extract data records from the stream, using a callback to
provide data. Callback returns false if it wants no more. */

int GetData(Stream &s, Record::recordCallback dest);

private:
/* Return a vector with matching streams from the database. *
vector <Stream> FindMatchingStreams(string WhereClause);

/* Retrieve data records matching the given clause */
int GetMatchingData(string WhereClause,

Record::recordCallback dest);

/* Fetch a single stream from the database */
Stream FetchStream(Streamld id);

Connection con;

#endif

nilmdb. cpp

Database access, matching, and manipulation object, implementation.

#include "nilmdb.h"
#include "stream.h"

#define NILMDB-SCHEMA "1"

#define PRECISION 20 /* for doubles to strings *7

using namespace std;
using namespace mysqlpp;

Nilmdb::Nilmdb(const char *db, const char *host, const char *user,
const char *pass) : con(db, host, user, pass)

/* Verify database schema version */
Query q = con.query(;
q << "SELECT-value-FROM-nilmdb-WHERE-ikey'-=-schema"';
Result res = q.store 0;
if (!res) throw BadQuery("nilmdb-parameters-not-ound");
Row row = res.at(0);
if (!row) throw BadQuery("nilmdb.schemanotiound");
if (string (row.at (0)) != NILMDBSCHEMA)

throw BadQuery(string(" nilmdbschema,_mismatch, -wanted..\"") +
NILMDBSCHEMA + string(" \"_but-got_\"") +
string (row.at (0)) + string("\""));

}

220

Nilmdb::~Nilmdb()

{
}
7*
* Fetch simple stream info with the given id from the database,
* including metadata. Throws an exception if stream isn't found.
* Doesn't fetch the data records.
*7

Stream Nilmdb::FetchStream(Streamld id)

{
Stream s;
Result res;
Row row;

Query q = con.query(;

/* Main stream info */
q. precision (PRECISION);
q << "SELECT-'tag',-'type',.-'flags',-'start time' -'end-time' ." <<

"FROM.stream-WHERE-id-=-" << id;
res = q.store(;
if (res. num-rows() != 1) throw NilmException(" Stream-notiound");
row = res.at (0);

s.tag = string(row["tag"]);
s. type = row[" type");
s. flags = row["flags"];
s. start-time = row[" start-time"];
s.endtime = row["end-time"];

/* Get the metadata */
q << " SELECT.'key',.'ascii', -'value'."

<< "FROM-metadataWHERE-stream-id.=." << id
<< «"ORDER.BY'id'";

res = q.store(;

for (Row::size-type i = 0; i < res.num-rowso; i++) {
row = res.at(i);
unsigned long *size = res.fetch.lengths(;
std:: string val((cchar *)row.at(2), size [2]);
s metadata.push-back(Metadata(row.at(0), row.at(1), val));

}

s. database-id. clear ();
s. database-id.push-back(id);

return s;

}

7*
* Place the given stream info into the database, including the
* metadata. Returns true if successful. If a stream with the same
* tag/type exists with overlapping times, or there 's any other error,

221

* returns false. Note this doesn't actually do anything with the
* data records. Throws mysqlpp::Exception on failure.
*/

void Nilmdb::CreateStream(Stream &s)

{
Result res;
Row row;
Query q = con.query(;
my-ulonglong id;

if(s. starttime > s.endtime)
throw NilmException("Stream.times-aren't-.properly-ordered");

/* Make sure this tag/type doesn't exist with overlapping times.
Adjacent times are accepted. Find all other streams that
start before this ends, and end after this starts,
or have the exact same start time *7

q. precision (PRECISION);
q << "SELECT_'id'-FROM.stream-WHERE-" <<

"'tag'=._" << quote << s.tag <<
"._AND._'type'.=-" << quote << s.type <<
".AND-(-(-'start time'.<." << s.endtime <<
"_AND-'end-time'->" << s.starttime << ")" <<
"-OR_('start._ime'-=-" << s.starttime << ")W)";

res = q.store(;
if (res .num-rows() != 0) throw NilmException(

"New-stream.overlapsan-existing-stream-with.same.tag/type"

/* Put it in */
q. precision (PRECISION);
q << "INSERT-INTO-'stream'-('tag',i'type',-'flags',"

<< "'start_time' -'endtime')..VALUES-(" << quote << s.tag
<< ",._ << s.type << ", " << s.flags <<"
<< s.starttime << "," << s.endtime << ")";

q.execute 0;

id = con. insertid 0;

/* Add the metadata *7
q << "INSERT-INTO-'metadata'...('stream-id',i.'ascii',-'key' "

<< "'value')...VALUES _(" << id << ",_%0,_%1q,_%2q)";
q.parse ();
for (sizet i = 0; i < s.metadata.size(); i++) {

q. execute (s. metadata[i]. ascii ,
s.metadata[i].key,
s. metadata[i].value);

}

s. database-id. clear 0;
s. database-id. push-back(id);

return;
}

222

/* Return a vector with matching streams from the database. */
vector <Stream> Nilmdb::FindMatchingStreams(string WhereClause)

{
Result res;
Row row;
Query q = con.query(;
vector <Stream> v;

q << "SELECT-'id' FROM-stream-WHERE-(" << WhereClause +
")_ORDERJ3Y_'id'";

res = q.store (;
for (Row::size-type i = 0; i < res.num-rows(; i++) {

row = res.at(i);
v. push-back(FetchStream(row.at(0)));

}

return v;

}

7*
* Match against streams in the database, possibly returning a sliced stream.
* Fields:
* tag - must match

type - must match
flags - must match, except for StreamFlag::can-slice
*-time - if >= 0, must match (if !can-slice)

or be satisfiable through slicing
metadata - specified fields must match

* Returned stream has flags and metadata from the first
* stream that makes up the returned dataset.

void Nilmdb::MatchStream(Stream &s)

{
ostringstream q;
q. precision (PRECISION);
s. database-id. clear 0;
s. sliced = false;

/* Match tag, type, flags, and times */
q << "'tag'-=-" << quote << s.tag << "-AND-";
q << "'type'_=" << quote << s.type << "-AND-";
q << "('flags'-&-" << StreamFlag::can-slice << ").="

<< quote << (s.flags & ~StreamFlag::can-slice);

/* If times were provided, only get streams that contain
data that falls inside the specified range *7

if (s.endtime >= 0)
q << "_AND_'starttime'_< " << s.end-time;

if (s.start-time >= 0)
q << "-AND-'end-time'->=" << s.start-time;

/* Now fetch those streams that match */
vector <Stream> potential = FindMatchingStreams(q.stro);

223

* Filter them based on the metadata */
vector <Stream> match;
for (size-t i = 0; i < potential. size 0; i±±) {

bool matched true;
for (size-t j 0; j < s.metadata.size 0; j++) {

if (! potential [i]. matchMetadata(s.metadata[j])) {
matched = false;
break;

}
}
if (matched)

match.push-back(potential[i]);

}

7* Now match contains streams that match everything but time. */
if (match.empty() throw NilmException(

No-matches.to.specified-tag, -type,_. metadata,-flags");

7* If we can't slice , we require one exact time match */
if (! (match[0]. flags & StreamFlag::can-slice)) {

if (match.size() != 1) throw NilmException(
"Noone -stream-natchesfor -non-sliced.stream");

if ((s.end-time >= 0 && match[0].end-time != s.end-time)

