
THE MECHANICAL BEHAVIOR OF MARAGING STEEL UNDER
EXTREME ELECTROMECHANICAL AND THERMAL CONDITIONS

by

Peter J. Raboin

B.S. Georgia Institute of Technology

(1982)

S.M. Massachusetts Institute of Technology
(1985)

Submitted to the
Department of Mechanical Engineering

in Partial Fulfillment of the Requirements for
the Degree of

DOCTOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 26, 1989

0)1989 Peter J. Raboin

The author hereby grants to the Massachusetts Institute of Technology permis-
sion to reproduce and distribute copies of this thesis document in whole or in
part.

SisnittirP of Auithor -. ---_ L-LgIC - -i · -.

Department of Mechanical Engineering
May 26. 198,

Certified 
by

F.C. hlcC'lintock

C'hairman. Doctoral Committee

Accepted by

Vol. L
M ASSASAHUSFTTS INST"'iUT

OF T k:,,:).I , " 13 Y

kAR 131990

Ain A. Sonin
Chairman, Graduate Committee

UBRARIES

1-Y F, L , V L II- -'I -X L'11

ý_ ý k I I I ý %. & Lý-_T - -



THE MECHANICAL BEHAVIOR OF MARAGING STEEL UNDER
EXTREME ELECTROMECHANICAL AND THERMAL CONDITIONS

by

PETER J. RABOIN
Submitted to the department of Mechanical Engineering

on May 10, 1989 in partial fulfillment of the

requirements for the Degree of Doctor of Science in

Mechanical Engineering

ABSTRACT

The mechanical behavior of maraging steel is studied for the design and

analysis of short pulse, high magnetic field magnets. First, the mechanical be-

havior of maraging steel is tested between 770 and 1080 K for plastic strain

rates between 10-6 and 10- 2 s- 1. Then models are proposed to predict flow

strength and dilatational strain. Second, these models are incrrporated into

a time-dependent plastic finite element analysis program which models the ex-

treme loading conditions. Shape changes and double necking were successfully

predicted in uniaxial tapered, constrained pulse-cycled specimens. A program

was written to predict the pulsed Lorentz body forces (350 N/mm') and tem-

perature changes (298-1450 K) within a short pulse (50 T in 45 pIs) magnet.

The final part of this thesis details the design, construction, testing, and failure

analysis of a test coil. This experiment confirmed design predictions, and the

coil failed because melting at crack tips caused an electrical explosion. From a

crack-tip model, and pulse-cycled experiments, an "adiabatic" crack size is cal-

culated and used as a critical size for fatigue life predictions. Recommendations

are made for predicting and improving the life of short pulse magnets.
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INTRODUCTION

The purpose of our research into the mechanical behavior of maraging

steel under extreme electromechanical and thermal conditions is to predict the

behavior, for improving the design, of short pulse, very high magnetic field

magnets. The work is divided into three parts, a study of the microstructure

and strength of maraging steel, an electromagnetic, thermal and mechanical

analysis of a short pulse magnet, and a failure and fatigue analysis of a short

pulse magnet made of maraging steel. The design and operation of short pulse,

high magnetic field magnets is limited by the electrical, thermal and mechanical

properties of maraging steel. This thesis examines and proposes some limits

to the electromechanical and thermal conditions imposed on maraging steel,

and it examines the suitability of maraging steel as an electrical conductor for

short pulse magnets. This introduction begins with a description of the extreme

electromechanical and thermal conditions which are mentioned throughout this

work.

The magnet geometry is a solid helix, where the cross section of the magnet

turn is rectangular. Short pulse magnets generate magnetic fields of 50 T (Tesla)

and higher, and they achieve these fields with pulses that have half periods

between 120 and 150 jis and longer. A 250 kJ capacitor bank is the energy source

for the magnetic pulses. These short pulse magnets operate at voltages of 20

kV, with peak electrical currents of 400 kA. The large electrical currents which

flow through short pulse magnets are unevenly distributed within the magnet

turn. The current densities are largest at the inner radius of a magnet and

decrease sharply as the radius increases. This distribution changes as a function

of time during the pulse. Under the combined conditions of high magnetic field

and large electrical current, the magnets experience peak Lorentz body forces

of 350 N / mm3 (which would give the TS = 2000 N/mm2 in 6 mm). Extreme

mechanical conditions occur during a typical 120 ps pulse.

The temperature rise during a short pulse can exceed 1150 K, and non-

uniform current densities cause temperature gradients of 200 K / mm. During

the first half period of a pulse, the heating rate can exceed 20x 108 K / s at the

inside radius. The temperature gradients within the magnet are reduced to less

than 1 K / mm after 1 min, and at that time, the magnet temperature is 690 K.

It takes approximately 15 min to cool the magnet down to room temperature.



The electromagnetic body forces are large enough to cause plastic defor-

mation, and then as these forces diminish, the thermal gradients cause reverse

plastic deformation in the magnet. The cyclic plastic strain increments are less

than 1 % per pulse. The small plastic strains predicted and observed in the

short pulse magnet application are due to the geometry of the magnet and the

short time available for plastic deformation.

The first section of this thesis examines maraging steel and identifies the

significant material processes which change its microstructure and strength.

Chapter 1 focuses on information gained from an extensive literature search on

maraging steel. The phase transformation behavior, aging and annealing pro-

cesses are discussed in detail, because they can significantly affect the strength

of maraging steel. The strengthening mechanisms which contribute to the flow

strength of maraging steel are described and an evolutionary flow strength equa-

tion is proposed. Finally, the fatigue life of maraging steel is modeled with Paris

and Tomkin's equations for crack growth given an initial crack size.

In the second Chapter, the focus shifts to determining of the strength of

maraging steel in the high temperature (0 > 750 K,) high plastic strain rate

(10-6 to 10- 2 s- 1) and small plastic strain range (AeP < 2%.) These conditicns

are close to the expected operating conditions for the short pulse magnet. The

tensile test and cyclic fatigue test results performed under these conditions show

that the strength of maraging steel decreases to less than a third of its room

temperature strength. In addition, the strain rate effects encountered here can

more than double the flow strength at high temperatures.

Two plastic strain rate (kinetic) equations are used in Chapter 2 to model

the mechanical behavior of maraging steel over the range of temperatures and

plastic strain rates discussed above. The constants in the first (phenomenolog-

ical) kinetic equation and the second Arrhenius power law kinetic equation are

found from tensile tests. Cyclic fatigue tests show a lack of cyclic strain hard-

ening or softening through half the fatigue life, and a Bauschinger effect. They

are used to model monotonic and cyclic strain hardening. The flow strength of

maraging steel is approximated on the basis of material tests conducted under

conditions which came as close to the expected service conditions as our test-

ing equipment allowed. The expected strain rates are 10- 6 to 102 s- 1, and the

testing strain rates went up to 10- 2 . The expected temperature range is 298 to

1460 K, and the testing temperature range went up to 1080 K.



For the last part of Chapter 2, data from the literature are used to model

the thermal and phase transformation strains as functions of temperature and

material phase. With this model, the thermal and phase transformation strain

distributions are calculated for extreme thermal loading conditions.

The material strength equations and the plastic strain model for maraging

steel are incorporated into a mechanical analysis to study structural behavior

under extreme electromechanical and thermal conditions. The finite element

method is best suited for this problem. The extreme loading conditions create

special demands on the finite element analysis, so a finite element program

was written to specifically implement the axisymmetric mechanical behavior of

maraging steel. With this program, the viscoplastic and temperature-dependent

material behavior of maraging steel are modeled using a time-dependent implicit

analysis, where the temperature and Lorentz body force distributions change as

a function of time and position.

The second part of this thesis examines thermal cycling tests which were

performed on specimens of maraging steel to investigate the effects of extreme

thermal loading conditions in the absence of electromagnetic body forces. By

discharging a capacitor bank through a restrained tensile specimen, it is pos-

sible to investigate the effects parameters (such as peak current density, peak

temperature and thermo mechanical loads) have on the number of cycles to fail-

ure. Several different specimen geometries are examined and discussed. The

hardness is measured for some of these specimens, and the data are compared

to the predicted martensite-to-austenite transition position at the moment of

peak temperature. Experimental results confirm finite element analyses of the

tapered and hourglass specimens. The double necking phenomenon and the de-

formed barrel shape observed in some specimens are predicted. The cyclic stress

strain predictions for the thermal cycling specimens indicate continued plastic

deformation with each thermal cycle. Increases in temperature cause local de-

formations which further increase the temperature, leading to instability. Thus,

the short number of cycles to failure observed in the laboratory (less than 50)

is predicted by the finite element analyses.

In Chapter 5, the focus is on short pulse magnets. The selection of marag-

ing steel for short pulse magnets is discussed, along with the important param-

eters which affect short pulse magnet design. A method for calculating current

densities, magnetic fields, Lorentz body forces and temperature distributions



within the magnet is described. A short pulse destructible test coil has been

designed, constructed and pulsed to failure. The purpose of this coil is to predict

its mechanical behavior and life and to observe its failure. Finite element anal-

yses show that the extreme thermal conditions cause more plastic deformation

than the electromechanical loads. The mechanical behavior predicted in this

chapter is used in the fatigue analysis of the destructible test coil.

Chapter 6 begins with a description and discussion of the short pulse mag-

net failure (after 16 pulses). This is compared to the fatigue analyses and failures

from the low cycle fatigue tests of Chapter 2, the thermal cycling experiments

from Chapter 4 and the short pulse magnet in Chapter 5. Crack growth in the

short pulse magnet is affected by large electrical currents which flow around

cracks on the inner radius of the magnet. A thermal crack-tip model suggests

that current density concentrations at the crack-tip cause crack-tip melting, and

this results in a geometric crack growth rate. With the model, an "adiabatic"

(critical) crack size is defined as the minimum crack length necessary for crack

tip melting. For cracks smaller than the "adiabatic" crack size, thermal conduc-

tion prevents crack tip melting. The model predicts an "adiabatic" crack size of

11 ipm for the destructible test coil. The analysis shows that when parameters

such as pulse length and peak coil temperature increase, the "adiabatic" crack

size decreases. When thermal diffusivity and melting temperature increase, the
"adiabatic" crack size increases. Chapter 6 concludes with recommendations for

the use of maraging steel in short pulse magnets along with their operation.



Chapter 1

Maraging Steel

Maraging steel is a high strength iron nickel alloy. The name is derived

from the process of martensite aging. It is available in four grades, 200,250,300

and 350, referring to the respective tensile strengths in ksi. A description of

maraging steel must center on the three processes which most affect its material

behavior. First, there are phase transformations which occur between the high

temperature FCC austenite phase and the lower temperature BCC martensite

phase. Second, there is precipitation growth which occurs at high temperatures

in the martensite phase, and finally, there is solutionizing which occurs in the

austenite phase.

In this chapter, the material composition, physical properties, phase trans-

formations, aging process, solution annealing, evolutionary flow strength and

fatigue behavior of maraging steel are discussed. The information comes from

the published results of numerous researchers. A more comprehensive review of

maraging steel literature can be found in the book "Source Book on Maraging

Steel" by R.F. Decker [1].

Composition and Physical Properties

The 300 grade of maraging steel was chosen for short pulse, high field

magnets because of its high tensile strength, 2070 MPa. The composition is

18.5% Ni, 4.8% Mo, 9.0% Co, 0.6% Ti, 0.1% Al, 0.03% C and the remainder Fe.

There are also trace elements of Si, Mn, S, P, Zr and B in the steel. All of the

material used in this study was purchased from Teledyne Vasco Inc.

Before various material processes are mentioned and discussed, it is helpful

to first give brief descriptions of the important phenomena observed in maraging

steel, along with the temperature ranges over which they occur (Table 1.1). On

cooling, there is a phase transformation from FCC austenite to BCC martensite

which begins at 473 K and ends at 373 K. On heating, from 700 to 970 K aging

occurs in the martensite phase, with the growth of Ni3 Mo and FeTi precipitates

and an accompanying increase in hardness. When precipitates grow too large,

and the hardness decreases, the alloy is said to be overaged. Austenite reversion



is the phase transition which converts martensite into a low-nickel BCC phase

and % high-nickel FCC phase. It is associated with overaging, since it occurs in

the aging temperature regime, and decreases the hardness.

Next, there is the phase transformation from martensite to austenite which

begins at 968 K and is complete at 1008 K. Grain boundary segregation of

TiC occurs in the austenite regime, and it reduces the fracture toughness of

the steel. Finally, there is solution annealing. The meaning of this commonly

used term is imprecise. The intention of the phrase is to describe the process

by which precipitates, and locally high concentrations of elements dissolve and

disperse into an austenite solution. A more descriptive term is solutionizing.

Solutionizing occurs over a wide range of temperatures, and the time necessary

for solutionizing is short (<15 min at temperatures above 1030 K).

The nickel content in maraging steel affects the martensite structure, the

martensite transformation temperatures and the extent of austenite reversion

during aging. Martensite is a metastable crystal structure which has the same

composition as the austenite phase from which it forms. The alloy elements,

which are in solution in the austenite phase, are supersaturated in the martensite

phase. Consider the binary iron nickel phase diagram of Fig. 1.1. At 25%

Ni, the austenite is 90% transformed to martensite at 333 K, while at 5% Ni,

that temperature rises to 922 K. For the 18% Ni content, the 90% martensite

temperature is 505 K.

Transformed austenite has the same composition as the martensite, while

reverted austenite has a nigh nickel content. After 10 hr at 755 K, the volume

percent of reverted austenite is 65% for a 30% Ni, 18% for 24% Ni and just

2% for an 18% Ni alloy [2]. 18% Ni steel has a tough martensitic structure

with a reasonably high transformation temperature, where the formation of re-

verted austenite at high temperatures is small. The higher Ni content of reverted

austenite lowers the austenite-to-martensite phase transformation temperature,

so the presence of reverted austenite can affect the phase transformation be-

havior during thermal cycling. In addition, reverted austenite is ferromagnetic,

while transformed austenite is paramagnetic.

The elements Mo and Co play several important roles in the precipitation

hardening of maraging steel. Aging at 755 K precipitates particles of Ni3 Mo from

the martensite solution. Co accelerates the precipitate formation and growth by



incr-easing the supersaturation of Mo. It also retards the formation of reverted

austenite [3]. Mo inhibits the precipitation of carbide phases during cooling

by broadening the temperature range over which the other elements remain in

solution [4]. Mo lowers and Co raises the martensite start temperature [5][6].

The interaction between Mo and Co results in a fine dispersion of precipitates

with superior fracture toughness [7].

A Ti compound also contributes to precipitation hardening in maraging

steel. The identity of this intermetallic compound has not been determined con-

clusively. Diffraction patterns suggest that it is a tetragonal compound of FeTi,

CoTi or NiTi, and not NisTi, Fe2 Ti or cubic FeTi [8]. The increase in hardness

due to the Ti precipitates is 690 MPa per % Ti content [9]. The difference in

strength between the 250 and 300 grade maraging steel is due primarily to the

higher Ti content [10]. Overaging can cause thermal embrittlement which is

characterized by the formation of large coarse TiC precipitates on grain bound-

aries [11]-[13]. Finally, the electrical resistivity of maraging steel is sensitive to

and increases with the Ti content.

The properties of maraging steel are temperature-dependent, and in some

cases they depend on magnetic field. In this paper, only the density d and

the Poisson's ratio v (see below) are assumed constant. The heat capacity cp,

thermal conductivity K, and electrical resistivity p are all approximated with

polynomials which are functions of temperature 0. Figs. 1.2 - 1.4 illustrate the

temperature-dependence of these variables, along with the approximations used

with the finite element analysis. Fig. 1.2 compares the specific heat calculated

from a classical formula of c, = 3R/M (0.45 J/kg/K); R and M are the univer-

sal gas constant and molecular weight; higher values are due to the impending

phase transformation. Table 1.2 gives the functions describing them for aged

300 grade maraging steel. The data shown for the heat capacity and thermal

conductivity come from two reference works [14][15]. The electrical resistivity

data was measured by the Francis Bitter National Magnet Laboratory. For

temperatures above 970 K, the behavior of maraging steel is more complicated

because of phase transformations and microstructural changes. The properties

mentioned above have not been investigated in the high temperature austenite

regime. Heat capacity, thermal conduction and electrical resistivity generally in-

crease with temperature, but the phase transformation to austenite likely causes



a decrease in these properties. Without data, it is not known if the high temper-
ature (> 800 K) approximations are too large or too small. The error in these
approximations could be as high as 50 %.

Changes in temperature and material phase affect the Young's modulus.
Fig. 1.5 shows data obtained from two reference works [14][15], along with high

temperature data which comes from static measurements made for this work. An
empirical curve approximates the Young's modulus E (GPa) versus temperature
0 (K) data:

E = 153.7 + 44.1 exp - 3.81 (1.1)

It is interesting to note that the decrease in Young's modulus occurs over a
temperature range which is at least 200 K less than the martensite-to-austenite
phase transformation temperature. Physical theories for the temperature depen-

dence of elastic constants relate the bulk modulus K to the Debye temperature
and the Griineisen parameter (a K / cp d) [16]-[18]. These theories, with no
phase transformations, show a linear decrease in bulk modulus from 2/3 the

Debye temperature to 0.8 Ko (Ko is the bulk modulus at absolute zero) at 0m.
Data on many metals show a similar behavior for the shear modulus, dropping
to 0.6 Go at 0,.

Phase Transformations

It is important to understand the nature of martensitic transformations,
and how they are affected by thermal cycling. Fig. 1.6 shows the dilatation

versus temperature for an annealed maraging steel [19]. The heating rate was
4.4 K/s, and the 2 mm diameter wire was held at 1088 K for 2 hr and then
air cooled. The martensite-to-austenite transformation start and finish temper-

atures are 968 and 1008 K respectively. Likewise, the austenite-to-martensite

transformation start and finish temperatures are 473 and 373 K respectively.
The martensite-to-austenite dilatation strain change is -0.18% and the reverse
is 0.52%.

The phase transformation is a shearing process in a monocrystalline struc-

ture, but in a polycrystalline solid with a random orientation of crystal mi-

crostructure, the individual shearing displacements cancel, leaving a total trans-

formation strain which is predominantly dilatational. When maraging steel has



been cold worked, the phase transformation strains are anisotropic. Martensitic
transformations are temperature-dependent, and they occur by a diffusionless
shearing process [20]. The martensitic transformation has been classified as a
lattice distortive displacement [21]. Phase transformations occur because ther-
modynamic free energy differences between the two crystal structures become
large enough to drive a crystallographic change which lowers the energetic state
of the material [22][23]. "The kinetics and morphology during the transforma-
tion are dominated by strain energy" and lattice energies [21]. Applied stress
and magnetic fields can induce phase transformations by increasing the Gibb's
free energy difference [24]-[26]. For example, in Fe-22.5Ni-4Mn, stress and mag-
netic fields can raise the martensitic start temperature by approximately 1.0
K/Ksi of applied stress and 0.03 K/T of applied magnetic field.

When austenite transforms into martensite, the resulting martensitic mi-
crostructure is influenced by the austenite grain size and orientation and the ap-
plied temperatures and stresses. The structure of martensite in maraging steel
has been described as follows; "an austenite grain contains several packets which
consist of parallel laths, and each packet is made up of parallel blocks" [27][28]
The formation process of martensite has been studied using the Greninger-
Troiano heat treatment, and the following process is given. First, parallel laths
form in clusters, and they partition the austenite grain. As the transformation
progresses, new parallel laths form in the untransformed austenite regions un-
til each of the martensitic packets is completely transformed. The formation
of martensite laths occurs by independent nucleation within each packet. This
process is sketched in Figs. 1.7a-1.7c. The martensite laths are approximately
1 jim thick [29][30].

The transformation behavior of maraging steel depends on its microstruc-
ture which can change with each thermal cycle. Four thermal cycling variables
affect the microstructure and hence, the transformation behavior. They are
heating rate, peak temperature, time spent at the peak temperature and the
number of cycles. Two separate processes precede and influence the transforma-
tion from martensite to austenite. The first is aging and the second is austenite
reversion which peaks at 933 K [31]. These processes are time-dependent, so a
slow rate of heating will increase the precipitate sizes and the quantity of re-
verted austenite. The peak temperature and time spent at that temperature
are important, because at temperatures above 1008 K the higher concentrations
of nickel in the reverted austenite diffuse into the lower nickel concentrations



of transformed austenite. As the amount of reverted austenite increases, the

austenite start and finish temperatures increase and the martensite start tem-

perature decreases. Fig. 1.8 illustrates bow these temperatures change according

to the number of thermal cycles [19]. The heating rate in these curves is 300

to 500 K / s, and the solutionized specimens are immediately air cooled. When

the heating rate is increased, the number of thermal cycles necessary to change

the start and finish temperatures is also increased. Thus, under short pulse con-

ditions (heating rates greater than 10s K / s,) the phase transformation curves

are unlikely to change [32].

Anisotropic phase transformation strains are associated with prior cold

work in this material [30][33]. Two mechanisms are responsible for this behav-

ior. First, during a transformation when both phases are present, the martensite

is stronger, so plastic yielding in the softer austenite results in plastic strains

which affect the dilatometric behavior. Secondly, when maraging steel is cold

worked, there is an observable banding in the martensite structure. This band-

ing creates a preferred orientation for subsequent shearing transformation dis-

placements. In other words, an isotropic microstructure will give isotropic di-

latational transformation strains, but an anisotropic microstructure will yield

anisotropic transformation strains. Solutionizing does restore maraging steel to

an isotropic microstructure, eliminating any further anisotropic phase transfor-

mation strains.

Thermal cycling also affects the grain size, and this has a small effect

on the flow strength (discussed later in this Chapter.) It has been determined

from thermal gradient heat treatments that the grain size of maraging steel

can be refined by thermal cycling between the martensite and austenite phases

[20][34][35]. Phase transformations are crucial to this process since without

both transformations, the grain size refinement does not occur. It has been

observed that the martensite lath packets which form within old austenite grains

become the new austenite grains upon reheating. In a short pulse magnet, the

grain size will shrink because of phase transformations, and then grow at high

temperatures.

Aging and Solution Annealing

The recommended aging heat treatment for maraging steel is annealing

at 1255 K for 1 hr, air cooling to room temperature followed by aging for 4 hr



at 755 K [36]. A nitrogen atmosphere is used in the heat treatment to prevent

carburization, sulphurization, and oxidation [15]. Nitriding normally requires a

48 hr exposure at the aging temperature, so these phenomena are not significant

during aging. This heat treatment is used for the short pulse magnets and for

all of the experiment specimens. Fig. 1.9 shows the HV hardness versus aging

time for an 18% Ni maraging steel that was annealed at 1255 K. Aging increases

the tensile strength from 1170 to 2074 MPa. Increases in the aging temperature

cause the hardness to reach its peak value sooner. This is because aging is a

time-dependent diffusion process, where the diffusion coefficient increases with

temperature. At higher temperatures, the formation of nickel rich austenite

(austenite reversion) is significant, and this decreases the hardness.

The purpose of aging is to precipitate and grow fine Mo and Ti particles.

The aging reactions proceed as follows. The Co in the Fe-Ni matrix causes the
Mo to be finely dispersed in atom clusters [7][10]. Short-ordered Fe-Co regions

reject Ni, leading to Ni3 Mo precipitates. This precipitate forms along dislocation
lines [8], and the precipitate has been observed in annealed material [37]. This

is in agreement with the short incubation times observed, since Co acts as a

catalyst nucleating the precipitates [3]. The short-ordered Fe-Co (nickel lean)

regions are also favorable towards the formation of tetragonal FeTi precipitates.

The aging of these precipitates causes them to grow in size and to increase their

interparticle spacings.

In overaging, the strength decreases from its maximum value. Three differ-

ent processes are involved. First, there is the coarsening of NisMo and tetrago-

nal FeTi precipitates. Next, is the formation of large stable Fe 2 Mo precipitates,

and finally, there is austenite reversion. The NisMo and tetragonal FeTi pre-

cipitates are metastable [38], so they ultimately coarsen and dissolve back into

solution [10]. From Fig. 1.9, overaging happens after 100 hr at 755 K (900 F).

For most applications, the service temperature of maraging steel is less

than the aging and phase transformation temperatures, so these phenomena

are not important to any changes in the material. In the short pulse magnet

application, there are two different thermal cycling zones. The first zone (Zone

1) is at the inner radius and extends about 3 mm into the magnet. This zone
heats to a peak temperature of 1460 K in 250 pjs, cools to an intermediate

temperature of 690 K in 5 s, and then cools to 298 K in 15 min. The second

zone (Zone 2) extends from the middle of the magnet turn to the outer radius,



and its thermal cycle consists of heating to 690 K in 5 s followed by cooling
to room temperature in 15 min. Overaging is not significant during the 40
,4s Zone 1 spends at high temperatures in the martensite phase. In Zone 2
however, approximately 1 min per pulse is spent at 690 K, so time-dependent
aging processes have a detrimental effect on the material microstructure after
approximately 6000 pulses. Since the desired coil life is 1000 cycles, overaging is
not expected to play an important role in Zone 2. Between the two zones, there
is a small region where about 3 sec is spent at 900 K followed by 1 min at 690
K. Overaging in this region is significant after the first pulse.

For homogenizing, Teledyne Vasco recommends 30 min at 1090 K to en-
sure a homogeneous microstructure in the steel. When Zone 1 transforms to the
austenite phase, the change in microstructure is rapid. For example, solution-
izing for 5 min at 1033 K can reduce the room temperature strength of aged
steel from an HV hardness of 520 to 355 kg/mm2 . In Zone 1, the time spent at
temperatures greater than 1033 K is over 3 s per pulse. Thus, for this portion
of the magnet, the aged strength is solutionized after a minimum of 100 pulses;
even sooner than homogenizing. Micro-hardness measurements made on cross
sections of thermal cycling specimens and the short pulse magnet indicate that
significant solutionizing occurs in just 52 s (16 pulses). The peak cycling tem-
perature is greater than 1400 K, so without a doubt, thermal cycling to these
very high temperatures solutionizes the aged steel and reduces its strength.

