Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 10
Prof. Piotr Indyk
Today

- A data structure for a new problem
- Amortized analysis
2-3 Trees: Deletions

- Problem: there is an internal node that has only 1 child
- Solution: delete recursively
Example
Example, ctd.
Example, ctd.
Example, ctd.
Procedure for Delete(x)

- Let y = p(x)
- Remove x
- If y ≠ root then
 - Let z be the sibling of y.
 - Assume z is the right sibling of y, otherwise the code is symmetric.
 - If y has only 1 child w left
 - Case 1: z has 3 children
 - Attach left[z] as the rightmost child of y
 - Update y.max and z.max
 - Case 2: z has 2 children:
 - Attach the child w of y as the leftmost child of z
 - Update z.max
 - Delete(y) (recursively*)
 - Else
 - Update max of y, p(y), p(p(y)) and so on until root
- Else
 - If root has only one child u
 - Remove root
 - Make u the new root

*Note that the input of Delete does not have to be a leaf
2-3 Trees

- The simplest balanced trees on the planet!
 (but, nevertheless, not completely trivial)
Dynamic Maintenance of Sets

- Assume, we have a collection of elements
- The elements are clustered
- Initially, each element forms its own cluster/set
- We want to enable two operations:
 - \(\text{FIND-SET}(x) \): report the cluster containing \(x \)
 - \(\text{UNION}(C_1, C_2) \): merges the clusters \(C_1, C_2 \)
Disjoint-set data structure (Union-Find)

Problem:
- Maintain a collection of pairwise-disjoint sets \(S = \{S_1, S_2, \ldots, S_r\} \).
- Each \(S_i \) has one representative element \(x = \text{rep}[S_i] \).
- Must support three operations:
 - **MAKE-SET(\(x \))**: adds new set \(\{x\} \) to \(S \) with \(\text{rep}[\{x\}] = x \) (for any \(x \notin S_i \) for all \(i \)).
 - **UNION(\(x, y \))**: replaces sets \(S_x, S_y \) with \(S_x \cup S_y \) in \(S \) for any \(\text{rep}.x, y \) in distinct sets \(S_x, S_y \).
 - **FIND-SET(\(x \))**: returns representative \(\text{rep}[S_x] \) of set \(S_x \) containing element \(x \).
Quiz

• If we have a \texttt{WEAKUNION}(x, y) that works only if \(x, y\) are representatives, how can we implement \texttt{UNION} that works for \textit{any} \(x, y\) ?

• \texttt{UNION}(x, y) = \texttt{WEAKUNION(FIND-SET(x) , FIND-SET(y))}
Representation

Data

Other fields containing data of *our choice*
Applications

- Data clustering
- Killer App: Minimum Spanning Tree (Lecture 13)
- Amortized analysis
Ideas?

- How can we implement this data structure efficiently?
 - MAKE-SET
 - UNION
 - FIND-SET
Bad case for UNION or FIND
Simple linked-list solution

Store set $S_i = \{x_1, x_2, \ldots, x_k\}$ as an (unordered) doubly linked list. Define representative element $\text{rep}[S_i]$ to be the front of the list, x_1.

- **MAKE-SET(x)** initializes x as a lone node. $\Theta(1)$
- **FIND-SET(x)** walks left in the list containing x until it reaches the front of the list. $\Theta(n)$
- **UNION(x, y)** concatenates the lists containing x and y, leaving rep. as FIND-SET[x]. $\Theta(n)$
Augmented linked-list solution

Store set $S_i = \{x_1, x_2, \ldots, x_k\}$ as unordered doubly linked list. Each x_j also stores pointer $rep[x_j]$ to head.

- **FIND-SET(x)** returns $rep[x]$.
- **UNION(x, y)** concatenates the lists containing x and y, and updates the rep pointers for all elements in the list containing y.
Example of augmented linked-list solution

\[S_x : \]
\[\text{rep}[S_x] \]

\[S_y : \]
\[\text{rep}[S_y] \]
Example of augmented linked-list solution

$S_x \cup S_y$:

rep

rep[S_x]

rep

rep[S_y]
Example of augmented linked-list solution

\[S_x \cup S_y : \]

rep \[S_x \cup S_y \]

\[y_1 \quad y_2 \quad y_3 \]

rep
Augmented linked-list solution

Store set $S_i = \{x_1, x_2, \ldots, x_k\}$ as unordered doubly linked list. Each x_j also stores pointer $rep[x_j]$ to head.

