
Aural Imaging from 3D

by

Jasper Fourways Vicenti

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2006

@ Massachusetts Institute of Technology 2006.

/1

All rights reserved.

/ -

Author
Departrn t

...

of Electrical Engineering and Computer Science
May 26, 2006

Certified by.
David Demirdjian
Research Scientist
Thesis Supervisor

Accepted by .
LI

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

BARKER

MASSACHU S INlrS
OF TECHNOLOGY

AUG 1 4 2006

LIBRARIES

Vision

2

Aural Imaging from 3D Vision

by

Jasper Fourways Vicenti

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2006, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Dense stereo maps have many useful applications in computer vision. They can help
in performing such tasks as background separation, segmentation, and object recog-
nition. Despite the continued exponential advances in the computational capacity of
microprocessors, current personal computers are limited in their ability to adequately
solve the dense stereo vision problem in realtime. Modern processors now contain a
SIMD instruction set architecture that can provide substantial improvements in per-
formance when working with specific data types. This program demonstrates a stereo
vision algorithm that implements commonly known methods in computer vision and
takes advantage of the Altivec instruction set to achieve realtime performance. Once
the stereo data has been processed, the depth map that is produced can be used to
provide an additional dimension of data to the user. The software demonstrates a
possible use for this data, as an aural aid to people that are blind or vision impaired.
The system uses the depth information to identify obstacles in a user's path and alert
the user with aural feedback.

Thesis Supervisor: David Demirdjian
Title: Research Scientist

3

4

Contents

1 Introduction

1.1 Motivation. .

1.2 T ask .

2 Background

2.1 Stereo Vision

2.2 Aural Perception

2.3 PowerPC AltiVec SIMD Execution Unit

2.4 AltiVec Operations

3 Design

3.1 Stereo Vision Algorithm .

3.2 Local Methods

3.3 Aural Representation .

4 Implementation

4.1 Camera Setup .

4.2 Camera Calibration.. .

4.3 Noise Reduction. .

4.4 Edge Detection .

4.5 Image Pyramid .

4.6 Discriminator .

4.7 Stereo Matching Algorithm .

5

7

8

9

11

11

15

17

17

23

23

24

27

31

31

31

33

34

35

37

37

.

.

.

.

4.8 Aural Output

5 Results and Analysis

5.1 Comparison of Image Pyramid

5.2 Noise Reduction

5.3 Discriminator Results

5.4 Performance Results.....

5.5 Aural Feedback

against SSD

6 Related Work

6.1 Real-time Stereo Vision .

6.2 Rapid Object Detection .

7 Conclusions and Future Work

A CalcContrast function used by Discriminator

A.1 Vector Transformations required for CalcContrast

A.2 Inner Loop performed per each row

A.3 Code used to get values out to memory

6

39

43

43

45

46

48

48

51

51

52

53

57

57

58

59

Chapter 1

Introduction

The goal of computer vision is to be able to develop an understanding of a scene

from one or more sources of visual data. One of the greatest difficulties is to be

able to transform that data into useful information. Vision algorithms can provide a

description of a scene that can be of greater use to a user or when integrated into a

larger computer system. This has the potential to significantly reduce the amount of

data being provided to the user by eliminating redundant information.

As part of a security system, a vision system could have a number of uses. For

example, a security system that has many more cameras than screens might use com-

puter vision to display the most important cameras based on various priorities. They

could show cameras which are exhibiting unexpected movement in the image, track

pedestrians, or even highlight suspicious behavior. This system could intelligently

archive and summarize visual data, only displaying and storing relevant parts of the

video.

Of all of our senses, sight allows us to gain a detailed understanding of the world

around us. Our eyes help to recognize objects from afar and pinpoint the motion of

these objects and ourselves. The ability to see enables us to engage in action sports

such as soccer or baseball where we must track a small, fast moving object. Addi-

7

tionally, our eyes allow us to interact with these objects using hand-eye coordination.

All of this happens seamlessly with our other senses, enabling us to coordinate with

other people as a team.

In the early evolution of man, without sight, we would be at a distinct disadvantage

to predators and in hunting our prey. Without the aid of others, a vision-impaired

person would likely have great difficulty surviving on their own for very long. Even

in a modern, urban environment, navigating through unfamiliar territory would be a

daunting effort without some form of outside assistance.

While having the use of one eye allows a person to see very well, the addition of

the second eye helps our brain to generate a three-dimensional representation of the

scene in front of us. This drastically improves our ability to track moving objects,

estimate distances, and perform tasks requiring complex user interaction. With a

stereo vision algorithm, providing a computer system with a similar capability can

further enhance its utility.

1.1 Motivation

Stereo vision algorithms can be extremely computationally intensive. Existing algo-

rithms tend to have the primary goal of accuracy. As a result, most of these algorithms

are not suitable for use in real-time or near real-time applications. One of the goals

of this program is to achieve real-time performance while still allowing for sufficient

post-processing to occur on the same CPU.

Many existing desktop processors consume vast amounts of power when running

at full speed. These CPUs were even put into laptop computers to act as desktop

replacements, at the expense of battery life. While just recently there has been

a trend to improve their performance per watt, many of the processors have not

been adequate for embedded use. This has led to dual core chips to try to improve

performance without significantly increasing power consumption. This is not a new

idea, however. Most modern processors contain a special vector processing unit that

is intended to vastly accelerate the processing of certain types of data. This program

takes advantage of the vector processing unit of the PowerPC G4 chip.

An additional requirement is to ensure that the system is reasonably portable.

A part of this constraint is that the system needs to be based on a computer that

is both light and power efficient while still having adequate processing capability

to achieve real-time performance. The program currently operates sufficiently on a

laptop computer almost two years old.

Finally, the depth map is then post-processed in order to highlight an example of

usage of the stereo information. For people that are blind or vision-impaired, they

must rely on their other senses to navigate. The goal of this program is to assist in

navigating unfamiliar areas by warning about obstacles and identifying the clearest

path. By generating aural feedback to the user, they will be assisted in navigating a

path that may contain obstacles.

1.2 Task

A pair of stereo video feeds alone are usually not very useful to a user. As an

example, a remotely controlled robot may have stereo cameras mounted to aid in

navigating difficult terrain. The Mars landers have stereo cameras installed, but

there is no real-time component involved. Due to the computational requirements

that a stereo algorithm would require, they are not used for real-time analysis. An

embedded processor with the capacity to run a real-time or near real-time algorithm

would likely exceed the power consumption limitations of that system. Neither are

the stereo cameras actively used for human-controlled navigation due to the distance

from the control center. In general, they are saved for further non-real-time analysis.

9

The program requires two standard CCD cameras to be attached to the computer.

These cameras are positioned in a traditional stereo orientation, with both sensors in

the same focal plane, offset by a fixed amount in the horizontal direction. The image

data from the cameras is continuously captured by the program. This data will then

be used as input by the algorithm in order to generate a depth map of the scene.

The program will take the analyzed depth map derived from the stereo vision al-

gorithm and generate audio signals that the user will hear through stereo headphones.

This will allow the user to pinpoint the source of the audio signal in the scene and

hence understand the direction of the obstacle or path which caused the signal. More

detail will be given in the subsequent chapters.