Finally, there are the high temperature effects on grain boundary segrega-
tion. Intermediate holding temperatures between 1088 K and 1144 K for 1 to 2
hr cause a serious loss in fracture toughness as measured with Charpy V-notch
impact energies; from 91 to 9 N-m for annealed material, and from 26 to 4 N-m
for aged material [11]. The cause of this embrittlement is grain boundary segre-

gation of TiC precipitates. Maximum embrittlement occurs after 1 hr at 1144 K
[13]. Normally, the annealing process occurs at temperatures greater than 1144
K, and the Ti remains in solution. Upon cooling, if the rate is slow (-0.3 K/s),

the material becomes embrittled, and this is a concern to manufacturers when
dealing with large sections of maraging steel. The cooling rate of the short pulse
magnet in this temperature regime is -100 K/s, so grain boundary segregation
is not a significant phenomenon.



The Evolutionary Flow Strength of Maraging Steel

The flow strength of maraging steel depends on its chemical composition,

material phase, temperature, and dislocation structure. For strain reversals less

than 1 %, polarization of the dislocation structure is important. The mechanisms
which contribute to the strength of monocrystalline maraging steel are the lattice

and solution shear resistance -r.,, the precipitate shear resistance r7 and the

dislocation shear resistance rd. The flow strength s equals the Taylor factor

mT (3.1) times the total shear resistance -. plus a contribution from the grain

boundary resistance sb.

Tt = 7.,+ rp + rd (1.2)

S = mTrt + sb (1.3)

For room temperature, the tensile strength is apportioned in Table 1.3

among the mechanisms given in Eqs. 1.2 and 1.3 [39]. Each component of shear

resistance is given in terms of a flow strength variable s and is divided by the
tensile strength to show its relative magnitude.

The lattice and solution shear resistance T'., is the stress required to drive

a dislocation through a faultless crystal [40]. Maraging steel has a solute con-

centration of 33%, containing both interstitial and substitutional elements. The

solute atoms increase the dislocation resistance by creating differences in local

stress fields and in elastic moduli. The lattice and solution strength comprises

38% of the tensile strength.

The development of maraging steel was a direct result of an attempt by

R.F. Decker et al [9] to enhance the strength of iron nickel alloys through pre-

cipitation hardening. The magnitude of the precipitation hardening depends on

the precipitate width w, the volume fraction of precipitate fp, the precipitate

strength per unit width dK/dw, the shear modulus G, and the Burgers vector

b. The precipitation shear resistance for widely spaced precipitates of a single

species in the underaged condition, when dislocations cut through precipitates
is

dK\ \ 2



[41][42]. In the overaged condition, when dislocations bypass precipitates

S= G (fp)2. (1.5)

Eq. 1.4 predicts an increasing shear resistance as particle width grows and
precipitate volume fraction increases. Eq. 1.5 predicts a decrease in shear resis-
tance as the width grows, because the interparticle distance increases, allowing
dislocations to bow between the particles. The optimum particle width can be
found by equating Eq. 1.4 ýo 1.5, and solving for w. For maraging steel, the
precipitates of Mo and Ti contribute 51% of the total flow strength (Table 1.3.)

As plastic deformation by dislocation motion occurs in a material, the
density and distribution of dislocations change. Dislocations are generated under
an applied stress, and they are annihilated by dynamic and static recovery.
In general, during plastic deformation, the dislocation density increases, and
the stress required for further deformation increases. The dislocation shear
resistance rd is proportional to the square root of the dislocation density A:

rd oc Gb (1.6)

In Table 1.2 the flow strength contribution due to dislocation shear resistance is
assumed to be the difference between the tensile and yield strength, so the strain
hardening contribution to the tensile strength is only 4%. This estimate is low,

because of the initial dislocation density. The transformed martensite contains
fine elongated laths with high dislocation densities. The dislocation density of
aged maraging steel strained to 0.1 % is about 1011-1012 cm - 2 [43]. A high
density dislocation structure is one characteristic of martensite. Transformed
martensite begins with a high dislocation density and further strain hardening
does not increase the flow strength by as large a fraction as a material that

initially had a small dislocation density.

The grain boundary resistance contribution to the tensile strength is just

7%. For the martensite phase, the Hall-Petch equation shown below predicts the

change in yield strength with grain size [39]. This equation predicts a decrease
in yield strength ay, when the grain size g,, increases. The constants ao and kI

are respectively equal to 789 MPa and 4.74 MPa mmI for unaged material and
1850 MPa and 10.1 MPa mm" for aged material.

a, = 0o + k yegT (1.7)



In the austenite phase at high temperatures, reductions in grain size cause a

decrease in yield strength. This indicates that grain boundary sliding may be

significant [20]. Thus, the effect of grain size on the flow strength varies with

the material phase and deformation mechanism.

The flow strength of maraging steel changes significantly with different

thermal and loading histories. Several processes and mechanisms cause these

changes, and they have been identified and studied to determine their effects

on the flow strength. The important parameters defining an evolution of flow

strength are current stress o, flow strength s, temperature 0, martensite phase

volume fraction fM, precipitate width w, precipitate volume fraction fp and

dislocation density A. Eq. 1.9 shows the parameters which affect the evolution

of the four mechanisms mentioned in Eq. 1.2.

S= i (s, a, , fM, w, fp, A) (1.8)

S= t., (0, fM) + Ap (0, fM,w, fp, ) + Ad (s, a, 0, fM,fw, fp, A)+

ib (0, fM, w, f,) (1.9)

Additional evolutionary equations are needed for tb, j and A,, since these pa-

rameters also change with different thermal and mechanical loading histories.

To understand what parameters affect the evolution of flow strength, re-

turn to Eq. 1.2 and consider how this equation might be modified to satisfy the

entire solid temperature range. To simplify this discussion, it is assumed from

this point forward that the formation of low-nickel martensite and nickel-rich

austenite (austenite reversion), and grain boundary segregation are not signifi-

cant. Another assumption made here is to neglect the grain boundary sliding.

The dislocation shear resistance is not neglected because stress strain data in

the austenite regime shows that strain hardening represents a larger percentage

of the total flow strength than it does in the martensite regime.

The phase composition of maraging steel can be described in terms of the

volume fractions of martensite fM and austenite fA. Each of the flow strength

contributions of Eq. 1.2 depend on the material phase. For two phases, each

large compared to the mean free path of dislocations, homogeneous plasticity

holds and a rule of mixtures can be used to determine the composite flow strength

[44]. Under a non-hardening uniform strain condition, this strength represents

an upper bound approximation to the limit load. Using this approach, Eq. 1.2 is



rewritten below to include the martensite and austenite phases. The superscript

M and A on rt.s, rp and rd refer to martensite and austenite respectively.

1 = fM+ fA (1.10)
=fm ( eM + +MM) +(1- fW) (rA $- dA)

rt = fM( rM A+P " )+ (1i(-fM)('r+ :+r- ) (1.11)

The challenge then is to determine each term in Eq. 1.11 and calculate the flow

strength of maraging steel. The difficulty with this formulation is describing the

evolution of each component as a function of the parameters given in Eq. 1.9.

This study does not solve this problem, but it does use the general form of these

equations to approximate the flow strength.

For maraging steel, four processes are primarily responsible for changes

in flow strength: phase transformations, precipitation, diffusion and disloca-

tion structural changes. Temperature changes cause the martensite and austen-

ite phase transformations. The growth and dissolution of precipitates in the

martensite and austenite phases respectively is controlled by chemical reactions

and the diffusion of precipitate elements in the solid solution. Both processes are

time and temperature dependent. Applied stresses can cause plastic straining

which changes the dislocation structure and hence the flow strength through rd.

Temperature plays an additional role in the flow strength because it affects the

shear modulus G.

Material phase transformations affect the flow strength by changing the

material phase volume fraction, the dislocation density and the crystal structure

and hence the lattice friction, the shear modulus. Changes in precipitate size,

spacing, and volume fraction affect the precipitation shear resistance. These

changes occur by the second and third processes of precipitation and diffusion

of alloy elements. Depending on the temperature and the material phase which

surrounds the precipitate, the precipitate will either grow or shrink. The solu-

tionizing process is a complex process by which precipitates return into solution.

Studies of this behavior in maraging steel have not been found by this author and

may not exist. Predicting the evolution of precipitate shear resistance requires

a focused research effort into the chemical reactions and diffusion equations for

both the Mo and Ti precipitates. The heat treatment used in this study pro-

duces precipitates which give the maximum flow strength. Thus, any changes in

precipitate size decrease the flow strength. In the high temperature zone (Zone

1) of a short pulse magnet, the precipitates solutionize, and in the outer low



temperature zone (Zone 2) the precipitates overage. In both cases this leads to

a decrease in flow strength.

The fourth process which changes the flow strength is strain hardening.

The change in the dislocation shear resistance sd is commonly described by a

strain harden-iag product hiP. The strain hardening coefficient h depends on

temperature, material phase, precipitate width, precipitate volume fraction fP,
dislocation density A and the polarization of dislocations AP. Although Ap is

a tensor, with proportional loading the tensorial nature can be neglected. The

plastic strain rate iP is determined with a kinetic or flow equation which depends

on the total flow strength. The kinetic equation models metal deformation with

parameters similar to those given in Eq. 1.8. A kinetic equation for maraging

steel is proposed later in Chapter 2.

h - s (1.11)

h = h(, fM, w, fp, A, Ap) (1.12)

The mechanisms of strain hardening involve several competing phenomena. Dis-

location pileup, forest dislocations, and the pinning of dislocations on precipi-

tates lead to a positive strain hardening effect, while dynamic recovery, dislo-

cation climb, and other diffusion processes have a strain softening effect on the

flow strength.



Fracture and Fatigue Behavior

The fracture toughness of maraging steel is dependent on several factors.
First, the higher the grade of maraging steel, the lower its fracture toughness.
The Kic values are 100, 67 and 33 MNm- for the 250,300 and 350 grade (aged)
maraging steels respectively. The corresponding critical crack lengths for room
temperature at a working stress of half the yield strength are 3.8, 1.3 and 0.2
mm. Secondly, the steel in the annealed condition is more ductile than material
in the aged condition (the annealed and aged 300 grade fracture strains are
1.43 and 0.69 respectively). Third, the impact transition temperature range for
maraging steel is broad. The rise in Charpy V-notch work is gradual, going
from 8 J at 73 K up to 36 J at 473 K. The broad transition makes maraging
steel a useful material for low temperature applications. Fourth, the fracture
toughness is dependent on the production procedures used in manufacturing.
Improved fatigue lives are observed when the material is machined first and then
aged versus aging followed by machining. Lastly, still higher aging temperatures
improve the fracture toughness, but then the quantity of reverted austenite
decreases the tensile strength to a level comparable to that of a lower grade
maraging steel [45].

Observations of fracture surfaces reveal fatigue striations, tire tracks, frac-
tured or cleaved particles, and ductile rupture dimples [37][46]. The fatigue
striations are parallel to the crack front, and they have been used to measure
crack growth rates. Tire tracks are caused by a particle trapped between the two
fracture surfaces. As the surfaces move relative to one another, a particle indents
the surface creating a short row of parallel markings similar to tire tracks. The
intermetallic compounds are harder and tend to fracture or separate from the
surrounding matrix material. This explains the presence of tire tracks, caused
by a trapped loose particle. The matrix material is more ductile and cavities
form around the particles. These cavities appear as dimples when the fracture
surface separates them in half. Dimples have been observed for both the TiC
and Ni3 Mo precipitates.

For the 300 grade maraging steel, the endurance limits are 510 and 676
MPa (0.44 and 0.33 TS) for the annealed and aged conditions respectively. The
low ratio of endurance limit to tensile strength for the aged condition is at-
tributed to the extensive cyclic softening which is observed. Analysis of fatigue
crack tips reveals softening at the crack front for both the annealed and aged



conditions [47]. One theory for this phenomenon is that the dislocation structure

cyclically rearranges itself around the intermetallic precipitates, and this lowers

the material strength [48].

In 1973, a fatigue study of 300 grade maraging steel by Van Swam [43]

showed that the fatigue life can be predicted with the Coffin-Manson law or

Tomkin's theory, which uses the Paris law. The Coffin Manson law is in terms

of the fatigue life NI, the total strain range Ae, and the constants e' , a~, c and

b of Table 1.4.

S= e', (2Nf)c + a (2N)b (1.13)

The data for this equation are shown in Figs. 1.10 and 1.11 for the annealed

and aged conditions respectivtiy.

The Paris law shown below in Eq. 1.14 predicts crack growth as a func-

tion of the stress intensity factor range AK. Various researchers have reported

exponents -y which vary from 2 to 4 for aged 300 grade maraging steel [46][47].

Fig. 1.12 shows crack growth data from the work of Van Swam, and Table 1.4

contains the constants for Eq. 1.14:

dl = A(AK)' (1.14)
dN

Tomkin's theory uses cyclic stress strain data, a hypothetical initial crack

length, 7 = 2 in Eq. 1.14, and an endurance limit at AeP =10- 5 to predict

fatigue life. The theory ignores the time spent initiating cracks. It uses a simple

crack tip model and assumes the crack growth per cycle is related to the crack

tip opening displacement and the length of flow bands extending at 450 from the

crack front. Without detailing the derivation of Tomkin's theory [49][50], the

equations which predict the fatigue life Nf for either a plastic strain range AEP

or a stress range Aa are given with Eqs. 1.15 and 1.16. C and ~ are the cyclic

strength and exponent for Eq. 1.17, and Table 1.4 gives appropriate values for

the material constants in the annealed and aged condition. lo is the initial crack



length, and a value of 10 ym gives the best fit to experimental data (typical

grain sizes are about 50 jpm in diameter.) 1f is the final crack length.

1

[ 8 ls]
72NV/2- )0821+1 1) 8 ] (1.15)

AaN7 +=C[(23 + 2) r2-V (2 /3 )2,1 In]f (1.16)

where

Aa = C (AeP),3 (1.17)

This theory predicts endurance limits of 483 and 621 MPa for a plastic strain

amplitude of AeP = 10-s for annealed and aged maraging steel respectively.

These endurance limits are smaller than the observed values by 27 and 55 MPa

respectively.

In the high temperature austenite regime, the fracture toughness and the

fatigue behavior of maraging steel are unknown. The material microstructure
can change rapidly, and factors such as environment and thermal history have a

significant effect on fracture and fatigue. The high temperature fatigue results

of this thesis are reported in Chapter 6.

For the benefit of researchers looking for more information on maraging

steel, references [51]-[84] are additional papers which concern maraging steel.

These papers have contributed to the author's understanding of maraging steel;

those specifically relevant to this study have been mentioned above.

Conclusions

300 grade maraging steel is a complex very low carbon alloy steel with

a high tensile strength, 2070 MPa. Four alloy elements, Ni, Mo, Co and Ti

most affect its strength. The Ni causes the formation of martensite from the

austenite phase, and varying the Ni content changes the martensite and austenite

transformation temperatures. Annealed maraging steel is tough, and it has a

tensile strength of 1170 MPa. When the material is aged at 755 K, Mo combines

with Ni, and Ti probably combines with Fe to form precipitates in the martensite



phase. The precipitation and growth of these particles increases the tensile

strength.

In this study, the Poisson's ratio is assumed constant. Thermal expansion,

heat capacity, thermal conductivity, electrical resistivity and Young's modulus

are all approximated with functions of temperature.

The three processes which most affect the material behavior of maraging

steel under short pulse conditions are phase transformations, aging and solu-

tionizing. The magnet can be divided into two zones, where Zone 1 thermally

cycles to 1460 K and Zone 2 thermally cycles to 690 K. Phase transformations

and solutionizing occurs in Zone 1, and aging is the dominant process in Zone

2. Grain boundary segregation of TiC compounds and the formation of nickel

rich austenite (austenite reversion) are judged not to be significant in this ap-

plication.

Martensitic phase transformations are temperature dependent and diffu-

sionless. Strain energy dominates the kinetics and morphology of martensitic

phase transformations. Maraging steel transforms from austenite to martensite

beginning at 470 K and ending at 370 K. The transformation from martensite to

austenite starts at 970 K and is finished at 1010 K. Under rapid thermal cycling

conditions (b > 300 K/s), these temperatures are unlikely to change, and the

processes of aging and austenite reversion do not affect the phase transforma-

tion characteristics. In a single crystal, martensite phase transformations are a

shearing process, but in a polycrystalline material, the result of all the individual

shearing displacements is a predominately dilatational transformation strain of

approximately 0.25 %. If the microstructure becomes anisotropic through cold

working for example, then phase transformations strains are also anisotropic.

Maraging steel derives its name from the process of martensite aging. The

recommended heat treatment for maraging steel is annealing at 1255 K for 1

hr, air cooling to room temperature followed by aging at 755 K for 4 hr. We

used the 300 Grade maraging steel throughout this work. The material was

purchased from Teledyne Vasco in the annealed condition, and aged for 4 hr at

755 K in a nitrogen atmosphere. In the aging temperature regime (700 to 970

K), three material processes are responsible for overaging and a decrease in ma-

terial strength. They are growth and coarsening of Mo and Ti precipitates, the



formation of stable Fe2Mo precipitates and the formation of nickel rich austen-

ite and nickel lean martensite (austenite reversion.) In the high temperature
austenite regime, solutionizing causes the precipitates formed during the aging

process to diffuse back into solution. A 5 min exposure at 1033 K can reduce
the HV hardness from 520 to 355 kg/mm2

The large difference between the annealed and aged tensile strength shows

how significantly the flow strength can change. The flow strength depends on
chemical composition, material phase, temperature, and dislocation structure.

Four mechanisms contribute to the high tensile strength of maraging steel: lat-

tice and solution resistance 38 %, the precipitate resistance 51%, dislocation
resistance 4%, and the grain boundary resistance 7%. Four material processes

cause the flow strength to evolve: phase transformations, precipitation reactions,

diffusion, and plastic deformation. Using a rule of mixtures, an evolutionary flow
strength equation is proposed which could be used to model the flow strength
of maraging steel. To do so, evolutionary equations for the four strengthening

mechanisms are still needed.

Finally, the following results have been reported on the fracture and fa-

tigue properties of maraging steel at room temperature. The 300 grade steel
has a K1, value of 67 MNm- and a critical crack length of 0.69 mm. There is
a broad transition in the Charpy V-notch energy, going from 8 J at 73 K up to

36 J at 473 K. Fracture surfaces show tire tracks, cracked and cleaved precip-
itates and ductile rupture dimples. The endurance limits in the annealed and
aged condition are 510 and 676 MPa respectively. At room temperature, cyclic

softening occurs in both the annealed and aged steels. Tomkin's equations and

the Paris law are used to predict the fatigue life of maraging steel. The fracture
and fatigue properties of maraging steel in the austenite regime are unknown.



Table 1.1 Significant maraging steel processes for various temperature regimes.

Temperature

470 - 370 K
700 - 970 K
750 - 980 K

970 - 1010 K

1090 - 1140 K
1030 - 1500 K

Process

Austenite to martensite transformation

Aging
Austenite reversion from martensite
Martensite to austenite transformation

Grain boundary segregation
Solutionizing

Table 1.2 Material properties and functions for aged 300 grade maraging steel.

Density d = 8000 kg m-3 [14]

Poisson Ratio v = 0.3 [14]

Melting Temp. 0m =

Debye Temp.

Heat Capacity

1727-1755

Od = 421

J kg- 1 K-1

[14]

[14]

[14], Fig. 1.2

= 14.2 + 1.160

= 862

for 0 < 731K

for 8 > 731K

Thermal Conductivity W m- 1 K-1 [15], Fig. 1.3

K = 9.38 + 4.94 x 10-28 - 3.28 x 10-5 •2
K = 28.0

Electrical Resistivity 0t m

for 8 9 753K
for 0 > 753K

Fig. 1.4

p = 3.76 x 10 - 7 + 5.96 x 10-100 + 5.81 x 10-1402



Table 1.3 Tensile strength contributions for aged maraging steel at room tem-

perature [36], with sa = TS-YS.

Strength (MPa)

789.0
1061.0

78.0

146.0

2074.0

Percentage
of Total

38.0

51.0

4.0

7.0

100.0

Table 1.4 Fatigue behavior constants for annealed and aged maraging steel.

Annealed

b

ct"

fI

o,'/ l

-0.045

-0.85
2.4

0.78

0.09

380

2500
10

MPa

pmli~n
irnl

Aged

-0.090
-0.75

1.3

1.15

0.11

610
2500

10

MPa

1tIn

2.03

1.79x10-10 mn/c (MPa m2 )I

SI .,

Sp

sb

Total
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Fig. 1.1 Fe-Ni transformation diagram [9].

1200 K

1000

800

600

400

200



500 1000

Temperature (K)

Fig. 1.2 Heat capacity versus temperature LC I.

1000

800

600

400

C)

200

0
0 1500



y/ J

+/

/

I I I - A I

500

Temperature

1000 1500

(K)

Fig. 1.3 Thermal conductivity versus temperature [151.

30

25

20

15

10

5

001
L · 1 L · i I I I

i
I

I 1 I



1.5

1.0

0.5

0 500 1000

Temperature (K)

Fig. 1.4 Electrical resistivity versus temperature.
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Fig. 1.6 Dilatometric heating and cooling curve for 300 grade
maraging steel initially in the annealed martensitic conditions. Spec-
imen was heated at 4.4 C/s from 25 to 815 C. and then air cooled C193.

C

c

0

z
0
z
0.

'C



Fig. 1.7a

Fig. 1.7b

Packets form inside

austenite grain.

Blocks of martensite laths

form within austenite packets.

0
Fig. 1.7c Complete transformation to

martensite from austenite.
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Fig. 1.8 Effect of the number of thermal cycles between ambi-

ent temperature and 815 C on the dilatometric heating and cooling

curves. The resistance-heated wire specimen, initially in the annealed
martensitic maraging steel initially in the annealed martensitic con-
ditions, was heated at 300 to 500 C/s and air cooled for each cycle
[16].
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Fig. 1.9 Effect of maraging on Vicker's hardness of 18% Ni
steel. Initially annealed at 1800 F [33].
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Chapter 2

Material Testing and Modelling

The purpose of the material tests performed in this thesis was to study
the strength of maraging steel at temperatures above 755 K, where there have

only been a few studies [1]. Above 755 K, the strength decreases rapidly with

temperature, and plastic strain rate effects are important. The expected service

temperature regime is between 298 and 1500 K with plastic strain rates which

vary from 10-6 - 102 s - 1 and for plastic strains less than 2 %. Two different
plastic strain rate equations (kinetic equation) were developed. The first one is

phenomenological, and it uses an over-stress formulation with equations similar

to Eqs. 1.10 and 1.11. The second kinetic equation combines an Arrhenius
rate equation with a power law stress function to estimate the plastic strain

rate. The phenomenological rate equation is best for the testing regime while

the Arrhenius rate equation makes the best extrapolations outside the testing

regime.

This chapter will study monotonic and cyclic strain hardening behavior.

In addition, the effects of phase transformations on strain hardening are inves-
tigated. Finally, using data obtained from the work of A. Goldberg on phase

transformations in maraging steel [2][3], a model which can predict the combined

thermal expansion and phase transformation strain over a temperature range of
298 to 1500 K is proposed.

Tensile Tests

The material tests cover a temperature range of 773 to 1083 K at plastic
strain rates between 10-6 - 10- 2 s- 1 and for plastic strains EP less than 2 %. The

tensile tests were conducted on an Instron Tensile Machine (Model # TCM1.6.)
Fig. 2.1 shows the experimental setup, and Fig. 2.2 the dimensions of the
specimens. The data output from this machine is a strip chart recording of
force versus time. The applied crosshead displacement speed is vc. In the elastic
regime, approximately . of the crosshead displacement occurred in the specimen,

and the rest was in the specimen holder. The specimens were placed into a hot
resistance heater that surrounded the specimen, and a thermocouple was placed
next to the specimen to provide feedback to the heater. The maximum heater



temperature was 1123 K. There was a waiting period of approximately 5 to 10

min before each test began. The temperature variation during the tests was

approximately ± 3K.

There were no strain gages or extensometers attached to the specimens.

The engineering strain e was determined by integrating the output data. P,Lo,

CMach and t are time rate of change of force, original specimen gage length,

machine compliance and time respectively.

E = (vC -PCMach) dt (2.1)

The machine compliance (CMGch % 0.2 m/MN) is found from the slope of the

force versus total displacement curve in the elastic regime 0, the original speci-

men cross sectional area Ao and the Young's modulus E.

CMach = (tan)-1- Lo (2.2)
AoE

From these tests, an "elastic limit" strength at 0.01 % offset, the 0.2%

offset yield strength, the tensile strength and strain, and the fracture strain

were obtained for various temperatures and plastic strain rates (Table 2.1).

Engineering stresses and strains are used in Table 2.1, and the plastic strain

rates are given at the elastic limit strength. Tests results obtained at a crosshead

speed of 20 in/min were discarded because the recording pen was not fast enough

to record the peak forces reached during the .ests. The strain hardening data

obtained from these tests was unreliable due to a large machine compliance and

local variations in the slope of the load.

Four observations can be made from an examination of the data in Table

2.1. As temperature increases, the material strength decreases for similar plastic

strain rates. For a given temperature, increases in the plastic strain rate result

in higher strengths. The influence of plastic strain rate on strength is less at

773 K than it is at higher temperatures. Finally, the uniform strain (at tensile

strength) and fracture strains for most of the data increase as the plastic strain

rate decreases.

Fig. 2.3 shows the 0.2 % offset yield strength data versus temperature.

Included in this plot are yield strengths obtained from a literature search (see



Table 2.2) [4]-[6]. The large decrease in strength from 600 to 900 K is centered at

a temperature approximately 200 K less than the martensite to austenite phase

transformation temperature. Overaging contributes the most to this reduction

in strength. For tests conducted at temperatures above the austenite start

temperature (970 K), solutionizing will contribute to a decrease in strength.

The tensile test data covers a broad range of temperatures and material

microstructures. This is especially true in the high temperature regime tested in

this work. It took approximately 5 min to heat and prepare a specimen for tensile

testing, and during this time the microstructure was changing. Depending on the

crosshead velocity, the test times varied from 1 to 30 min. Below are estimates

of the material condition in the specimens at each of the five test temperatures.

773 K For all temperatures less than or equal to 773 K, the material is in the aged

condition, and its strength near room temperature is still near peak.

873 K The material is slightly overaged for the large strain rate tests (still near

optimum strength) and overaged for the smaller strain rate tests.

923 K At this temperature, overaging is significant, and there is some austenite
reversion.

983 K The material has mixed material phases at this temperature, and the pre-

cipitates are overaging and solutionizing.

1083 K The steel is entirely in the austenite phase and precipitates are dissolving

back into solution.

