An airfoil with chord c is moving at velocity U with zero angle of incidence through the air, as shown in the figure below:

![Diagram of an airfoil moving through the air with velocity U.]

The air is not motionless, but rather has variations in the vertical velocity, w. As the airfoil flies through this gust field, the leading edge of the airfoil “sees” a variation in the angle of attack. If w is small compared to U, then the angle of attack change seen by the airfoil is $\alpha = w/U$. Since the velocity profile varies in space, the angle of attack seen by the airfoil is a function of time, $\alpha(t)$.

One might expect that the lift coefficient of the airfoil is just

$$C_L(t) = 2\pi \alpha(t)$$

However, the airfoil does not respond instantaneously as the airfoil encounters the gust. If the airfoil encounters a “sharp-edged gust,” so that the apparent change in the angle of attack is a step function in time,

$$\alpha(t) = \alpha_0 \sigma(t)$$

then the change in lift is given by

$$C_L(t) = 2\pi \alpha_0 \psi(\tilde{t})$$

where $\tilde{t} = 2Ut/c$ is the dimensionless time. $\psi(\tilde{t})$ is the Küssner function, and is the step response of the airfoil (neglecting multiplicative constants), if the input is considered to be the vertical gust at the leading edge as a function of time, and the output is considered to be the lift as a function of time. The Küssner function can be approximated as

$$\psi(\tilde{t}) = \begin{cases} 0, & \tilde{t} < 0 \\ 1 - \frac{1}{2}e^{-0.13\tilde{t}} - \frac{1}{2}e^{-\tilde{t}}, & \tilde{t} \geq 0 \end{cases}$$

Assuming that the airfoil acts as an LTI system, determine and plot the lift coefficient, $C_L(t)$, and the gust velocity, $w(t)$, for the following conditions:

- $c = 1$ m
- $U = 1$ m/s
- $w(t) = \begin{cases} 0 \text{ m/s}, & t < 0 \text{ s} \\ 0.1 \cdot (1 - e^{-2t}) \text{ m/s}, & t \geq 0 \text{ s} \end{cases}$