(s.start-time >= 0 && match[0].start-time != s.start-time))
throw NilmException("No..timematch-or-non-sliced-stream");

s = match[0];
return;

}

/* We can slice; start by sorting the matches by their start time. */
sort (match.begin(), match.end(), Stream::compare-start-time);

/* If we didn't get a start/end time specified, get them from the list *7
if (s.start-time < 0)

s. start-time = match [0].start-time;
if (s.end-time < 0)

s.end-time = match[match.size() - 1].end-time;

/* Now verify that the streams we have are contiguous, and can be sliced */
for (size-t i = 0; i < match.size() - 1; i++) {

if (!match[i]. flags & StreamFlag::can-slice)
throw NilmException("Can't-slice-alL.required-streams");

if (match[i]. end-time != match[i+1].start-time)
throw NilmException(

"Can't-slice .streams; .gap-or-overlap-present");
}

/* Make sure the first satisfies our start time, and the last
satisfies our end time */

if (match[0]. start-time > s.start-time j
match[match.size() - 1].end-time < s.end-time) throw NilmException(

" Can't._slice .streams; -no.streams-extend-that -ar-in..time");

224

/* We should be good to go. Fill some data into the stream */
s. sliced = true;
s. database-id. clear ();
s. flags = match[0].flags;
s.metadata = match [0].metadata;
for (size-t i = 0; i < match.size(; i++)

s. database-id. push-back(match[i].getId ();
}

/* Delete a stream and its records.
void Nilmdb::DestroyStream(Stream &s)

{
vector <Stream> v;

/* Figure out which stream to delete based on tag/type and times */
ostringstream str;
str. precision (PRECISION);
str << "'tag'_=_" << quote << s.tag << "-AND-"

<< "type'_=_" << quote << s.type << "-AND_.
<< "'4start-time'=._." << s.start..time << "-AND-_"
<< "'end-time'-=-" << s.end-time;I

v = Nilmdb::FindMatchingStreams(str.str();

if(v. size () < 1) throw NilmException(
"Didn't-find-matching....stream-to.destroy");

else if(v. size () > 1) throw NilmException(
"Found-too._many.matching-streams,-unexpected..error");

Query q = con.query(;

q << "DELETE-FROM-'stream'-WHERE-'id'...=" << v[0].database-id[0];
q.execute 0;

q << "DELETE.FROM-'record'-WHERE-'streamid'...=" << v[0].database-id[0];
q.execute(;

return;
}

* Add data records for the given stream id. Checks to see if the
* stream exists, but the record timestamps are not verified.
* Could probably use some buffering.

int Nilmdb::AppendData(Streamld id, Record::recordCallback source)

ostringstream b;
b. precision (PRECISION);
int results = 0;

/* Just to verify it exists; will throw an exception if not found */
Stream s;
s = FetchStream(id);

225

if (s.getld() != id)
throw NilmException("mismatched-IDs?");

/* Add the records */
Query q = con.query(;
q. precision (PRECISION);
q << "INSERT JNTO-'record'-('streamid',i'timestamp',-'value')-"

<< "VALUES-(" << id << ",_%0,_%1q)";
q. parse ();

Record r;
while((*source)(&r)) {

results + +;
b. str(")
b << r.timestamp;
q.execute(b.str (), r.value);

}

return results;

}

7*
* Retrieve data records for the given stream id that match the given

* query string. Could probably use some buffering. Returns the total
* number of results that were supplied.

*7
int Nilmdb::GetMatchingData(string WhereClause,

Record::recordCallback dest)

{
ResUse res;
Row row;
Record r;
Query q = con.query();
int results = 0;

q << "SELECT-'timestamp',-'value'-FROM-record-WHERE-("
<< WhereClause << ")_ORDERBY_'timestamp'";

res = q.use();
if (!res) /* No results *7

return 0;

try{
while (row = res.fetch-row() {

unsigned long *size = res.fetchlengths(;
r.timestamp = row.at(0);
r.value = std:: string (row.raw-data(1), size [1]);
results ++;
if(!(* dest)(&r)) break;

}
} catch (const mysqlpp::EndOfResults&) {

return results;

return results;

}

226

/* Extract data records from the stream, using a callback to
provide data. Callback returns false if it wants no more. */

int Nilmdb::GetData(Stream &s, Record::recordCallback dest)

{
if (s. database-id.empty()) throw NilmException(

"Given -streamJsn't-associated-with -any-database-records");

/* Build a query that gives us all records that fall within
the time range and have the provided stream IDs. */

ostringstream q;
q. precision (PRECISION);
q << "'timestamp'_>=" << s.start-time << "-AND-"

<< "'timestamp'_<=" << s.end-time << "-AND-(FALSE";

for (size-t i = 0; i < s.database-id. size (); i++) {
q << "_OR_'streamid'_=_" << s.database-id[i];

}
q << ")";

return GetMatchingData(q.str(, dest);

}

stream. h

Definition of the Stream object and functions, header file.

#ifndef STREAMH
#define STREAM.H

/* Definition of a NILM stream. This contains everything
except the actual stream data, which stays in the database.

*/

#include "metadata.h"
#include "streamflag.h"
#include "streamtype.h"
#include "nilmdb.h"

#include <string>

using namespace std;

class Stream {
public:

Stream();
~Streamo;

public:
string tag;
StreamType::type type;

227

StreamFlag::type flags;
double start-time;
double end-time;

vector <Metadata> metadata;

public:
* Return human-readable representation *

string asText(void);

7* Return true if m matches one of our metadata items.
* Empty value means return true if the key is not present. */

bool matchMetadata(Metadata m);

/* Get database id and sliced status *7
Nilmdb::Streamld getId(void) {

return database id.size() ? database-id[0] : 0;

}
bool isSliced(void) {

return sliced;

I

private:
friend class Nilmdb;
/* ID of this stream in the database, if this came from there.

* A time- ordered list of the stream IDs for this data, if
* this is sliced . */

vector <Nilmdb::StreamId> database-id;
bool sliced;

/* Predicates for sorting */
static bool compare-start-time(const Stream &a, const Stream &b) {

return a.start-time < b.start-time;

I
static bool compare-end-time(const Stream &a, const Stream &b) {

return a.end-time < b.endtime;

}

};

#endif

stream. cpp

Definition of the Stream object and functions, implementation.