For temperatures less than 800 K, the test data is for aged maraging steel,

while at temperatures above 1010 K, the test data is for solutionized maraging

steel. While the tensile tests provide important data on the strength of maraging
steel at various strain rates; they fail to provide information about the evolu-

tion of material phase and microstructure. So, the material test data is used to

model the material strength in the magnet with the following assumptions and

conditions. In the previous Chapter, two thermal cycling zones were described.

In the first zone, temperatures peaked at 1450 K in 250 ps, cooled to 690 K in

5 s and then slowly cooled to room temperature in 15 min. In the second zone,
the temperature peaked at 690 K in 5 and slowly cooled to room temperature.



Initially, the materiEd in the magnet is entirely in the aged condition. Eventu-

ally, the material in Zone 1 becomes solutionized, while the material in Zone

2 is slightly overaged. The tensile test data are used here to approximate the

material strength of th-t magnet for these two zones under the condition that

the material in Zone 1 is solutionized but does not evolve, and the material in

Zone 2 is slightly overaged. In addition, for temperatures less than 800 K the

material strength in Zone 1 is approximated by the strength of aged material

(an overestimate.) This overestimate of strength occurs when the magnet is

heating up and cooling down. The strength of material between the two zones

is approximated by test data at 923 and 983 K.

Kinetic Equations

In the previous Chapter, relationships between plastic strain rate and flow

strength were not discussed. However, the rate of plastic deformation is related

to the applied stress. For the range of temperatures studied in this thesis, plastic

strain rate effects have a significant influence on the flow strength. A kinetic

equation relates the rate of plastic straining to the applied stress at a given

temperature and microstructure.

In this work, the uniaxial stress strain data is used to model the strength

of maraging steel. For the short pulse magnet, its mechanical behavior is nearly

unidirectional; the largest stresses and plastic strain increments occur in the

the hoop direction. A three dimensional formulation is required to model the

electromagnetic and thermal loads. The short pulse magnet deformation be-

havior is also cyclic. The cyclic stress strain behavior of maraging steel shows

a significant Bauschinger effect. A kinematic plasticity formulation is used to

model this behavior. The equation shown below describes the variables which

define the kinetic equations used in this thesis. Sij is the deviatoric stress. flij

is the back stress, and ISij - Sij I| is the equivalent effective stress (IISij - 1ij |
is defined with Eq. 3.29 in Chapter 3)

P = P (I|sij - fij 1|, 0, 8) (2.3)

Before specific forms of the kinetic equation are selected and modeled,

some comments about the change in strain rate effects with temperature are

necessary. Strain rate effects have been observed and measured for maraging



steel at cryogenic and room temperatures [7]. When the strain rate at room
temperature is increased by a factor of 1000, the yield strength is increased by
just 7% , while at 983 K, increasing the plastic strain rate from 9.1 x 10-6 to
1.0 x 10- 2 s- 1 (a factor of 1100) causes the elastic limit strength to increase
270%. The strain rate sensitivity ( d Ini / d In" ) is of the order of 100 between
room temperature and 773 K and of the order of 10 between 873 to 1083 K (see
Table 2.2).

Phenomenological Rate Equation

In the previous chapter, flow strength equations (Eq. 1.3-1.12) were pro-
posed to model the strength of maraging steel. The general form of those equa-
tions can now be used to formulate new equations which approximate the flow
strength based upon the tensile test data. What follows is a step by step de-
scription of how Eq. 1.11 can be modified to form a new flow strength formula.
Using Eq. 1.3, the flow strength is rewritten below using flow strength terms
(Eq. 1.11.)

s= fM(M ( +sM +s)+(1- _fM)(s+s + SA+ ) (2.4)

The first step is to remove the dislocation strength term sd from Eq. 2.4.
A back stress ,ij would model dislocation polarization and a limited amount
of strain hardening; omitting it and sd means that this process is not ade-
quately accounted for in this formulation. Next, the solution and lattice flow
strength contributions and the precipitation flow strength contributions for both
the martensite and austenite phases are replaced with linear approximations to
the temperature effect with the resulting assumption that the precipitate flow
strength is static and does not evolve. This assumption is valid in maraging
steel, so long as the precipitates do not change in size, spacing or volume frac-
tion. As expected, the martensite solution, lattice and precipitation strength
constant sl from the tensile data is larger than the austenite constant s2 (see
Table 2.3.)

8 = fM (sl + S80) + (1 - fM) (s2 + s.0) (2.5)

The s3 constant gives this equation a small negative strength versus temperature
slope. The same s3 constant is used for both the martensitic and austenitic



terms because this assumption results in a more "well behaved" strength formula

(different constants were tried, but this led to unrealistic strength predictions).

The final change made to this formula (Eq. 2.5) affects the martensite
volume fraction variable fM. Upon heating from room temperature into the
austenite temperature regime, this variable changes from 1 at 970 K to 0 at
1010 K. This change is centered at 990 K and occurs over a temperature span

of just 40 K. The tensile test results suggest the flow strength decreases over a
broader temperature range which is centered at a lower temperature. For this
reason, fM is replaced by a thermal variable fe (Eqs. 2.6 and 2.7.) 80 and no

are material constants. The fe variable goes from 0.99 at 370 K to 0.01 at 1030
K. An exponential function was selected for fe, because it gives a continuous
and smooth change in value over a relatively small temperature range:

s = fe (sl + s30) + (1 - fe) (s2 + s3), (2.6)

where

fe = ezxp , (2.7)

Eq. 2.6 is the flow strength formula developed for the phenomenological
rate equation. This flow strength equation does not depend on the plastic strain
rate, while the tensile test data clearly shows a strong plastic strain rate depen-

dence. In that context, the flow strength formula for s (Eq. 2.6) will now be
called the threshold or initial yield strength, and is defined at a plastic strain
offset of 0.01 % and a plastic strain rate of 1 x 10- s s- ' [8][9]. For equivalent

effective stresses less than s, the plastic strain rate is zero, and for effective
stresses greater than s, a kinetic equation determines the resulting plastic strain
rate. The evolution of s is not modeled.

In Fig. 2.3, a curve is drawn beneath the yield strength data. This curve
is the threshold strength function. The material constants sl, 2, s , 00 and no

were determined using a least squares data fit to the estimated threshold strength

at each of the tensile test temperatures (Table 2.3.). The estimated threshold
strengths were determined by extrapolating the elastic limit strengths down to

a plastic strain rate of 1 x 10-8 s- 1. Thus, the threshold strength function is
beneath most of the data points in Fig. 2.3 because of strain hardening and
plastic strain rate effects.



Three forms for the phenomenological rate (kinetic) equation were exam-
ined for this formulation, a power law, an exponential and an hyperbolic sine
function [10]-[15]. The simpler power law formula is used in this study, because
of the three it best approximated the tensile data. The phenomenological kinetic
equation is shown below in Eqs. 2.9 and 2.10. ip and niv are material constants.

ip = 0 For ISij - 1ijIJ < (2.8)

p= i(( i 1)1 -f:For Si i| > s (2.9)0((S2 - Sl) (1 - f&)

As mentioned before, plastic strain rate effects are most important in the high

temperature regime and less so at temperatures less than 800 K. This observation

is used in the formulation of Eq. 2.9. Rearranging Eq. 2.9 for the equivalent

effective stress shows that the plastic strain rate affects the equivalent effective

stress in the high temperature regime only: low temperature (martensite) strain

rate effects are neglected in this treatment.

During a tensile test of virgin material, the back stress 0fij is initially zero

and increases as the stress aij increases. It is assumed that flij = 0 and Lij, # 0
at the elastic limit strength. Thus, at the elastic limit strength aij and iP are
known. Since the elastic limit strength is defined in this model at a plastic strain
of 0.01%, the plastic strain rate is non zero for this elastic limit strength. The
material constants for Eq. 2.10 are found by performing a least squares data
fit with the elastic limit strength and plastic strain rate data with the results
shown in Table 2.3. Fig. 2.4 shows the elastic limit strengths predicted by Eq.
2.10 plotted with the tensile test data. The average error between the data and
Eq. 2.10 is 15%.

Although the fit of the elastic limit strength data to the curves is not exact,
it is sufficiently close to conclude that Eqs. 2.6, 2.7 and 2.10 adequately predict
the elastic limit strengths in the temperature, plastic strain (1 %) and plastic
strain rate regimes tested. There are two objectives motivating this analysis
of the test data. First, the large drop in flow strength centered around 800 K
must be modeled with a smooth and continuous function. Secondly, the kinetic
equation should give reasonable extrapolations for the plastic strain rate outside



the testing temperature regime. The phenomenological rate equation satisfies
the first objective, but its extrapolations of plastic strain rate outside the testing
temperature regime are smaller than expected.

Arrhenius Rate Equation

In the development of the phenomenological rate equation, very little of
the "physics" of plastic deformation at high temperatures was incorporated into
the equations. At high temperatures (0/0m > 0.5,) the effect of thermal acti-
vation on the motion of dislocations is fundamental. In the high temperature
regime, increases in temperature lower the equivalent effective stress necessary
for plastic straining. This relationship is not predicted by the phenomenological
rate equation. The kinetic equation shown below captures this effect. Ah is a
stress dependent activation energy, and R is the universal gas constant. i P, ao
and nip are material constants.

ip _= -,o el p ,,o (2.11)
G RO

There are four main features to this Arrhenius rate equation. First, an

Arrhenius term exp(-Ah/RO) is included in the equation to model thermal

activation energy effects on the plastic strain rate. Secondly, the activation

energy Ah is a function of stress. Third, the plastic strain rate is a function

of the equivalent effective stress raised to the power 1/nj,. This exponent is

often a function of temperature, but this dependence was not studied. Lastly,

the plastic strain rate is also a function of the shear modulus G. In other words,

the flow strength is proportional to the shear modulus (see Eqs. 1.4 - 1.6.)

Fitting the experimental data to the Arrhenius rate equation is accom-

plished in two steps. For the first step, at constant stress Ah is assumed con-

stant, and a least squares data fit is performed on Eq. 2.11 to determine Aho,

nip and 4J. These constants are given in Table 2.4. For the second step, data
from literature is used to analyze the change in activation with stress. Since the

elastic limit strength and the plastic strain rate are not given in most published

data, the yield strength is used for the elastic limit strength and a plastic strain

rate of 10- 4 s-1 is assumed. Using Ah versus a data, a line is fitted to the data



points, and the stress ao at zero activation energy is calculated. Then, a poly-
nomial function of stress is used to model the activation energy. The constants
A, B, nl, n 2 and o• are contained in Table 2.4, and the evolution of Oyij is given
by Eq. 2.14 below.

Ah=Aho f IIS(2.12)

f(IJSij-iI) =1+A IIsij - iI + B -+( i I n2 (2.13)
o1o  ro 010

Fig. 2.5 shows the stress versus activation energy data and Eq. 2.12. The

average error between the calculated and predicted activation energies is 7 %.
An activation energy of 223 kJ/mole is reasonable, since the self diffusion energy

for Fe varies between 239 and 270 kJ/mole for temperatures between room

temperature and 1650 K, and the self diffusion energy for Ni is 284 kJ/mole

[16].

Finally, it is possible to compare the experimental data to predictions
made by the Arrhenius rate equation. Fig. 2.6 shows the strength predictions

at the five test temperatures. The average error between the data points and the
predicted strengths is 14 %. The strengths predicted with the Arrhenius kinetic

equation at 773 K are too low for plastic strain rates less than 10-S s-3, but
it gives more realistic predictions of strength than the phenomenological kinetic

equation at 1083 K and higher.

Figs. 2.7 and 2.8 compare the elastic limit strengths predicted by the phe-
nomenological rate equation and the Arrhenius rate equation. Fig 2.7 shows the

strengths and weaknesses of these two equations. At 773 K, the phenomeno-
logical rate equation makes a better prediction of strength than the Arrhenius

rate equation, while at 1400 K, the Arrhenius rate equation makes a smaller and
more likely prediction of strength. In Fig. 2.8, the variation of strength with
temperature at constant plastic strain rate shows that Arrhenius rate equation
gives more conservative predictions of strength than the phenomenological rate

equation.

Cyclic Fatigue Tests

Four cyclic fatigue tests (,min/u,ma = -1) at 873, 873, 973 and 1073

K provided important cyclic strain hardening and low cycle fatigue data. The



plastic strain range of interest is less than 1.0%. Table 2.6 lists the conditions
and results of these tests. A discussion of the fatigue results is postponed until
Chapter 6. For these tests, an 810 MTS machine was used. These tests were
carried out by a fellow graduate student Glen Romanoski, and a more detailed

description of this experimental setup can be found in [17]. Fig. 2.9 details the

dimensions of the test specimens. Strain in the specimen was measured with

ceramic extensometer probes. The specimens were heated with an induction

heater, and a thermocouple spot welded to the specimen provided feedback to

the induction heater. Temperature variations in these tests were approximately

± 1K, and the temperature variation along the gage section was about 3 K/mm.
Feedback from the extensometry allowed the tests to be performed at a constant
strain rate.

The first cycle of the cyclic stress strain test data (Figs. 2.10a to 2.10d)
reveals the following observations. The Bauschinger effect is present during
cyclic straining, and the amount of strain hardening decreases with increasing

temperature. The shape of the first quarter cycle (monotonic) of the cyclic

stress strain curve is similar to the "halved" tip-to-tip cyclic stress strain curve

(described later below). The first half of the low cycle fatigue life exhibits

neither cyclic strain hardening nor softening, beyond the first quarter cycle (the

cyclic curves which followed Figs. 2.10a-d did not significantly change). The

Bauschinger effect was an expected observation, but the lack of cyclic strain
softening at high temperatures (maraging steel shows cyclically softens at room
temperature) was not. The lack of cyclic strain hardening or softening exists

over at least a 200 K temperature range.

For this work, the plastic straining is uniaxial and cyclic. The dislocation

flow strength is modeled with a kinematic back stress or rest stress tensor 21ij,
and the evolution of back stress is proportional to hoi (see also [18]-[20]).

fiý =2 /Ah 0j (2.14)

It is worth mentioning here that for small strains (less than 1 %) Oij is more

associated with moving the easy parts of a dislocation distribution, and that at

larger strains flij is for monotonic (isotropic) strain hardening. The parameters

governing the evolution of the strain hardening coefficient h were discussed in

the last chapter (Eqs. 1.11-1.12). The next section describes equations used to

approximate this coefficient under uniaxial cyclic conditions.



Monotonic Strain Hardening

Fig. 2.11 shows the monotonic (first quarter cycle) stress strain curves at

the three different test temperatures. Clearly more strain hardening occurs at

the lower temperatures. While it is possible to model strain hardening as a func-
tion of temperature and plastic strain for these three curves, complex thermo

plastic loading histories present several problems. For instance, plastic defor-

mation at 873 K can substantially increase the flow strength, but subsequent
deformation at 1073 K would likely be dominated by dynamic recovery mecha-
nisms resulting in softening. Thus, determining the strain hardening coefficient

h is a complex problem which requires extensive testing and modelling to make
predictions for complex thermal loading histories.

For this work, the following assumptions have been made. First, a strain
hardening coefficient for a monotonic stress strain curve, hm, is explicitly defined

in terms of the monotonic plastic strain eP and three material constants ho, ep

and nh.

hm = ho 1 + m(2.15)

This function was selected because it initially predicts a high strain hardening

coefficient, but as the plastic strain increases, the coefficient goes to zero strain
hardening (caused by dynamic recovery). This assumption means the change in
flow strength due to plastic straining is a predetermined function of the plastic

strain EP . The function is fitted to the plastic strain hardening data obtained at
1073 K. This particular data was selected because it has the smallest amount of
strain hardening. This in turn increases the magnitude of the plastic straining

and should lead to conservative estimates of material life. The constants are

given in Table 2.6.

Cyclic Strain Hardening

Next, it is assumed the strain hardening behavior of maraging steel can be
divided into two modes, monotonic and cyclic hardening. The next assumptions
make use of the similarity between the monotonic stress strain curve and the
tip-to-tip cyclic stress strain curve. As an example, consider the cyclic stress
curve shown in Fig 2.10d and redrawn in Fig. 2.12a. If the top cyclic stress
strain curve CB is translated to the origin and scaled by a factor of 1/2 on both



axes, then the resulting dashed curve C'B' in Fig. 2.12b is very similar to the
monotonic curve AB. Two conclusions are made from this observation. The size
of the cyclic elastic regime is twice the size of the monotonic elastic regime, and

the cyclic hardening coefficient he should predict twice as much hardening as

the monotonic hardening coefficient at twice the monotonic plastic strain. This
relationship is enough to define the following equation for the cyclic hardening

coefficient. The variable eP is the plastic strain since reversal.

P( -(nh+l)
he = ho 1 + 25(2.16)

To evaluate Eqs. 2.15 and 2.16, eP and el must be determined. Ini-

tially, monotonic behavior is assumed and e equals zero. During monotonic
deformation, the plastic strain rate &P equals the monotonic plastic strain rate
v1.

e6 =0 (2.17)
t=O

gP = p  (2.18)

So, during monotonic hardening, iP is integrated to determine eP and then this

is used to calculate hm.

For cyclic behavior, a special set of rules is constructed to evaluate he.

A maximum stress method is proposed here to differentiate between cyclic and

monotonic strain hardening. When the back stress equals or exceeds the previous
maximum magnitude of back stress f~,,, (determined from an integration of Eq.
2.14 and 2.15 from 0 to 4n), monotonic strain hardening is assumed, otherwise

cyclic hardening is assumed. When the direction of plastic straining reverses, ec
is set to to zero. During cyclic strain hardening, the plastic strain rate iP equals

the cyclic plastic strain rate ki.

~i = gp (2.19)

So, during cyclic hardening, if is integrated to determine ef, and then this

is used to calculate h,. Fig. 2.13 depicts eP and ef during the first cycle of
deformation. Between points A and B, monotonic hardening occurs and e~ goes
from zero to e . Between B and C, cyclic hardening occurs and eP goes from



zero to IEP - E . Finally, between C and D, there is cyclic hardening, and eP
goes from zero to Ie -ep•. The details describing the calculation of h, and hc
are given in Appendix C.

Finally, Figs. 2.14a-2.14d show the cyclic stress strain data and the curves
predicting their behavior (the predicted curves were generated by a finite ele-
ment analysis of a single element using the material strength models described
here; the implementation of these models is given in the next chapter). The
phenomenological rate equation is used for the "predicted" phenomenologi-
cal curves. The predicted elastic limit strengths are approximately 150 MPa
greater than the elastic limit strengths measured in these tests. The elastic
limit strengths predicted from the Arrhenius rate equation are also about 150
MPa larger than the measured strengths. Fig. 2.15 compares the predicted
room temperature behavior and data obtained by Van Swam [21].

Phase Transformation Recovery

Two additional material strength tests were performed under strain control
at 1073 and 973 K to determine the effect of phase transformations on the flow
strength. In the first test (Fig. 2.16a) the tensile specimen was heated to
1073 K (13.3 K/s), loaded to 0.31% plastic strain, unloaded, cooled to room
temperature (-3.3 K/s), reheated to 1073 K, and held for approximately 10 min
while the extensometry was recalibrated. Thus, the tensile specimen underwent
two phase transformations. The stress-strain slopes were smaller than expected
(Young's modulus of 13 versus 17 GPa), and we have not been able to explain
this. Reloading to 0.7% total strain showed some of the initial hardening to
remain since the previou.s stress level was attained after only 0.14% rather than
0.31 % plastic strain. There is also a Bauschinger effect on reloading.

The second test was the same as the first test but at 973 K. In this test,
the heating portion of the thermal cycling consisted of heating to 1073 K (about
1 min), to ensure a complete transformation from martensite to austenite, and
then cooling to 973 K (also about 1 min). The first reloading showed more
hardening (same elastic limit) than at 1073 K; as if there had not been phase
transformations. After the second unloading (Fig. 2.16b), the specimen was
thermally cycled for a second time. The next loading was done in compression to
determine the Bauschinger effect. The specimen had plastically strained a total
of 0.53% to achieve a stress level of 600 MPa, but upon reverse loading it took



0.49% reverse plastic strain to attain -600 MPa. These two strains are nearly the

same, between isotropic and kinematic hardening. The reversed loading shows a

Bauschinger effect reduced by a factor of about 2. Thus, phase transformations

from austenite to martensite and back to austenite did not entirely eliminate

the accumulated strain hardening in the specimen, and Bauschinger effects are
reduced.

Other factors such as austenite reversion, grain boundary segregation, and

solutionizing all may have influenced the flow strength during thermal cycling.

When modelling the cyclic thermal behavior of maraging steel, it is assumed

that phase transformations do not alter the strain hardening contribution to the

flow strength. Figs. 2.16a and 2.16b show the stress strain results from these

tests along with the predicted curves.

Phase Transformation Modeling

Modeling phase transformation straining requires several simplifying as-

sumptions. The first assumptions concern the nature of phase transformations

in a short pulse magnet application. The second set of assumptions deal with

the linearization of phase transformation behavior.

For an initially homogeneous, polycrystalline microstructure in maraging

steel, just dilatational phase transformation straining can be assumed (no distor-

tional shear straining). In a short pulse magnet, the heating rate is extremely

rapid, and an inner portion of the coil (Zone 1) is thermally cycled to tem-

peratures greater than 968 K. In this zone aging and austenite reversion are

insignificant, and the dilatation versus temperature curves are independent of

the number of thermal cycles (see Chapter 1). Similarly, it is assumed that so-

lutionizing, applied stress and magnetic fields do not affect the transformation

curves (also see Chapter 1).

It is assumed here that the thermal expansion and transformation strains

can be approximated with linear functions of temperature and material phase

(Fig. 2.17). Next, an assumption is made about the transformation behavior

when thermal cycling results in partially transformed material. Under these cir-

cumstances, new austenite and martensite transformation starting temperatures

are interpolated using the intermediate phase composition. These new starting

temperatures are determined with a linear scaling between the untransformed



start temperature and the completely transformed finish temperature, as shown

in Fig. 2.18 for transformation between austenite and martensite.

The combined thermal expansion and phase transformation strain et, has

an important influence on mechanical behavior. The evolution of et is a function

of temperature 0, rate of temperature change 0 and the material phase volume

fraction fM as shown in Eq. 2.20.

it= i (00,fm) (2.20)

Predictions for et have been divided into the three temperature regimes

(Fig. 2.19). In the first and third regime a linear function of temperature is

adequate for et, but in the second regime, a temperature and phase-dependent

interpolation function hi, discussed below, is used to determine et. Fig. 2.19

graphically shows and Table 2.7 gives values for the 7 thermal expansion and

phase transformation constants aM, aA, A., OA, MOA, , OM, and eo needed

to define the thermal cycling. 80 is the reference temperature for a thermally

stress free structure, and et are the combined thermal expansion and phase

transformation strains for each of the interpolation functions.

Ct = aM (0 - 0o) 0 < OM, (2.21)

4

t = hit, OM, <0 •< OA, (2.22)
i=1

et = EA (0 - B0) - EC B > OA, (2.23)

The interpolation function can be visualized in Fig. 2.20 as a 4 node

finite element. Nodes 1 and 2 correspond to the martensite finish and austenite

start temperatures and strains respectively, where the material phase is entirely

martens.ic. Likewise, Nodes 3 and 4 are the austenite finish and martensite start

temperatures and strains, where the material phase is entirely austenitic. The

two interpolation variables are material phase X and a normalized transformation



temperature variable r. For the martensitic and austenitic phases, X is 1 and -1
respectively, Definitions for hi, X and r are given below.

h = (1 - r) (1 + x) / 4

h2 = (1 + r) (1 + X) /4

h3 = (1 + r) (1 - X) /4

h4 = (1 - r) (1 - X) / 4

(2.24a)(2.24c)

(2.24b)(2.24d)

x = 2f, - 1

(20 - OA. - oM,) + ( M) (OM. - oM 6 - OA. + ,A)
(OA. - oM,) + ( M) (•M. - oM, + A. - OA,)

(2.25)

(2.26)

Thus, for a given temperature and material phase composition f,, it is
possible to determine et. However, in the second regime, fM changes with
time, so an evolution equation for this variable is necessary. Based upon the
assumptions already mentioned, a change in material phase only occurs when r
equals -1 or 1. Eqs. 2.27 and 2.28 define ; for these two cases.

When r = 1 and 0 > 0 then

(2.27)

When r = -1 and 6 < 0 then

(1 -X) .
(OM" - eu,) (2.28)

Otherwise

(2.29)

Conclusions

Tensile tests were performed on maraging steel to determine its strength

at temperatures above 755 K and at plastic strain rates which varied from 10-6

to 10- 2 s - 1. From these tests, the following conclusions are drawn.

+ (1X) 8
ýOf - OA.)



1. As temperature increases, there is a large decrease in its strength from 2000
MPa at 300 K to approximately 200 MPa at 1100 K.

2. Plastic strain rate effects are more important at high temperatures than
at low temperatures; the strain rate sensitivity (d lni / d Ina) is of order
100 between room temperature and 773 K and of order 10 between 873 and
1083 K.

3. In general, as temperature increases and plastic strain rates decrease, the
fracture strain increases.

4. The decrease in strength is centered at a temperature 200 K lower than the
martensite-to-austenite transformation temperatures.

5. The material strength data taken at temperatures less than 900 K is for
material in the aged condition, while for temperatures greater than 1010 K,
the material strength data is for solutionized maraging steel.

Two kinetic equations are proposed to model the plastic strain rate behav-
ior of maraging steel over a temperature range of 298 to 1500 K. These equations
must predict the large drop in strength observed at 900 K, and also give reason-
able extrapolations of plastic strain rate for temperatures above 1083 K. The
first kinetic equation is phenomenological, and it best predicts the decrease in
strength at 900 K. This equation is based upon the flow strength formulation
proposed in Chapter 1, and it uses an over-stress power law to predict the plas-
tic strain rate. The second kinetic equation combines an Arrhenius activation
energy function with a power law stress function. This kinetic equation best
approximates the plastic strain rates outside the testing temperature regime.

Cyclic fatigue tests revealed that for a temperature range of 873 to 1073 K,
maraging steel exhibits neither cyclic hardening nor softening through half its
fatigue life. The Bauschinger effect is significant at all temperatures. The strain
hardening behavior is modeled with a back stress variable which is a function of
the strain hardening coefficient times the plastic strain rate. The strain harden-
ing is divided into two modes, monotonic and cyclic. Neither cyclic hardening
or softening is predicted. The strain hardening behavior is approximated with
explicit equations for the monotonic and cyclic strain hardening coefficients, and
the strain hardening data at 1073 K is used to determine the material constants



for these equations. Strain hardening is purposely underestimated to predict
conservative (larger) plastic strains.