10

Chapter 2

Background

This chapter describes the concepts and terminology that will be necessary to under-

stand the implementation of the system. It begins with an overview of the current

research paths being pursued in the field of stereo vision, and will describe in further

detail about existing real-time algorithms. Next there will be a description of how

humans perceive sound. This will be integral in providing a useful soundscape. Fi-

nally, the chapter will conclude with details of the vector processing unit which will

allow for a significant improvement in execution speed for the stereo algorithm and

post-processing steps.

2.1 Stereo Vision

Significant advances in stereo vision algorithms continue to be made year to year.

An objective comparison of the most recent algorithms are available for evaluation

online[5]. Newly developed algorithms can be submitted to compare against those

developed by others. The Middlebury website provides ranking based on the errors

in all regions, non-occluded regions, as well as regions near depth discontinuities

that would be close to occluded regions. Unfortunately the ranking does not have

an additional column for runtime performance. Although this would be difficult to

11

coordinate due to differences in platforms and hardware used, it is still important for

the real-time subclass of stereo vision.

Stereo Vision Approaches

While there continues to be an outpouring of new or modified algorithms, the majority

of these can be classified into one of two groups. Global optimization methods seek

to minimize an energy function with a data term and a smoothness term (Equation

2.1). The Esmooth value measures the degree to which the mapping f is not piecewise

smooth, whereas Edata measures the disagreement between f and the observed data.

The smoothness term can be arbitrarily defined, but it generally is used to ensure

that the solution is mostly continuous in nature.

E(d) = Edata(d) + AEsmooth(d) (2.1)

Generally there are a number of iterations that an algorithm performs, each time

improving the results. A typical global optimization method represents the images as

a directed graph and calculates the max-flow through the graph or applies graph cuts

to find the minimum energy[3]. Graph cuts can model the effects of discontinuities

well, since the occluded pixels in each image will be removed during the cut. In most

of the algorithms for global optimization, the running time is far worse, ranging from

tens of seconds to thousands of seconds in the worst case.

The second group of algorithms is based on local optimization methods, such

as using normalized cross correlation is an example of a local optimization method.

Most local methods use a window around each pixel, with either a fixed window,

multiple windows of different sizes[2], or variable-sized window[1]. Matching cost

computation is generally calculated using sum of squared differences [SSD] or sum

of absolute differences [SAD], the latter usually being less computationally intensive.

Equation 2.2. Most of the windows are rectangular to achieve a faster runtime,

12

however arbitrarily-shaped window algorithms do exist[4].

I (E(x + Ox/2, y) - Er(x - ax/2, y)) 2 dxdy (2.2)

While global optimization tends to produce more accurate results than local op-

timization methods, their computational requirements are much higher. Because of

this, the system described in this paper is based on the local optimization method of

least sum-of-squares differences.

Although there are proposals that improve the behavior slightly around depth

discontinuities, they still suffer from errors in low texture regions. The benefit to local

optimization algorithms is that they are very fast, running in the order of seconds

for quarter-vga (320x240 pixel) test images. The methods optimized for speed run in

the order of hundreds of milliseconds.

Many of the more successful stereo vision algorithms to date use belief propagation

to propagate areas where the algorithm has greater confidence in their value to areas of

lesser confidence. This can greatly increase computation time due to the large number

of iterations required to approach a steady state, however it is fairly successful due

to some of the difficulties in stereo vision.

A summary of the latest approaches to stereo vision, including local optimization

techniques such as SAD, SSD, and global optimization techniques such as graph cuts

and belief propagation can be found in this paper and corresponding web site[5].

Difficulties in Stereo Vision

One of the difficulties in applying a stereo vision algorithm is that there are often

areas that are not very textured and therefore have very low contrast. This could be

due to many factors, such as an image region with a solidly painted wall or a patch

of bright sky, or even areas of the image that are washed out due to bright lights or

poor image calibration.

13

Similarly, one of the more common problems is that very dark regions will have low

contrast and thus be subject to increased camera noise. This is especially a problem

for low-cost CCD cameras. Because stereo vision algorithms rely on more than one

camera, the noise is also amplified because each camera has their own unique noise

signature independent from the other camera. Additionally, each individual channel

may exhibit their own unique noise properties. The blue channel, for example, tends

to exhibit greater amounts of noise than the other channel. For algorithms that only

rely on a single channel to generate a depth map, there may be a tradeoff between

using only one of the channels versus downmixing all three channels to generate a

lightness channel to work from. Also, since most CCD cameras use a Bayer layout of

the individual pixels, using only the green channel may result in reduced resolution.

Algorithms that only produce depth maps in areas of high contrast generate what

is called a sparse depth map. Alternatively, an algorithm that tries to generate a

depth value at each source pixel is called a dense depth map. Local optimization

algorithms may produce a dense depth map, but they are more likely to be marred

by errors in low contrast regions due to only being able to use local data for its

calculations.

Another difficulty for stereo vision algorithms is when trying to resolve areas

around depth discontinuities. This is due to the fact that a pixel in one camera may

not have a corresponding pixel in another camera, as that pixel would have been

occluded by some other image region that is closer to the camera.

Finally, there are issues that arise from the design of the stereo camera. A slight

misalignment of the two cameras is almost inevitable. Additionally there is radial

and other types of distortion in the lens which can impact the accuracy of the results.

Some of this can be corrected with pre-processing, however any pre-processing will

generally require calibration and an increase in processing time. Some problems can-

not be corrected. Different lighting conditions could be detrimental to the behavior of

14

the algorithm. A highly reflective surface like a mirror would appear to the algorithm

to be further away than it actually is.

2.2 Aural Perception

Just as the use of both eyes enhances the ability to see, so does having two ears. With

both ears, objects that produce sound can be pinpointed relative to the listener. Even

in a room with complex acoustic properties that may cause reverberation and echoes,

a person brain can generally compensate for all of these anomalies to identify the true

source of the sound. This is effective even for sounds that are above or behind the

listener. This property will be especially useful when trying to identify the specific

direction of obstacles in the current path.

An experienced listener could listen to a symphony orchestra and effectively sep-

arate out and listen to each individual instrument or set of instruments from the rest

of the group. Being able to separate multiple distinct sounds simultaneously could

be useful in this stage of the program.

When the use of one of our senses becomes unusable, the other senses become

more acute to compensate. For people that are blind or visually impaired, their sense

of hearing and touch adapt to compensate for the lack of sight. A byproduct of this

is that it becomes easy to train a blind person in techniques that take advantage of

their heightened senses, such as reading braille. In this case, the increased sensitivity

to sound will be taken advantage of.

The human ear is sensitive to sound with frequencies as low as 20 Hz to frequencies

up to 20 KHz. As a person ages, high frequency sensitivity decreases to approximately

16 KHz. This still leaves a wide range of frequencies that are potentially usable for

conveying information to the user. Also available as a variable is the amplitude of the

sound, which can also be modulated as required. The range of amplitude in human

15

hearing is 130 dB. Finally, with stereo headphones the left-right balance of the sound

source can be adjusted to allow for differing sound sources, as well as the time delay

between the left and right headphones. Because of the size of the human head, a

sound coming from the left takes 0.63 milliseconds longer to reach the right ear than

the left. Suppose two identical sounds are played back to a listener. If the two sounds

are played back at the same time, the brain will assume that the two sounds are

from the same source. As the delay between the sound increases, our brain will still

associate the sound source as being the same. This principle is known as the Haas

Effect. The first instance of the sound is taken as the primary source, while any

subsequent similar sounds within 25 - 35 milliseconds are essentially ignored by the

brain. The program will seek to take advantage of as many of these aspects as is

feasible within the real-time processing requirements.

