Answer 2.1

Case1. Phosphorus is removed at a constant rate, with removal completed in T_R.

The removal rate is $\partial C/\partial t = (C_0/T_R)$, such that $C(t) = C_o(1 - t/T_R)$ for $t \le T_R$, and C(t) = 0 for $t > T_R$. From Chapter 2.5 equation (21), $C_e = \int_0^\infty RTD(t) C(t) dt$.

For Plug-Flow, RTD(t) = δ (t-T_R), then $C_e = \int_{0}^{T_R} \delta(t - T_R) C_0 (1 - t/T_R) dt = 0$. Note the integration is only be carried to $t = T_R$, because for $t > T_R$, C = 0.

For a Stirred Reactor $RTD(t) = exp(-t/T_R)/T_R$, then

$$C_{e} = \int_{0}^{T_{R}} \exp(-t/T_{R}) \frac{C_{0}}{T_{R}} (1 - t/T_{R}) dt = \frac{C_{0}}{T_{R}} \int_{0}^{T_{R}} \left(\exp(-t/T_{R}) - \frac{t}{T_{R}} \exp(-t/T_{R}) \right) dt$$

$$= \frac{C_{0}}{T_{R}} \left[-T_{R} \exp(-t/T_{R}) - T_{R} \exp(-t/T_{R}) (-t/T_{R} - 1) \right]_{0}^{T_{R}}$$

$$= \frac{C_{0}}{T_{R}} \left[-T_{R} (\exp(-1) - \exp(0)) - T_{R} (\exp(-1)(-2) - \exp(0)(-1)) \right] = C_{0} \exp(-1) = 0.37C_{0}$$

Again the integration is carried out only to $t = T_R$, because C = 0 for $t > T_R$. For Plug-Flow the steady exist concentration is zero, indicating 100% removal. For the Stirred Reactor the steady exit concentration is 0.37 C_o, indicating only 63% removal. So, clearly the Plug-Flow circulation provides better removal.

Case2. Phosphorus is removed in a first-order reaction with rate, $k = 1/T_R$.

Following the same proceedure above, but with $C(t) = C_0 exp(-kt)$.

Plug Flow: $C_e = \int_{0}^{\infty} \delta(t - T_R) C_0 \exp(-kt) dt = C_0 \exp(-kT_R) = 0.37 C_0$

Stirred Reactor:

$$C_{e} = \frac{C_{0}}{T_{R}} \int_{0}^{\infty} \exp(-(1/T_{R} + k)t) dt = -\frac{C_{0}}{T_{R}} \frac{1}{(1/T_{R}) + k} \exp(-(1/T_{R} + k)t) \Big|_{0}^{\infty} = \frac{C_{0}}{1 + kT_{R}}$$

$$C_{e} = C_{0} / (1 + kT_{R}) = 0.5 C_{0}$$

Again, Plug-Flow yields a lower exit concentration, and thus achieves higher removal.