An investigation into the phase transformation effects on strain hardening
gave mixed results. In the first test, at 1073K, phase transformations did not
eliminate the accumulated strain hardening from a previous loading. For the
second test, at 973 K, less than half the Bauschinger strain remained after phase
transformations. The model used in this study ignores phase transformation
effects on the strain hardening strength.

Finally, the combined thermal expansion and phase transformation strains
are predicted with linear approximations to the dilatation versus temperature
curves obtained from literature. The rate of evolution of the combined thermal
and phase transformation strains is modeled as a function of temperature and the
material phase volume fraction. The material strength and phase transformation
behavior modeled in this chapter are incorporated into the finite element analysis
described in the next chapter.



Table 2.1 Summary of tensile test experiments.

Temp. Pl. Strain El. Limit

(K)

773

Strength

(MPa)

1243
1240

1285
1195

Rate*

(s-1)

3.66 x 10- 5

1.20x 10- 4

1.46 x 10- 3

4.37x 10- 3

4.24x 10- 5

1.37x 10- 4

1.03 x 10- 3

1.75 x 10-2

8.84x 10-6

1.22x 10- 4

1.29 x 10- 3

1.42x 10-2

9.12x 10-6

2.87x 10- 4

1.24x 10-

1.03 x 10-2

3.44x 10- s

1.38x 10- 4

1.30x 10- 3

1.57x 10-2

t Yield

Strength

(MPa)

1282

1321
1320

472

684

810

869

350

527

662
883

219

274

421

592

231

252

344

419

Tensile Tensile Fracture

Strength

(MPa)

1273
1330

1354
1324

511
707

842
881

401

595

738

888

242
328

484

598

236

257
366

421

Strain

(%)

.84
2.45

1.96
1.57

2.08
1.52

1.58

1.34

2.87

2.33

2.56

1.24

14.74

2.83
3.77

0.98

1.28

2.96
2.50

0.98

Strain

In(Ai/Af)

1.28

1.15

0.94

0.88

4.57

2.64

1.83

1.14

4.16

4.47

3.25

1.87

2.79

3.87
1.53
2.15

2.96

2.57

2.19
1.93

* Plastic strain rate at the elastic limit strength

assuming all the crosshead rate is applied to the
(0.01 % offset, Eq.
specimen and holder.

** The test specimen reached its maximum (engineering) strength after a plas-
tic strain offset less than 0.2 %.

450
636

719

833

344

503

592
876

218

242

363

586

217

230

334

417

873

923

983

1083

2.1)



Table 2.2 Temperature versus yield strength (0.2 % offset) data from literature.

Temperature

(K)

200

298
422

589

700
811

298

589

700

754
783

811

173
233

293

373

473
573

673

753

Yield Strength

(MPa)

2077

1931

1771

1626

1517
1110

2027

1693

1570

1343
1192

1056

2180

2010

1930

1790

1710
1650

1510

1380

Reference

[4]

[5]

[6]



Table 2.3 Material constants for phenomenological rate equation.

81
i2

83

Go

no80

np

1912.0

50.0
-0.017

812.0

6.43
1.84
0.238

MPa
MPa

MPa/K

K

s-1

Table 2.4 Material constants for Arrhenius rate equation.

A

B

n2nz0
aoo

Aho

n Pef)

3.39
-4.39

7

6

2351
223

1215

0.149

MPa

kJ/mole
s-1S

Table 2.5 Summary of cyclic test experiments.

Test Temp.

(K)

873
873

973

1073

Strain

Rate

4.0x 10- 3

5.2 x 10- 3

3.6x 10- 3

3.6x 10- 3

E1.Limit

Strength

(MPa)

248

248

227

159

Strain

Range
(%)

0.38
0.64

0.58

0.70

Stress

Range

(MPa)

1222

1282

830
596

Cycles to

90% Stress

Range

650
420

230

135

Cycles to

Failure

Nf

830
475

270

293



Table 2.6 Material constants for strain hardening behavior (Eq. 2.15 and 2.16).

ho 454.82 GPa

0ep  6.53 x 10 -5

n h 0.198

Table 2.7 Thermal and phase transformation strain constants.

martensite thermal exp. coef.

austenite thermal exp. coef.

austenite start temp.
austenite finish temp.

martensite start temp.

martensite finish temp.

phase transf. strain

10.1 x 10-6

17.7x 10- 6

968
1008

473

373
7.52x 10- 3

CCA
OA,

OA,

K-I

K-I

K

K

K
K
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Fig. 2.1 Experimental setup for tensile tests.
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Fig. 2.3 Yield strength (0.2 % offset) versus temperature compared to the

phenomenological rate equation Eq. 2.10 (dP = 1 x 10-8 s - 1)



Elastic limit strength data at different temperatures

with varying plastic strain rate (phenomenological rate

equation).
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Fig. 2.5 Activation energy versus equivalent effective stress

( IISi, - f,,11 ). The literature data is calculated from yield strengths
where .P -= m s• ' is assumed. The test data is calculated from elastic
limit strengths and plastic strain rates.
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Fig. 2.6 Elastic limit strength data at different temperatures
with varying plastic strain rate (Arrhenius rate equation).
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Fig. 2.8 Phenomenological versus Arrhenius predictions of
elastic limit strength at different plastic strain rates with varying
tcmperatures.
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Fig. 2.13 Strain hardening diagram for the integrated strain

history variables • , andl EP.
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Chapter 3

Thermo - Elastic - Plastic Analysis

In a previous analysis of short pulse magnets [1], a theoretical examination

of the coil mechanics resulted in formulas predicting the elastic displacements,

strains and stresses. The elastic constants of maraging steel were assumed not

to change with temperature. This chapter focuses on using the measured and

modeled plastic behavior of the material with a numerical approach to examine

the coil mechanics.

The finite element method is selected for this study, because it is a ver-

satile method for studying problems with rate-dependent plasticity and loading

conditions. Specifically, the requirements for this analysis are

1. Time dependent finite element formulation

2. Temperatures which vary as a function of time and position

3. Body forces which vary as a function of time and position

4. Displacement boundary conditions

5. Force boundary conditions

6. Young's modulus (E) which is a function of temperature

7. Thermal expansion and phase transformation strains

8. Viscoplastic, rate dependent plasticity

Several commercial finite element packages were considered (PAFEC, AD-

INA, ABAQUS and NIKE2D,) but two difficulties arose. The first difficulty is

data preparation. The temperature and body force data must be supplied at

each element node for each of these codes. This might seem trivial but when

considering models with hundreds of nodes, and up to 18 time steps, the data

preparation becomes burdensome and unwieldy. The second difficulty is model-

ing the material nonlinearity. For some of these packages. modeling t he material

behavior of maraging steel would require changes in the program codes. Not. sur-

prisingly, access to most of these codes is prohibited, but even when allowed,

the time required to understand the codes and implement changes is exces-

sive. Given these two difficulties, a special purpose finite element code AFESA

(Axisymmetric Finite Element Solenoid Analysis) was written to minimize the

amount of data preparation and to implement the material behavior of marag-

ing steel. The time saved in data preparation and studying a packaged code
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was invested into the development of a code specific to the application being
sthdieil. Wherever possible, finiite elemnent silhroititnes fronl piihlisliher soirces

were borrowed and incorporated into AFESA.

This chapter describes the program AFESA and the numerical methods

used to implement the material behavior of maraging steel. The discussion

which follows is intended for those familiar with the finite element method and

plasticity. For basic information on this topic see [2]-[7].

Finite Element Formulation

The program AFESA is designed to handle axisymnmetric finite element

models. The selection of this geometry is necessary for analyzing the annular

ring model which is used in the study of short pulse magnet mechanics [8]-[11].

In addition, tensile and cyclic fatigue test specimens are cylindrical, so these

tests are also simulated with finite element models using AFESA. The geometry

of the short pulse magnet structure prevents excessive deformation, and the

accumulated plastic strains are less than 1.0% Thus, small displacements, strains

and rotations are expected. AFESA is suitable for analyses which take into

account only materially nonlinearities.

Eight node, quadrilateral elements are used in AFESA. This element type

was selected because it offers good predictive capabilities for a reasonable cost [1].
The elements are integrated with a 3 by 3 Gauss-Legendre numerical integration

scheme. The displacement interpolation functions are represented in matrix form

as H and the nodal displacements are similarly represented with U. The strain-

displacement transformation matrix B relates the nodal displacements to the

element strain matrix e. Appendix A describes the H and B matrices used for

these elements.

e = BU (i.1)

AFESA is a time-dependent finite element analysis program. The program

uses time steps to discretize the analysis. Each time step must be defined with

user-supplied boundary and loading conditions. Between time steps, the analysis

is divided into subincrements for which the boundary and loading conditions are

linearly interpolated.
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In most finite element programs, external temperature and body force in-

formation is supplied (as input data) for each node. For a transient temperature

field, this can pose a burden on the data preparation. This is especially true

when different finite element meshes for the same structure are being scruti-

nized. AFESA simplifies the data input requirements by letting the user define

a rectangular grid of temperatures and body forces spanning the coordinates of

the finite element model. The spatial grid is defined for each time step by the

user. During the finite element analysis, the temperatures and body forces are

interpolated from the input grid for each integration point being analyzed. This

is similar to what most commercial codes do, except they use nodal tempera-

ture or body force values for their interpolation grid. Between time steps, new

temperature and body force grids are created with linear interpolations between

the time steps. Testing different mesh geometries is made easier when just the

mesh is refined and not the temperature and bod~lbrce data.

Equilibrium Equation

In its simplest form, the equilibrium equation describes the balance be-

tween applied forces and nodal forces from element stresses. A time-dependent

finite element analysis must continually satisfy the equilibrium equation. (Vari-

ables printed in bold face type represent matrix quantities, and unless otherwise

noted, all other variables are scalar quantities). There are two kinds of applied

forces in the short pulse application. The first is nodal forces Rb resulting from

Lorentz electromagnetic body force loads fb.

Rb = .fHfb dV (3.2)
e

The second set of forces directly applied to the model is Rf. These forces are

used to model the compressive forces imposed on the short pulse magnet during

operation. The element stresses a generate the vector of nodal forces F. The

determination of a provides the challenge for finite element plasticity.

F = I BTc" dV (3.3)
e
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Equilibrium is satisfied when the sum of these forces i is zero. The equi-
librium equation shown below is in matrix form and represents a system of

equations defining equilibrium for each finite element node.

F = Rb + R, - F (3.4)

Since the stresses a are functions of U, so is F and hence

I (U) = 0 (3.5)

The equilibrium equation 3.5 is solved iteratively, and each iteration for

the nodal displacements results in element stresses which must finally balance

the applied forces and be in equilibrium themselves. Eq. 3.3 is the equilibrium

form of the principle of virtual work.

Solution Procedures

There are three key components to the finite element solution procedure

employed in AFESA. The first is the frontal solution technique which minimizes

the storage requirements needed to save the finite element stiffness matrix. It

also minimizes the time needed to solve for the nodal displacements. The method

is described in [12][13]. Each nodal equilibrium equation depends on the adjacent

element nodal displacement variables, and an efficient ordering of these nodal

displacement variables minimizes the number of variables describing each nodal

equilibrium equation. For AFESA, the implementation of the frontal method

is accomplished with an automatic renumbering of both the elements and their

node numbers. In this manner, the elements are integrated in an efficient order

and the active front of nodal displacements is minimized.

The second component is the solution procedure used to determine the un-

known equilibrium displacements. AFESA uses the Newton Raphson method

combined with the Alpha-Constant stiffness method [14]. Applying the New-

ton Raphson iteration procedure to Eq. 3.2 gives equations for determining the
displacements U' +1 at time t' +1 . This procedure assumes equilibrium is satis-

fied at time t' with displacements U' . Moreover, it assumes the displacements

U' +1 for the first iteration are initialized with the displacements U". In these
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equations, the superscript n + 1 is understood, so it is not included in the formu-
lations. The subscript i denotes the iteration count number during equilibrium
iterations for time t+ '+1

-%i - AUj (3.6)5U
Ui = Ui- 1 + AUi (3.7)

The partial derivative of 9 with respect to U in Eq. 3.6 is called the
tangent stiffness or Jacobian matrix KT. Many finite element codes expend a
great deal of effort calculating accurate Jacobian matrices, because significant
reductions in computing time can be realized. In a materially nonlinear, cyclic,
thermo-elastic-plastic analysis, the Jacobian matrix is nonlinear and transient.
During perfectly plastic deformation, components of the Jacobian matrix go to
zero, while when unloading from a plastic state, components of the Jacobian
matrix can be infinite. Most of the Jacobian nonlinearity is approximated by
the alpha constant stiffness method. This numerical method trades the time
necessary to formulate and invert a new stiffness matrix for the time required
to iteratively solve with an elastic stiffness matrix. The elastic stiffness matrix
depends on the Young's modulus and the Poisson's ratio, and this accounts for
a small portion of the material nonlinearity. What follows is a short description
of the alpha constant stiffness method and the assumptions which are necessary
for its derivation.

In the alpha constant stiffness method, the tangent stiffness matrix is
replaced with the finite difference approximation shown below. Ai' is the net
nodal loads, and ALU' is the elastic displacement increment.

KT=AU, (3.8)

where

(3.9)

' = T(U') (3.10)

Next, three equations necessary for the derivation are defined. First, the
tangent stiffness matrix is separated into a linear Ko and nonlinear component
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Kc (Eq. 3.11.) The elastic displacement increment AU' is determined with
the inverted elastic stiffness matrix K' - 1 and the net. nodnl loads 9i (Eq. 3.12).
Then, the displacement increment AUi is defined with the product of a diagonal
alpha mat-ix ai and the elastic displacement increment AU' (Eq. 3.13.) This
method assumes the alpha matrix can correct the nodal displacements predicted
by the elastic stiffness matrix, giving nodal displacements which will satisfy

equilibrium.

KT = Ko - Kc (3.11)

AU' = -Ko'T i  (3.12)

AUi = a;IAUi (3.13)

Now substitute Eqs. 3.11 - 3.13 into Eq. 3.6 and pre-multiply both sides
by K o '

AU I = aiAU' - K&'KcAUi (3.14)

Next, substitute Eq, 3.8 into Eq. 3.11 and insert this into Eq. 3.14. Rearrange
the equation and solve for the alpha matrix ai. The matrix I is the identity
matrix.

AUi - K-'AT'
c; =I+ o (3.15)

AU'

The iterative process is broken into two phases. This is done so that an
estimate for Ui can be made. Namely, it is assumed the previous alpha matrix

makes an adequate prediction (Eq. 3.16). Substituting Eq. 3.16 into Eq. 3.15

gives the final result shown in Eq. 3.17 .

AU , = aj.,u

ai = oai-- 0(3.17)

AU'

In the first phase of the alpha constant stiffness method, an approximation

to the equilibrium displacements is made with the elastic stiffness matrix. In

the second phase, these displacements are used to determine the out-of-balance
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equilibrium loads P', and then using Eq. 3.17, the alpha matrix is calculated and

siibstitute(d into Eq. 3.13 to determine the eqluililrium displacemetlls. When

an entry inside the elastic displacement increment AU' is zero, then the second

term of Eq. 3.17 is dropped and that alpha matrix entry remains constant.

When a material is unloading from a viscoplastic state and the total strain rate

is approximately equal to zero ('P + e - 0), most of the alpha matrix entries

are constant and equal to 1. These two phases constitute one iteration, and the

iterations continue until the net nodal loads are sufficiently small to terminate

the process. The primary advantage of this technique is its use of a constant

elastic stiffness matrix. The complete alpha constant stiffness procedure used in

AFESA is listed in Appendix B.

The last important component of the solution procedure employed by

AFESA is the subroutine COLSOL. This subroutine was written by K.-J. Bathe

and is used in the finite element program ADINA [2]. Because of symmetry, this

subroutine only stores the upper skyline of the stiffness matrix, and this mnini-

mizes the storage requirements. COLSOL also has the feature of dividing the

solution of nodal displacements into two steps. The first steps triangularizes the

stiffness matrix, and the second step reduces the load matrix and back substi-

tutes for the output displacement increments. The second step is independent of

the triangularizing step, so it is possible to continuously update the load matrix

and solve for new displacements without having to repeat phase one calcula-

tions. This capability is an important feature when iterating with a constant

stiffness matrix and varying load matrices as described in the alpha constant

stiffness method.

Constitutive Equations

When a set of dicplacements U is determined from a snlution of the inot

nodal loads 9, the new displacements are converted into strains using Eq. 3.1.

These strains are then used to determine the stresses within the finite el,-1ment

model. This last step involves the constitutive equations which model the stress

strain behavior of maraging steel. The constitutive equations must predict

the thermo-elastic-plastic behavior for the time dependent material models de-

scribed in Chapter 2. In addition, the evolution of back stress must be modeled

for the cyclic conditions expected in this application.
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Hooke's law defines the isotropic stress strain relationship.

aij =- 2pj j + ~ kkij (3.18)

where:

cj is the Cauchy stress
oEe is the elastic strain

bij is the Kronecker delta

pt,A are the Lame material constants:

E
,, = (3.19)2(1 + v)

EvX = (3.20)
(1 + v))(1 - 2v)

For a time-dependent analysis, the stress rates are integrated over time.

The rate form of the Cauchy stress is defined by taking the partial derivative

of Eq. 3.18 with respect to time. All time derivative (rate) variables are des-

ignated by a raised dot ( ' ). The material constants Ip and A are functions of

temperature, so their rate of change is controlled by temperature changes.

&ji = 2pi.- + 2Aeý + (A+ + Ek) iic (3.21)

The total strain rate tij is defined as the sum of the elastic, plastic and the

thermal and phase transformation strain rates, ti, ej and it respectively.

,ij = :ij + .+ tbij (3.22)

Eliminating is. in Eq. 3.21 with Eq. 3.22 gives the Cauchy stress rate:

ii = 2.p (ij - •.) + 2 ij' + Aik" k - (3A + 2/p) it] j. (3.23)

The total strain rate is calculated from the displacements predicted by the

equilibrium equations. Eq. 3.23 is the constitutive equation for stress used in

this thesis. The next task is to determine the plastic strain rate, so the Cauchy

stress rate in Eq. 3.23 can be calculated.
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Flow Rule and Evolutionary Equations

There are several assumptions which are important to this formulation.

Plastic deformation is assumed to occur in a direction normal to the yield sur-

face and this deformation does not distort the shape of the yield surface (the
loading was indeed nearly radial). The set of equations shown below are stan-
dard definitions used in classical kinematic plasticity theory to define the flow

rule and tL- evolution of back stress. The flow rule is given in Eq. 3.24 and the
evolution of back stress is given in Eq. 3.28.

0. = /_1diNij (3.24)

Nij = 01ij (3.25)

&ij = Sij - ij (3.26)

1
Sij = j - Iakk6 ij (3.27)

3

Si/j = N/-h ipN ij  (3.28)

where:

iP is the equivalent plastic strain rate

Nij is the unit vector normal to the yield surface

Sij is the effective stress

Sij is the deviatoric stress

h is the strain hardening coefficient

Numerical Solution

Four equations must be satisfied in order to determine the stress state in
this time-dependent analysis. The first equation is the constitutive equation

for stress (Eq. 3.23). The second equation is the flow rule (Eq. 3.24). Tne

third is the evolution of back stress (Eq. 3.28), and the fourth is the kinetic

equation for plastic strain rate (Eq. 2.9 or Eq. 2.11). Eqs. 3.23, 3.24 and 3.28
are tensor equations, while the kinetic equation is a scalar function. The kinetic

equations of Chapter 2 functions of the equivalent effective stress 1 Sij - Ilijl|.
The equivalent effective stress Y is

Y= - (s/2) (Si - i)- (Si, -- i). (3.29)
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The phenomenological rate equation is based on an over-stress formulation.

When the equivalent effective stress Y is less than the tllresltold strength s, the

resulting plastic strain rate is zero. For the Arrhenius rate equation, plastic

straining occurs at all nonzero values of equivalent effective stress. In practice

however, when predicted plastic strain rates are less than 10- 12 s- , the stress

behavior is assumed to be entirely elastic. For plastic behavior, a consistency

equation (yield surface equation) is used to link the 'ensor equations (Eqs. 3.23,

3.24 and 3.28) to the scalar kinetic equations:

= (S, - )_(Sij - j)- )2y2 <Y 0 (3.30)
3

Plastic deformation occurs when , = 0, and under these conditions, the consis-

tency equation is identical to the definition of equivalent effective stress. The

unknown variables in these equations are the plastic strain rate iP and the

equivalent effective stress Y. For plastic deformation, the task is to predict

stress states which satisfy the kinetic and consistency equations and to predict

plastic strains which obey the flow rule.

There are several approaches to this problem. One technique is the tangent

modulus method [15][16] which uses a forward Euler integration scheme and a

Taylor expansion of the plastic strain rate to predict a stress rate. The only

restriction in this method is the maximum allowable time step. The method

chosen for this work is a variation of the Radial Return Algorithm [17], adapted

to viscoplasticity. The method is implicit and requires about 10 iterations for

each sub-increment time step. It is less restrictive on the maximum time step

size. Descriptions of other solution techniques can be found in [18].

One way to solve for iP and Y is to use the following numerical approxi-

mations. First, assume the equilibrium and consistency equations are satisfied

at time t". Require all rate variables be defined with finite difference approx-

imations between times tn and t"+'. For examlle. tl e fllovwintg eqiutions nre

used to define the deviatoric stress and the back stress at time t"+ .

S!+ ' = Si + (Aor.T) ' _- /6PNzjAt (3.31)

(a-Tr = [2A"ij + 2/ (,,.)n] t (3.32)

r= 2, + 2[ (E )#)" +
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[An kk + A (fk)l -(3\ + 2p) (it)j bi t (3 At (.3.3)

2Rn+ ' = Q.n ±+PhiPN,1At (3.34)
t. 3 1 3
At = tn+l - t, (3.35)

The variable oa" is called the trial stress. If the plastic strain rate is zero, then
the trial stress equals the final stress "+'. Next, the consistency equation is
satisfied at time tn +". Substitute Eqs. 3.31-3.34 into Eq. 3.30, and let 4( equal
zero to get

(s." + (ATr)' ) 2- + h 3 = Y 2 '.(3.36)

The principal assumption in the radial return algorithm requires the normal to
the yield surface be approximated with the following equation.

IS! + ( . _Tr)' j) (337)

With this assumption, Eq. 3.36 is greatly simplified, and it is possible to write
a direct solution for iP.

S! +± (A • pTr)'- - yn+-l
ip = (3.38)

/(2A + h) At

There are now two equations with two unknowns, IYn +± and iP. The first equa-
tion is given above in Eq. 3.38, and the second equation is either of the kinetic
equations (Eqs. 2.9 and 2.11.) AFESA uses a numerical interpolation proce-
dure to calculate yn+l and iP. Linear interpolations between predicted plastic
strain rates (Eq. 3.38) and resultant plastic strain rates (kinetic equation) are

used to make new predictions for the plastic strain rate. By elii,iiiating p, r,'l

tions which are not close to the resultant plastic strain rates, it is possible to

successively iterate until the predictions and resultants are the same. A more

efficient numerical technique likely exists, but our procedure has proved reliable,
and it takes approximately 10 iterations for convergence. Once iP and Y"+' are
known, it is possible to calculate o+1 " +0 and (~ ).+1. Appendix C details
the thermo-elastic-plastic equations used by AFESA. A listing of the AFESA
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program, the input commands and two examples are given in Appendix E (this

appendix is out of order; mea culpa).

It should be mentioned at this point that there is a significant difference

in computer execution time between the phenomenological and Arrhenius rate
equations. The Arrhenius rate equation takes approximately 9 times longer

than the phenomenological rate equation to complete a plastic analysis. This

difference is due primarily to the dependency of the activation energy on the

equivalent effective stress. It is possible to rearrange the phenomenological rate

equation to get an equivalent effective stress function which depends on tem-

perature and plastic strain rate. This manipulation facilitates the numerical
solution procedure. This same manipulation is not possible for the Arrhenius

rate equation, so a subroutine is employed to iteratively determine the equivalent

effective stress as a function of temperature and plastic strain rate.

Strain Hardening

In Chapter 2, the strain hardening coefficient h was described for mono-

tonic and cyclic strain hardening modes. In the finite element implementation, h

is determined under the same conditions. The strain hardening coefficient used
in Eq. 3.38 is constant over the sub-increment time step, but the strain harden-

ing coefficients described by Eqs. 2.15 and 2.16 are changing continuously with

ep. To correct this discrepancy, the mean value theorem is used to approximate
the average strain hardening coefficient (Eq. 3.39.) Therefore h replaces h in

Eqs. 3.34 and 3.38. h is constant over _-ach sub-increment time step, but it

changes with each time step. Because ir is changing during the iterations for iP
and yn+', the strain hardening coefficient h is also changing.

ft+l

t" -+1 Pdt (3.39)
fn ipdt

To evaluate Eq. 3.39, the rules governing whether the hardening mode is mono-

tonic or cyclic are applied to determine which function for h (Eq. 2.12 or 2.13)
should be used. A determination of the appropriate strain hardening mode is
based upon an evaluation of the stress state at time t".

Fig. 3.1 shows the effect of the number of sub-increment time steps on

the prediction of an elastic plastic stress strain curve. In this example, the total
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strain rate is constant 2 x 10-2S-' and the temperature is 900 K . The finite
element ianlysis luses one time step to rench n tot.nl strain nf 2.0%. Il the fig•ire,

three curves representing 5, 15 and 135 sub-increinents are illustrated. As the

number of sub-increments increases, the resulting stress strain curve rises and

becomes smoother. Table 3.1 gives the stresses at strains of 0.4, 0.8, 1.2, 1.6 and

2.0% for varying number of sub-increments. The maximum deviation between

135 and 5 sub-increments is just 6.7 % The rise in the stress strain curves is

attributed in part to the plastic strain rates which are rapidly changing between

0.4 and 0.12% strain. In any case, h does a satisfactory job approximating

the stress strain curve, and the solution procedure employed in AFESA gives

reasonable predictions of stress for a relatively small number of sub-increment

time steps.

