LEcTURe 12
Dynamic programming
• Longest common subsequence
• Optimal substructure
• Overlapping subproblems

Prof. Charles E. Leiserson
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

 “a” *not* “the”
Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

 “a” not “the”

x: A B C B D A B

y: B D C A B A
Dynamic programming

Design technique, like divide-and-conquer.

Example: *Longest Common Subsequence (LCS)*

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

```
  x: A B C B D A B
  y: B D C A B A
```

```
  BCBA = LCS(x, y)
```

“a” not “the”

Functional notation, but not a function
Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.
Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis

- Checking $= O(n)$ time per subsequence.
- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).

Worst-case running time $= O(n2^m)$

$= \text{exponential time.}$
Towards a better algorithm

Simplification:
1. Look at the *length* of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.
Towards a better algorithm

Simplification:
1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence \(s \) by \(|s| \).
Towards a better algorithm

Simplification:
1. Look at the *length* of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider *prefixes* of x and y.
- Define $c[i, j] = |\text{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n] = |\text{LCS}(x, y)|$.

Recursive formulation

Theorem.

\[c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max\{c[i-1, j], c[i, j-1]\} & \text{otherwise.}
\end{cases} \]
Recursive formulation

Theorem.

\[
c[i,j] = \begin{cases}
 c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\
 \max \{c[i-1,j], c[i,j-1]\} & \text{otherwise.}
\end{cases}
\]

Proof. Case \(x[i] = y[j] \):

Proof diagram showing the alignment of indices \(i \) and \(j \) in sequences \(x \) and \(y \), respectively.
Recursive formulation

Theorem.

\[c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max\{c[i-1, j], c[i, j-1]\} & \text{otherwise.}
\end{cases} \]

Proof. Case \(x[i] = y[j] \):

Let \(z[1 \ldots k] = \text{LCS}(x[1 \ldots i], y[1 \ldots j]) \), where \(c[i, j] = k \). Then, \(z[k] = x[i] \), or else \(z \) could be extended. Thus, \(z[1 \ldots k-1] \) is CS of \(x[1 \ldots i-1] \) and \(y[1 \ldots j-1] \).
Proof (continued)

Claim: \(z[1 \ldots k-1] = \text{LCS}(x[1 \ldots i-1], y[1 \ldots j-1]) \).

Suppose \(w \) is a longer CS of \(x[1 \ldots i-1] \) and \(y[1 \ldots j-1] \), that is, \(|w| > k-1\). Then, cut and paste: \(w || z[k] \) (\(w \) concatenated with \(z[k] \)) is a common subsequence of \(x[1 \ldots i] \) and \(y[1 \ldots j] \) with \(|w || z[k]| > k\). Contradiction, proving the claim.
Proof (continued)

Claim: \(z[1 \ldots k-1] = \text{LCS}(x[1 \ldots i-1], y[1 \ldots j-1]) \).
Suppose \(w \) is a longer CS of \(x[1 \ldots i-1] \) and \(y[1 \ldots j-1] \), that is, \(|w| > k-1 \). Then, \textit{cut and paste}: \(w || z[k] \) (\(w \) concatenated with \(z[k] \)) is a common subsequence of \(x[1 \ldots i] \) and \(y[1 \ldots j] \) with \(|w || z[k]| > k \). Contradiction, proving the claim.

Thus, \(c[i-1, j-1] = k-1 \), which implies that \(c[i, j] = c[i-1, j-1] + 1 \).

Other cases are similar. □
Dynamic-programming hallmark #1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.
Dynamic-programming hallmark #1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If \(z = \text{LCS}(x, y) \), then any prefix of \(z \) is an LCS of a prefix of \(x \) and a prefix of \(y \).
Recursive algorithm for LCS

\[
\text{LCS}(x, y, i, j) \begin{cases}
\text{if } x[i] = y[j] & \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
\text{else } c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \\
\text{LCS}(x, y, i, j-1) \}
\end{cases}
\]
Recursive algorithm for LCS

\[\text{LCS}(x, y, i, j) \]
\[\text{if } x[i] = y[j] \]
\[\quad \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \]
\[\text{else } c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \} \]

Worst-case: \(x[i] \neq y[j] \), in which case the algorithm evaluates two subproblems, each with only one parameter decremented.
Recursion tree

$m = 3, n = 4$:

```
3,4
 /   \
2,4   3,3
 |     |
1,4   2,3   3,2     2,3
 |     |
1,3   2,2   1,3     2,2
```

© 2001–4 by Charles E. Leiserson Introduction to Algorithms October 25, 2004 L12.20
$m = 3, \ n = 4$:

Recursion tree

Height $= m + n \implies$ work potentially exponential.
Recursion tree

$m = 3, n = 4$:

Height $= m + n \Rightarrow$ work potentially exponential, but we’re solving subproblems already solved!
Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a “small” number of distinct subproblems repeated many times.
Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a “small” number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{LCS}(x, y, i, j)
\]

\[
\begin{align*}
\text{if } & c[i, j] = \text{NIL} \\
\text{then if } & x[i] = y[j] \\
& \quad \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
& \quad \text{else } c[i, j] \leftarrow \max \left\{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \right\}
\end{align*}
\]

\[
\text{same as before}
\]
Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

\[
\text{LCS}(x, y, i, j) \begin{cases}
\text{if } c[i, j] = \text{NIL} \\
\text{then if } x[i] = y[j] \\
\hspace{1cm} \text{then } c[i, j] \leftarrow \text{LCS}(x, y, i-1, j-1) + 1 \\
\text{else } c[i, j] \leftarrow \max \{ \text{LCS}(x, y, i-1, j), \text{LCS}(x, y, i, j-1) \}
\end{cases}
\]

Time = \(\Theta(mn) \) = constant work per table entry.

Space = \(\Theta(mn) \)
Dynamic-programming algorithm

Idea:
Compute the table bottom-up.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Dynamic-programming algorithm

Idea:
Compute the table bottom-up.

Time = $\Theta(mn)$.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms
Dynamic-programming algorithm

Idea:
Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Dynamic-programming algorithm

IDEA:

Compute the table bottom-up.

Time $= \Theta(mn)$.

Reconstruct LCS by tracing backwards.

Space $= \Theta(mn)$.

Exercise: $O(\min\{m, n\})$.

![Dynamic-programming algorithm table](image)

© 2001–4 by Charles E. Leiserson

Introduction to Algorithms

October 25, 2004 L12.31