SOLuTIOWS

$$
\begin{equation*}
U=-\frac{A}{r^{m}}+\frac{B}{r^{n}} \tag{0}
\end{equation*}
$$

liny ranye electōoshatic attrachém

Shwt range repulsion inner electön orbihals. nuclei.

Cubic unit cell

Young's modulus

$$
\begin{align*}
& =\frac{d F}{A} \cdot \frac{d r_{0}}{d r}=\frac{d F r_{0}}{d r r_{0}^{2}} \\
& =\frac{1}{r_{0}} \frac{d F}{d r}=\left.\frac{1}{r_{0}} \frac{d^{2} U}{d r^{2}}\right|_{r=r_{0}} \tag{1}
\end{align*}
$$

$$
\frac{d u}{d r}=M A r^{(-m-1)}-n B r^{(-n-1)}
$$

at $r=r_{0} \quad \frac{d u}{d r}=0$

$$
\Rightarrow B=\frac{M}{n} A r_{0}^{n-m}
$$

subshlate into (0)

$$
\begin{equation*}
\Rightarrow U=-A r^{-m}+\frac{m}{n} A r_{0}^{n-m} r^{-n} \tag{2}
\end{equation*}
$$

$$
\therefore v\left(r_{0}\right)=-A r_{0}^{-m}+\frac{m}{n} A r_{0}^{(n-m-n)}=A r_{0}^{-m}\left(\frac{m}{n}-1\right)=A r_{0}^{-m}\left(\frac{m-n}{n}\right)
$$

Form definition in question

$$
\begin{aligned}
& -K T_{M}=A r_{0}^{-m}\left(\frac{m-n}{n}\right) \\
& \therefore A=\frac{-n k}{(m-n)} T_{m} r_{0}^{m}, \quad B=\frac{-m m}{m-n} K T_{m} r_{0}^{p r}, r_{0}^{n-p r}=\frac{m}{m-n} k T_{m} r_{0}^{n} \\
& U=+\frac{n}{m-m} K T_{m} \frac{r_{0}^{m}}{r^{m}}-\frac{m}{m-n}<T_{m} \frac{r_{0}^{n}}{r^{n}} \\
& =\frac{d v}{d r}=-\frac{m n}{m-n} K T_{m} r_{0}{ }^{m} r^{(-m-1)}+\frac{n M}{m-n} K T_{m} r_{0}^{n} r^{(-n-1)} \\
& \frac{d F}{d r}=\frac{+(m+w 1) m n}{m-n} k T_{m} r_{0}^{m} r^{-(m+2)}-\frac{(n+1) n m}{m-n} K T_{m} r_{0}^{n} r^{-(n+2)} \\
& \text { for } r=r_{0}, \frac{1}{r_{0}} \frac{d F}{d r}=\frac{+(m+1) m n}{m-n} k T_{m} r_{0}^{\mu} \cdot r_{0}^{-p_{0}-2} \cdot r_{0}^{-1} \frac{(n+1) n m}{m-n} k T_{m} p_{0}^{\mu} \phi_{0}^{-n-2} r_{0}^{-1} \\
& =\frac{m n k T_{m}}{(M-\alpha) r_{0}^{3}}(+(M+1)-(n+1)), \quad r_{0}^{3}=\Omega \\
& \therefore E=\left.\frac{1}{r_{0}} \frac{d F}{d r}\right|_{r=r_{0}}=\frac{\operatorname{mn} K T_{m}}{\Omega}!
\end{aligned}
$$

The puspuse of this question is to demonstrate lutunsic link behüreen muchuli e Tm. Diamond, Sic have high E high T_{M}, polymers have low E, Ins T_{m}.