Conclusions

A finite element program, AFESA, has been written to analyze structures

made of maraging steel subjected to extreme electromechanical and thermal

loading conditions. The program uses a frontal method to compose the nodal

equilibrium equations. The equilibrium equations balance the applied nodal

and electromagnetic body forces with the equivalent nodal forces resulting from

internal element stresses and strains. A Newton-Raphson solution method com-

bined with the Alpha Constant stiffness method is used in combination with

COLSOL to solve for the equilibrium displacements. These displacements de-

fine the strain conditions within the material, and they are used to determine

the internal element strains. A constitutive stress rate equation, the flow rule,

the evolution of back stress and a kinetic rate equation are used to determine

the stress state under kinematic viscoplastic conditions. The consistency (yield

surface) equation is used in the solution of these equations. Thus, the thermal

and mechanical behavior of maraging steel is implemented into the finite element

program AFESA.
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Table 3.1 Stress-strain data of Fig. 3.1 for various subincrement quantities
(i = 2 x 10-2s - 1 and 0 = 900K" ).

cr (MPa)

(%) N = 5 N = 15 N = 45 N = 135

0.4 566.1 585.7 596.7 600.5
0.8 776.9 802.3 811.6 814.3
1.2 827.6 833.7 835.0 835.2
1.6 840.8 841.3 841.5 841.5
2.0 845.6 845.1 845.2 845.2
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Fig. 3.1 Effect of sub-increment size on stress strain curve at

0 =900 k, i = 2 x 10-2 s - .
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Chapter 4

Thermal Cycling

By simulating the thermal conditions of the short pulse magnet with inex-

pensive test specimens, it is possible to study the suitability of maraging steel as

an electrical conductor. The specimens are heated with a discharge of electricity

from a capacitor bank, and cooled by thermal conduction into a brass block. The

heating takes place in about 500 ps, and cooling back down to room temperature

takes approximately 3 min. The electrical heating causes thermal strains which

stress the constrained specimens. There were unexpected catastrophic test spec-

imen failures during the course of experiments, so the testing conditions were

re-evaluated using a thermal finite difference analysis and a structural finite el-

ement analysis. The test specimens developed double (two distinct) necks in

their gage sections, and the number of thermal cycles to failure was small (less

than 50.) The double necking phenomenon is predicted by the finite element

analysis, and an explanation of its presence is given. Using the results from

these analyses, new test specimens were designed and tested. These specimens

have an increased lifetime, but they still fail in less than 50 thermal cycles. A

description of the mechanisms involved in these failures is given in Chapter 6.

Concept and Purpose

Capacitor banks have been used by various researchers to study rapid

phase transformations in Cu-Zn alloys [1]. The intention of that research was

to study material phase and microstructural changes in a material due to "up-

quenching." The purpose of these thermal cycling tests is to study the me-

chanical behavior of maraging steel under extreme constrained thermal cycling

conditions in the absence of magnetic body forces. At first, we believed it would

be possible to thermally cycle tensile specimens with our capacitor bank, and

then perform tensile tests on these specimens to determine their strength. When

it became clear that mechanical deformation and other processes were causing

the early failure of the specimens, we used the available information to show

how temperature, current density and stresses (for given pulse characteristics)

limit the use of maraging steel as a conductor.
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The capacitor bank used for pulsing the short pulse magnet is also used

for these tests. The discharge of electricity results in a current waveform similar

to that of Fig. 4.1. This waveform is nearly identical to the one experienced

by the short pulse magnet. Consequently, the electrical heating characteristics

are also the same. The total current passing through the specimen can be

varied to achieve a desired peak temperature. Because of the short period of

the pulse, electrical skin depth effects are important. The skin depth refers to

the characteristic depth 6 for which the current density has attenuated to e-1 of

its surface value. With this in mind, the test specimen diameters (2.9 mm) are

smaller than the theoretical skin depth (:.3 mm,) and this results in a uniform

current density through the test specimens. The waveform current I versus time

(Fig. 4.1) is given in terms of a constant 10, a damping factor (b = 10200 s- 1)

and an angular pulse frequency (w = 22000 rad s - 1).

I = Ioexp (-bt) sin (wt) (4.1)

The skin depth 6 is given in meters, and po is the magnetic permeability in a

vacuum (4r x 10' H/m.)

6 = 2p (4.2)

It was originally intended that after a certain number of thermal cycles,

the specimens would be removed and tested on a tensile test machine to deter-

mine their strength. This plan was abandoned because thermal cycling caused

significant damage to the test specimens. Removing the specimens from the test-

ing apparatus often resulted in bending or breaking because the steel threads

become welded and jammed with debris due to electrical arcing. Also, there was

circumferential cracking in the gage section and a reduction of cross sectional

area in the specimens. In addition, outright failure of the specimens (an elec-

trical explosion which vaporized the specimen) occurred after just a few dozen

thermal cycles. These results led to a reevaluation of the loading conditions and

the specimen geometry.

The ends of the test specimens are constrained, so thermal expansion in

the specimen compresses the alloy plastically at high temperatures. Cooling

puts the alloy in tension. The largest deformations were expected in the center

of the gage section. However, the first two showed double necking near the
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ends of the gage section. A finite element analysis was performed to confirm
this observation. The ends of the gage section shall be called the ends for
convenience from now on.

At first, the excessive deformation observed in the ends was thought to be
the result of specimen geometry, so the remaining specimens were sanded to a
tapered gage section (Fig. 4.2). This specimen is hereafter called the tapered
specimen. The purpose of this change was to maximize the temperature and
stress at the center of the specimen and shift the necking behavior from the
ends to the center of the gage section. However, tapering the specimen did not
prevent double necking, and an additional buckling deformation was observed
in the specimen after about 12 thermal cycles.

In these first tests, the ratio of gage length (15.88 mm) to minimum spec-
imen diameter (2.46 mm) is 6.5. This parameter is important to this type of
test, because as this ratio decreases the likelihood of buckling decreases. In the
last tests, a new thermal cycling specimen was designed with a decreased gage
length (8.76 mm) to diameter ratio of just 3.6. This specimen is called the hour-

glass specimen (Fig. 4.3.) Double necking and buckling deformations were not
observed in the hourglass specimen. The hourglass specimens had a longer life
than the tapered test specimens.

Experimental Setup

The capacitor bank, dummy load and experimental apparatus are shown
in Fig. 4.4, and the specifications are given in Table 4.1. The dummy load is a
single loop of sheet metal which provides an inductance more or less equivalent
to that of the short pulse magnet for this simple RLC circuit (Fig. 4.5). Two
test specimens are in parallel with each other and in series with the circuit. Two
specimens are tested together for reasons of safety. Should one specimen fracture
and separate during the test, the other specimen maintains a closed circuit. The
electrical resistance of these specimens is negligible compared to the dummy load
resistance, so they do not significantly affect the RLC circuit. The capacitor
bank has a maximum charging voltage of 20 kV and a maximum current capacity
of 400 kA. The charging voltage can be varied, and the maximum current scales
linearly with the charging voltage. For these tests, the highest charging voltage
was 6.4 kV with a maximum total current of 115 kA through the specimens.
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A Rogowski coil measures the total current flowing through both speci-

mens, and the data from this coil is integrated and measured on an oscilloscope.

The current flowing through each specimen is half the total current. The tem-
perature distribution within the thermal specimens is determined numerically

with an integration of the resistive heating from the current versus time data.
A thermocouple was not used to determine the temperature in the thermal test

specimens, because it was not known how to safeguard against the high voltage
dangers. In retrospect, it might have been possible to use a voltage limiting

clipper circuit to interface between a thermocouple attached to the specimen
and an oscilloscope, but this option was not known at the time.

As previously mentioned, the thermal cycling tests were performed with
the uniform, tapered and hourglass specimens shown in Figs. 2.2, 4.2 and 4.3.

All were made with Vasco Max 300 grade maraging steel, and heat treated as

described in Chapter 1. Each specimen was ground with a 640 grit sandpaper

prior to testing.

Fig. 4.6 illustrates the holding assembly for the thermal test specimens.

The two specimens are screwed directly into the top brass block. Brass holding

pieces are screwed onto the bottom of the specimens, and then the bottom brass
block slides over the brass holding pieces. Two set screws firmly fix the brass

holding pieces to the bottom brass blccks. Next, two 1/4 inch G-10 plates are

bolted to the up e• and lower brass blocks. These plates restrain the move-

ment of the brass blocks with respect to one another, and this constrains the

ends of the thermal test specimens (the ratio of G-10 to specimen stiffness is

approximately 11).

Thermal Analysis

The temperature profiles for the thermal cycling specimens are predicted

with a thermal finite difference method. The resistive heating rate per unit vol-

ume is equal to the electrical resistivity p times the square of the current density

J. For a given current passing through the specimen, the cross sectional area of

the specimen is the single most important factor determining the heating rate.

Resistive heating dominates for the first 500 ss, and then thermal conduction

cools the specimen to room temperature in about 3 min. Thermal convection

between the specimen and the air is small and can be neglected (2 Nu (l/d)2

=0.16). The details of the finite difference method used for this problem are
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given in Appendix D. The radial and circumferential temperature gradients are
assumed negligible. Hence, the temperature only varies along the Z axis of the
specimens. The salient feature of the thermal analysis is the initial dominance
of resistive heating followed by the conduction of heat from the specimens into
the large brass blocks holding the specimens.

Fig. 4.7 shows the axial temperature distribution in the uniform tensile
specimen at 6 different times during the thermal cycling. These curves cor-
respond to a charging voltage of 5.0 kV, and a peak current density of 7.54
kA/mm2 . The gage section has a uniform cross section, so the resulting tem-
perature profiles are constant during the first 500 Os in this region. After this
time, a temperature gradient develops, largest at the ends of the test specimen.

The temperature profiles for the tapered test specimen are given in Fig.
4.8. These curves are for a charging voltage of 4.1 kV and a maximum current
density of 7.97 kA / mm2 . The temperatures vary by 50 K across the gage
section for this specimen because of the tapered cross sectional area. Again, the
largest temperature gradient is in the end of the specimen. The temperature
profiles for the hourglass specimen are shown in Fig 4.9. The charging voltage

for these curves is 4.5 kV, and the peak current density is 8.48 kA / mm2 . This
specimen has a cross sectional area which varies the most in its gage section,
and consequently, it has the largest temperature gradients in the gage section
of the three specimen geometries. The temperature gradients in the ends of this
specimen are not as large as the other specimens.

Experimental Results

The results of the thermal cycling tests are summarized in Table 4.2
This table lists the specimen type, the maximum temperature, the maximum
current density and the number of thermal cycles tested. The first test demon-
strates the inability of the maraging steel specimens to survive intact under the
very high current density and extreme thermal conditions. It also shows that
higher current densities result in higher temperatures and a lower number of

thermal cycles to failure. Finally, the hourglass specimen shape is better able
to withstand higher current densities than the tapered specimen shape.

All of the specimens which were pulsed to temperatures between 1000 and
1200 K shared some common characteristics. The first pulse leaves a bluish
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discoloration on the specimen gage length. Between the 2nd and 10th pulse,

there is a gradual change in specimen color to dull gray. The surfaces appear

smooth and there is some visual indication of deformation in the specimen. After

about the 10th pulse, the surface texture and shape of the gage section change

more rapidly. The surface becomes rough and circumferential cracks develop

(same as polishing direction). The color and texture changes observed for each

specimen type are similar, but the deformation observed among the different

specimen types is different.

The geometry of the test specimen plays an important role in the extent

and type of deformation which occurs. What follows are short descriptions of

the kinds of deformation observed and the testing failures for each specimen

type.

The first thermal cycling test began with the expectation that the speci-

mens could be cycled to a peak temperature greater than 1400 K. For the first

pulse, a red glow was observed immediately after the discharge of the capac-

itor bank, and then the specimen very quickly turned to a dull gray. When

the tensile specimen was pulsed a second time, there was a bright flash and a

load bang was heard. An examination of both specimens revealed that the gage

sections had completely vaporized. There were threaded stubs still screwed into

the brass blocks, but where the gage sections had been, nothing was left. Metal

splashes were visible on the surfaces of the brass, but after a search, no metal

fragments were found.

With Test 2, the specimens were thermally cycled to a smaller peak tem-

perature of 931 K. At this temperature, the material did not transform to austen-

ite and remained entirely in the martensitic phase. After 25 thermal cycles, the

specimen surfaces were gray, and had circumferential as well as longitudinal

markings on their gage sections. The test was terminated, so the test specimens

could be examined more closely. One of the specimens was examined under an

electron microscope, and the markings were found to be cracks and flaking in

an oxide coating. A search of the specimen surface did not turn up any cracks

extending through the oxide into the specimen.

Tests 3 - 5 were all conducted on tapered specimens to the same predicted

peak temperature of 1047 K. The first of these tests resulted in the failure of

the specimen after 33 thermal cycles. Failure again occurred with a bright flash
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and a load bang. One of the specimen gage sections vaporized, and the other

showed severe deformation and some melting in the gage section. For Test 4,
the specimen was thermally cycled 16 times. The test was then halted so the
specimens could be examined in more detail. For the third test with a tapered
specimen, the thermal cycling was continued until failure seemed imminent (25
cycles), and then the specimens were removed.

For the peak temperatures being predicted, the central portion of the gage
section transforms to austenite. All three tests showed double necking in the
ends after the 10th pulse. In the ends, there is an additional sharp reduction in
cross sectional area due to plastic deformation. Figs. 4.10a and 4.10b illustrate
this deformation in the test specimen from Test 5. The length of the sharp
transition in Fig. 4.10b is approximately 1 mm. Fig. 4.11 shows a prediction of
material phase at the moment of peak temperature. There are three regions in
this picture, and they correspond to a martensitic, austenitic, and a martensite
to austenite transition region. By comparing Fig. 4.10b with Fig. 4.11, it
is easy to see that the deformation observed in the specimen corresponds to
the predicted region of phase transformations. Based upon this association, it
appears that phase transformations in the ends contributes to double necking.

A measurement of the minimum diameter in the necked region of the test
specimen from Test 5 indicates a reduction in cross sectional area of 19 %. The
gage center on the other hand showed an increase of cross sectional area of 9
% Using this fact, the new peak temperature prediction is 1307 K, rather than
1000 K at z = 0 from Fig. 4.8. Thus, there is a shift in the peak temperature
from the gage center to the ends.

All six tapered specimens showed signs of buckling in the austenite region
between the double necks. Buckling was first observed between the 12th and
18th thermal cycles. The ends of the specimens remain fixed during these tests,
and this limits the buckling. The gage section between the double necks is
austenitic at the moment of peak temperature, and in this phase the material is
not as strong as in the martensitic phase. Thus, primarily this portion buckled
plastically. The failed test specimen vaporized between the double necks.

One of the specimens from Test 5 was mounted and polished to expose the
sectioned half of the specimen. The outline of the sectioned specimen and the
tapered specimen of Fig. 4.2 are the same. Close examination of the sectioned
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specimen reveals an oxide coating on the outline of the specimen which is 20-30

jim thick. The thickness of the oxide coating was largest on the high temperature

portions of the specimen and was not even visible at the ends. Microhardness

measurements along the centerline of the specimen (Fig. 4.12), show a sharp

transition in material strength. Those portions of the thermal cycling specimen

which were pulsed into the austenite regime show a drop in Rockwell C hardness

from 59 to 34.

There were two thermal cycling tests of the hourglass specimen. The first,

Test 6, reached a predicted peak temperature of 1063 K, and was pulsed 45

times before it failed. Figs. 4.13a and 4.13b show one of the specimens. These

photographs reveal several important features. First, there is a banded region of

discoloration in the ends. Secondly, there is a sharp transition region where the

cross sectional area decreases because of plastic deformation. Fig 4.14 shows the

material phases predicted at the moment of peak temperature. The temperature

gradient for the hourglass specimen is larger, so the transition from martensite

to austenite occurs over a shorter distance. The measured distance of the sharp

transition shown in Figs. 4.13a and 4.13b is 0.3 mm .

The gage sections of these specimens are much shorter than the tapered

specimens, and there is no evidence of double necking or buckling. Instead, the

austenite center of the gage section developed a barrel shape. There is a sharp

change in shape where the material at the edge of the phase transformation

transition is entirely martensitic during the thermal cycles. The maximum di-

ameter of the barrel section increased to 1.29 mm, an increase in cross sectional

area of 10 %. At the sharp transition, the diameter had decreased to 1.23 mm.

Again, the peak temperature during a thermal cycle had shifted from the center

towards the ends.

A specimen from the first hourglass test was also sectioned, mounted and

polished for a closer examination. With a higher peak temperature and more

thermal cycles, the oxide coating measured 50 - 70 Jim thick. This is a 40 /Am

increase in thickness over the tapered specimen oxide coating. The change in

oxide thickness occurs over a shorter distance for this specimen because the

temperature gradient is larger. The temperature gradient for this test has an

even more dramatic effect on the microhardness measurements taken along the

Z axis (Fig. 4.15). Again, those portions of the thermal cycling specimen which
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are pulsed into the austenite regime show a drop in Rockwell C hardness from

57 to 37.

The second thermal cycling test with the hourglass specimens was pulsed

to a predicted peak temperature of 1133 K, and its lifetime was 20 cycles. These

specimens had the same features as those mentioned above. The barreling of

the gage section was visible after the 14th thermal cycle. Unlike the tapered

specimens, the hourglass specimens showed few signs of imminent failure. The

surfaces of the hourglass specimens were darkened after just a couple of thermal

cycles, and they became rough in the gage section at the same time the sharp

transition region became evident. Once the barrel shape is formed, there is no

visible (as seen with the naked eye and measured with a micrometer) sign of

further change until the electrical explosion.

Finite Element Analysis

A finite element study was undertaken to verify the mechanical behavior

observed in the thermal cycling tests. The material model of Chapter 2 and

the finite element implementation described in Chapter 3 are used here for this

analysis. The phenomenological kinetic equation is used in these finite element

analyses. In Chapter 1, two thermal cycling zones in the short pulse magnet

were described. The thermal cycling specimen can also be divided into two

zones. The gage length corresponds to Zone 1, and it is heated to the highest

temperature in the specimen. The ends of the specimen correspond to Zone

2, and they heat to less than half the peak temperature. The assumptions

and conditions made in developing the kinetic equations for the two zones are

also applied here. Thus, the strength in the gage length is approximated by the

strength of solutionized steel (high temperatures,) while the strength in the ends

is approximated by the strength of aged maraging steel (low temperature.)

Each of the specimen geometries with its associated temperature profiles

is examined, and the deformation shapes and stress contours predicted by these
models are plotted and discussed. In addition, several thermal cycles are mod-
eled with the tapered and hourglass meshes. With the multiple cycle data, it
is possible to draw a hysteresis plot of the stress-strain response to the thermal
loadings. Finally, an effective plastic strain increment per thermal cycle is pre-
dicted from the finite element analysis. The results from all the finite analyses

124



are compiled into Table 4.3 showing some aspects of the usefulness of maraging

steel as an electrical conductor.

The boundary and loading conditions applied to the three different ther-

mal cycling specimens are similar. The ends of the finite element models are
constrained from axial movement. The original temperature profiles shown in

Figs. 4.7-4.9 are applied to their respective models for up to 3 cycles. There

are 8 time steps used in the analyses, and they are 50, 100 and 500 .s, 0.005,
0.05, 1.0, 4.0 and 180 s. The 0.005 and 0.05 s time steps are important to the

finite element analysis, because they serve as a bridge for changing the time step

size. The number of sub-increment time steps chosen for all these analyses is

15. Between each time interval, the time step size increases. The changing time

step size should not be too dramatic, so the intermediate time steps of 0.005
and 0.05 are included.

Uniform Test Specimen

Fig. 4.16 shows the finite element mesh used to model the uniform test

specimen. For reasons of symmetry, just the top half of the test specimen is

modeled, and since it is axisymmetric, a two dimensional finite element mesh

is used. There are 72 elements and 271 nodes in the finite element mesh. The

maximum element aspect ratio (the radial dimension divided by the axial di-

mension of an element) is 1.8 . In the ends of the mesh, the minimum element

interior angle is 49.10 . The aspect ratio and its inverse should not be greater
than 3, and the interior angle should not be less than 30* or greater than 1500
for finite element analyses [2].

Figs. 4.17a and 4.17b are plots of the original and deformed mesh outline

at the end of the first and second thermal cycles (displacements are magnified by
100, and the distorted outline is dashed). A double neck is predicted by the finite

element model in the ends of the specimen. The center of the gage section has

increased in diameter, while near the ends, the cross sectional area has decreased.

The change in shape predicted here is the result of plastic deformation during

the thermal pulse.

The maximum temperature of this test did not cause any phase trans-

formations in the steel. The double necking predicted here is the result of the
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temperature gradient present in the ends, because with a given uniform temper-
ature change, with the same boundary conditions, and with plastic deformation,
the double necking is absent. Thus, three factors contribute to double necking
at the ends: the temperature gradient, the geometry of the ends which affects
the state of stress and strain and the interactions between temperature, stress
and the flow strength of maraging steel.

Two times are examined in this review of the finite element results; the
first is 500 /is when the ohmic heating has ended, and the second is 3 min,
at the end of the thermal cycle. Fig. 4.18 shows the radial, hoop, and axial
stresses on the Z axis of the thermal cycling specimen at 500 its (starting at the
center of the specimen R=O and Z=0, and going up the Z axis to the top of
the specimen R=0 and Z=12mm.) The radial and hoop stresses predicted by
AFESA are equal to each other because the radius is zero all along these curves.
The radial and hoop stresses are zero everywhere except near the ends of the
specimen. The axial stress is constant in the gage section, peaks near the fillets
and decreases through the ends.

Fig. 4.19a shows the von Mises stress on the Z axis of the specimen at
500 us. This curve predicts a uniform stress of 830 MPa in the gage section, a
peak stress of 900 MPa in the ends and then a decrease to 180 MPa beyond the
ends. The stresses predicted in each finite element are linear over the domain
of that element, so the smoothness of the stress distribution is a measure of the
finite element mesh's modeling accuracy.

Fig. 4.19b plots von Mises contour bands in the specimen at 500 Cts. Each
contour band is identified with a mean stress. The edge between two stress
bands corresponds to the mean of the two adjacent stress band levels. In other
words, the edge between a black and white contour band is actually a contour
line with a stress level equal to the mean of the two adjacent stress bands. It
is helpful to refer to Fig. 4.19a, since it describes the von Mises stress on the
left edge of the plot. Stress bands are useful in identifying where the largest
gradients in stress are located [3]. When there are more stress bands in a region,
the stress gradient for that region is larger. As expected, there are more stress
bands in the ends, and the center gage section is uniformly stressed.

Fig. 4.20a shows the von Mises stress on the Z axis of specimen at the end
of the first pulse, and Fig. 4.20b shows the von Mises stress contours at the end
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of the first pulse. The specimens remain constrained at the end of the pulse, so

the specimens are in tension until the next pulse. The region of peak stress has
broadened by the end of the first pulse and is located where the diameter of the
specimen has decreased.

Figs. 4.21a and 4.21b are the deviatoric axial stress and strain hysteresis
loops for the first thermal cycle, and then for the first and second thermal
cycle at an integration point near the center of the specimen (1st integration
point of Fig. 4.16). The deviatoric component was chosen because it eliminates
the thermal and phase transformation strain (dilatational), and makes it easier
to comprehend the hysteresis histories. Fig. 4.21a is labelled with times and
temperatures to give a better understanding of dynamics of the thermal cycling.
Very little plastic deformation occurs during the heating of the specimen, only
after the pulse. For the first thermal cycle, the effective plastic strain increment
is 0.34% and for the second pulse it is 0.11%. The von Mises stress at this
integration point at the end of the first pulse is 217 MPa, and at the end of the

second pulse, it is 273 MPa. The information at this integration point indicates
that the stress-strain response in the tensile specimen does not shake out in the
first pulse, and each thermal cycle predicts further plastic straining.

A plot of plastic strain rate versus time is given in Fig. 4.22. During
the initial heating, the plastic strain rates are high, but the time available for
deformation is short. Conversely, after the end of the heating, the plastic strain
rates are decreasing, and the time available for deformation is increasing. This
interaction of plastic strain rate and time shows the time-dependent (pulsed)
nature of the plastic deformation.

A second integration point, near the fillet region is also examined (Inte-
gration Point 2 of Fig. 4.16). The deviatoric axial stress-strain hysteresis loop
for the first thermal cycle is shown in Fig. 4.23. The plastic strains at this point
and elsewhere are all smaller than those at the center of the specimen. This is
true for all the specimen geometries.
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Tapered Test Specimen

The finite element mesh used to model the tapered specimen is shown in

Fig. 4.24. It is essentially the same mesh as used before, just different radii in

the gage section. The thermal loading conditions for this specimen cause phase

transformation in the material. The transformation from martensite to austenite

occurs over a temperature span of just 40 K. The finite element mesh used here

maintains at least two elements across the region of phase transformation. All

other boundary conditions and time steps are the same as the uniform specimen

analysis.

The outlines of the deformed meshes after one and two thermal cycles are

shown in Figs. 4.25a and 4.25b. The nodal displacements are magnified 100

times. What. these figures show is a broadened region of necking in the ends.

The center of the specimen is increasing in diameter. The specimen diameter is

unchanged 3.7 mm away from the center.

Fig. 4.26 gives the radial, hoop and axial stress on the Z axis of the

tapered specimen 500 pts into the first pulse. This plot shows an important

result; the radial and hoop stresses are near zero everywhere, except in the ends

and the phase transformation transition region. In the previous analysis, these

two stresses were nonzero only in the ends. The axial stress (which is strongly

influenced by the tapered cross sectional area), increases from the end of the

specimen towards the center, shows a peak stress at Z=3.6 mm, decreases across

the phase transformation transition and then increases towards the center. The

stress distribution for the tapered specimen is not smooth, and more elements

should probably be used for this analysis.

Figs. 4.27a shows the von Mises stress on the Z axis of the specimen and

Fig. 4.27b shows the von Mises stress contour plots 500 its into the first pulse.

The maximum stress is in the center portion of the specimen and fluctuates

across the phase transition and the ends. These stress variations are clearly

shown by the stress bands. Figs 4.28a and 4.28b show similar results for the

end of the pulse. The residual stresses through the prior phase transition region

fluctuate, while they vary steadily across the ends.