#include "stream.h"
#include <stdio.h>
#include <time.h>

228

using namespace std;

Stream::Stream(void)

type = 0;
flags = StreamFlag::time-real;
starttime = 0;
end-time = 0;
database-id. clear ();
sliced = false;

}

Stream:: Stream()

}

string Stream::asText()

{
string s;
char b[256];
timet t;
bool showtime

(flags & StreamFlag::time-real) &&
(flags & StreamFlag::time-absolute);

s = "---.Tag:2 + tag + "\n";
sprintf (b," (%ld) ", (long int) type);

s += "--Type:J" + string(b);
s += string(StreamType::toString(type)) + "\n";
sprintf (b," (%081x).", (unsigned long int) flags);

s += ".--Flags:";
if (flags & StreamFlag::can-slice)
if (flags & StreamFlag::time-real)
if (flags & StreamFlag::timeabsolute)
if (flags & StreamFlag::ascii-data)
if (!flags) s += "...(none)";
s += "\n";

s += "-Start:-";
if (showtime && start-time >= 0)

{
char b[256];
t = (time-t) start-time;
strftime(b, 256, "(%c)-",
s += b;

}
sprintf (b,"%lf\n", start time);
s += b;

s += "e--End:....";
if (showtime && end-time >= 0)

s
s
s

s

.can-slice";
"-time..real";

"-time-absolute";
"...ascii-data";

gmtime(&t));

229

{
char b[256];
t = (time-t) endtime;
strftime(b, 256, "(%c)_", gmtime(&t));
s += b;

}
sprintf (b,"%lf\n", end-time);
s += b;

s += "Metadata:";
sprintf (b, "%ditems\n", (int)rmetadata.size()); s += b;
for(unsigned int i=O; i<metadata.sizeo; i++) {

s += " ""
s += metadata[i].key + "\" ->i";

if (metadata[i]. ascii) {
s += "' + metadata[i].value + "';

} else {
for(unsigned int j=O; j <metadata[i].value.size(); j++) {

sprintf (b, "Ox%02x-", metadata[i] .value[j]);
s += b;

}
}
s += "\n";

}

if (sliced) s += "-Sliced:-yes\n";

return s;

Stream::matchMetadata(Metadata m)

size-t i;
bool test-not-present = m.value.empty(? true : false;

for(i=O; i<metadata.size(); i++) {
if(metadata[i].key == m.key) {

/* Found the key, but wanted it
if(test-not-present)

return false;

/* Found the key, and it match(
if(metadata[i].value == m.valu

return true;

}
}
/* Key was not present */
if(test-not-present)

return true;
else

return false;

}

to be missing */

d our value *7
e)

230

}

bool
{

streamtype.h

Definition of the standard stream types and helpers, header file.

#ifndef STREAMTYPEH
#define STREAMTYPEJH

/* Definition of some standard NILM stream types.
These are just for convenience, and applications are free to use
whatever integers they'd like *7

#include <string>

namespace StreamType {
typedef unsigned int type;

/* Standard stream types */
const char *const ascii[] = {

/* 0 */ "Unspecified",
/* 1 */"Raw",
/* 2 *7 "Envelope",
/* 3 */"FFT",
0

type fromString(const char *s);
const char *toString(type num);

std:: string describe(void);

}

#endif

streamtype .cpp

Definition of the standard stream types and helpers, implementation.

#include "streamtype.h"
#include <string.h>
#include <stdlib.h>

namespace StreamType {
/* Return the stream type number from the (case insensitive) string,

or (Stream Type::type)-1 if it 's not found. */
type fromString(const char *s) {

type i;
char *endptr;
for (i=0; ascii [i]; i++) {

if(strcasecmp(s, ascii [i]) 0)
return i;

I

231

/* Didn't match, maybe it's a number *
i = (type)strtoul(s, &endptr, 0);
if(*endptr == '\O')

return i;
else

return (type)-1;

}

/* Return the stream string from the number, or a (static) text
representation of the number if it 's not found by name. *7

const char *toString(type num) {
type i;
static char s [32];
for (i=0; i<num && ascii[i]; i++)

continue;
if (ascii [i] != NULL)

return ascii [i];
sprintf (s , " %ld",(long int)num);
return s;

}

/* Return list of valid types *7
std:: string describe(void) {

std :: string s;
for (int i=0; ascii [i]; i++) {

if (i) s += ",1-1 ";
s += ascii~i];

return s + ",_[any-number]";

}

streamf lag .h

Definition of the available stream flags and helpers, header file.

#ifndef STREAMFLAGH
#define STREAMFLAGH

#include <string>

/* NILM stream flags. *7
namespace StreamFlag {

typedef unsigned long type;

/* All flags, entry n is text for flag 1 << n *7
const char *const ascii[] = {

/* 0 */ "CanSlice",
/* 1 */ "TimeIsSeconds",
/* 2 *7 "TimelsAbsolute",
/* 3 */ "AsciiData",

232

}

NULL

const int none = 0;

/* Can perform slicing *7
const int can-slice = 1 << 0;

/* Timestamp in records is a real time in seconds *7
const int time-real = 1 << 1;

/* Timestamp in records is absolute, versus relative */
const int time-absolute = 1 << 2;

/* Record blobs are ascii, versus binary *7
const int ascii-data = 1 << 3;

type fromString(const char *s);
std:: string toString(type flags);

std:: string describe(void);

}

#endif

streamf lag. cpp

Definition of the available stream flags and helpers, implementation.

#include "streamflag.h"

namespace StreamFlag {
/* Return the stream flags number from the (case insensitive)

string, or 0 if it 's not found. *7
type fromString(const char *s) {

type i;
for (i=0; ascii [i]; i++) {

if (strcasecmp(s, ascii [i) 0)
return 1 << i;

}
return 0;

}

/* Return the stream string from the number, or NULL if undefined. */
std:: string toString(type num) {

std:: string s;
for (int i=0; ascii [i]; i+) {

if (num & (1 < i)) {
if(s != "") s += "3';
s += asciii ;

233

}
if (s ==")s += "None";
return s;

}
/* Return list of valid flags *

std:: string describe(void) {
std :: string s;
for (int i =0; ascii[i]; ij++) {

if (i) s += ""
s += ascii~i I;

}
return s;

}

metadata.h

Definition of a stream metadata object, header file.

#ifndef METADATAH
#define METADATAI

/* A key/value metadata pair */

#include <string>

class Metadata

{
public:

Metadata(const char *newkey, bool isascii, std::string &valuedata);
Metadata(const char *keyval);

public:
std:: string key;
bool ascii;
std:: string value;

};

#endif

metadata. cpp

Definition of a stream metadata object, implementation.

#include "metadata.h"
#include "mysql++.h"
#include <string.h>

234

I

using namespace std;

Metadata:: Metadata(const char *newkey, bool isascii, std::string &valuedata)

{
key = newkey;
ascii = isascii

value = valuedata;

}

Metadata::Metadata(const char *keyval)

{
char *eq = strchr(keyval, '=');
if(!eq) {

key =
return;

I
key = std:: string (keyval, eq - keyval);
ascii = 1;

value = std:: string (eq + 1);
}

record.h

Definition of the a stream record object, header file.

#ifndef RECORDIH
#define RECORDIH

/* A timestamp/value record pair */

#include <string>

class Record

{
public:

typedef bool (*recordCallback) (Record *r);

Record(;
Record(double ntimestamp, std::string &nvalue);

double timestamp;
std:: string value;

};

#endif

record.cpp

Definition of the a stream record object, implementation.

235

#include "record.h"
#include <string.h>

Record::Record(double ntimestamp, std::string &nvalue)

{
timestamp = ntimestamp;
value = nvalue;

}

Record::Recordo

{
}

ut il.h

Date and time parsing utility functions, header file.