- **FIND-SET(x)** returns $rep[x]$. \(\Theta(1)\)
- **UNION(x, y)** concatenates the lists containing x and y, and updates the rep pointers for all elements in the list containing y. \(\Theta(n)\)
Amortized analysis

- So far, we focused on worst-case time of each operation.
 - E.g., Union takes $\Theta(n)$ time for some operations
- Amortized analysis: count the total time spent by any sequence of operations
- Total time is always at most
 \[
 \text{worst-case-time-per-operation} \times \#\text{operations}
 \]
 but it can be much better!
- E.g., if times are $1,1,1,\ldots,1,n,1,\ldots,1$
- Can we modify the linked-list data structure so that any sequence of m Make-Set, Find-Set, Union operations cost less than $m*\Theta(n)$ time?
Alternative

\textsc{Union}(x, y) :

- concatenates the lists containing \(y \) and \(x \), and
- update the \textit{rep} pointers for all elements in the list containing \(y \times x \)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{diagram.png}
\end{figure}
Alternative concatenation

\(\text{UNION}(x, y)\) could instead

- concatenate the lists containing \(y\) and \(x\), and
- update the \(\text{rep}\) pointers for all elements in the list containing \(x\).
Alternative concatenation

\(\text{UNION}(x, y) \) could instead
- concatenate the lists containing \(y \) and \(x \), and
- update the \(\text{rep} \) pointers for all elements in the list containing \(x \).

\[
S_x \cup S_y:
\]

\[
\text{rep}[S_x \cup S_y]
\]
Smaller into larger

• Concatenate smaller list onto the end of the larger list (each list stores its weight = # elements)

• Cost = Θ(length of smaller list).

Let n denote the overall number of elements (equivalently, the number of MAKE-SET operations). Let m denote the total number of operations.

Theorem: Cost of all UNION’s is $O(n \lg n)$.

Corollary: Total cost is $O(m + n \lg n)$.
Total UNION cost is $O(n \lg n)$

Proof:

- Monitor an element x and set S_x containing it
- After initial MAKE-SET(x), $\text{weight}[S_x] = 1$
- Consider any time when S_x is merged with set S_y
 - If $\text{weight}[S_y] \geq \text{weight}[S_x]$
 - pay 1 to update $\text{rep}[x]$
 - $\text{weight}[S_x]$ at least doubles (increasing by $\text{weight}[S_y]$)
 - Otherwise
 - pay nothing
 - $\text{weight}[S_x]$ only increases
- Thus:
 - Each time we pay 1, the weight doubles
 - Maximum possible weight is n
 - Maximum pay $\leq \lg n$ for x, or $O(n \log n)$ overall
Final Result

• We have a data structure for dynamic sets which supports:
 – MAKE-SET: $O(1)$ worst case
 – FIND-SET: $O(1)$ worst case
 – UNION:
 • Any sequence of any m operations* takes $O(m \log n)$ time, or
 • … the **amortized complexity** of the operations* is $O(\log n)$

* I.e., MAKE-SET, FIND-SET or UNION
Amortized vs Average

• What is the difference between average case complexity and amortized complexity?
 – “Average case” assumes random distribution over the input (e.g., random sequence of operations)
 – “Amortized” means we count the total time taken by any sequence of m operations (and divide it by m)
Can we do better ?

• One can do:
 – **MAKE-SET**: $O(1)$ worst case
 – **FIND-SET**: $O(lg \ n)$ worst case
 – **WEAKUNION**: $O(1)$ worst case
 – Thus, **UNION**: $O(lg \ n)$ worst case
Representing sets as trees

- Each set $S_i = \{x_1, x_2, \ldots, x_k\}$ stored as a tree
- $\text{rep}[S_i]$ is the tree root.

MAKE-SET(x) initializes x as a lone node.

FIND-SET(x) walks up the tree containing x until it reaches the root.

UNION(x, y) concatenates the trees containing x and y.

$S_1 = \{x_1, x_2, x_3, x_4, x_5, x_6\}$

$S_2 = \{x_7\}$
Time Analysis

- **MAKE-SET**(x) initializes x as a lone node.
- **FIND-SET**(x) walks up the tree containing x until it reaches the root.
- **WEAKUNION**(x, y) concatenates the trees containing x and y

O(1)

O(depth) = ?
“Smaller into Larger” in trees

Algorithm: Merge tree with smaller weight into tree with larger weight.

- Height of tree increases only when its size doubles
- Height logarithmic in weight
“Smaller into Larger” in trees

Proof:

• Monitor the height of an element z
• Each time the height of z increases, the weight of its tree doubles
• Maximum weight is n
• Thus, height of z is $\leq \log n$
Tree implementation

- We have:
 - **MAKE-SET**: \(O(1)\) worst case
 - **FIND-SET**: \(O(\text{depth}) = O(\lg n)\) worst case
 - **WEAKUNION**: \(O(1)\) worst case
- Can amortized analysis buy us anything?
- Need another trick…
Trick 2: Path compression

When we execute a \texttt{FIND-SET} operation and walk up a path to the root, we \textit{know} the representative for \textit{all} the nodes on the path.

\textit{Path compression} makes all of those nodes direct children of the root.

\texttt{FIND-SET}(y_2)
Trick 2: Path compression

When we execute a FIND-SET operation and walk up a path to the root, we know the representative for all the nodes on the path.

Path compression makes all of those nodes direct children of the root.

FIND-SET(y_2)
Trick 2: Path compression

When we execute a \texttt{FIND-SET} operation and walk up a path p to the root, we know the representative for all the nodes on path p.

\textit{Path compression} makes all of those nodes direct children of the root.

Cost of \texttt{FIND-SET}(x) is still $\Theta(\text{depth}[x])$.