The hysteresis loops for the tapered specimen are given in Figs. 4.29a and

4.29b. As before, the axes are deviatoric axial strain and stress, and Integration
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Point 1 of Fig. 4.16 (closest to the center of the specimen) is analyzed. In addi-

tion to the time and temperature labels in Fig 4.29a, the positions of the phase

transformation start and finish temperatures are indicated. Upon heating, the

martensite to austenite phase transformation effect is visible on the curve. Dur-

ing the phase transformation, the increment of plastic deformation is not large.

The interaction between plastic strain rate and time observed in the uniform

specimen analysis also happens here. Most of the plastic deformation occurs

after the heating. The final transformation from austenite back to martensite

occurs elastically and causes a fluctuation in stresses at the very end of the

thermal cycle.

The finite element analysis of the tapered specimen was continued over

three thermal cycles. The effective plastic strain increments for these three cycles

were 0.59, 0.16 and 0.08%. The final von Mises stresses for these cycles were

307, 395 and 450 MPa. The deformation occurring in the tapered specimens

is larger than that predicted for the uniform specimen. The effective plastic

strain increments are decreasing substantially with each pulse, and the residual

stresses are increasing.

Hourglass Test Specimen

A finite element analysis of the hourglass specimen was performed for Tests

6 and 7. The conditions are nearly identical, so only the results of Test 6 are

reported. The temperature gradient in the hourglass specimen is larger than that

found in previous analyses, so a finer element mesh is required. After several

models were examined, the finite element mesh shown in Fig. 4.30 was selected.

This mesh maintains 3 elements across the phase transformation transition. The

maximum element aspect ratio is 1.9 and the worst interior angle is 710. There

are 613 nodes and 180 elements. The time steps for this analysis are unchanged.

The deformed mesh outlines are shown in Fig. 4.31a and 4.31b for the first

and second pulse. The displacements have been magnified 100 times. The finite

element analysis predicts a barrel-shaped center for the specimen. The bulk of

the specimen seems unaffected by the thermal cycle, and just the center shows

permanent deformation. Between the first and second pulse, the curvature of

the barrel increases. In Fig. 4.31b, the beginning (top) of the barrel is sharper

and the center of the barrel is rounder.
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For the radial, hoop and axial stresses on the Z axis of the specimen at
500 ps (Fig. 4.32,) the results are similar to Fig. 4.26. The difference is that
the phase transformations at Z = 1 mm have a more pronounced effect on the
radial and hoop stress, while at the ends, Z = 4 mm, the deviation from zero
stress is broader and smaller. The variation in axial stress is smooth through the
ends, increases as the cross section decreases, is nearly discontinuous through the
phase transition zone, and then increases to the center. More finite elements are
needed in this phase transition region to obtain a smoother variation in stresses.
Even so, the results show that the stress state and material phase change over
a very short distance,

The von Mises stress on the Z axis of the specimen and the von Mises stress
contour plots at 500 ps are given in Figs. 4.33a and 4.33b. The graph indicates
a peak stress in the phase transition region and decreasing stress levels on both
sides. The contour plots show a gradual change in stress through the ends with
very thin contour bands at the phase transition indicating high gradients in
stress. At the end of the pulse (Figs. 4.34a and 4.34b), the peak stress in the
specimen is still in the phase transition region, and all of the stress contour
bands are positioned near there.

The deviatoric axial stress and strain hysteresis loops at the center of
the hourglass specimen are given in Figs. 4.35a and 4.35b. The comments
concerning the hysteresis loops for the tapered specimen also apply here. The
major difference is the extent to which the phase transformations affect the
curves. The plastic strain increments during the transformation did not increase,
but a larger elastic stress-strain response is observed.

The effective plastic strain increments for this integration point are 0.43
and 0.18% for the first and second pulse respectively. The residual von Mises
stresses were 125 MPa for the first pulse and 200 MPa at the end of the sec-
ond pulse. For Test 7 the effective plastic strain increments and the final von
Mises stresses in the same order were 0.30, 0.17% and 52, 98 MPa. The peak
temperature difference between these two tests is 70 K.
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Conclusions

The thermal cycling tests show the mechanical behavior of maraging steel
under extreme thermal cycling conditions in the absence of magnetic body forces.

The agreement of the analysis with the thermal cycling tests indicates that the

analyses and underlying materials data will be useful to the design of short pulse

magnets. That is, the results from these tests confirm the mechanical behavior

being predicted by AFESA for maraging steel under short pulse conditions.

Thermal cycling consists of ohmic heating to temperatures greater than

900 K in 500 tps, followed by conduction cooling back to room temperature in

about 3 min. The thermal cycling test specimens are similar in shape to the

tensile test specimens. The temperature profiles within the specimen are defined

mostly by the cross sectional area of the test specimen. The largest temperature

gradients are in the ends. During cooldown, the temperature gradient extends

across the entire specimen length.

Three different shapes of thermal cycling specimens were tested to failure.

These test specimens had a uniform, tapered and an hourglass gage section

shape. Thermal cycling to temperatures greater than 1000 K causes significant

damage to the test specimens. The test data shows that thermal cycling to

temperatures above 1400 K for just a few pulses leads to an electrical explosion

which destroys the test specimens. Cracks were found with a stereomicroscope

in the 20 - 70 pim thick oxide coating which covered some specimens, but no

cracks were found beneath these oxides, using SEM or sectioning. The data

indicate that higher current densities and higher temperatures lower the number

of cycles to failure. Changes in specimen geometry which decrease the plastic

strain increments and stress levels do increase the number of cycles to failure.

All of the tapered test specimens showed signs of double necking (necking

in both ends). The location of the double necks corresponds to the predicted

position of the martensite to austenite phase transformation transition region.

The centers of these specimens increase in diameter, while the double necks

decrease in diameter. The double necks cause an increased local current density,

leading to higher temperatures and increased plastic deformation in this region.

The tapered specimens showed signs of buckling between double necks.

Microhardness measurements show a significant drop in Rockwell C hard-

ness from 59 to 34 after 16 and 45 thermal cycles for the tapered and hourglass
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test specimens respectively. This result is very important, since it means that

16 thermal cycles reduced the material hardness 50%. More importantly, the
decrease in strength measured here will occur in those portions of the short pulse
magnet exposed to similar thermal cycling conditions.

The events preceding failure in the uniform and tapered test specimens
were a roughening of the surface texture, the formation of double necks and
some buckling between the double necks. For the hourglass specimens, failure
was preceded by a roughening of the surface and the gradual formation of a
barrel shape in the center of the gage section. Failure occurred at the top of the
barrel, which also corresponds to the position of the phase transition between
martensite and austenite.

A finite element analysis of the three specimen geometries reveals some
additional information. The analysis of the uniform test specimen shows that the
temperature gradient, the stress and strain state (influenced by end geometry)
and the flow strength interactions cause double necking. The von Mises stresses
are largest in the ends, but the plastic strain increments are greatest at the
center of the specimen.

For all three specimens, very little plastic deformation occurs during the
heating of the specimen. The plastic strain rates are large (10-2 s-l,) but the
time available for deformation is short. Most of the plastic strain is accumulated
after the pulse, during the specimen cooling. The stress-strain hysteresis results
indicate the stress strain response does not shake out after a few pulses, and
that each thermal cycle will result in further plastic straining.

The finite element results for the tapered test specimen show a broadened
region of necking in the ends. This is due to the combined effects of a tempera-
ture gradient in the ends and the transition from martensite to austenite phase
which occurs in this same location. The predicted plastic strain increments at
the center of the specimen are 0.59, 0.16 and 0.08 % for the first three cycles,
and the corresponding residual stress at the end of these pulses is 307, 395 and
450 MPa.

For the hourglass specimen, a barrel-shaped deformation is predicted. The
largest plastic deformations are concentrated in the center of the specimen. The
variation in von Mises stress is smooth across the ends, but it is nearly discon-
tinuous across the phase transition zone. The position of this zone is at the top
of the barrel-shaped deformation in the specimen. Compared to the tapered
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specimen, the hysteresis loops for the hourglass specimen show a decrease in the
plastic strain increments (0.30 and 0.17 %) and the residual stresses (52 and 98
MPa.)

Table 4.3 shows the results of the thermal cycling experiments. Included
in this table are the maximum current density, the peak temperature achieved,
the predicted plastic strain increment for the first pulse AePL, the residual von
Mises stress at the end of the first pulse and the number of cycles to failure.
The number of cycles to failure is influenced most by the peak current density
and temperature. A comparison between Tests 3 and 6 shows that for similar
peak current densities and temperatures, the number of cycles to failure is also
influenced by the amount of plastic deformation per pulse. Test 6 had a higher
peak temperature and a longer life than Test 3, because its effective plastic strain
increment was smaller.

The results of the finite element analyses for all three specimens confirm
the behavior observed experimentally. The uniform specimen analysis shows
that the thermal gradient in the ends is high enough to cause double necking.
The tapered specimen analysis predicts a larger double neck region that is the
result of the thermal gradient in the ends and the transition from the martensite
to austenite phases. Finally, the hourglass analysis correctly predicts the barrel
shape in the ce"ter of the specimen.

The kinetic equation used to model plastic straining in the thermal cycling
specimens assumed a static microstructure. The thermal cycles modeled in the
finite element analysis used the same temperature distributions for each cycle. In
reality, the microstructure in the specimen is evolving. The changing specimen
shape will alter the temperature distributions, and phase transformation strains
will become anisotropic. These processes are not modeled by the finite element
analysis, but the initial deformed shapes predicted here do match the observed
deformed specimen shapes. Just as important, the predicted deformation shapes
will change the temperature profiles of subsequent pulses, due to metallurgical
and geometrical changes. This leads to an unstable situation where each ther-
mal cycle causes deformations which increase the peak temperature of the next
thermal cycle and so on.
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Table 4.1 Capacitor bank and dummy load electrical specifications

Energy Storage

Operating Voltage
Peak Current

Inductance

Capacitance
Resistance

Table 4.2 Thermal cycling test data.

Spec. Test #
Type

Uniform

Uniform

Tapered

Tapered

Tapered

Hourglass6

Hourglass 7

Max
Current

(kA)

59.2

46.2

37.9
37.9

37.9

39.1

40.3

Max Cur.

Density
(kA/nmm

9.65

7.54

7.97

7.97
7.97

8.23

8.48

Peak

Temp.
) (K)

1413

974

1047

1047

1047

1063

1133

No. Remaks

Cycles

2i Vaporized

25 OxideCracks

33

16

25

Vaporized, DN"i, Bi"'
DN, B

DN, B

45i  Vaporized, BSi "

20' Vaporized (1 spec.), BS

i Tests which ended with specimen failures.
Double Necking.

Buckling.
D .. . CI .. c ~_.1
DIdrrel- napecl.

134

kJ

kV

kA

ItH
mF

nd2s

273

1-20

400

1.25

1.37

25.4



Thermal cycling test results

Test # MaxCurrent
Density

(kA/mm2 )

1 (Unif.)
3 (Tap.)

6 (Hr-Gl)

7 (Hr-G1)

9.65

7.97

8.23
8.48

Residual
Stress

(MPa)

Peak-
Temp.

(K)

1413
1047

1063
1133

Cycles
to Failure

(%)

0.59
0.30
0.43

307
52

125

135

Table 4.3
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Fig. 4.1 Current waveform for thermal cycling specimens.
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Fig. 4.5 Thermal cycling experimental setup.
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Fig. 4.6 Thermal cycling holding assembly.
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Fig. 4.9 Temperature distributions for hourglass test specimen.
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Fig. 4.12 Rockwell C hardness in the tapered test specimen

after 25 pulses.
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Fig. 4.16 Finite element model for uniform test specimen.
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Fig. 4.17 Deformed mesh outlines for uniform test specimen.
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Fig. 4.18 Radial, hoop and axial stress on the Z Axis of the

uniform test specimen.
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Fig. 4.20a
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Z Axis of the uniform

test specimen.
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Fig. 4.22 Plastic strain rate versus time for the 1st integration

point during the 1st pulse of the uniform test specimen.
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Fig. 4.27a

Von Mises stress on the
Z Axis of the tapered

test specimen.

Fig. 4.27b
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Fig. 4.28a
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test specimen.
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Fig. 4.33a

Von Mises stress on the
Z Axis of the hourglass
test specimen.
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Fig. 4.34a
Von Mises stress on the

Z Axis of the hourglass

test specimen.

Fig. 4.34b
Von Mises stress contour
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Chapter 5

Short Pulse Magnets

The purpose of research into the mechanical behavior of maraging steel

is to predict the behavior of short pulse magnets built of that material. Ini-

tially, this Chapter discusses the motivations behind the use of maraging steel,

describes the design parameters which affect short pulse magnet design and ex-

amines the equations which govern the electrical behavior. Then, the Chapter

focuses on a short pulse, destructible test coil (DTC) which was designed, built

and tested to failure for this research. This magnet provides important informa-

tion about the number of pulses to failure, and the mode of short pulse magnet

failure. Using the results of an electromagnetic and thermal analysis, a finite

element analysis of the DTC is performed to determine its mechanical behavior.

The material models developed for maraging steel developed in Chapter 2 are

used in the mechanical analysis. From this work, the displacements, strains and

stresses within the magnet are predicted for two pulses.

Short Pulse, High Magnetic Field Magnets

Short pulse, high magnetic field magnets are used around the world by

scientists to generate large magnetic fields (> 50 T) in a non destructive way

[1]-[3]. Steady state magnets do not (currently) generate magnetic fields in this

regime because of power constraints. The strategy for short pulse magnets is to

produce a large magnetic field in a short period of time. The energy requirements

are reduced, and there are no requirements to remove the heat generated during

the pulse. By using a pulse of electricity, it is possible to generate magnetic

fields between 40 and 100 T. For fields greater than 100 T, electrical explosions

in the magnet are common, destroying experiments and the magnet.

The impetus behind this work is the production of ever higher magnetic

fields (above 50 T), for long times, in a safe manner. The pulses are short to min-

imize the heat generated during the pulse. The limiting design criteria for these

magnets are their strength at elevated temperature versus electrical resistivity.

The resistivity of maraging steel is about 32 times larger than the resistivity of

copper, and its strength is approximately 5 times larger. By reducing the time

available for heating, the superior strength properties of steel can be utilized.

Steel was first used in a short pulse magnet by Simon Foner and Henry Kolm
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[4] in 1957. Later, M. Date [5] used maraging steel to construct a short pulse
magnet, and they have reportedly achieved peak magnetic fields of 70T with a
multiple magnet combination.

In 1982 the Francis Bitter National Magnet Laboratory, with the support
of the National Science Foundation, undertook the study of short pulse magnets
with the goal of generating 50 T with a single magnet and then 70 T with a
pair of concentric magnets. The first goal was realized in March 1985, and this
has been reported in this author's master thesis [6] and in a paper published
at the Megagauss Magnetic Field Production Conference [7]. The 50 T magnet
was designed and built 3 years ago, and it has been pulsed over 20 times at full
field. This magnet is called the 50T coil for the remainder of this paper.

Maraging steel was chosen for this application because of its high strength
and its machinability prior to aging. Constructing the helical shape of the short
pulse magnet requires extensive machining (P 100 hr), and this is performed
in the unaged condition. In a short pulse magnet, maraging steel experiences
magnetic and thermal loads which cause plastic deformation. The selection of
this steel by M. Date was made on the basis of its room temperature strength.
When this work began, the material behavior of maraging steel under extreme
thermal and electromagnetic conditions was not known. Thus, this thesis also
examines the suitability of maraging steel as a magnet material.

Although the DTC and 50T coil are both capable of generating a peak
magnetic field of 50 T, they are different in most other aspects. The 50T coil is
designed with safety as a major concern. The build of a magnet is the difference
between the outer radius and the inner radius and a build is considered large
when the ratio of build to skin depth (see Eq. 4.2) is greater than 5 (the skin
depth for both these coils is 6 mm). The 50T magnet has a large build 46 mm,
and its peak temperature (1300K) is minimized for the given design field and
capacitor bank. The purpose of the DTC on the other hand is to learn how these
magnets fail, and to determine if the methods being employed in the design of
these magnets are valid. The DTC has a small build (15 mm), and the peak
temperatures are 150 K higher than those in the 50T coil. The 50T coil has
an expected life of approximately 1-2000 pulses, while the expected life for the
DTC was less than 200 pulses.
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Magnet Design

The three design specifications which most affect the design of a short pulse

magnet are its peak magnetic field, the peak temperature, and the build of the

magnet. The build affects the stress levels, magnet temperature, and clearance

for multiple magnet systems. The variables which most affect the peak magnetic

field and temperature in descending importance are the charging energy (voltage,

limited by the capacitor bank), the inner radius, the turn thickness and the

number of turns. Several computer codes are used in the design and analyses of

short pulse magnets. These codes analyze various magnet designs and are used

to determine the optimum coil geometry. From this work, several important

insights into the art of magnet design have been learned.

The inner radius of a pulse magnet has the biggest effect on the peak

magnetic field and temperatures. The peak magnetic field is measured at the

center of the magnet bore. For uniform current density solenoids, the peak

magnetic field is proportional to the inverse of the inner radius. A similar

relationship holds for the short pulse magnet. In addition, decreasing the inner

radius increases the current density gradients. The coil temperatures depend on

the integral of the current density squared, so as the inner radius decreases, the

peak temperatures increase.

The turn thickness and number of turns affect the peak magnetic field and

temperatures in a more complex manner. For a fixed interspace distance between

the magnet turns, a constant peak current, and a fixed pulse length, the following

relationships hold. Increasing the turn thickness decreases the current density

which lowers the magnetic field, and increases the spacing factor (ratio of active

conductor section to the total magnet section) which increases the magnetic

field. Increasing the turn thickness lowers the electrical resistance. Increasing

the number of coil turns increases the magnetic field and the electrical resistance.

The magnet temperatures depend on the current densities, so anything that

raises the current densities raises the coil temperatures. Thus, the turn thickness

and the number of coil turns are varied to maximize the peak magnetic field and

minimize the peak temperature. For more information on magnet design see [8].

In general, as the build of a magnet increases, it is likely to be a safer

magnet, and its lifetime increases. This is because a larger build lowers the

effective stress level in the magnet during its operation, and a larger build also

174



gives the magnet a larger thermal mass. The first point is seen from the fact

that when the build of a magnet exceeds the skin depth, there is material not

loaded by Lorentz body forces which can support material being loaded in the

skin depth region. The second point means that after the electrical pulse when
the temperature distribution is nearly uniform, the mean temperature in the

magnetic is smaller for larger builds. Safety in this context means that a magnet

failure results in less damage to experiments and equipment near the magnet.

When a magnet fails during a pulse, the principal point to consider is the

electrical consequence of the failure. Very large currents are passing through the

magnet (300 kA), and a continuous path of electrical conduction is maintained

during the failure. When a magnet fails, and there is a loss of structural integrity,

the regions most affected are at or near the inside radius. This corresponds to the
region through which most of the current is flowing. It is highly unlikely, if not

impossible for a magnet failure to interrupt these currents. Thus, a potentially

large electrical explosion can occur when 250 kJ of energy are discharged through

the magnet. The build of the magnet must contain any failure occurring at or

near the inner radius of its turns. If the electrical explosion is not confined
by the build of the magnet, flying shrapnel could cause serious damage to the

surroundings.

The specifications for the 50T coil are summarized in Table 5.1. The 50T
coil generates 50 T of peak field in a 34 mm bore with a coil build of 48 mm, and
it requires the entire stored energy of the capacitor bank 273 kJ. This magnet

reaches a peak temperature of 1300 K and cools to a post-pulse temperature of

413 K (t = 300 ps). Likewise, the specifications for the destructible test coil

are given in Table 5.2. This coil is pictured in Fig. 5.1. The DTC generates

50 T of peak field in a 18.5 mm bore, and it requires just 93 kJ of capacitor
bank energy. The magnet build is 15 mm and the turn thickness is 4.6 mm.
The destructible test coil heats to a peak temperature of 1460 K and cools to

an immediate post-pulse temperature of 690 K.

Magnet Construction

A brief description of the magnet assembly is necessary here to introduce

some terminology and concepts to this discussion. Fig. 5.2a shows the DTC
magnet assembly. Two layers of 1/16 inch thick G-7 insulation are inserted

between the turns of the magnet to prevent electrical arcing. The magnet is
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bolted to two large brass conductor plates. Attached to the brass conductor
plates are rings of G-10 insulation. An oak safety ring slides over both G-
10 rings, and should a catastrophic failure occur, the oak ring will slow any
shrapnel. The magnet assembly is surrounded with 6 threaded A-286 steel
tie rods which compress the magnet, reducing coil movement during a pulse.
Using a torque wrench, it is possible to apply up to 70 tons of compression on
the magnet assembly. The G-10 plates insulate the steel plates from the brass
conductor plates. Coaxial cables from the capacitor bank are attached to both
brass conductor plates, closing the electrical circuit.

The construction methods for the 50T and the destructible coil magnets
are similar. The coils are cut from round billets of maraging steel. The cutter for
the 50T coil is an 8 inch diameter, 1/8 inch thick high speed steel circular saw
blade. The cutter for the destructible test coil is a 4 inch diameter, 1/16 thick
abrasive circular blade. In both cases, the cutter rotates about a stationary
axis. The steel billet is rotated and moved along its Z axis. The saws cut a
helical groove into the billet. Up to 10 passes of the cutter are necessary to
cut a groove deep enough to exceed the build of the magnet. The beginning
and the end of the magnet turns are cut with an EDM (Electrode Discharge
Machining) electrode. Next, the center of the billet is bored out to the inner
radius dimension.

One unfortunate consequence of using a circular saw to cut the helical

magnet is the resulting shape of the magnet turn cross section. Fig. 5.3 shows
the turn cross section which results from machining the DTC coil. This profile
damages the electrical insulation which separates the turns [7]. During a pulse,
the combined thermal expansion and axial Lorentz forces cause adjacent coil
turns to pinch the insulation which separates them. The corners of previous coil
turns (the 50T coil) are rounded with sandpaper, but this does not prevent the
turns from damaging the insulation. One of the design goals for the DTC is a
turn profile which does not cut into the insulation. Therefore, the DTC coil turn
shape was altered with a hand grinder. Fig 5.3 shows a before and after cross
section of the DTC turn. The purpose of this alteration is to reduce the turn
thickness at the inner radius 15 % from 4.6 to 3.9 mm, thereby separating the
G-7 insulation from the magnet. After grinding, the surface is smoothed with a
640 grit sandpaper. The small build of the DTC makes this manufacturing step
feasible.
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The heat treatment for both coils is the same. Spacers are inserted between

the turns, and the coil is compressed in a holding fixture. The magnet and

holding fixture are placed in a dewar, and the dewar is placed into a furnace.

A nitrogen atmosphere is introduced into the dewar and the entire assembly is

heated to 755 K. After 4 hr, the doors to the furnace are opened and the dewar

is air cooled. Except for the longer cooling times (1 hr versus 15 min), this is

the same heat treatment described in Chapters 1 and 2.

Electromagnetic Analysis

The purpose of an electromagnetic analysis is to determine the current

densities, temperatures, magnetic fields and Lorentz body forces within the short

pulse magnet as a function of time and position. The most important unknown

in this analysis is the current density distribution, since it defines the magnetic

field and the heat generation within the magnet. The magnetic field distribution

is calculated with the program SOLDESIGN, written by R.J. Pillsbury. Based

upon input current densities, SOLDESIGN calculates the magnetic field vector

for specified points. The Lorentz body forces are found by calculating the cross

product of the current density vector with the magnetic field vector.

The current density distributions for the short pulse magnet are deter-

mined using a nonlinear numerical integration of the electrical circuit equations.

Previous modeling of the discharge of electricity into the short pulse magnet

either relied on skin depth assumptions, or was restricted to the first half period

of the electromagnetic pulse [6]. The method described here does not have these

restrictions, and its predictions of current and magnetic field versus time agree

with experimental results to within 7 %. Indeed, this method is used to solve

more complicated multiple magnet, short pulse analyses.

The electromagnetic analysis is a part of a larger program called MESPA,

which stands for Mechanical, Electromagnetic Short Pulse Analysis. The pro-

gram MESPA calculates the current density profiles, uses SOLDESIGN to find

the magnetic fields, calculates the radial body force and temperature distribution

and then performs an elastic structural analysis for the short pulse magnet(s).

The elastic analysis is not valid for the range of temperatures and body forces

being considered here, so this portion of MESPA is not described. MESPA pro-

vides the body force and temperature information for the finite element analysis.
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A program listing of MESPA is kept at the Francis Bitter National Magnet Lab-

oratory.

The Model

For a solid helix, each turn occupies the entire build of the magnet and is

a single conductor. Thus, the turns of a solid helix can be stacked up on top

of one another (Fig. 5.4). The voltage along a radius of a solid helix coil is

constant and the current density J varies in the radial direction only.

In the program MESPA, the short pulse magnet is divided into parallel,

helical sub-coils (magnets), and then each of these sub-coils is assumed to consist

of n stacked turns. A single electrical conductor can be replaced by a system

of conductors, so long as the overall electrical characteristics (resistance, induc-

tance and capacitance) remain constant. The model shown in Fig. 5.5 replaces

the single solid turn of the helical conductor with 3 parallel sub-coils. The next

assumption for this model states that the current density within each sub-coil

is constant and does not vary along its length. Thus, a nonlinear current den-

sity distribution is approximated with numerous constant-current sub-coils (30
sub-coils are used in the DTC analysis).

Governing Electrical Equation

The governing electrical equation for this problem is the the standard

RLC circuit equation. However, the system inductance L and resistance R are

variable. The inductance of a short pulse magnet is a function of the current

path geometry. The current diffuses into the solid helix from the inner radius,

and this penetration is a function of temperature, time and position (a radial

component of current density is not necessary for radial diffusion, because the

inductances of the sub-coils and the rate of current change within the sub-coils

create voltage potentials for current flow in adjacent sub-coils). The electrical

resistance of a magnet is a function of the current and temperature distributions.

C is the capacitance of the capacitor bank described in Chapter 4. The initial

conditions for this problem are given in Eqs. 5.2 and 5.3. The capacitor is
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charged to an initial voltage Vo at time ro, and then the capacitor bank is

discharged.