#ifndef NILMUTIL-H
#define NILMUTILJI

namespace NilmUtil

const char *const datespec
"Available-date-string-formats:\n"
"1) -Real-number-(double):\n"
-- 965086161.14\n"

"-2)-Absolute-dateJn-the-form-YYMMDD-HHMM [SS:\n"
-- 20051205-130505\n"

"-3)-Textualformat:\n"
- -\" Mon-Dec-05-13:05:05-2005\" \n"
"-If -using-absolute-seconds,-#1 -is-seconds-since-epoch,"
-and-alLtimes-are-UTC.\n"
"-If -using- relative -time-orarbitrary-units , -only-#-is-valid.\n";

double string-to-date(const char *s);
void chomp(char *s);

}

#endif

util.cpp

Date and time parsing utility functions, implementation.

#include "util.h"
#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

236

#include <ctype.h>

namespace NilmUtil

{
double stringto-date(const char *s)

{
double d;
char *endptr;
int len;
struct tm t;
int yy,mm,dd,hh,nn,ss;
char tmp[256];

/* If it 's a double, use it like that *7
d = strtod(s, &endptr);
if(*endptr == '\O')

return d;

/* Use UTC everywhere. *7
setenv("TZ", "", 1);
tzset ();

/* check for the snapshot format YYYYMMDD- HHMM[SS] *7
len = sscanf(s, "%04d%02d%02d-%02d%02d%02d%c",

&yy, &mm, &dd, &hh, &nn, &ss, &tmp[0]);
if (len 5) { ss = 0; len++; }
if (len 6) {

/* Manipulating "struct tm" fields directly
is a no-no, so go through a string */

sprintf (tmp, "%04d-%02d.%02d..%02d-%02d-%02d",
yy, mm, dd, hh, nn, ss);

endptr = strptime(tmp, "%Y_%m_%d_%H_%M_%S", &t);
if(endptr && (*endptr == '\O'))

return mktime(&t);
else {

fprintf (stderr," internal..date..error\n");
return -1;

}
}

t.tmyear -= 1900;
t.tm-mon -= 1;
if(len == 5) { t.tm.sec = 0; len++; }
if (len 6)

return (unsigned int)mktime(&t);

/* Like "date" except no timezone */
endptr = strptime(s, "%a_%b_%d_%H:%M:%S_%Y", &t);
if(endptr && (*endptr == '\O'))

return mktime(&t);

return -1;

237

}

void chomp(char *s) {
int len = strlen(s) - 1;
while(len > 0 && isspace(s[len]))

s[len--] = 0;
}

}

dbopt .h

Database option parsing routines, header file.

#include <string>
#include "opt.h"

using namespace std;

namespace dbopt {
const char *const default-db = "nilmdb";
const char *const default-host = "localhost";
const char *const default-user = "nilmdb";
const char *const default-pass = "";

const struct options db = { 'D', "db", "name", "NILM-database-name" };

const struct options host ={ 'H', "host", "host", "NILM-databasehost" };

const struct options user ={ 'U', "user", "user", "NILM-database-user" };

const struct options pass ={ 'P', "pass", "pass", "NILM-database-pass" };

bool parse(char c, string &db, string &host, string &user, string &pass,
const char *optarg);

}

dbopt .cpp

Database option parsing routines, implementation.

#include "dbopt.h"
#include <string>

using namespace std;

namespace dbopt

{
bool parse(char c, string &db, string &host, string &user, string &pass,

const char *optarg)

{
switch(c) {
case 0:

238

db = defaultdb;
host = default-host;
user = defaultuser;
pass = default-pass;
return true;

case 'D':
db = optarg;
return true;

case 'H':
host = optarg;
return true;

case 'U':
user = optarg;
return true;

case 'P':
pass = optarg;
return true;

default:
return false;

}
}

}

A.4.3 Client Programs

insert .cpp

Implementation of insert, which creates and stores streams in the database.

#include <mysql++.h>
#include "stream.h"
#include "nilmdb.h"
#include "opt.h"
#include "dbopt.h"
#include "streamtype.h"
#include "streamflag.h"
#include "util.h"
#include <time.h>
#include <sys/time.h>
#include <signal.h>

using namespace std;

const char svnid[] = "$Id:insert. cpp-1597-2006-01 -22-01:00:08Z-jim-$";
const char svnrev[] "$Rev:_1597-$";

struct options opt [] {
dbopt::db, dbopt::host, dbopt::user, dbopt::pass, opt-blank, /* D,H, U,P */

{ 't' , "tag", "string", "tag-to-use-for-new-stream" }

239

{ 's', "start", "datespec", "starting -time-ofthe-data" },
{ 'e', "end", "datespec", "ending -time-of-the..data" },
{ 'T', "type", "typespec", "type-oLdataJrn-the-stream" },
{ 'I', "metadata", "key=val", "extra-metadata-to-add-to-thestream" },
opt-blank,
{ 'S', "step", "time", "timestep-between.each.line-ofinput" },
{ 'L', "lines", "count", "total -lines .of-input-that-will._be-supplied" },
{ 'A', "annotate", NULL, "incoming-datads.annotated-with-timestamps" }
{ 'R', "realtime", NULL, "datads-supplied-on.stdinin._realtime" },
opt-blank,
{ 'r', " relative", NULL, "times._are..relative,._.not-absolute" },
{ 'a', "arbitrary", NULL, "times -are.arbitrary, -not-seconds" },
{ 'n', "noslice", NULL, "cannotslicethis-stream" },
opt-blank,
{ 'd', "delete", NULL, "delete-the-streamJ-Lan.erroror.signal.occurs" },
{ 'V', "version", NULL, "show-program.version-and-exit" },
{ 'h', "help", NULL, "this-help" },
opt-end

static bool got-signal = false;
void handle-sig(int sig) { got-signal true;
static bool annotate false;
static bool realtime false;
static bool deletestream = false;

static double global time;
static long double global-timestep;
bool supply-data(Record *r)
{

struct timeval t;
static char line [1024];

/* Give one record's worth of data, or return false if we're done *7
do {

if (got-signal) return false;
fgets (line, 1024, stdin);
if(got-signal I feof(stdin)) return false;

} while(line[0] == '#'); /* Ignore comments *7

NilmUtil:: chomp (line);

if (annotate) {
/* If annotated, extract the time. Expected format:

<double timestamp> <single space><data>\n *7
char *end;
r->timestamp - strtod(line, &end);
if(*end != '_') {

fprintf (stderr ,"***.Insert: -Bad.annotation-format\n");
got signal = true; /* so we delete it *7
return false;

}
r->value = end+1;

} else if(realtime) {

240

/* Use the current system time *

gettimeofday(&t, NULL);
r->timestamp = (double)t.tv-sec + (double)t.tv-usec / 1e6;
r->value = line;

} else {
/* Compute from the specified timestemp *7
r->timestamp = global.time;
globaLtime += globalitimestep;
r->value = line;

}

return true;

}

void create-stream(Nilmdb &db, Stream &s)

{
Nilmdb::StreamId id;

/* Setup signal handlers to cleanly abort this if we get interrupted 7
struct sigaction sa;
sa.sa-handler = handle-sig;
sigemptyset(&sa.sa-mask);
sigaction (SIGHUP, &sa, NULL);
sigaction (SIGINT, &sa, NULL);
sigaction (SIGQUIT, &sa, NULL);
sigaction (SIGABRT, &sa, NULL);
sigaction(SIGTERM, &sa, NULL);