\texttt{FIND-SET}(y_2)
The Theorem

Theorem: In general, amortized cost is $O(\alpha(n))$, where $\alpha(n)$ grows really, really, really slow.
Ackermann’s function A

Define

$$A_k(j) = \begin{cases} j + 1 & \text{if } k = 0 \\ A_{k-1}^{(j+1)}(j) & \text{if } k \geq 1 \end{cases}$$

-iterate $A_{k-1}(\cdot)$ $j+1$ times

$$A_0(j) = j + 1$$
$$A_1(j) = A_0(\ldots(A_0(j)\ldots) \sim 2j$$
$$A_2(j) = A_1(\ldots A_1(j)\ldots) \sim 2^j 2^j$$

$$A_3(j) > 2 \underbrace{2 \ldots 2}_{j}$$

$A_4(j)$ is a lot bigger.

Define $\alpha(n) = \min \{ k : A_k(1) \geq n \}$.
The Theorem

Theorem: In general, amortized cost is $O(\alpha(n))$, where $\alpha(n)$ grows really, really, really slow.

Proof: Really, really, really long (CLRS, p. 509)
Application: Dynamic connectivity

Suppose a graph is given to us *incrementally* by

- \textsc{Add-Vertex}(v)
- \textsc{Add-Edge}(u, v)

and we want to support *connectivity* queries:

- \textsc{Connected}(u, v):

 Are \(u \) and \(v \) in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.
Application: Dynamic connectivity

Sets of vertices represent connected components. Suppose a graph is given to us incrementally by

- **ADD-VERTEX**(v) − MAKE-SET(v)
- **ADD-EDGE**(u, v) − if not CONNECTED(u, v) then UNION(v, w)

and we want to support connectivity queries:

- **CONNECTED**(u, v): − FIND-SET(u) = FIND-SET(v)
 Are u and v in the same connected component?

For example, we want to maintain a spanning forest, so we check whether each new edge connects a previously disconnected pair of vertices.
Simple balanced-tree solution

Store each set $S_i = \{x_1, x_2, \ldots, x_k\}$ as a balanced tree (ignoring keys). Define representative element $rep[S_i]$ to be the root of the tree.

- **MAKE-SET**(x) initializes x as a lone node. $\Theta(1)$
- **FIND-SET**(x) walks up the tree containing x until it reaches the root. $\Theta(lg \ n)$
- **UNION**(x, y) concatenates the trees containing x and y, changing rep. $\Theta(lg \ n)$
Plan of attack

We will build a simple disjoint-union data structure that, in an amortized sense, performs significantly better than $\Theta(lg n)$ per op., even better than $\Theta(lg lg n)$, $\Theta(lg lg lg n)$, etc., but not quite $\Theta(1)$.

To reach this goal, we will introduce two key tricks. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(lg n)$ amortized solution. Together, the two tricks yield a much better solution.

First trick arises in an augmented linked list. Second trick arises in a tree structure.
Each element x_j stores pointer $\text{rep}[x_j]$ to $\text{rep}[S_i]$.

$\text{UNION}(x, y)$

- concatenates the lists containing x and y, and
- updates the rep pointers for all elements in the list containing y.
Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET’s is $O(m \lg n)$.

Proof: Amortization by potential function.

The *weight* of a node x is # nodes in its subtree.

Define $\phi(x_1, \ldots, x_n) = \sum_i \lg \text{weight}[x_i]$.

$\text{UNION}(x_i, x_j)$ increases potential of root $\text{FIND-SET}(x_i)$ by at most $\lg \text{weight}[\text{root FIND-SET}(x_j)] \leq \lg n$.

Each step down $p \rightarrow c$ made by $\text{FIND-SET}(x_i)$, except the first, moves c’s subtree out of p’s subtree. Thus if $\text{weight}[c] \geq \frac{1}{2} \text{weight}[p]$, ϕ decreases by ≥ 1, paying for the step down. There can be at most $\lg n$ steps $p \rightarrow c$ for which $\text{weight}[c] < \frac{1}{2} \text{weight}[p]$.

© 2004 by Erik Demaine and Piotr Indyk Introduction to Algorithms October 18, 2004 L10.48
Analysis of Trick 2 alone

Theorem: If all \texttt{UNION} operations occur before all \texttt{FIND-SET} operations, then total cost is $O(m)$.

Proof: If a \texttt{FIND-SET} operation traverses a path with k nodes, costing $O(k)$ time, then $k - 2$ nodes are made new children of the root. This change can happen only once for each of the n elements, so the total cost of \texttt{FIND-SET} is $O(f + n)$. □
UNION(x, y)

- Every tree has a *rank*
- Rank is an upper bound for height
- When we take **UNION**(x, y):
 - If rank[x] > rank[y] then link y to x
 - If rank[x] < rank[y] then link x to y
 - If rank[x] = rank[y] then
 - link x to y
 - rank[y] = rank[y] + 1

- Can show that $2^{\text{rank}(x)} \leq \#\text{elements in } x$ (Exercise 21.4-2)
- Therefore, height is $O(\log n)$