8I 1 ,T
L- + RI+ I dt = 0 (5.1)

I = 0 (5.2)
1jTO

- I dt = Vo (5.3)

The governing equation must be modified and expanded to represent the

governing equations for the sub-coil in the model. This modification is best

demonstrated by considering an example divided into 3 rather than 30 sub-coils

and deriving the governing equations. The short pulse coil is divided into 3

parallel sub-coils. Fig. 5.6 is the electrical circuit for this system. The magnet

inductance is defined with a 3 by 3 inductance matrix [L], and each sub-coil has

its own resistance which is stored on the diagonal of a 3 by 3 resistance matrix

[R]. The inductance matrix is calculated by the program SOLDESIGN, and

the resistance matrix is calculated directly from the electrical resistivity and the

conductor geometry. In addition to the magnet variables, there is a constant

system inductance Lc of 0.47 ph, and a constant system resistance Rc of 9.7
mf.

Examining the voltage potentials of the model gives two sets of simulta-

neous equations. The first set of equations describes the voltage across each

sub-coil, and they all equal V'. For this problem, there are three current vari-

ables, one for each sub-coil. T is the total current flowing through the magnet

and capacitor bank, and it is equal to the sum of the sub-coil currel \s.

L[ L12 L13  d I'i R1  0 0 Ir 1
L21 L22 L23 12 + 0 R2  0 12 =V' 1 (5.4)
L31 L32 L33 3 0 0 Rs Is 1

where

dITV' = V - Rl' - L, (5.5)dt
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The next equation describes the voltage V across the capacitor bank, and there
is only one equation for this single magnet system.

dV -ITdV = -(5.6)
dt C

It is helpful to rewrite Eq. 5.4 in matrix notation, so the convention of

brackets is adopted to designate matrix variables. The currents flowing through

the sub-coils are described with a column matrix [I]. The variable [1] is a column

vector of l's. Using this notation, Eq. 5.4 is re-written as

[L]d-I + [R][I] = V'[1] . (5.7)
dt

The [R] matrix employed in this problem is a function of temperature.

Each sub-coil has its own temperature, so during a pulse, the electrical resistivity
changes as ohmic heat generation raises the sub-coil temperatures. The [L]

matrix is a function of geometry and is constant for all the sub-coils. The

system inductance L, is a function of [L] and [I], so it changes during the pulse.

[I]T [L][] (5.8)L, = (5.8)
(IT)2

Mechanical displacements of the sub-coils do not significantly affect the coil

geometry, hence the assumption of a constant [L] matrix is valid.

Eqs. 5.4-5.6 predict the electromagnetic behavior of this simple system.

The prediction of eddy currents at the outer radii, induced voltages, and skin
effects are contained in these equations. More specifically, the [L] matrix is
principally responsible for capturing these effects. The derivation and calcula-

tion of the [L] matrix uses Maxwell's equations of electromagnetism. It is the
calculation of [L] (SOLDESIGN) which underlies the success of this method.

Solution Procedures

A numerical solution procedure is employed to determine the current den-

sities for the sub-coils. For reasons of stability, this problem is solved iteratively
with an implicit finite difference (Euler) method. The derivatives of current and
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voltage are approximated with a finite difference equations. The implicit formu-

lation for Eqs. 5.5-5.7 requires their being satisfied at time t + At. The times
for each variable are denoted with an upper right superscript. Using a simple
finite difference approximation for Eq. 5.9, Eq. 5.10 defines a set of equations
which when solved determine the unknown currents at time t + At. Eq. 5.11
defines the sub-coil voltages, and Eq. 5.12 defines the capacitor bank voltage.

d[I] [I]t+At - [I]t (5.9)
dt At

1 [L]+ [R]t+At) t+t = (V)t+ [1] + [L][I]t (5.10)

(V')t+At = Vt+At - Rc (IT)t+At L (Tt+At - (IT)t (5.11)

Vt+At = Vt - (IT) •tAt A (5.12)
C

The initial conditions for this problem are the applied voltage of the capac-

itor bank, and zero current flowing in the coil. Since the voltage (V')t+ * t cannot
be known at time t, and because the total current (IT)t+At is also unknown,

the solution to these equations must be determined iteratively.

From experience, it has been found that [R] does not change significantly
during the iterations at each time step. So it is assumed that [K]e only changes

between time steps and not during the iterative solution for that time step.

[K]e = -t[L] + [R]t  (5.13)

[K],et1]+ t'  = (V') '+Ai [1] + [L][I] (5.14)

Thus, [K]e is not solved at time t + At, but instead at time t. The [K], matrix

is symmetric, and this property allows an efficient matrix solver to be employed

(COLSOL). Since [K]e does not change during iterations at each time step, it is
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triangularized and stored just once at each time step. For each iteration, only a

reduction and back substitution of the load vector (right hand side of Eq. 5.14)

is necessary to obtain [I]t+At. By successively substituting the results of Eqs.

5.12, 5.11 and 5.13 into each other, solutions for (IT)t+At,V t+ At and [I]t +At

converge.

The [K], matrix has additional significance in the solution to the short

pulse equations. An examination of the [K], matrix reveals important time

convergence limits for these systems. When At --+ oo, the problem converges to

i steady state solution where only [R] is important. When At -+ 0, the problem

is time-dependent, and [L] dominates the solution. Because this is an implicit

solution scheme, [R] is a part of the [K], matrix. Its inclusion is responsible for

the stability of this solution procedure. For the short pulse analyses -t[L] and

[R] are of the same order of magnitude (- 0.4 and 0.1 Ohm respectively.)

Thermal Analysis

The thermal analysis for the short pulse magnet is patterned after the

electromagnetic analysis. A finite difference method is used to determine the

temperature distribution within the magnet. The same sub-coil model is used

for both analyses, and the time steps are identical. During the pulse, thermal

conduction and convection are not significant, but ohmic heating is significant.

Immediately after the pulse (260 tis), there are extreme temperature gradients

inside the magnet, and thermal conduction is important in reducing the temper-

ature differences. The magnet cools to room temperature by thermal convection

to the air and by heat conduction out the ends of the magnet into the magnet

assembly.

The finite difference heat transfer equations for an axisymmetric coordi-

nate system have been derived previously [7]. The equation for the temperature

at the next time step in a finite difference formulation is given in terms of the

sub-coil build Ar and mean sub-coil radius ri.

O. = O. + drA2 1+ O)i+(dCAr2 )2
(1 - 2 O6, - 20t] + pJ2 (5.15)

12ri ) & -dCp
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The boundary conditions for this model are determined by defining the

convective heat transfer rate at the inside and outside radius of the model (Eq.

5.16). h is the convective heat transfer coefficient, and 0, is the air temperature.
By creating fictitious grid temperatures on the boundary of the finite difference

model it is possible to impose the boundary condition relationship.

- (0o, - 0) (5.16)

By using Eq. 5.15 in a standard finite difference formulation, it is possible
to determine the temperature profile in each sub-coil during and after the pulse.

The thermal analysis of the short pulse magnet is coupled to the electromagnetic
analysis.

Changes in temperature affect the electrical resistivity, which affects the

current densities which in turn affect the temperatures. To study the importance

of a coupled electromagnetic, and thermal analysis, an analysis was performed

with a constant electrical resistivity. The resulting currents did not diffuse as

deeply into the the build of the magnet. The difference in current penetration

between this example and the temperature dependent resistivity case is about

equal to the difference between their respective skin depths (Eq. 4.2).

Short Pulse Test Results

The 50T coil has been pulsed over 20 times to magnetic fields greater than

40 T without any visible damage to the magnet itself. However, the interspace

insulation which separates the turns has been cut and damaged by the magnet.

The insulation lasts about 8 pulses before it must be replaced. Results from

the 50T tests have already been reported, so this discussion concentrates on the

predictions and results obtained from the DTC tests.

The DTC was pulsed 16 times to magnetic fields between 48 and 54 T

before crack growth on the inside radius caused it to fail. A coil failure analysis

is postponed to Chapter 6. The short pulse tests were halted after the 12th test

to examine the coil and interspace insulation. The magnet appeared undamaged

in its assembly, but after removing it from the assembly, eight cracks were found

on the inner radii. The insulation was in very good shape. There was none of the

damage observed in the 50T coil insulation. The modification to the turn cross
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section (a gap between the coil and insulation at the inner radius) successfully
prevents insulation damage.

The program MESPA makes the following predictions for the loading con-
ditions of the DTC. Figs. 5.7a and 5.7b show the magnetic field and total
current flowing through the magnet as a function of time. Figure 5.7c shows
the actual total current which was measured during the first 50 T pulse of the
magnet. Traces of magnetic field versus time were measured at low voltages to
correlate the current with the peak magnetic field. For safety reasons, traces of
the magnetic field were not measured at 50 T. A magnet failure would destroy
the pickup coil used to measure the field, creating a serious high voltage danger.
Instead, field measurements were made at 8.6 T (2 kV) to correlate the peak
magnetic field with the peak current in the magnet. The ratio between the peak
field and current is constant for short pulse magnets. Using this correlation, it
is possible to determine the peak magnetic field based upon a measured peak
current. The peak magnetic field predicted by MESPA is 45.5 T at 42 /is, while
the scaled peak magnetic field is 48.8 T at 46.0 pjs. The predicted peak current
is 278 kA at 45.0 jss, while the actual measured peak current is 272 kA at 49.0
1ls.

Within the magnet, the current density profiles are given in Figs. 5.8a and
5.8b. 30 sub-coils were used by MESPA to determine these profiles. Initially,
the largest current densities are at the inside radius. With time, the current
diffuses into the build of the magnet (again by a constant amount along the
length of the sub-coil). The slight rise in current densities at the outer radius
of the magnet is due to eddy currents generated by the return field as it flows
back around the magnet.

The temperature distributions within the magnet during the electromag-
netic pulse are given in Figs. 5.9 and 5.10. Clearly, the temperature profiles
reflect the high current density profiles predicted during the pulse. Fig. 5.11
shows the temperature profiles at different times during the magnet cooling.
The temperatures predicted here are used later in the finite element analysis.

Mechanical Analysis

The mechanical analysis of the short pulse magnet is simplified with ap-
proximations to the geometry and loading. The primary geometrical assumption
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is that an annular ring model can be used to analyze the problem. The axisym-

metry of the annular ring replaces the helical geometry of the magnet. The

annular ring is also assumed to represent the center turn of the magnet where

the turn is symmetric along the R axis (Fig 5.12). An axisymmetric finite el-

ement analysis is performed on the annular ring model. The material models

developed for maraging steel in Chapter 2, and incorporated into the finite ele-

ment program AFESA, are used to study the mechanical behavior of the DTC.

The short pulse magnet is subjected to two kinds of mechanical loads,

axial compression from the magnet assembly and Lorentz body forces. The

Lorentz body forces (N / mm3 ) are derived from the cross product of the current

density and the magnetic field. When the helical geometry of the current path

is considered, there are three components to the Lorentz body force, radial,

axial and angular. At the ends of the magnet where the radial component of

the magnetic field is largest, the axial and angular body force components are

also largest. The axial component of the body force compresses the magnet,

while the angular component of the body force winds the magnet tighter. An

analysis of the end of the magnet is complicated by the geometry of the transition

regions and the lack of an electromagnetic analysis which can predict the current

densities and magnetic fields in this region. At the center of the magnet there

is no radial component of magnetic field, thus the axial and angular body forces

are zero here. The axial magnetic field is largest at the center turn; thus the

radial body force is largest body force component. The radial body force in

the center turn is larger than either of the other two body force components

anywhere in the magnet by a factor of at least 10.

The program SOLDESIGN calculates the axial magnetic field within the

build of the magnet. The fields are multiplied by the current densities to get

the radial body force profiles shown in Figs. 5.13 and 5.14. The curves in Fig

5.13 show a concentration of body force within the skin depth region, with a

decrease in magnitude going into the build of the magnet. The maximum body

force during the pulse is 345 N/mms at 30 tis. The gradient of body force in

the magnet is 90 N/mms/mm. The scale of the body force axis is reduced by a

factor of 10 in Fig. 5.14. The body forces in this figure occur during the reverse

magnetic fields. Note the complete penetration of body forces into the build

of the magnet, and the negative body forces at the time (120 1ss) of zero total

current in the magnet.
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The maximum axial compression imposed by the magnet assembly on the
magnet is determined from an integrated estimate of the maximum axial body
force during a pulse. The estimate is made by determining the radial component
of the magnetic field in the center of the skin depth region, along the length of the
magnet. The axial body force is calculated from the radial field and the current
density, and then integrating over the skin depth from the center of the magnet to
its end. Using this method gives a total axial compressive force on the magnet
of about 30 tons (0.27 MN). The purpose of the imposed axial compression
by the magnet assembly on the short pulse magnet is to prevent movement
of the magnet. Under a sufficiently large axial pre-compression and loading
compliance, the center turn of the magnet does not experience an appreciable
change in axial loads during a pulse.

The actual shape of the magnet turn cross section is used to define the
shape of the annular ring model. Since the center turn of the magnet is being
analyzed, symmetry allows the finite element model to span just half the magnet
turn (Fig. 5.15). There are 90 elements and 271 nodes in this mesh. A high
density of elements is used at the inner radius of the mesh to model the steep
gradients of body force and temperature. There are 2 elements in the phase
transformation transition region at all times during the pulse.

The axial compressive force on the magnet is included in the finite element
analyses. To find it, a separate finite element analysis was performed. The G-7
insulation has a compressive yield strength under uniaxial strain of 234 MPa.
The insulation was modeled with nodal springs that can only transmit a com-
pressive force, and the maximum force they can transmit is equivalent to a stress
of 234 MPa. Because the G-7 is in uniaxial strain, it might withstand larger
stresses than assumed here, for a few cycles. The nodal springs are attached to
the top surface of the finite element mesh (see Fig 5.16), and the bottom surface
of the model is displaced (Au = 0.015 mm) upward until the total axial force on
the model is 30 tons (0.27 MN). The spring stiffnesses are determined by inte-
grating a quadratic interpolation function to find the area associated with each
node and then multiplying the result by the ratio of the measured G-7 Young's
modulus (12.4 GPa) to the insulation thickness (0.794 mm). From the analysis,
the resulting nodal force from each axial spring is determined. These axial node
forces are then used as an applied force (constant) for the finite element analysis
of the magnet pulse. Thus, no attempt is made to study the interface between
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G-7 and the maraging steel, and the only objective here is to include the 30 ton

(0.27 MN) compressive force on the center turn model.

Figs. 5.16a and 5.16b show the axial stress and contour plot in the DTC

prior to pulsing. The stresses in Fig. 5.16a are taken along the R axis, and they

show a smooth variation in axial stress at r = 13 mm (6 elements between r =

12 and 14 mm). The stresses could be nearly discontinuous at the top surface,

but they are smooth along the Z axis.

The electromagnetic pulse is broken into three phases, each with 6 time

steps. Each time step is broken up into 15 sub-increments. The time steps for the

first phase are 20, 30, 40, 50, 60 and 80 lps, and they span the largest magnetic

fields and current densities. The second phase spans the reverse magnetic fields,

and the time steps are 120, 140, 160, 180, 200 and 260 ps. The last phase covers

the cooling of the magnet back down to room temperature, with time steps of

0.001, 0.01, 0.25, 5, 60 and 900 s. Fig. 5.17 shows the magnetic field versus

time with the time step positions marked on the curve. There are Lorentz body

forces for the first 2 phases only, and temperature profiles for all three phases.

The boundary conditions for the finite element mesh are very simple. The

bottom edge of the model is restricted from any axial displacement, due to

modeling just the top half of the center turn, and the necessity of preventing

the model from moving in the Z direction. The entire model is free to move in

the radial direction.

A dynamic finite element analysis of the DTC was performed to investi-

gate the importance of dynamic body forces on the mechanical behavior. The

phenomenological rate equation was used for these analyses, because it was de-

veloped first, and its computer execution time is shorter. To study dynamic

body force effects, the body forces are calculated from nodal displacements and

added to the equilibrium equation (Eq. 3.4). A comparison between finite ele-

ment results with and without dynamic body forces show that these forces are

not significant. The Lorentz body forces are approximately 100 times larger

than the dynamic body forces.

The phenomenological rate equation is best suited for temperatures be-

tween 298 and 1100 K. For temperatures above 1100 K, the Arrhenius rate
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equation best predicts plastic straining in maraging steel. A second finite ele-

ment analysis was performed on the DTC, and these results are compared to the

phenomenological finite element results. The phenomenological and Arrhenius

displacements are nearly identical, but the stress distributions and stress-strain

hysteresis loops for these two analyses differ (being derivatives) as discussed

below.

The finite element results are broken into three categories: nodal displace-

ments, stresses, and stress-strain hysteresis loops. The stress plots for the DTC

show little variation in the Z direction anywhere inside the magnet turn (see

Fig. 5.16b). Thus, graphs of displacement and stress are described with plots

along the R axis alone. The RZ shear stresses are smaller than the hoop stresses

by a factor of 1000 everywhere inside the magnet. This means the radial, hoop

and axial stresses are also the principal components for this model.

Displacements

All of the results for displacements are for the phenomenological rate equa-

tion analysis (valid below 1100 K; even above, the difference between that and

the Arrhenius rate equation analysis are not noticeable). Figs. 5.18-5.20 show

the finite element mesh deformation outlines before, during, and after the first

pulse. In the first and last plot, the displacements have been magnified 100

times. The second plot, Fig. 5.19 is at 260 ps, and its displacements are mag-

nified 10 times. Initially, the coil turn deformation shows the effect of axial

pre-compression. Beginning at a radius of 14mm, the coil turn is deformed

downward and this deformation extends to the outer radius. The surface at

the inner radius is displaced outward. At 260 /is, the Lorentz body forces have

subsided and the coil is at its peak temperature. The important deformation

features at this time are outward expansion of the magnet turn and axi-ex-- -------

pansion of the magnet, especially at the inner radius. The dotted deformation

outline is more boxlike, and the effects of axial pre-compression are not visible

in the plot. The top left corner of the deformed outline has risen and is closer

to the insulation. If the shape of the magnet turn is not altered, then the corner

pinches into the insulation during the pulse. After the pulse, the deformation

outline has changed in two ways. The inner radius coil surface is radially dis-

placed inward and the top surface of the coil turn at r = 11 mm is slightly

depressed. The effects of axial compression are evident again.
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A finite element analysis of a second electromagnetic pulse does not show
significant deviations in the deformation outlines of Figs. 5.19 and 5.20. For the
short pulse magnet, the turn width and inner radius change very little between
cycles, and the heating characteristics of subsequent pulses do not change. For
the thermal cycling tests, each thermal cycle caused a change in the specimen
shape which influenced the heating characteristics of the next pulse.

Figs. 5.21a-5.21c show the radial displacements in the magnet as a function
of time and position. Initially, the magnetic body forces cause a rapid radial
expansion of the magnet. During a pulse, the peak displacements are between
a radius of 10 to 12 mm, and decrease on both sides. The peak field is at 42
ps, but the analysis predicts larger displacements at 50 ps than at 40 ps. By
80 ps, the magnetic body forces diminish, and the thermal loads dominate. For
the remainder of the pulse, the maximum displacements are at the outer radius.
Fig. 5.21b shows the radial displacements during the reverse magnet fields.
The times listed above the curves correspond in the same order to the curves
below. The reverse magnetic fields have the effect of increasing the overall radial
displacements in the magnet but they do not change the general shape of the
displacement curves. The thermal loads overwhelm the reverse magnetic field
loads.

The radial displacement curves (Fig. 5.21c) show the influence of temper-
ature distributions in the magnet. At 0.001, 0.01 and 0.25s, the temperature
gradients are still nonlinear, and the curves have the same shape as those in Fig.
5.21b. At 5, 60 and 900 s, the temperature gradients are nearly constant, and
the resulting radial displacements are linear. The sharp changes in the linear
slopes of these curves at r = 12 mm reflect the material phase transition between
austenite and martensite. For r < 12 mm, the coil material has transformed to
austenite, while for r > 12 mm, the material remains elastic throughout the
pulse. The thermal strains in these these two phases are different, and this ac-
counts for the change in displacement slope. By the end of the pulse, the radial
displacements are negative at the inner radius and positive at the outer radius.

Stresses

The radial, hoop and axial stresses for the phenomenological rate equation
analysis are shown in Figs 5.22 - 5.35, and the same set of results are shown for
the Arrhenius finite element analysis in Figs. 5.36-5.49. The 120, 140, 160, 180

189



and 200 .s time steps are not included here, because they are all very similar to
Fig. 5.29. The large change in hoop stress between Figs. 5.28 and 5.29 occurs
between 80 and 120 ps. Two observations should be made about the radial and
axial stresses in these plots. The radial stress is zero at the inner and outer
radius of the magnet turn. The radial Lorentz forces are greatest at the inside
radius, yet the radial stress is zero. The second observation is that during a
pulse, the axial stress is nearly constant at -234 MPa between r = 16 mm and
21 mm. This corresponds to the yield strength of G-7 (although the stress could
rise higher under uniaxial strain conditions).

During the first 20 ps of a pulse, the stress distributions in a virgin coil are
elastic. Starting at 30 us, phase transformations begin at the inner radius, and
they cause steep gradients in the axial and hoop stresses. By 50 Cts, the phase
transformation transition region has moved further into the magnet build. The
hoop stress is the largest stress component, and it has two maxima. The first
maximum is at the austenite edge of the phase transition, and the second is in
the interior of the magnet at r = 15 mm. The radial stress seems unaffected
by phase transformation strains and its maximum is at r = 13 mm. The lack
of phase transformation effects on the radial stress is likely due to the fact that
the radial stress is normal to the phase transition zone. Unlike the thermal test
specimens which were restricted from displacing in the Z direction, the magnet
is not restricted from displacing in the R direction, but more restricted in the 0
direction.

Elastic analyses of this problem type show that magnetic body forces cause
a positive hoop stress at the inner radius, and thermal gradients cause a negative
hoop stress at the inner radius. The combination of these loads result in a shift
of the maximum hoop stress from the inner radius into the the build of the
magnet (the second maxima). Fortunately for the magnet, this maximum hoop
stress occurs in the lower temperature, higher strength martensite phase.

At the end of the magnetic field pulse, thermal gradients dominate the
loading, and the maximum stress shifts to the inner radius. The radial stress
inside the magnet build is large during the field pulse, but it is diminished during
cooling. The hoop stress however reaches its maximum negative magnitude at
260 ps (see Figs, 5.29 and 5.42). The largest positive stress at this moment is
also the hoop stress, 400 MPa at the outer radius of the coil.
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As the magnet cools uniformly from 690 K at 1 min to 298 K at 15 min,

the stress distributions in the magnet change, and there are steep gradients in

stress near the inner radius. This is due to the two different material phases in

the coil at the same time, and the uniform temperature profile. Plastic hoop

strains (developed at the time of peak temperature) force the hoop stress into

tension as the magnet cools. By the end of the cycle, there is a positive residual

hoop stress at the inner radius. The stress distribution varies within the prior

austenite region, but is nearly constant in the martensitic region. A large stress

gradient exists near r = 12 mm, and this position corresponds to the maximum

penetration of the austenite phase.

For the phenomenological and Arrhenius analyses, the predicted stresses

are similar for the first 80 tps of a pulse but differ for the remainder. At 260

As, the hoop stress predicted by the phenomenological analysis is twice as large

as the hoop stress predicted by the Arrhenius analysis. Both finite element

analyses predict steep gradients in stress at a radius of 12 mm, and the stress

distributions at 60 and 900 s are similar in shape. The Arrhenius results differ

most from the phenomenological results in those portions of the magnet where

the temperature exceeds 1100 K.

Figs. 5.49 - 5.50 show the von Mises stress along the R axis of the magnet

turn between 20 and 80 /Ls. With these figures it is possible to visualize the effects

of magnetic and thermal loading on the magnet. The peak stress increases in

magnitude as the magnetic field increases. The location of the peak stress moves

into the build in a manner similar to the current density penetration. The phase

transformation between martensite and austenite begins at the inner radius and

penetrates into the build of the magnet. As magnetic body forces decline, the

stress at the inside radius decreases, and then increases again as thermal loads

start to dominate. It is important to note the very high stresses (> 1000 MPa)

which occur between r = 12 and 22 mm. The stress distribution in this region

is entirely elastic, because the material strength is greater than 1500 MPa, and

the temperatures are less than 690 K. Increasing the build of this magnet would

definitely decrease the stress levels and make a safer magnet. A larger magnet

build increases the volume of material which is elastically stressed at levels less

than 1000 MPa.

While the shape of the deformed finite element model outline does not

change significantly after the second electromagnetic pulse, there are changes in
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the stress distributions. The von Mises stress plots for the second pulse between

0 and 80 Cts are shown in Figs. 5.51 and 5.52. A comparison of these plots to Figs.

5.49 and 5.50 shows the effects of residual stresses. During the the first 50 /is of

the second pulse, the maximum stress shifts to the inside radius. The advance

of the phase transition region is visible again, and there is a gap (decrease in

stress) between the current phase transition position and the previous maximum

phase transition depth. This gap shrinks during the heating of the magnet.

Stress-Strain Hysteresis Loops

The stress-strain behavior at four element integration points are studied.

Their radial positions are 9.3, 10.5, 12.0 and 18.2 mm and they are all 0.13 mm

away from the R axis. At these integration points, the equivalent plastic strain

rate eP versus time and the deviatoric hoop strain versus stress are plotted. The

majority of this section of the chapter is spent discussing the results at the first

integration point. The inside radius of the magnet has the largest increments

in plastic strain, and the plastic strains decrease in magnitude as the radius

increases. The hoop component of stress and strain is selected here for the

hysteresis loops, because it is the largest in magnitude.

Figs. 5.53a and 5.53b show the equivalent plastic strain rate &P from the

phenomenological finite element analysis for the first and second pulses at the

first integration point (r = 9.3 mm). Figs. 5.54a and 5.54b show the deviatoric

hoop stress-strain hysteresis histories during the first and second pulse from

the same analysis at the same point. From these plots, three stages of plastic

deformation are identified. The first stage occurs during the peak magnetic body

forces, the second stage after the magnet is heated and large thermal gradients

exist in the magnet, and the third stage occurs when the temperature in the coil

has cooled to a uniformly high temperature of 690 K. This temperature will be

called the post-pulse temperature. The hoop stress alternates between tension,

compression and tension during the three stages of plastic straining.

The integrated plastic strain increments during these three stages are 8.5

x 10- , 0.56 and 0.28 % respectively. For the second pulse, the plastic strain

increments for these three stages are 5.4 x10- 4 , 0.24 and 0.33 %. The final von

Mises stress after the first and second pulse are 600 and 580 MPa. The stress-

strain hysteresis loop for the first pulse encloses the loop for the second pulse.