/* Do it */
fprintf (stderr ,"Creating-stream:\n%s", s.asText().c-str ());
db.CreateStream(s);
id = s.getld(;

fprintf (stderr ,"New-streamJD:-%d\n", (int)id);
fprintf (stderr ," Reading-data.from-stdin\n");

globalitime = s.start-time;
int count = db.AppendData(id, supply-data);

if (! gotsignal && count) {
/* Success */
fprintf (stderr , "Inserted..%d..ecords\n", count);
return;

}

if (got-signal) fprintf (stderr ,"Interrupted\n");
else if (! count) fprintf (stderr ,"No.datareceived\n");

if(deletestream) {
fprintf (stderr ,"Deleting...stream\n");
db.DestroyStream(s);

}
}

241

int main(int arge, char *argv[])
{

int optind;
char *optarg;
FILE *help = stderr;
char c;
string db, host, user,
double timestep = 0;
long lines = 0;
char *endptr;

pass;

* Initialize stream *
Stream s;
s. start-time -1
s.end-time = -1;
s.type (StreamType::type)-1;
s. flags = StreamFlag::can-slice StreamFlag::time-real

StreamFlag::ascii-data StreamFlag::time-absolute;

/* Parse and validate options *7
opt-init (&optind);
dbopt::parse(0, db, host, user, pass, 0);
while((c=opt-parse(argc,argv,&optind,&optarg,opt))!=0) {

if (dbopt::parse(c, db, host, user, pass, optarg))
continue;

switch(c) {
case 't': 77 tag

s.tag = optarg;
break;

case '' : // start
s. start.time = NilmUtil::string-to-date (optarg);
if(s.start-time < 0) {

fprintf (stderr, " invalid .date: _\" %s\" \n", optarg);
goto printhelp;

}
break;

case 'e': // end
s.end-time = NilmUtil::string-to-date(optarg);
if (s.end-time < 0) {

fprintf (stderr, " invalid -date: _\" %s\" \n", optarg);
goto printhelp;

}
break;

case 'm': // metadata

{
Metadata m(optarg);
if(m.key == "") {

fprintf (stderr ," invalid .metadata:-\" %s\" \n", optarg);
goto printhelp;

}

}
case

s metadata.push-back(m);
break;

'T': // type

242

{
s type = StreamType::fromString(optarg);
if(s.type == (StreamType::type)-1) {

fprintf (stderr ," invalid -type: \"%s\" \n", optarg);
goto printhelp;

}
break;

}

case '5': // timestep
timestep = strtod(optarg, &endptr);
if(*endptr != '\O' | timestep <= 0) {

fprintf (stderr," invalid -timestep: \"%s\"\n", optarg);
goto printhelp;

}
break;

case 'L': // lines
lines = strtoul(optarg, &endptr, 0);
if(*endptr != '\0' Il lines == 0) {

fprintf (stderr ," invalid -line -count:-\" %s\" \n", optarg);
goto printhelp;

}
break;

case 'r': // relative
s. flags &= ~StreamFlag::time-absolute;
break;

case 'a': // arbitrary
s. flags &= ~StreamFlag::time-real;
break;

case n: // noslice
s. flags &= ~StreamFlag::can-slice;
break;

case 'A': // annotate
annotate = true;
break;

case 'R': // realtime
realtime = true;

case 'd': // delete
deletestream = true;
break;

case 'V':
printf (" insert _%s\nId:\n.%s\n", svnrev, svnid);
printf ("Written-by-Jim.Paris-<jim jtan.com>.\n");
return 0;
break;

case 'h':
help=stdout;

printhelp:
fprintf (help," \n");

243

default:
fprintf (help," Inserts -records-into._the-NILM-database.\n");
fprintf (help," Data-is-supplied._asASCII-text-on-stdin.\n\n");
fprintf (help," Usage:-%s-_[options] \n\n" ,*argv);
opt-help (opt,help);
fprintf (help," \n%s", NilmUtil::datespec);
fprintf (help,"\nValid-stream-types:\n_%s\n",

StreamType::describe().c-str ());
return 1;

}
}

if(s.tag "" fl s.type == (StreamType::type)-1) {
fprintf (help, "***Jnsert: -youust-specify-a-stream._tag-and-type\ n")
goto printhelp;

I

if(s. start-time < 0 s.end-time < 0) {
fprintf (help, "***Jnsert: -must._specify-stream.starting/endingtimes\n");
goto printhelp;

I

if(s.end-time < s.starttime) {
fprintf (help, "***Jnsert: -start -time-(%lf)-must -be-before-"

"end.time_(%lf)\n", s.start time, s.end-time);
goto printhelp;

I

if(((timestep != 0) + (lines != 0) + (annotate == true) +
(realtime == true)) != 1) {

fprintf (help,"*** Jnsert: -must-specify-exactly-one of"
- -step,-- -lines,-- -annotate,-- -realtime\n");

goto printhelp;
}

/* Set up timestep between successive input lines *7
if(timestep == 0)

globalitimestep = (s.endtime - s.starttime) / lines; // our best guess
else

globalitimestep = timestep;

/* Now go create the stream *7
try {

Nilmdb nilm(db.c.stro, host. c-str (), user. c-str (), pass. c-str ());
create stream(nilm, s);

} catch (const mysqlpp::Exception &e) {
fprintf (stderr ," ***Jnsert: -%s\n", e.whato);
return -1;

}
return 0;

}

244

extract .cpp

Implementation of extract, which matches and retrieves streams from the database.

#include <mysql++.h>
#include "stream.h"

#include "nilmdb.h"
#include "opt.h"
#include "dbopt.h"
#include "streamtype.h"
#include "streamflag.h"
#include "util.h"
#include <time.h>
#include <signal.h>

using namespace std;

const char svnid[] = "$Id:-extract.cpp-1585-2006-01 -20-10:45:24Z jim-$";
const char svnrev[] "$Rev:-1585-$";

struct options opt [] {
dbopt::db, dbopt::host, dbopt::user, dbopt::pass, opt-blank, /* D,H, U,P *7
{ 't', "tag", "string", "tag-to-extract" },
{ 's', "start", "datespec", "starting..time-of-the.data.(optional)" },
{ 'e', "end", "datespec", "ending..time-of-the-data-(optional)" },
{ 'T', "type", "typespec", "type-of-data.in.the-stream-(mand)" },
{ 'I', "metadata", "key=val", "extra.metadata-.to-match.(optional)" },
opt-blank,
{ 'r', "relative", NULL, "times-are-relative,-not.absolute" },
{ 'a', "arbitrary", NULL, "times-.are.arbitrary,-not-seconds" },
{ 'A', "annotate", NULL, "annotate..output-data-with-timestamps" },
opt-blank,
{ 'q', "quiet", NULL, "justshow..matched-stream.info,._no.data" },
{ 'V', "version", NULL, "show-program..version-and-exit" },
{ 'h', "help", NULL, "this-help" },
opt-end

};

static bool got-signal = false;
void handle-sig(int sig) { got-signal = true; }
static bool annotate = false;
static bool quiet = false;

bool receive.data(Record *r)

{
if(annotate) printf("%lf", r->timestamp);
printf ("%s\n", r->value.c-str ());
return got-signal ? false : true;