There have been other efforts to derive sound from visual data. In one instance,

the sound is produced as follows. Every second, the image is swept from left to right.

As the image is swept from left to right, the sound is also swept from the left ear

to the right ear. Areas in the upper part of the image are played back at higher

frequency than regions in the lower part of the image. Bright regions in the image

are played back louder than darker regions. The resulting sound is unfamiliar at first,

but after some time spent training, one can become accustomed to the new format.

One of the downsides with this approach is that because the visual data is often so

complex, the sound produced is literally a cacophony[13]. The approach presented in

this paper will seek to use vision techniques to parse the visual data and using the

most relevant information.

16

2.3 PowerPC AltiVec SIMD Execution Unit

The AltiVec Processing Unit is a 128-bit SIMD (Single Instruction, Multiple Data)

execution unit that is capable on performing operations simultaneously on 4 32-

bit integers or floating point numbers, 8 16-bit integers, or 16 8-bit integers. This

degree of parallelism is especially useful in image processing, since the image can be

decomposed into its red, green, and blue 8-bit channels, allowing for operations on

up to 16 channels at a time, opening up the opportunity for significant improvement

in calculation speed. The 128-bit data sets are referred to as vectors.

This parallelism does not come without a cost. As with most optimization at a

low level, care must be taken to ensure that the CPU pipeline is sufficiently full and

branches are reduced to a minimum. Also, because the instructions can operate on a

large amount of data at once, performing operations on individual bytes of data can

be wasteful and slow.

Some of the operations that will be used in this algorithm are described below.

The AltiVec unit compares favorably with other SIMD implementations on personal

computer chips. AltiVec has available 32 vector registers for use. For comparison,

Intels Multimedia Extension (MMX) unit has 8 64-bit registers and Streaming SIMD

Extension (SSE) unit has 8 128-bit registers. This degree of parallelism will be ex-

amined further.

2.4 AltiVec Operations

Similar to other execution units on the CPU, the AltiVec Unit has specific execu-

tion units that perform operations on its data. AltiVec has explicit instructions for

loading and storing 16-byte aligned data from and to memory, which is performed

by the Load-Store Unit (LSU). To work with unaligned data, the Vector Permute

Unit (VPERM) allows for an arbitrary assignment of values from two vector registers

17

into one using a third permute parameter. The Vector Simple Integer Unit (VSIU)

performs many of the tasks of the ALU, such as add, subtract, min, max, as well

as boolean and comparison operations. There is also a Vector Complex Integer Unit

(VCIU), which performs more specialized integer calculations. As an example, the

multiply-sum instruction can multiply two byte-word vectors together and add the

resulting elements to a third 4 byte-word vector. This can be accomplished in one

cycle, whereas for a standard ALU, this might take 30 to 60 or more cycles. Multiple

instructions can also be dispatched to the different units, enabling even greater work

per clock cycle to be performed.

Programming in AltiVec resembles the programming model for C. AltiVec uses

standard variables defined in the form vector unsigned byte. AltiVec instructions can

be interspersed with standard C code, including for loops and if statements. Detailed

below are a subset of the AltiVec instruction set which are necessary for the vision

techniques used in this paper. Besides the load and store operations, arithmetic

operations make up the majority of the useful operations.

Load and Store

In AltiVec, it is necessary to perform loads and stores explicitly. These operations

will be 16-byte aligned. To load data, a pointer to a specific data location is passed.

Additionally a byte-offset amount can be specified from that pointer, although the

load will still only be 16-byte aligned. One side effect of this behavior is that the

AltiVec execution unit and integer execution units cannot work on the same data

registers. Therefore in order to access one register from the other, both an integer

load-store and a vector load-store must occur. This can be costly in terms of cycle

latency as a roundtrip to memory may result in tens or hundreds of wasted cycles.

a = vec-ld(0, datapointer); (2.3)

18

Similarly, the store instruction will push the data back to memory. The vector

a is now passed in with the desired location to store the vector. This is stored in a

16-byte aligned location.

vecst(a, 0, datapo inter); (2.4)

Addition and Subtraction

This instruction will add or subtract each corresponding element of b to or from the

corresponding element of a and put the result into c. In other words, it performs

c = a ± b for all elements.

c = vec-add(a, b); (2.5)

c = vec-sub(a, b); (2.6)

In order to combine data within a vector, there is an additional instruction which

will sum across all elements in the vector. Given a vector of 32-bit integers, it will

add all four integers together, placing them in the rightmost element. If the numbers

are {5, 6, 7, 8}, the resulting vector will be {0, 0, 0, 26}.

c = vec-sums(a); (2.7)

Bitwise Shift

This instruction will shift each corresponding element of a left or right b bits and put

the result into c.

c = vecsl(a,b); (2.8)

c = vecsr(ab); (2.9)

19

Minimum and Maximum

This instruction will take the minimum or maximum of each corresponding element of

a and the corresponding element of b and put the result into c. These instructions are

equivalent to c = a < b ?a: b; and c = a > b ?a: b; respectively for each element.

c = vec-min(a, b); (2.10)

c = vec-nax(a, b); (2.11)

Fused Multiply-Add

For our purposes, the 8-byte multiply-add is used. In this example, a and b are

8-bit vectors and c is a 32-bit vector. This instruction will take the product of

the corresponding elements of a and b and add each set of 4 8-bit integers to the

corresponding element of c.

d = vecinsum(a, b, c); (2.12)

Permute Operations

Probably the most powerful part of the SIMD instruction set are the operations which

perform permutations. The permute unit allows arbitrary reordering and selection

of two vectors based on a third vector. In the equation below, each element in d is

chosen from a or b based on the lower 5-bit value of c. To illustrate this, if the values

of c are {0x0, Ox1, Ox2, x3, ... OxE, OxF}, then d would be equal to a after the

operation. These values of c are known as the identity permute.

d = vec-perm(a, b, c); (2.13)

The identity permute can be very useful to align data to the desired position. The

20

vector load-for-shift-left operation takes the identity permute and adds a given value

to each element in the vector. For example, if datapointer is 16-byte aligned, then the

equation below will add 1 to each value. Thus the resulting vector will be {Ox1, Ox2,

Ox3, ..., OxIG). When this vector shift is then passed in to the vec-perm operation,

it will shift the concatenation of a and b by 1.

shift = vec-lvsl(1, datapointer); (2.14)

There is an equivalent instruction, vec_sid, which performs shifting in one step.

For example, the following operations are equivalent.

shift = vec-lvsl(1, datapointer);

c = vec.perm(a, b, shift);

and

c = vec-sld(a, b, 1);

The vec-splat-u8 instruction, as the name implies, will place a scalar value into

all elements of the vector. This particular version of the instruction works on unsigned

byte vectors.

allf ives = vec-splat-u8(5); (2.15)

21

22

Chapter 3

Design

3.1 Stereo Vision Algorithm

The primary goal is to achieve a very fast algorithm that still achieves good results

when compared to existing algorithms. It will be an implementation of a local op-

timization algorithm to assist in achieving this performance target, but an image

pyramid will be used to avoid some of the negative aspects with using this type of

optimization. Towards that goal, the runtime of each of the methods in the algorithm

is analyzed to ensure full use of the parallel features of the AltiVec chip.