}

void extract-stream(Nilmdb &db, Stream &s)

{
/* Setup signal handlers to cleanly abort this if we get interrupted *7

245

struct sigaction sa;
sa.sa-handler = handle-sig;
sigemptyset(&sa.sa-mask);
sigaction (SIGHUP, &sa, NULL);
sigaction (SIGINT, &sa, NULL);
sigaction (SIGQUIT, &sa, NULL);
sigaction (SIGABRT, &sa, NULL);
sigaction (SIGTERM, &sa, NULL);

/* Do it */
fprintf (stderr ," Trying-to-matchstream:\n%s", s.asTexto.c-stro);
db.MatchStream(s);

fprintf (stderr ,"\nMatched-stream:\n%s", s.asText().c-str();

if(quiet) return;

fprintf (stderr ,"Writing-data-to-stdout\n");

int count = db.GetData(s, receive-data);

fprintf (stderr, got-signal ? "Interrupted\n" : "Done\n");
fprintf (stderr ,"Extracted-%d-records\n", count);

}

int main(int arge, char *argv[])
{

int optind;
char *optarg;
FILE *help = stderr;
char c;
string db, host, user, pass;

/* Initialize stream *7
Stream s;
s.start-time = -1;
s.endtime = -1;
s.type (StreamType::type)-1;
s. flags StreamFlag::time-real

StreamFlag:: ascii-data

I StreamFlag::time-absolute;

/* Parse and validate options *7
opt-init (&optind);
dbopt::parse(O, db, host, user, pass, 0);
while((c=opt-parse(argc,argv,&optind,&optarg,opt))!= 0) {

if (dbopt::parse(c, db, host, user, pass, optarg))
continue;

switch(c) {
case 't': // tag

s.tag = optarg;
break;

case 's' : // start
s. start-time = NilmUtil:: string-to-date (optarg);
if (s. start-time < 0) {

246

fprintf (stderr, " invalid -date:- \" %s\"\n", optarg);
goto printhelp;

}
break;

case 'e': // end
s.end-time = NilmUtil::string-to-date(optarg);
if(s.end-time < 0) {

fprintf (stderr, " invalid -date: _\" %s\" \n", optarg);
goto printhelp;

}
break;

case 'M': // metadata

{
Metadata m(optarg);
if (m.key == "") {

fprintf (stderr ," invalid -metadata: \"%s\"\n", optarg);
goto printhelp;

}
s. metadata.push-back(m);
break;

}
case 'T': // type

{
s.type = StreamType::fromString(optarg);
if(s.type == (StreamType::type)-1) {

fprintf (stderr ," invalid -type: \"%s\" \n", optarg);
goto printhelp;

I
break;

}

case 'r' / relative
s. flags &= ~StreamFlag::time-absolute;
break;

case 'a': // arbitrary
s. flags &= ~StreamFlag::time-real;
break;

case 'q': // quiet
quiet = true;
break;

case 'A': // annotate
annotate = true;
break;

case 'V':
printf ("extract_%s\nId:\n_%s\n", svnrev, svnid);
printf ("Written.by-Jim-aris-<jimdjtan.com>.\n");
return 0;
break;

case '':
help=stdout;

printhelp:

247

fprintf (help," \n");
default:

fprintf (help," Extracts.recordsfrom-the-NILMdatabase.\n");
fprintf (help," Data-s.supplied-as-ASCI text-to.stdout. \n\n");
fprintf (help," Usage:.-%s..[options] \n\n" ,*argv);
opt _help (opt,help);
fprintf (help,"\n%s", NilmUtil::datespec);
fprintf (help," \nValid.stream._types:\n._%s\n",

StreamType::describe(.c-str 0);
return 1;

}
}
if(s.tag "" s.type (StreamType::type)-1) {

fprintf (help, "* xtract:._youmust.specifya.stream.tag-andtype\n
goto printhelp;

I

if(s.end-time > 0 && s.end-time < s.starttime) {
fprintf (help, "***-Extract:._start.-time_(%lf)..must._be..before-"

"end._time._(%lf)\n", s.start time, s.end-time);
goto printhelp;

I

/* Now go extract the stream, if we can */
try {

Nilmdb nilm(db.c-str(, host. c.str (), user. c-str (), pass. c..str ());
extract _stream(nilm, s);

} catch (const mysqlpp::Exception &e) {
fprintf (stderr , "***Extract:.%s\n", e.what();
return -1;

}
return 0;

}

dump. cpp

Implementation of dump, which prints information about streams in the database.

#include <mysql++.h>
#include "stream.h"
#include "nilmdb.h"
#include "opt.h"
#include "dbopt.h"

using namespace std;

const char svnid[] = "$Id:._dump.cpp.1 579..2006-01-20.04:12:30Z-jim.$";
const char svnrev[] "$Rev:_1579_$";

struct options opt [] {

248

dbopt::db, dbopt::host, dbopt::user, dbopt::pass,
{ i', "id", "num",I "only-dump-the-given._stream-id"},

{ 'V', "version", NULL, "show-program-version-and-exit" },
{ 'h', "help", NULL, "this-help" },
{ 0, NULL, NULL, NULL }

int main(int arge, char *argv[])
{

int optind;
char *optarg;
Nilmdb::Streamld id = 0;
FILE *help = stderr;
char c;
string db, host, user, pass;
int printed = 0;

opt-init (&optind);
dbopt::parse(0, db, host, user, pass, 0);
while((c=opt-parse(argc,argv,&optind,&optarg,opt))!= 0) {

if (dbopt::parse(c, db, host, user, pass, optarg))
continue;

switch(c) {
case ':

id (Nilmdb::StreamId) atoi(optarg);
break;

case 'V':
printf (" dump-%s\nld:\n-%s\n", svnrev, svnid);
printf ("Written-by-Jim.Paris-<jim@jtan.com>.\n");
return 0;
break;

case 'h':
help=stdout;

default:
fprintf (help," Usage:-%s-[options] \n\n",*argv);
opt-help(opt,help);
return 1;

}
}

vector <Stream> v;

printf ("Dumping-all-database..streamrnetainfo:\n");

try {
Nilmdb nilm(db.c-stro, host. c-str (), user. c.str (), pass. c-str 0);

v = nilm.FindAllStreams(;
for (unsigned int i = 0; i < v.size 0; i++) {

if(id && v[i].getId() != id)
continue;

printf ("\nDatabaseStreamJD:_%d\n", v[i].getId();
printf ("Stream-dump:\n%s", v[i].asText().c-str ();
printed++;

249

I
if(id) {

if (! printed) printf ("No-matches\n");
} else printf("\n%d-shown\n", printed);

} catch (const mysqlpp::Exception &e) {
fprintf (stderr ,"Error: -%s\n", e.what());
return -1;

}

return 0;

}

remove .cpp

Implementation of remove, which removes a stream from the database.

#include <mysql++.h>
#include "stream.h"

#include "nilmdb.h"
#include "opt.h"
#include "dbopt.h"

using namespace std;

const char svnid[] = "$Id:-remove.cpp-1557-2006-01-16-05:54:18Z-jim-$";
const char svnrev[] "$Rev:_1557_$";

struct options opt[] {
dbopt::db, dbopt::host, dbopt::user, dbopt::pass,
{ 'i', "id", "num", "id-of-the-stream-to-remove" },
{ 'V', "version", NULL, "show-program-version-and-exit" },
{ 'h', "help", NULL, "this-help" },
{ 0, NULL, NULL, NULL }

};

int main(int argc, char *argv[])

{
int optind;
char *optarg;
Nilmdb::StreamId id = 0;
FILE *help = stderr;
char c;
string db, host, user, pass;

opt init (&optind);
dbopt::parse(0, db, host, user, pass, 0);
while((c=opt-parse(argc,argv,&optind,&optarg,opt))!= 0) {

if (dbopt::parse(c, db, host, user, pass, optarg))
continue;

switch(c) {
case i':

250

id = (Nilmdb::StreamId) atoi(optarg);
break;

case 'V':
printf ("remove-%s\nld: \n.%s\n", svnrev, svnid);
printf ("Written-by..Jim-Paris-<jim~jtan.com> .\n");
return 0;
break;

case 'h':
help=stdout;

printhelp:
default:

fprintf (help," Usage:._%s-[options] \n\n",*argv);
opt-help(opt,help);
return 1;

}
}

if(!id) {
fprintf (help, "error : -id-is _mandatory\n");
goto printhelp;

I

vector <Stream> v;

try {
Nilmdb nilm(db.c-stro, host. c-str (), user. c-str (), pass. c-str ());

v = nilm.FindAllStreams(;
for (unsigned int i = 0; i < v.size 0; i++) {

if (v [i).getld () != id)
continue;

printf (" Removingstream-%d-and-associated-data\n", (int)id);
nilm.DestroyStream(v[i);
id = 0;
break;

}
if(id) {

char b[256];
sprintf (b," Specified .ID-%d-not-found", (int)id);
throw NilmException(b);

}
} catch (const mysqlpp::Exception &e) {

fprintf (stderr ,"Error:-%s\n", e.what();
return -1;

}

return 0;
}

251

f ilter .pl

Perl script to manage the execution of external programs as stream filters.

#!/usr/bin/perl

Use extract to get data, pass it to the specified program, then use

insert to put it back, maintaining timestamps throughout.

use strict ;
use warnings;

use Getopt::Long;
use FindBin qw($Bin);
use IO::File ;
use POSIX qw(tmpnam);

Attempt to find extract & insert commands

my $extract="$Bin/../extract/extract";
$extract=" extract" unless (-x $extract);
my $insert=" $Bin/../insert/insert";
$insert'="insert" unless (-x $extract);

Usage string
my $usage = <<EOF;
Usage: $0 [options]

-- in 'string' Metadata options to pass extract, see below
-- out 'string' Metadata options to pass insert, see below
-- filter 'command' Filter command and arguments
-- start 'datespec' Start time of input and output stream
-- end 'datespec' End time of input and output stream
-- annotate Filter expects and provides timestamps
- -tempfile Always use temporary files for storage

Metadata options are passed as a complete string with options:
-- tag -- type -- metadata -- relative -- absolute -- noslice

as appropriate, as well as standard database selection options.
The tag, type, and start and end times are mandatory.

All arguments are passed to another shell, so special characters
must be quoted, e.g. -- filter 'tr-e-*'
EOF

Get options
my ($in, $out, $filtercmd, $start, $end);
my ($annotate, $tempfile) = (0, 0);

GetOptions("in=s" => \$in,
" out=s" => \$out,
" filter =s" => \$filtercmd,
"start=s" => \$start,

"end=s" => \$end,
"annotate!" => \$annotate,
"tempfile!" => \$tempfile);

252

Process options
die $usage unless (defined $in and defined $out and defined $filtercmd

and defined $start and defined $end);

Explictly check for and disallow behavior- changing options in the

metadata strings.
my Lbadopts = qw/-s -- start -e -- end -S -- step -L -- lines -A -- annotate

-R -- realtime -d -- delete/;
map { my $cmd=$_; map { die "Error:-metadata-options.shouldn't-include-\"$_\"\n"

if ($cmd =~ qr/(^|\s)$_($I\s)/); } ©badopts } ($in, $out);

Build command we'll run
my $extractcmd - "$extract-$in-- -start-\" $start\" --- end-\" $end\"";
my $insertemd = "$insert-$out-- -start-\" $start\" --- end-\" $end\" .-- delete";

if ($annotate and !$tempfile) {
Use a single pipeline for everything. This is the easy case.
my $cmd = "$extractcmd---annotate-I-$filtercmd-I-$insertcmd..- -annotate";
print "Single-pipeline ,-executing: .$cmd\n";
exec($cmd) or die "exec-failed\n";

}

Use a two-step process through temporary files:
extract -> tempi -> filter -> temp2 -> insert
my ($templ, $temp2, $templfh, $temp2fh);
do { $templ = tmpnamo } until $templfh

IO:: File - >new($templ, O-RDWRIO-CREATIOEXCL);
do { $temp2 = tmpnam() } until $temp2fh =

JO:: File - >new($temp2, ORDWR IOCREATIOEXCL);
END {

if (defined($templ)) {
unlink($templ) or die "Couldn't. unlink...$temp1 :$!\n";

}
if (defined($temp2)) {

unlink($temp2) or die "Couldn't-unlink-$temp2-:...$!\n";

}
}

First run extract
open(PIPE, "$extractcmdl") or die "Can't-execute..$extractcmd:-$!\n";
my $ecount = 0;
while(<PIPE>) {

print $templfh $_;
$ecount++;

}
close(PIPE);
print "Filter :-got.$ecount.records.from-extract\n";

my $fcount = 0;

Now run the filter.
my $cmd;
if ($tempfile) {

It wants filenames, so just call it and count the lines in the result.

253

$cmd = "$filtercmd_$temp1_$temp2";
system($cmd) or die "Can'texecute_$cmd:_$!\n";
seek($temp2fh, 0, 0);
while(<$temp2fh>) {

$fcount++;

}
} else {

It wants stdin/stdout, so we can count lines as they come
open(PIPE,"$filtercmd-<._$templ..");
while(<PIPE>) {

print $temp2fh $_;
$fcount++-;

}
}

print "Filter -got-$fcountrecords-from. filter \n";

Finally, pass the temp file into insert, with the right number of lines

my $icount = 0;
open(PIPE, " $insertcmd_- -lines-$fcount") or die "Can't-execute.$insertcmd:-$!\n";
seek($temp2fh, 0, 0);
while(<$temp2fh>) {

print PIPE $-;
$icount+-+;

}
close(PIPE);

print "Filter: -wrote-$icount-records.to-insert\n";

exit 0;

A.4.4 Matlab/Octave Functions

insert.m

Matlab/Octave function that uses the insert program to store data.

function insert(v, a, b)
%%% Insert data into the NILM database by running the "insert" binary

%%% and passing the data in v. Arguments are as specified by "insert".

%%% Example usage:

%%% data = rand(10);
%%% insert (data, ...