The intention is to present an algorithm that uses an image pyramid and runs

recursively beginning at a very general level and finishing on a more detailed level.

This is typically used in computer vision to separate out high frequency and low

frequency changes in the image in order to analyze the levels separately.

In the analysis of the running time for each section of the algorithm, the perfor-

mance improvement gained by taking advantage of the parallelism inherent in the

SIMD machine is analyzed. As with external memory algorithms, where the algo-

rithms are measured in disk blocks rather than data items[9], the algorithm presented

here will take a similar approach. In this case, a vector represents a specific number

23

of pixels. The variable B is defined as the level of parallelism provided in the pro-

gram. Since the algorithm is working primarily in sets of 16 bytes, the value of B will

generally be 16.

at each pyramid level
.......... steeo atehng epthMap Audio Modeper

Figure 3-1: System Diagram

3.2 Local Methods

The following methods describe the algorithm in pseudocode for a straightforward

understanding of the approach.

Comparison Calculation

In order to compare a source vector v with a vector w and disparity range from 0 to

d, both vectors are loaded into registers and a permute function is used that shifts in

one byte for every value of i. If d is greater than B, the level of parallelism gained by

using AltiVec, then the vector (w + 1) is assigned to w and the adjacent vector (w

+ 2) is loaded. The difference can be calculated by using the vector commands for

max, mi, and subtract. This can be done since the operations are working with un-

signed bytes. The sum the square of the differences is calculated using Multiply-Sum

(vecfnsum) as described above. Sum-Across-Vector (vecsums) sums the across the

remaining elements in the vector (now 32-bit numbers) so that it can be compared

24

to the scalar value bestcorrelation.

COMPARE-VECTOR-OFFSETS(V, w, dmin, dmax)

1 a +- LOAD(v)
2 b- LOAD(W)
3 c +- LOAD(w +1)
4 bestof f set +- 0
5 bestcorrelation *- 999999999
6 for i <- dmin to dmax
7 do

8 e <- PERMUTE(b, c, i)
9 max +- MAX(a, e)

10 min +-MIN(a, e)
11 dif f - SUB(max, min)
12 sd +- MSUM(diff, dif f, zero)

13 ssd +- SUMS(sd)

14 if sd < bestcorrelation
15 then bestof f set <- i
16 return bestcorrelation

In terms of the amount of time required to perform pixel offset calculations, this

loop requires d loops to calculate all d offsets for the pixels in a vector. Since there are

B pixels in a vector, the runtime of Compare-Vector-Offsets for n pixels is O(n/B).

Downscaling

Downscaling of the image is necessary to ensure that there is good coverage of low-

texture areas. The low-texture areas will be ignored for the high resolution parts of

the image. Thus the low-resolution version of the image in the image pyramid is used.

Given an array of vectors V, number of vectors in a row r, and height h, output an

array W that is half the width and height. The values mergefirst and mergesecond

and used to interleave the vectors into the correct format in order to take the average

in the horizontal direction.

25

DOWNSCALE(V, W, r, h)
1 i<-0
2 j<-0
3 for j - 0 to h/2
4 do
5 for i +- 0 t
6 do
7
8
9

10
11
12
13
14
15
16
17

o r/2

a <- V[2jr + 2i]
b +- V[r(2j + 1) + 2i]
c <- V[jr + 2(i + 1)]
d -V[r(2j + 1) + 2(i + i)]
templ <- AVERAGE(a, b)
temp2 <- AVERAGE(c, d)
temp3 4- MERGE(templ, temp2, mergefirst)
temp4 <- MERGE(templ, temp2, mergesecond)
final +- AVERAGE(temp3, temp4)

W[jr + i] +- final
return bestcorrelation

The runtime of Downscale is O(n/B) where B is the level of parallelism gained by

using the AltiVec instructions.

Calculating Contrast

Since we want to ensure that an area of low texture is not calculated upon with too

small of a grid size, we want to calculate the contrast value of a particular vector.

This is similar to the Compare-Vector-Offsets method as described above, except the

vector is computed against itself.

CALCCONTRAST(V)

1 a +- LOAD(v)
2 b +- PERMUTE(a, a, 1)
3 max -MAX(a, b)
4 min +-MIN(a, b)

5 dif f +- SUB(max, min)

6 sd +- MsUM(dif f, dif f, zero)
7 contrast +-- SUMS(sd)

8 return contrast

26

Again, for the similar reasons as above, perform B calculations against n pixels,

this method runs in O(n/B) time.

Dynamic Program

The dynamic program will be a recursion which will recursively call itself until reach-

ing the most general level. Once there, it will calculate the contrast for each vector

and corresponding vector in Q, returning the value back to an array of arrays which

should allow for further analysis, areas of improvement.

CALCRECURSION(P, Q, r, h, minlevel, curlevel, maxlevel, drnj, dmax)
1 if (curlevel < maxlevel)AND(curlevel > 0)
2 then DOWNSCALE(P, P')
3 DOWNSCALE(Q, Q')
4 CALCRECURSION(P', Q', r/2, h/2, minlevel,
5 curlevel + 1, maxlevel, dmin/2, dmax/2)
6 for v c P
7 do if CALCCONTRAST(V) > X
8 then d[curlevelj.[vJ <-

9 COMPARE-VECTOR-OFFSETS(V, W, dmin, dmax)
10 else for v E P
11 do d[curlevel].[v] +- COMPARE-VECTOR-OFFSETS(V, W, dmin, dmax)

We start by calling CalcRecursion with the following arguments. We set curlevel

to 0, maxlevel to the highest level of recursion we want, and minlevel to the minimum

recursion level.

3.3 Aural Representation

The source data consists of the depth map produced by the stereo vision algorithm.

Using this data, appropriate sound can be produced that correlates to this data.

There are numerous approaches to converting the visual data to aural data.

27

In this particular application, the goal is to provide a simple enough model that

will provide the user with an indication of current obstacles and paths. The depth

map will thus be modelled as a terrain, with peaks and valleys. The peaks correspond

to obstacles and valleys correspond to paths that are unobstructed.

Whichever representation is chosen, the current limitation is the available pro-

cessing power. After allocating a certain amount of computational time in order to

capture the image data and run the stereo vision algorithm, there are limited re-

sources available to both process the depth map, produce the sound representation,

and output the sound to the headphones. As a result, a simpler transformation from

image to sound is necessary to retain its real-time response.

Preprocessing

Similar to the windowed approach used in a sum-of-squares differences algorithm, this

same type of algorithm can be used effectively within the processing constraints. The

sum of the contents of the window can be calculated easily using vector operations.

Using a preset window size, the window can be scanned across the depth map. A

record of the largest and smallest sums and their relative locations in the image are

tracked and prioritized.

AURAL-PREPROCESS (depthmap, width, height)
1 pathlist <- {}
2 obstaclelist +- {}
3 for j <- 0 to height
4 do
5 for i <- 0 to width
6 do
7 w +- WINDOW(depthmap,i, j)
8 x 0
9 for k - 1 to SIZEM)

10 do x +- x + CALCCONTRAST(W[k])

11 if x < paththreshold
12 then pathlist <-- pathlist U {x, i}

28

13 if x > obstaclethreshold
14 then obstaclelist +- obstaclelist U (x, i)
15 AURAL- OUTPUT(pathlist, obstaclelist)

Aural Output

With the highest priority obstacles and paths determined, the next task is to produce

sound from this information. Using the industry standard MIDI protocol, the sounds

can be generated using the built-in MIDI framework. This allows for a playback of a

potentially large number of simultaneous preset music instruments with full control

over amplitude, pitch, and balance. Unique instruments can be used to represent the

derived visual information.

For the sounds produced, the amplitude will be used to indicate the confidence

in the path or obstacle. This can be based on how close the obstacle is or how large

it is. The balance of the sound outputted is based on the location of each respective

sound source. Since the field of view of the input images are limited to not more

than around 45 degrees, the sound output should also be limited to a similar range.

While this does not take full advantage of the full left-right sound output potential,

the sound output maps more naturally than it would otherwise. For example, as a

user pans the camera from left to right, the sound output will also pan at the same

rate.

AURAL-OUTPUT (pathlist, obstaclelist)
1 SORT(pathlist, 0, ascending)
2 SORT(obstaclelist, 0, descending)
3 for p C pathlist
4 do
5 amplitude = NORMALIZE(p[0])
6 balance = CALCBALANCE(p[1])
7 PLAYPATHSOUND(amplitude, balance)
8 for o E obstaclelist

29

9 do
10 amplitude = NORMALIZE(0[0])

11 balance = CALCBALANCE(0[1})
12 PLAYOBSTACLESOUND(amplitude, balance)

30

Chapter 4

Implementation

4.1 Camera Setup

The baseline distance between the two cameras is approximately 8 cm. The stereo rig

is based on small and inexpensive fixed-zoom cameras. The cameras are connected

in series using IEEE-1394 cables. The program uses the sequence grabbing feature

of QuickTime in order to capture images from the two cameras. While the cameras

support color, for the purpose of this program the images are captured in grayscale

mode. This reduces the image capture overhead significantly. To also reduce processor

usage, the cameras are configured to capture at 320x240 resolution. Although the

cameras theoretically support 640x480, the image quality and noise are negatively

affected. Image quality and noise also

4.2 Camera Calibration

Both cameras are mounted to a fixed bracket, which results in near parallel epipolar

lines. As a result, minimal camera calibration is performed at this stage in develop-

ment. The system assumes that the epipolar lines are parallel or nearly parallel. Two

procedures are used to provide adequate results. First, calibration is performed over

31

Figure 4-1: Camera Setup

a large support window by least sum-of-squares of differences. This window is shifted

+Dy and t&x a fixed amount based on the size of the images. Since the cameras can

capture at 320 x 240 or up to 640 x 480, it is necessary to compensate for arbitrary

sizes. A more robust implementation might choose a few large support windows in

various locations of the image and choose the best matching y offset from these.

Additionally, during correlation matching, to compensate for some small amount

of distortion, the algorithm will shift the window up and down a single pixel. While

this triples the number of lines required to test over the ideal case, adequate perfor-

mance is still maintained.

Another issue that is not addressed is that of lens distortion. Equation 4.1 can

be used to eliminate radial distortion. Once k has been determined it need not to

be recalculated for each frame. A suitable remapping from distorted to undistorted

points, however, does. Further examination is required to determine the feasibility

of implementing this in real-time. Since a graphics card is capable of doing this

32

calculation very quickly, it may be best to offload this work to the GPU. This can

be achieved quite easily in Mac OS X using a Core Image kernel[9], which is uses the

OpenGL Shader Language to interact with the GPU.

x' = x(1 + kx 2) (4.1)

4.3 Noise Reduction

The current system uses off the shelf IEEE-1394 cameras. These cameras exhibit

significant amounts of noise in all regions of the image regardless of brightness level.

Because this is a real-time system, complex math to remove this noise may not be

possible. The noise exhibited in the image consists mostly of what appears to be uni-

form gaussian noise. Additionally there is often noise resulting from an unidentifiable

interference source. To try to remove some of the noise, a simple technique is used

to take the average of the current frame with the previous frame in Equation 4.2.

This adequately removes the noise at the expense of some blurring when the cam-

eras are moving. In the static images shown, it is more difficult to see the reduction

in noise. It is much more apparent in the video image. Multi-frame averaging fur-

ther suppresses noise, however the blurring increases accordingly. Since the blurring

occurs in both cameras equally, the effect is not that detrimental to the end result.

General obstacle detection still works to a certain extent with slightly blurred images.

In future versions, the noise reduction algorithm could be enhanced by using optical

flow to assist in choosing an offset appropriate for the new frame prior to averaging.

Ei,jk= 2(Eij,k + Ei, ,k _1) (4.2)

grayini = vec-ld(O, indata);
grayouti = vec-ld(O, outdata);
grayin1 = vec-avg(grayinl, grayoutl);

33

vec-st(grayinl, 0, outdata);

4.4 Edge Detection

Stencils, or computational molecules, can be used to provide discrete approximations

to continuous equations[7]. The code below calculates the unsigned estimation of

&E/&x for all 16 pixels simultaneously. Note that as with the scalar discrete ap-

proximation, the estimation is for a point midway between each pixel location. In

the current implementation, this detail may not have a pronounced effect. Alterna-

tively, the function could use the difference between Ej 1 and Ejsj with little loss in

performance.

first = vec-ld(0, data); // Load the first vector
second = vec-ld(16, data); // Load the second vector

temp = vec-sld(first, second, 1); // Shift the concatenation of vectors

left by 1

max = vec-max(temp, first);

min = vec-min(temp, first);

final = vec-sub(max, min); // Calculate the unsigned difference from

the min and max

vec-st(final, 0, outdata); // Store the vector to our edge buffer

Since the goal is to maintain computation with unsigned byte values, calculating

the gradient using the squared differences would not be helpful. The current im-

plementation calculates the unsigned brightness difference in the x and y direction.

In order to prevent overflow or saturation, the x and y values are shifted prior to

adding together. (Figure 4-2). If signed brightness difference is necessary, this can be

performed as well using additional shifts. (Figure 5-5).

34

Figure 4-2: Unigned edge detection

4.5 Image Pyramid

Local optimization methods usually perform poorly when attempting to match areas

of low contrast. Outside of the active window region, little or no data is used. While

this is a win in terms of runtime performance, it means that low contrast regions will

be dominated by noise and thus will not correspond to the correct depth because

noise in the left image is correlating to other noise in the right image.

An image pyramid is constructed in an attempt to provide better correlation

matching in areas of low contrast. For each level, the width and height of the image

will be reduced by a factor of two, as shown in Equation 4.3. This is essentially

similar to using a support window double the standard size, without the exponential

performance hit.