'--tag "Hello" -- type 0 -r -a -- start 0 -- end 10 -- lines 10');

%%% $Id: insert.m 1598 2006-01-22 01:00:33Zjim $
if (nargin < 2)

error ('Need .to. supply.d ata.and-arguments .-to" insert" -binary');
end

254

if (nargin < 3)
%% Assume path to insert if they don't pass it
command = ['../prog/insert/insert-' a];

else
command = [a '' b];

end

%% Make a temporary filename
temp = tempname;

%% Octave and Matlab use different syntax for saving
disp('Storing-data-to-beinserted ...
if which('octave-config-info')

save('-text',temp,'v');
else

save(temp,'v','-ascii');
end

%% Spawn the insert binary with the given arguments, and save output
cmd = ['env---i' command '-<-' temp]
disp(['Executing:.' cmd]);

%% Octave and Matlab use different syntax for system command
if which('octave-config-info')

fflush (1);
[output, status] = system(cmd);
if status ~= 0

delete(temp);
error (['Error.executingcommand!' char(10)]);

end
else

[status, output] = system(cmd);
disp(output);
if status -= 0

delete(temp);
error ('Error-executing-command!');

end
end

%% All done
delete(temp);

end

extract.m

Matlab/Octave function that uses the extract program to retrieve data.

255

function v = extract(a, b)
%%% Extract data from the NILM database by running the "extract" binary
%%% and collecting the output. Arguments are as specified by "extract".
%%% Example usage:

%%% data = extract('--tag "Hello" -- type 0');

%%% $Id: extract.m 1598 2006-01-22 01:00:33Z jim $
if (nargin < 1)

error('Need-to._supply-arguments-to-" extract" -binary');
end
if (nargin < 2)

%% Assume path to extract if they don't pass it
command = ['../prog/extract/extract-' a];

else
command = [a '-' b];

end

%% Make a temporary filename
temp = tempname;

%% Spawn the extract binary with the given arguments, and save output

cmd = ['env--i-' command '.>_' temp]
disp(['Executing:.' cmd]);

%% Octave and Matlab use different syntax for system command
if which('octave-config-info')

fflush (1);

[output, status] = system(cmd);
if status ~= 0

delete(temp);
error (['Error-executing-command!' char(10)]);

end
else

[status, output] = system(cmd);
disp(output);
if status ~= 0

delete(temp);
error('Error-executing-command!');

end
end

%% Read in the file
disp('Loading-extracted-data...');
errmsg='Error.p arsingthe-output -file,._b ad-data-in..db?';
eval('v-=.-load(temp);','delete (temp); -error(errmsg);');

%% All done
delete(temp);

end

256

Appendix B

Hardware Design

These layouts were provided by Professor Steven R. Shaw of the Montana State
University.

B.1 USB ADC Board Layout

F - 0 L U L U C

q

FLFTLZZ

C9

5

-II~ I

.01

C)

257

)9 3

C30

U$

-99O

------ --.A-..... .-------- F(C

A

AGI

RAO VDID

RA VSS
RA3 NG!

RTCC OSC1
R OSC2

R01i RBO
fC2 RB1
R(3 R02

RC5 RB4
RC6 RB9
RC17 RBS

MCUR*

.u

GND

B4 L.AN3-ILALN1

12 AIN5
11 AIN6

2 10 AlN7
9 -AIN8

UVI
Al1N 15
AN214 13 L

1I'i2 11
A10 9
AI58 7
A f,6 5

AIA2 1
IAGND

C 3

GNU

S LK

BGNSY GN '
--- NVST

SKR2

330

GN U

I Cl

Au AC10 14 C

470n
.I Ll I

AGND AGND AGND AGINDGND

AIN' AWED
A IN2 AG"1 ND I
AINS DVDD
AIN4 DGN D

AIN N

Ad N E;:j(NC
CFq C N i S

DIAU

Iz c
/TbhGND OUT _

QI v
> v C 7

CA

PED OUT

A CC NC T;

-

s NG

usbfinal

11/09/2005 14:00:34
Sheet: 1/1

4

3

2

I

00

E

GND

CI)

ND)

(7i

'4

2

~1
C,29

Gou

(7ND

A B C D E F-

- si 00 DAT G ... R q

PH i S 02 DAA RX~ll
-1l 0S ID3 DAA'

(D GND2 D4 --

GND D A6
st P D7 IAA TI
nu ND RD# I

VIC W WR
xT TR TXF4T

PVCC RXF# I
DATA7

Bibliography

[1] American Society of Naval Engineers Reconfigurability and Survivability Sympo-

sium, Atlantic Beach, Florida, February 2005.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Introduction to Probability. Athena Scientific,

Belmont, MA, 2002.

[3] L. Carmichael. Nonintrusive appliance load monitoring system. EPRI Journal,

pages 45-47, September 1990.

[4] K. R. Cho. Detection of broken rotor bars in induction motors using parameter

and state estimation. Master's thesis, Massachusetts Institute of Technology,

June 1989.

[5] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips. Universal

serial bus specification, revision 2.0, April 2000.

[6] T. DeNucci. Diagnostic indicators for shipboard systems using non-intrusive load

monitoring. Master's thesis, Massachusetts Institute of Technology, Department

of Mechanical Engineering, June 2005.

[7] T. DeNucci, R. Cox, S. B. Leeb, J. Paris, T. J. McCoy, C. Laughman, and

W. Greene. Diagnostic indicators for shipboard systems using non-intrusive load

monitoring. In IEEE Electric Ship Technologies Symposium, Philadelphia, Penn-

sylvania, July 2005.

[8] W. Greene. Evaluation of non-intrusive monitoring for conditional based mainte-

nance applications on us navy propulsion plants. Master's thesis, Massachusetts

259

Institute of Technology, Department of Ocean Engineering and Department of

Mechanical Engineering, June 2005.

[9] W. Greene, J. S. Ramsey, S. B. Leeb, T. DeNucci, J. Paris, M. Obar, R. Cox,

C. Laughman, and T. J. McCoy. Non-intrusive monitoring for condition-based

maintenance. In ASNE [1].

[10] C. R. Laughman, S. R. Shaw, S. B. Leeb, L. K Norford, R. W. Cox, K. D. Lee,

and P. Armstrong. Power signature analysis. IEEE Power and Energy Magazine,

pages 56-63, March 2003.

[11] S. B. Leeb. A Conjoint Pattern Recognition Approach to Nonintrusive Load

Monitoring. Phd, MIT, Department of Electrical Engineering and Computer

Science, February 1993.

[12] J. S. Ramsey, S. B. Leeb, T. DeNucci, J. Paris, M. Obar, R. Cox, C. Laughman,

and T. J. McCoy. Shipboard applications of non-intrusive load monitoring. In

ASNE [1].

[13] S. R. Shaw. System Identification Techniques and Modeling for Nonintrusive

Load Diagnostics. Phd, Massachusetts Institute of Technology, Department of

Electrical Engineering and Computer Science, February 2000.

[14] S. R. Shaw and C. R. Laughman. A kalman-filter spectral envelope preproces-

sor. Submitted to IEEE Transactions on Instrumentation and Measurement,

February 2004.

[15] E. W. Weisstein. Mathworld. Available http: //mathworld. wolfram. com/.

[16] Wikipedia. Erlang distribution. Available http: //en. wikipedia. org/w/

index. php?title=Erlang-distribution&oldid=28498166.

[17] Wikipedia. Queueing theory. Available http://en.wikipedia.org/w/index.

php?title=Queueing-theory&oldid=34256671.

260