Ei+1/2,j+1/2 =(Eij, + Ei+1,j + Ejj+1 + Ei+1,j+1)/4 (4.3)

The image pyramid is generated by loading four vectors: vij, vi+1,j, vi,j+1, and

vi+ 1,+i. They are averaged horizontally and vertically and then merged. The new im-

35

age point is located at the center of the old image points. This is repeated successively

for the total number of desired levels.

mergeFirst = (vUInt8) (OxOO, Ox02, Ox04, Ox06,

Ox10, Ox12, 0x14, 0x16, Ox18, Ox1A, Ox1C, Ox1E),

mergeSecond = (vUInt8) (OxOl, Ox03, Ox05, Ox07

Ox11, 0x13, 0x15, Ox17, Ox19, Ox1B, Ox1D, Ox1F);

first = vec-ld(O,indata);

second = vec-ld(16,indata);

third = vec-ld(O,indata + j;
fourth = vec-ld((16,indata + j);
tempi = vec.avg(first, third);
temp2 = vec-avg(second, fourth);

temp3 = vec-perm(templ, temp2, mergeFirst);
temp4 = vec-perm(templ, temp2, mergeSecond);
final = vecavg(temp3,temp4);

Ox08, OxOA, OxOC, OxOE,

, Ox09, OxOB, OxOD, OxOF,

When performing the correlation match described later, the top (smallest) level is

calculated first. Then the next larger level is calculated, continuing until the original,

full size level is reached. Future implementations could continue this progression

downwards to provide sub-pixel disparity estimation at the expense of performance.

One difficulty in working with the image pyramid is that because the images

decrease in size and the window remains the same size, a decision has to be made

about how to fill in the depth map at each level. The initial attempt was to scale

the depth map up at each level. This did not work well because motion at the top

level became overly scaled relative to the lowest level. This means the higher level

disparity maps would have a border around them. An attempt was made to fill that

border in by extending the edge of each level, however this provided poor results.

When noise caused certain values to be flipped, a large part of the depth map would

change.

The image pyramid does provide a major advantage. The number of disparity

36

offsets to check can be drastically reduced if there are already results one level higher.

This is used to reduce the number of calculations significantly. A much smaller set

of disparity offsets can now be checked.

4.6 Discriminator

The goal of the discriminator is to decide whether the depth value at a given pixel

will be used or if it will be based on neighboring pixels. Areas of low contrast will

have a lower confidence and thus more likely to use neighboring depth values over

local values. Two types of discriminators are introduced. The initial attempt was to

take the sum of squares of all of the edge values in the current 16x16 window. While

this provides a good indication of contrast in the current region, it does not indicate

accurately the current pixel's relative contrast. A smaller window would likely help

in this situation. The code calculates edge squared sums for 16 elements in parallel.

It performs two adjacent vectors 8 multiply-sums, followed by using the permute unit

extensively to reorder the values for each appropriate vector. Refer to the Appendix

for the detailed code.

4.7 Stereo Matching Algorithm

The major limitation of the PowerPC G4 chip is the bandwidth it has available

to access main memory. Also, all computers are affected by the overall latency of

accessing main memory compared to data in the cache. As computers continue to get

faster, this latency will become more apparent. A cache miss can mean potentially

hundreds of wasted cycles.

Even when data is prefetched from memory, the algorithm must be tuned so that

the computational throughput does not exceed the available memory bandwidth. Be-

cause of the extensive parallelism provided with AltiVec, there is a minimum number

37

of cycles of work that must be completed per cacheline loaded in order to maximize

the processor's ability to consume data. For example, in [ref: apple perf memory], a

866 MHz G4 with 133 MHz bus speed needs to perform 50 cycles of work per cacheline

loaded for optimum performance. Extrapolating these values for a computer running

at 1.5 GHz G4 with 167 MHz bus, the algorithm must perform approximately 70 cy-

cles of work per cacheline. Since the cacheline is 32 bytes wide for the 04 processor,

that equates to 35 cycles per vector. Any fewer cycles per vector and the processor

will be idle for parts of the algorithm waiting for more data to consume.

As a result, it is important to optimize the data sets to work within the limits of

the L2 cache, which, in the case of this G4, is 512 KB. Some algorithms calculate all

of the possible disparity values followed by subsequent calculation on those results.

This operation would be fairly bandwidth intensive, as it requires, for 320 x 240 pixels

and 96 offsets, over 7 megabytes.

The main loop of the correlation method works as follows. Load the vector for

the desired window in the right image. For each disparity offset, load the approprate

vector for the left image, shift it by the necessary amount, and calculate the sum of

squares difference. In AltiVec, this looks like the following:

lefti = vec-ld(O,data);
left2 = vec-ld(16,data);
righti = vec-ld(0,data);
right2 = vec-ld(16,data);
right = vec-perm(right1, right2, shiftforrightvector);

// get the correct window

left = vec-perm(leftl, left2, leftvectorshift);

max = vec-max(left, right);
min = vec-min(left, right);
out = vec-sub(max, min);

total = vec-msum(out, out, total);

// aggregate the total for our full window height

Since the price to load the vectors from memory into the registers has already

38

been paid, a few of these operations can be performed concurrently to ensure that

the pipeline is full. The minimum total is kept track of for each disparity calculated.

The best match gets chosen based on the lowest sum.

4.8 Aural Output

The code used in the discriminator can be reused to perform the calculation of paths

and obstacles in the derived depth map. Rather than taken the sum of squares values

of the calculated edge values, the sum of squares values are calculated from the depth

map itself. At each pixel, a window around that pixel can be created and the sum

of the values enclosing it can be calculated. Because of the parallel nature of the

AltiVec processor, 16 pixel windows can be calculated in the time it would normally

take to calculate one window with a standard integer unit. The permute unit is used

extensively here to maximize use of the 32 available vector registers and minimize

repetition of work while also dividing the workload between the permute unit, simple

integer unit, and complex integer unit. This ensures increased throughput by reducing

bubbles in the pipeline and enabling multiple instruction dispatches per clock cycle.

To understand the procedure, a 16-by-i pixel window is used as an example. To

perform a sum of squares calculation on one window requires a multiply-sum fol-

lowed by a sum-across-vector. A permute is required to align the data for subsequent

windows. Thus for the naive method, 15 permute instructions and 32 complex instruc-

tions are required. Two vector loads and 16 vector stores are also required because

of the output of the sum-across-vector instruction format. While this appears to be

fairly straightforward, the problem is that there is an issue with register starvation.

Since 16 vector registers are required in the end result, there are only 16 available for

the interim processing for this function. With an optimal compiler, this would not

be a problem. However no compiler is perfect, and when the function is compiled in

39

this form, there are excessive loads and stores resulting from register overload.

An alternative approach is to note that much of the work is being repeated when

calculating the next adjacent window. Careful reuse by taking permutations of prior

calculations can reduce the number of complex instructions required. This reduces the

final output register requirements to four and eliminates the register spilling that had

been occurring. This may provide an even greater increase in calculation performance.

Shown below is the implementation to produce an obstacle and a clear path value

from the calculated contrast of the edge map around a window. The window size is

16x32 pixels, which is adequate to locate larger obstacles. With a smaller window

(16x16), there is potential for false positives due to problems in the stereo matching

algorithm. Finally, the balance values are calculated based on the size of the window

compared to the current x location within that window.

[self calcContrast: disparitybuffer outbuffer:contrastbuffer

gridSize:32 numChannels:1] ;

for (j = ((contrastbuffer->height - 32) >> 1) *

(contrastbuffer->rowBytes >> 2);

j < (contrastbuffer->height - 64) * (contrastbuffer->rowBytes >> 2);

j += (contrastbuffer->rowBytes >> 2)) {

for (i = 64; i < contrastbuffer->width - 64; i++)

{ int curVal = data[j + ii + data[j+ i + 16];

if (curVal < lowestValue)

{ lowestValue = curVal;

lowestLoc = i;

lowestY = j / (contrastbuffer->rowBytes >> 2); }

if (curVal >= highestValue)

{ highestValue = curVal;

40

highestLoc = i;

highestY = j / (contrastbuffer->rowBytes >> 2);

} } }

balancePoints.x = ((lowestLoc << 6) / disparitybuffer->width) + 31;

balancePoints.y = ((highestLoc << 6) / disparitybuffer->width) + 31;

41

42

Chapter 5

Results and Analysis

5.1 Comparison of Image Pyramid against SSD

The image pyramid was used for a couple of different reasons. The primary reason

was to improve results in areas of low contrast, due to the localized nature of the least

sum-of-squares differences algorithm. This is especially important since any noise in

the image more adversely affects disparity calculation in low contrast regions. Figure

5-1 shows a hallway which contains regions of low contrast like the walls and high

contrast regions such as the rug on the floor. Intuition states that the high contrast

regions should be resolved accurately by both algorithms. However, when looking at

the resulting depth maps, it is apparent that the image pyramid algorithm is able to

more provide more accurate results over the entire image. This is likely due to the

fact that there are a much greater number of disparity offsets being checked. This

allows for this algorithm to correctly handle obstacles that are very near the user.

For the current program, there were up to 96 disparity offsets checked. The image

pyramid consisted of 4 levels (320x240, 160x120, 80x60, and 40x40). The discrimina-

tor threshold was set to 128 for the image pyramid results, which is a relative value

that has been scaled. Any value above this threshold resulted in a disparity value

43

for that level. The discriminator window size was 16 pixels by 16 pixels. For this

window, the SSD was calculated for the edge map. For SSD results, the threshold

had to be set much lower (approximately 32) to provide a dense depth map. Compare

the results of Figure 5-2 with Figure 5-3.

Figure 5-1: Sample input from cameras

Figure 5-2: Depth map computed with image pyramid

44

Figure 5-3: Depth map computed without image pyramid using only least sum-of-
squares differences calculations

5.2 Noise Reduction

Using the implementation described above, the noise reduction provides an increase

in the signal to noise ratio, which can improve the performance of the stereo vision

algorithm. Although there is increased blurring due to Note the images have been

enhanced to highlight the differences. Compare the results of Figure 5-4 with Figure

5-5.

Figure 5-4: Signed edge detection without noise reduction

45

Figure 5-5: Signed edge detection with noise reduction

5.3 Discriminator Results

The two discriminators described in the implementation section are compared. The

first version uses the sum of squared edge values for the entire window to determine

whether to calculate the depth at the center location. For the second version, the

edge value of the pixel itself is taken. This produced more detailed depth maps, but

the also increased the amount of noise present. As opposed to the first method, this

method is trivial to compute in order to find (&E/ox) 2 + (aE/&y)2. Refer to Figures

5-6 and 5-7.

46

Figure 5-6: Results with discriminator based on sum of squared edges in window

Figure 5-7: Results with discriminator based on edge of current pixel

47

5.4 Performance Results

The stereo vision system is capable of full 30 frames per second operation at 320 x

240 pixels with up to 128 disparities. Even at the full 640 x 480 pixels and up to 128

disparities, the system can achieve an estimated 10-12 frames per second. At 320 x

240, there is still about 20% of the CPU not being utilized on a PowerBook G4 1.5

GHz.

As a comparison, for the least sum-of-squares differences without using the image

pyramid results in much worse performance, close to one frame per second. This is

due to the fact that there are 128 offsets being calculated at each pixel location. Since

each level of the image pyramid allows for a fourfold reduction in computation, the

performance increases dramatically. The higher resolution disparity search is based

on the results of the lower resolution depth map, thus allowing a decrease in the total

number of disparity searches at each progressive level.

5.5 Aural Feedback

In order to demonstrate the functionality of the program, the same image of the

hallway from a previous section is shown below. The triangle represents an obstacle

in front of the user, while the circle represents an open path. To the user, the triangle

is represented by a popping sound. Since the sound is slightly louder in the right

earphone, the sound appears to be from ahead but slightly to the right. The circle

represents the best found open path. It is the sound of a piano key and was chosen to

be significantly different from the obstacle sound. The sound is slightly louder in the

left ear, thus appearing to the user to be coming from ahead and to the right. The

two sounds are played back at alternating times in order for the user to more easily

identify the two sounds.

48

Figure 5-8: Sample aural feedback. Triangles represent obstacles. Circles represent
open paths.

49

50

Chapter 6

Related Work

6.1 Real-time Stereo Vision

Because of the vast number of calculations required, there have been attempts to

implement a stereo vision algorithm in hardware[11]. Because the chips are designed

specifically for the task of stereo vision, they are able to achieve very high performance

through the use of parallelization. The approach taken in this program also tries to

take advantage of parallel processing to improve the calculation throughput of the

algorithm and allow for more in-depth processing.

As 3D games have become progressively more advanced, the graphics hardware

that these games rely on have also followed a similar path. Current graphics cards are

now becoming vastly more programmable, allowing specialized tasks to be performed

solely by the graphics processing unit (GPU), freeing the CPU to perform more

complex tasks at the same time. While there are still major limitations to using

the GPU in this way, a couple stereo vision algorithms have begun to appear that

make use of the GPU to provide real-time dense stereo depth maps[12]. An algorithm

like this would allow the cpu to allocate more processing power towards more robust

post-processing algorithms and audio generation.

51

6.2 Rapid Object Detection

Recent progress has been made in developing a system to quickly and accurately

detect objects[10]. The detector uses machine learning for training, and works by

building a cascade of simple haar-like classifiers that satisfy the training data. While

the initial work was to perform face detection in images, the detector has been shown

to be useful when trained in detecting other objects, such as pedestrians, in real-time.

A system that could detect a number of common objects in real-time or near

real-time could be integrated into the program described in this paper. Each object

could be assigned a distinct musical instrument. The user would be able to gain an

even better understanding of the surrounding area by learning about the location

of people and other important objects depending upon their current environment.

A set of detectors trained for outdoor objects could provide information about the

location of cars, sidewalks, roadways, and buildings. Detectors trained for an office

environment may provide feedback on the location of desks, chairs, and doors or

doorways.

52

Chapter 7

Conclusions and Future Work

Using vision methods, a real-time stereo vision system is implemented taking advan-

tage of the parallel processing of the AltiVec execution unit. As SSE is very similar in

nature, these ideas could be extended to improve stereo vision performance on Intel

chips as well. Since the current PowerPC chip is appropriate for embedded systems

with strict power consumption requirements, the system implemented could achieve

sufficient performance while still meeting those goals. Many other methods in vision

are also suitable for implementation using AltiVec.

In the current program, vision techniques are used to gain a greater understanding

of the scene in front of the user. From a stereo image pair, the visual data is analyzed

using an image pyramid and least sum-of-squares differences to produce a depth map.

Improvements over a naive SSD implementation are demonstrated. The depth map

is then transformed into audio signals through further post-processing.

The system described in this paper has applications in assisting blind people to

navigate through unfamiliar environments. It could also be used to provide audio

feedback when visual feedback is not possible, for example in situations where see-

ing may be hindered. A possible military application may allow aural aide without

requiring the user to wear night-vision goggles.

53

The program has potential to be expanded in other areas. Rapid object detection

may provide a supplementary method of providing information to the user in audio

form. Objects that are learned by the system could be reproduced in audio form.

Another approach could be to use the depth map to segment individual objects.

Rather than have an object to be trained before it can be recognized by the system,

each object could give off an audio signature based on their shape or outline. For

example, a circle object could be represented by a sine wave. Any deviation in the

object's outline would alter the sine wave accordingly. Other visual information,

such as color or text contained within each object could also affect the waveform, by

adjusting pitch or amplitude. A nonprofit organization is actively working to develop

a program that can extract text from images[14]. A feature like this would be very

useful to this system.

54

Bibliography

[1] Y. Boykov, 0. Veksler, and R. Zabih. A variable window approach to early vision.

IEEE TPAMI, 20(12):12831294, 1998.

[2] Heiko Hirschmller (2001), Improvements in Real-Time Correlation-Based Stereo

Vi- sion, in Proceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision,

9-10 December 2001, Kauai, Hawaii, pp. 141-148.

[3] Y. Boykov, 0. Veksler, and R. Zabih. Fast approximate energy minimization via

graph cuts. IEEE TPAMI, 23(11):1222-1239, 2001.

[4] 0. Veksler. Stereo matching by compact windows via minimum ratio cycle. In

ICCV, volume I, pages 540547, 2001.

[5] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense Two-

Frame Stereo Correspondence Algorithms. IJCV, 47(1/2/3):7-42, April-June 2002.

http://www.middlebury.edu/stereo/

[6] AltiVec Technology Programming Interface Manual, Freescale Semiconductor,

Chandler, AZ, 1999

[7] Berthold K. P. Horn, Machine Vision, MIT Press, Cambridge, MA, 1986

[8] http://developer.apple.com/hardware/ve/algorithms.html

[9] http://developer.apple.com/macosx/coreimage.html

55

[10] P. Viola and M. Jones. Rapid Object Detection using a Boosted Cascade of

Simple Features. CVPR, 2001.

[11] J. Woodfill, G. Gordon, R. Buck, Tyzx DeepSea High Speed Stereo Vision Sys-

tem, In Proceedings of the IEEE Computer Society Workshop on Real Time 3-D

Sensors and Their Use, CVPR, (Washington, D.C.), June 2004.

[12] M. Gong and Y.-H. Yang. Near real-time reliable stereo matching using pro-

grammable graphics hardware. CVPR 2005

[13] Peter B.L. Meijer , http://www.seeingwithsound.com

[14] Myers, G.K., Bolles, R.C., Luong, Q.T., Herson, J.A., "Recognition of

3-D Scene Text," Fourth Symposium on Document Image Understand-

ing Technology (SDIUT01), Columbia, Maryland, April, 2001, pp. 85-99.

http://www.sri.com/esd/automation/video-recog.html

56

Appendix A

CaIcContrast function used by

Discriminator

Take the multiply-sum of each set of 4 elements. Since multiply-sum combines the 16

byte values to 4 32-bit values, some permutations of the vector must be made. The

first element in the first set is OxCO through OxC3 which becomes represented as a.

The second element is 0x01 through MxC4, which is represented by b. Thus the first

vector from OxOG to OCxF becomes aeim after the multiply-sum. The fourth offset can

reuse the eim portion that was already calculated by performing further permutation

of the data.

A.1 Vector Transformations required for CaicCon-

trast

00 01 02 03 04 05 06 07 08 09 OA

01 02 03 04 05 06 07 08 09 OA

02 03 04 05 06 07 08 09 OA OB

03 04 05 06 07 08 09 OA OB OC

OB OC

OB OC

OC OD

OD OE

OD OE OF

OD OE OF 10

OE OF 10 11

OF 10 11 12

57

00 - 03, 04 - 07, 08 - OB, OC - OF ...
01 - 04, 05 - 08, 09 - OC, OD -
a, e, i, m, q, u, y, C
b, f, j, n, r, v, z, D
c, g, k, o, s, w, A, E
d, h, 1, p, t, x, B, F

aeim -> 0
bfjn -> 1
cgko -> 2
dhlp -> 3
eimq -> 4
fjnr ... etc...

A.2 Inner Loop performed per each row

first = vec-ld(0,data);
second = vec-ld(16,data);

aeim = vec-msum(first, first, zero);
totalO = vec-add(aeim, totalO);

temp = vec-sld(first, second, 1);
bfjn = vec-msum(temp, temp, zero);
totall = vec-add(bfjn, totall);

temp = vec-sld(first, second, 2);
cgko = vec-msum(temp, temp, zero);
total2 = vec-add(cgko, total2);

temp = vec-sld(first, second, 3);
dhlp = vec-msum(temp, temp, zero); total3 = vec-add(dhlp, total3);

quyC = vec-msum(second, second, zero);
total4 = vec-add(vec-sld(aeim, quyC, 4), total4);
total8 = vec-add(vec-sld(aeim, quyC, 8), total8);
total12 = vec-add(vec-sld(aeim, quyC, 12), totall2);

temp = vec-sld(second, second, 1);
rvzD = vec-msum(temp, temp, zero);
total5 = vec-add(vec-sld(bfjn, rvzD, 4), total5);
total9 = vec-add(vec-sld(bfjn, rvzD, 8), total9);
total13 = vec-add(vec-sld(bfjn, rvzD, 12), totall3);

temp = vec-sld(second, second, 2);
swAE = vecimsum(temp, temp, zero);
total6 = vecadd(vec-sld(cgko, swAE, 4), total6);
totallO vec-add(vec-sld(cgko, swAE, 8), totallO);
total14 = vec-add(vec-sld(cgko, swAE, 12), totall4);

58

temp = vec-sld(second, second, 3);
txBF = vec-msum(temp, temp, zero);
total7 = vec-add(vec-sld(dhlp, txBF, 4), total7);
totalil = vec-add(vec-sld(dhlp, txBF, 8), totall1);
total15 = vec-add(vec-sld(dhlp, txBF, 12), total15);

A.3 Code used to get values out to memory

All of the vector elements need to be merged and then stored. vec-sums will put each

of the values into the last element. Merge Low and Merge High simply merge these

last elements of each vector into one vector.

vUInt32 templong = vec-nergel(
vec-mergel (
vec-sums(totalO, zero),
vec-sums(total2, zero)

vec-mergel(
vec-sums(total1, zero),
vec-sums(total3, zero)
)

vec-stl(templong, 0, data2 + (j « 2));

templong = vec-mergel(
vec-mergel (
vec-sums(total4, zero),
vec-sums(total6, zero)

vec-mergel(
vec-sums(total5, zero),
vec-sums(total7, zero)
)

vec-stl(templong, 0, data2 + (j << 2) + 1);

templong = vec-mergel(
vec-mergel(
vec-sums(total8, zero),
vec-sums(total10, zero)

vecimergel(
vec-sums(total9, zero),
vec-sums(total11, zero)
)

59

);

vec-stl(templong, 0, data2 + (j << 2) + 2);

templong = vec-mergel(
vec-mergel (
vec-sums(total12, zero),
vec-sums (total 14, zero)

vec-mergel (
vec-sums(totall3, zero),
vec-sums(total15, zero)
)

vec.stl(templong, 0, data2 + (j <« 2) + 3) ;

60

to'