This suggests a final shakedown loop which is also within the first hysteresis loop.
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Thus, the maximum plastic strain range predicted by the phenomenological

finite element analysis for the DTC is 0.56 %.

The plastic strain rate versus time for the Arrhenius finite element analysis

is shown in Fig. 5.55. The peak plastic strain rates for this analysis are about

100 times larger than those in the previous analysis. Plastic straining in the

second stage occurs at a higher rate, but it only lasts until 0.007 s. In the third

stage, plastic straining occurs over a longer time interval than the third stage in

the phenomenological analysis. Fig. 5.56 compares the stress-strain hysteresis

loops from the phenomenological and Arrhenius analyses. The two curves are

similar through stage one, but the plastic strain increments for the second and

third stage are larger for the Arrhenius analysis. The stress levels are smaller

for the Arrhenius analysis, and this is consistent with the discussion in Chapter

2 about predictions of strength at temperatures above 1100 K. The maximum

plastic strain range predicted by the Arrhenius finite element analysis for the

DTC is 0.99 %. Thus, predictions of coil life should be made with the Arrhenius

rate equation, since it will predict larger plastic strain ranges, hence a shorter

coil life.

Figs. 5.57 - 5.59 are the deviatoric hoop strain versus stress hysteresis loops

for the first pulse at the second, third and fourth integration points. These plots

come from the Arrhenius analysis, and they show a decrease in plastic strains

away from the inner radius of the magnet turn. For the second integration point,

the maximum plastic strain range is 0.40 %. The plastic strains at the third and

fourth integration points are very small (< 0.03 %), so their behavior is mostly

elastic.

Conclusions

For magnetic fields greater than 50 T, the requirements of magnet strength

versus available energy and allowable temperature dictate a pulsed field ap-

proach. Short pulse magnets sacrifice electrical conductance for a gain in mag-

net strength. Maraging steel is used in these magnets, because it fits the high

strength requirement and is machinable in the unaged condition. The design of

short pulse magnets is dictated by the available energy, bore size, peak magnetic

field and maximum allowable temperature.
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Predicting the current densities within a short pulse magnet is the critical

task, because with this information, the magnetic fields, Lorentz body forces and

temperatures are determined. The current densities are found by applying the

RLC circuit equation to the magnet and capacitor bank system. The magnet

is discretized into many sub-coils, and RLC circuit equations are applied to

each sub-coil. By simultaneously solving the set of equations with an implicit

numerical procedures, the currents within each sub-coil are found. The results

from this analysis show the current density, magnetic field and Lorentz body

forces diffusing into the build of the magnet. The temperature profile resulting

from a short pulse has the highest temperatures at the inside radius, and an

extreme temperature gradient (200 K/mm) extending into the build.

A short pulse high magnetic field, destructible test coil (DTC) was de-

signed, built and pulsed to magnetic fields of 50 T. The purpose of this magnet

was to predict its behavior and to observe how it failed. A special magnet as-

sembly was designed and built to limit the potential danger of flying shrapnel

from a magnet failure. Using the experience of previous magnet designs, the

cross sectional turn shape of the DTC was successfully altered to prevent G-7
insulation damage. An electromagnetic and thermal analysis of the DTC was

used in the design of this magnet. The predicted magnetic field was 45.5 T,

while the observed field was 48.8 T. The expected design life of the magnet was

200 pulses, and the coil lasted 16 pulses before it failed.

The Lorentz body forces and temperature profiles predicted by the elec-

tromagnetic and thermal analysis are used in finite element analyses to study

the mechanical behavior of the DTC. An annular ring models the center turn of

the coil. The finite element analysis uses 18 time steps with 15 sub-increment

time steps to discretize each pulse. The results of the finite element analyses are

summarized below.

1. Dynamic body forces resulting do not play a significant role in the mechan-

ical behavior of the short pulse magnet.

2. During a pulse, thermal expansion in the coil causes the top surface of.the

turn at the inner radius to rise significantly. This expansion can pinch G-7
insulation if the turn shape is not altered by reducing the turn thickness at

the inside radius 15 % from 4.6 to 3.9 mm.
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3. After a pulse, the shape of the DTC has not changed significantly. Thus, the

heating characteristics of subsequent pulses are not affected by deformation

from previous pulses.

4. The magnet radially expands all during the pulse, with the peak displace-

ments occurring at the time of peak magnetic fields.

5. After the pulse (5 s - 1 min), when the coil is still hot (1 690K) and the

temperatures are nearly constant, the radial displacements in the coil are

linear with r. The radial displacement slope is negative in the austenite

regime and positive in martensite regime.

6. Tue axial stress resulting from the axial compression on the DTC does not

change significantly during a pulse.

7. The hoop stress is the largest of the stress components, and it changes the

most during a pulse. Along the R axis, all the shear stresses are zero making

all normal components principal ones.

8. The variation in radial, axial and hoop stresses in the the axial direction of
the coil turn is small; the significant variations in stress occur in the radial
direction.

9. The stress-strain response is elastic for the first 30 ps, and then plastic

straining begins at the inside radius.

10. A material phase transformation from martensite to austenite begins at the
inside radius and travels into the build of the coil. The austenite phase
extends a maximum of 2.7 mm into build of the magnet (r = 12 mm).

11. Across the material phase transition from austenite to martensite, the hoop
and axial stresses change abruptly. Both stresses peak on the austentite side
and dip on the martensite side. A similar change in radial stress does not
appear.

12. The maximum positive hoop stress occurs during the peak magnetic fields,
and the maximum negative hoop stress occurs immediately after the mag-
netic field pulse.

13. The reverse magnetic fields, and Lorentz body forces do not significantly
change the stresses in the coil. After 80 Cjs, the temperature gradients in
the magnet dominate the problem.
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14. Plots of the von Mises stress during a pulse indicate very high stress lev-
els (> 1000 MPa) over most of the coil build. This is true for both the
phenomenological and Arrhenius rate equation analyses.

15. Plastic straining during a pulse is separated into three stages. The first
stage occurs during the peak magnetic fields, when the hoop stress is in
tension. The second occurs after the Lorentz body forces have subsided,
and tht hoop stress is in compression. The third stage results from the
magnet cooling to its post-pulse temperature when the hoop stresses are
positive.

16. The largest plastic strain increments occur at the inner radius and decrease
into the magnet build.

17. Although the plastic strain rates are large during the magnetic field pulse,
the largest predicted plastic strain increment is 1 %.

18. The first pulse results in the largest stress-strain hysteresis loop, and the
second hysteresis loop is within the first. For the phenomenological analysis,
the residual von Mises stresses on the inside radius at the end of the first
and second pulse are 600 and 580 MPa respectively. The maximum plastic
strain range predicted for these pulses is 0.56 %. For the Arrhenius analysis,
the residual von Mises stress on the inside radius is 389 MPa after the first
pulse, and the maximum plastic strain range is 0.99 %.

In summation, the mechanical behavior of the short pulse coil is influenced
most by the thermal loading. The Lorentz body forces are large enough to cause
plastic straining, but because they occur in such a brief time span, they do not
cause significant plastic deformation. The thermal loading however causes the
largest plastic strain increments. Phase transformations caused by the temper-
ature change affect the stress distribution, but they do not interact with the
plastic deformation to change the turn shape. Such was the case for the thermal
cycling specimens. The imposition of a large temperature gradient followed by a
high uniform post-pulse temperature is the primary cause of plastic deformation
in the short pulse magnet. Thus, the maximum coil temperature, the post pulse
temperature, and the temperature profiles are important design factors when
considering the mechanical behavior of short pulse magnets.

196



Table 5.1 50T magnet specifications

Inner Radius

Outer Radius

Turn Thickness
Insulation Thickness

Number of Turns

Capacitor Bank Energy
Charging Voltage
Max. Coil Temperature

Peak Magnetic Field

Peak Current
Peak Time

17 mm
65 mm

5.6 n111111
3.75 mm

8

273 kJ

19.2 kV

1300 K

Predicted
51.8 T

372 kA

60 ps

Table 5.2 Destructible test coil specifications

Inner Radius

Outer Radius

Turn Thickness

Insulation Thickness

Number of Turns

Capacitor Bank Energy

Charging Voltage
Max. Coil Temperature

Peak Magnetic Field

Peak Current

Peak Time

9.27 mm

24.00 mm
4.60 mm
3.75 mm

6.5

91 kJ
11.5 kV

1457 K

Predict edI

45.5 T

278 kA

45 ps

197

Actual
49.7 T

348 kA

65 ps

.\c , .,i

48.8 T

272 kA

49 ps



Fig. 5.1 Destructive test coil.
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DTC turn cross section before and after alteration with

hand grinder.
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Fig 5.4 Solid helix model with 7 stacked turns.
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Fig 5.5 Sub-Coil model for electromagnetic analysis. There are 3 sub-
coils, and each has 7 stacked turns.
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Fig. 5.6 Electrical circuit for short pulse magnet.
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Fig. 5.7a

Predicted magnetic field

plot for DTC pulsed

at 11.5 kV.

-21-2

Fig. 5.7b

Measured current waveform

for DTC pulsed at 11.5 kV.

The abscissa scale is

50 ips/Div. and the ordinate

scale is 100 kA/Div.
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Fig. 5.7c

Predicted and observed

current waveform for

DTC pulsed at 11.5 kV.

30J

20

10

- I
0 50 100 150

Time (Ljs)

204

[1< I ' i
i- \

I 1
1w

200 250

I I I I

I I \ I
ti\

IM^

- -v



Fig. 5.8a

DTC current density

profiles for an 11.5 kV

pulse between

20 and 80 /ps.
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Fig. 5.8b

DTC current density

profiles for an 11.5 kV

pulse between

120 and 260 ps.
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Fig. 5.9a

DTC temperature

profiles for an 11.5 kV

pulse between

20 and 80 ~s.
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Fig. 5.9b

DTC temperature

profiles for an 11.5 kV

pulse between

120 and 260 ps.
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Fig. 5.10 DTC temperature profiles for an 11.5 kV pulse after 0.001 s.
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Fig. 5.11 Axisynnmetric model dimeinsions for center turn of DTC.
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Fig. 5.12 Body force profiles in DTC for an 11.5 kV pulse

(t S 80 As).
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Fig. 5.13 Body force profiles in DTC for an 11.5 kV pulse between

120 and 260 ps.
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Fig. 5.14 Finite element model for center turn of DTC.
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Fig. 5.15 G-7 insulation spring model for DTC.
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Fig. 5.16a

Initial axial stress

along symmetry plane

of center turn.
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Fig. 5.16b

Initial axial stress

contour bands in the

center turn.
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Fig. 5.17 Time step times for finite element analysis of DTC.
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Fig. 5.18 DTC deformed mesh outline at the beginning of the Ist

pulse (Displacements x 100).
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Fig. 5.19 DTC deformed mesh outline after 260 ps

(Displacements x 10).
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Fig. 5.20 DTC deformed mesh outline at the end of the first pulse

(Displacements x 10).
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Fig. 5.21a

Radial displacements along symmetry

plane of center turn bctween 20 and

80 ps (phenomenological rate

equation analysis).

Fig. 5.21c

Radial displacements along

symmetry plane of center turn

between 0.001 s and 15 min

(phenomenological rate

equation analysis),
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Radial displacements along symmetry

plane of center turn between 120 and

260 ps (phen omenological rate

equation analysis).

I min

O.25 sa-

l-tS man

10 15

R Coordinate (mm)

20 25

218

I1O

120

• " i i i i i i i J

I
e41A.Mý

-

-

-

I ý I I .I I- -..I -

I t - -



i oln0

800

400

0

-400

-800

-1200

-1600
5 10 15

R Coordinate (mm)

Fig. 5.22 Normal stresses from plellomenological rate equation

analysis of DTC at 0 s.
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Fig. 5.23 Normal stresses from phenotlmenological rate equation

analysis of DTC at 20 ,us.
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Fig. 5.24 Normal stresses from phenomenological rate equation

analysis of DTC at 30 /s.
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Fig. 5.25 Normal stresses from phenomenological rate equation

analysis of DTC at 40 s.
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Fig. 5.26 Normal stresses from phenomenological rate equation

analysis of DTC at 50() s.
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Fig. 5.27 Normal stresses from phenomenological rate equation

analysis of DTC at 60 )/s.
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Chapter 6

Failure and Fatigue Analysis for Short Pulse Magnets

This chapter brings together the diverse topics covered in this thesis. Be-

ginning with a description and discussion of the destructible test coil (DTC)

tests, the kind of deformation and destruction observed during the tests are ex-

plained. The short lifetime of the thermal cycling specimens and the test coil

are discussed and compared to data from the low cycle fatigue results mentioned

in Chapter 2. The mechanical analysis of maraging steel under these extreme

conditions is important to the predictive capabilities of coil lifetime along with

an understanding of the resulting deformation shapes. The fatigue behavior of

the DTC is divided into two stages of crack growth. The first stage is governed

by crack initiation and growth, and the second stage is controlled by geometric

saw tooth crack growth. Finally, a discussion of the coil failure leads to recom-

mendations for the design and safe operation of future short pulse magnets.

The Destructible Test Coil Failure

The first five pulses of the DTC were performed at 2.0 kV to determine

the ratios of peak current and peak magnetic field to charging voltage, and to

properly position the pick-up coil (a device to measure magnetic field) in the

center of the magnet. The measured ratios were 23.7 kA/kV and 4.25 T/kV

and compared to predicted ratios of 23.8 kA/kV and 3.90 T/kV. The charging

voltage was increased to 6, 9 and finally 11.5 kV with the pick-up coil in the

magnetic center of the bore to measure the current and field ratios. The pick-up

coil was not used for the remainder of the tests because of safety concerns.

Over a two day period, the DTC was pulsed with a charging voltage be-

tween 11.5 and 11.7 kV. The largest current measured was 30.3 kA wift an

average peak current over charging voltage ratio of 24.6. Using a peak field to

peak current ratio of 0.18, the largest measured current scales to a peak mag-

netic field of 54.3 T. A minimum of 45 min was allowed for magnet cooling.

The bore of the magnet was searched periodically, for damaged insulation, but

none was found. After 12 pulses, the magnet was disassembled to examine the

insulation more closely.
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Under close observation, numerous cracks were found on the inner radius

of the DTC. The coil transition turns at the ends of the magnet were axially

deformed towards the center of the magnet by about 1 mm. There were 8 cracks

detected on the inner radius, and all of the crack fronts were parallel to the Z

axis of the magnet. Two of the cracks extended across the entire width of the

coil turn while the six others began from either of the inner radii turn corners,

and extended towards the other corner. On three successive magnet turns there

were two cracks about 10 mm apart which were aligned over two similar cracks

on the next turn. Some faint, almost undetectable ridges were also seen on the

inner radius of the magnet. The ridge lines were grouped in batches taking up

half a turn, and they were separated by a smooth coil surface. There were 4
metal droplets or spatters on the center turn of magnet near the cracks. The

top and bottom surfaces of the magnet turns were rough with metal spatters.

The largest crack had penetrated approximately 2 mm into the build of magnet.

Close examination of the G-7 insulation revealed little to no damage; the

modification to the coil turn cross section described in Chapter 5 prevented any

pinching and cutting of insulation at the inner radius. Unlike the 50T coil,
the DTC insulation was not burnt through, and it did not have the whitened

discoloration which comes from overheating. The insulation over the cracks

had metal spatters on its surface, but had not itself been damaged. After the

inspections, new insulation was placed between the turns, and the magnet was

reassembled for further testing. Even though the coil under normal laboratory

conditions would have to be considered spent, the destructive nature of a short

pulse failure had not been realized.

The DTC was pulsed 4 more times. On the sixteenth pulse, there was a

powerful electrical explosion in the bore of the magnet. Demich [1] has defined

an electrical explosion as the metal evaporation of a conductor which results

from ohmic heating. There are 3/16 inch thick G-10 annular plates (center hole

is 3/4 inch diameter) which are glued to the steel plates on the en!ds of hlie

magnet assembly. The purpose of these plates is to guide the pick-ulp coil in•ol

the bore of the magnet and to keep it aligned in the center. The pick-.l-up coil

was not used during the final test, so there were 3/4 inch diameter openings to

the bore of the magnet. The electrical explosion, with its rapid expansion of hot

gases and molten metal, hurled the plates several feet away from the assembly.

If there had been an experiment or any other object in the bore, it could have

been seriously damaged.
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The final inspection of the magnet and insulation revealed more useful
information. The number of cracks visible with the naked eye increased to 14,
and all of the cracks detected after 12 pulses had grown across the entire width of
the coil turn and into the build of the nmagnet. The entire bore of the magnet was
covered with metal spatters and ridge lines. These ridge lines appear to precede
the development of cracks. They are similar in texture to the roughening of the

surface which is observed in the thermal cycling tests.

The most interesting observation concerns the cracks which developed into
axial holes in the conductor (Fig 6.1). These elliptically shaped holes extend 5
mm into the build of the magnet, and they are about 2 mm wide. These holes
will be called crack-tip cavities. To obtain the Fig. 6.1 photograph, whole turns
of the DTC were cut free with a hand grinder. Because of the crack alignment,
it was possible to look down through three magnet turns. A crack similar to the
one shown in Fig. 6.1 was opened to examine the inside surface of the crack-tip
cavity. Fig. 6.2 is a photograph of this surface. This surface is clear evidence for
the phenomenon of crack-tip melting and vaporization. The surface is porous,
and it appears to be the source of metal which was spattered on the bore surface.
Crack-tip melting occurs when the current must flow around a crack extending
out from the inner radius. The discoloration of the coil surface in Fig. 6.1
illustrates the fact that the current density had to flow around the crack hole.

The center turn of the DTC was cut, sectioned and mounted in two dif-
ferent ways so the turn could be examined in more detail. Some specimens were
taken from the surface of the turn build, and several other specimens were taken
from cross sections of the turn. The mounted specimens were ground and pol-
ished to a 0.3 jtm finish. Under a microscope, a 0.3 mm crack-tip cavity with
the same general shape as the one in Fig. 6.1 was found just 2 mm away from a
larger 5 mm crack-tip cavity. This crack was discovered on a surface specimen,
and it was located on the inner radius.

The cross section specimens were tested for Rockwell C hardness. The
hardness profile for the DTC build is shown in Fig. 6.3. This plot shows a. sharp

decrease in hardness in the skin depth region near the inner radius. The drop
in hardness is similar to the drop observed in the thermal cycling specimens.
From Fig. 6.3, the drop in hardness occurs at a radius of 10.8 mm. The largest
radius of the austenite finish temperature (1070 K) predicted by MESPA during
a pulse is 11.2 mm.
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The DTC had been pulsed 12 times without any external indication of

crack growth in the coil. The pulse length and shape of the current waveform did

not change, and the ratio of peak current to charging voltage was also unchanged.
The implication here is that a change in coil inductance due to radial cracking

was not sufficiently large enough to detect with our instruments. Hence, the

ratio of peak current to charging voltage did not change. The phenomenon

of changing inductance has been observed in other coils of this magnetic field

strength [1][2]. The mechanism which causes the change in coil inductance is the

deformation (change in current path) occurring in the magnet during the pulse.

When the displacement of a conductor is large, the change in current path will

change the coil inductance. For a pulsed discharge of current through a magnet,

there is an I(aL/8t) voltage drop across the coil. This term is insignificant for

the DTC, but for single turn solenoids, it important enough to limit the amount

of magnetic field a coil is capable of producing. The fact that this magnet did not

show any significant deviation (greater than 10%) in the ratio of peak current to

charging voltage means that the build of the magnet supported the skin depth of
current and the overall distortion of the magnet was not large. While the peak

current to charging voltage was unchanged, it is not known if the peak current

to peak field ratio was also unchanged.

As mentioned before, a closer examination of the DTC after 12 pulses

revealed 8 cracks on the inside radius of the magnet. The type of cracks observed

in these tests have been observed by other researchers [3]-[5]. The term which

describes these cracks and their growth is the "saw tooth" effect. F. Herlach [6]

has best described this phenomenon, and what follows is his description of the

magnetic saw effect. "In coils with massive conductors, a 'saw effect' has been

observed: it looks as if the magnetic stress were 'sawing' slits into the conductor

from the inside surface. The explanation goes as follows: Once a tiny crack

develops at the inside where the strain is largest, the current is forced to go

around it in a sharp bend; this results in increased local stress and arcing which

tends to open lip the gap." The magnetic stress nientionerd above refors tn fhe

frequently used method of modeling extreme Lorentz body forces inside the skini

depth region with an equivalent magnetic stress (pressure) on the inside radius.

The magnetic saw effect is a combination of crack growth and electromagnetic

melting of coil material.

H.P. Furth [3] made some valuable observations on the behavior of short

pulse helical coils over 30 years ago. He suggested that the melting temperature
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of a material be used to determine the safe operating limits for helices. He
observed that the electrical breakdown of coils during the pulse is not due to a

failure in the electrical insulation but instead to metal vapor arcs along the inside
surface of the magnet. The source of metal vapor is the magnetic saw effect.

Finally, he commented that the consequence of the saw effect is short circuit

conditions inside the bore of the magnet, while the current continues to circulate.

The magnetic energy is dissipated into the saw cuts. He claims this failure
scenario is substantiated by the alignment of saw cuts in the axial direction,

even when the interspace insulation between the saw cuts is not damaged. The
observations and conclusions made by Furth are supported by this work'.

The saw tooth effect has a very important consequence on the life of short

pulse magnets. The saw tooth crack growth rate for the DTC was approximately

1 mm per pulse over the last 4 pulses. Crack-tip cavities were found on all the

radial cracks (large and small). Melted material is ejected away from the crack-
tips (Lorentz body forces), so the radial cracks grow as new material ahead of
the crack-tips melt and vaporize with ea,.h pulse. The point here is that the saw

tooth crack growth rate is large, and the time spent initiating and growing a
crack which then becomes a saw tooth crack, should occupy most of the magnet

life. To judge whether this is in fact true, it is helpful to consider the dimensional

scale for significant saw tooth crack growth.

Crack-Tip Melting

The purpose of this section is to determine what minimum crack size will

result in crack-tip melting during a full field pulse. The crack geometry being

considered here is a crack on the inner radius of a magnet where the crack surface

obstructs the current flow (Fig 6.4). Because of current density concentrations,

the temperature at the crack-tip is greater than the surrounding material. As

the crack length increases, the size of a region (thermal zone) affected by current

density concentrations increases. When the crack leIngth is very smrall (- 1 ,pm).

heat conduction away from the crack-tip prevents crack-tip melting. Conversely,

as the crack length increases to an "adiabatic" crack size, crack-tip mnelting oc-

curs, and each subsequent pulse will cause crack-tip melting. The term adiabatic

refers to thermal conditions at the crack-tip and the small influence of heat con-

duction at the crack-tip. The adiabatic crack size is also the critical crack size,

because the magnet life is over when crack-tip melting (saw tooth crack growth)

begins.
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A lumped crack-tip thermal analysis is used to approximate the the adia-
batic crack size ca and the thermal zone size 2R (Fig 6.5). The circle of material
ahead of the crack-tip (per unit thickness) is called the thermal zone, and a
single lump temperature 0 is assumed for this zone. The adiabatic crack size is
the crack length which causes melting in the thermal zone by the end of a pulse.
The material temperature surrounding the thermal zone is 00. The strategy
here is to first approximate the current density in and around the thermal zone,
second to predict the thermal zone temperature change, and third to find the
smallest crack length which results in the thermal zone heating to a melting
temperature by the end of a pulse.

The current density in the DTC changes as a function of time and position.
For this problem, the current density in the surrounding material is uniform and
its magnitude changes according to the step function shown in Fig. 6.6. The
current density magnitude Jo and time duration (50 tts) of this current density
pulse are chosen so that the surrounding material heats to a peak temperature
of 1460 K.

Inside the thermal zone, the current density is largest at the crack tip and
decreases as the distance r from the crack-tip increases. There is an analogy
through Laplace's equation between the current density increase at a crack-tip
and the shear stress increase at a Mode III crack-tip. For more information on
Mode III crack-tip stress analysis and solutions, see the following references [7]-
[11]. At a crack-tip, the voltage potential analog is the displacement field. The
current densities are proportional to the voltage gradients, and the shear stresses
are proportional to the displacement gradients. A Laplacian differential equation

describes the electrical and stress equilibrium, and the boundary conditions for
the two problems are analogous. The stress distribution solution for a Mode
III crack on a free surface is rewritten with the electrical analogy to give the
following current density distribution around a crack-tip.

JZ = Cos

J 00= ) sin(6.2)

This solution assumes the crack length c is much greater than the radius r away
from the crack-tip. These equations predict infinite current densities as r goes
to zero.
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The second step in this strategy is to predict the temperature change in

the thermal zone dutring a. pulse. The adiabatic rate of temperature change for

far-field material surrounding the thermal zone is

dO _- Pj. (6.3)
dt cdd

The heat capacity cp, density d and electrical resistivity p are assumed constant

at 862 J kg - 1 K - 1, 8000 kg m - 3 and 1.0 hntm respectively. With the current

density assumption already made, Eq. 6.3 can be integrated, and the far-field

temperature linearly increases as a function of time.

In the thermal zone, heat is added by ohmic heating and removed by

thermal conduction to the surrounding material. When the current density
equations (Eq. 6.1 and 6.2) are squared, added, integrated over thie thermal

zone area of radius R and multiplied by p, they contribute the following input

heat per unit thickness.

in = pJ, (2cR) (6.4)

Heat is removed from the thermal zone by conduction across an area 21rR with

a temperature difference (6 - 60) over a distance R. Output heat is given by

QoUt = 2irr (0 - 0,). (6.5)

The thermal conductivity . is assumed constant at 28.0 W m- 1 K - 1 . The
rate of temperature change in the thermal zone irR2 depends on the difference

between the Qin and Q out heat terms.

di ( ) (0 - 0,) (6.6)
D is the thermal diffusivity (4.0x10-6m 2 s-1). The homogeneous and particu-

lar solutions to this differential equation are combined to give the thermal zone

temperature as a function of time, crack length and a dimnensionless pa.ranme-

ter X which changes from infinity to a finite value during a pulse. The initial

temperature is 00.

0-0 2 Ix2 )(1- exp(-1/X2 )) (6.7)

X = (6.8)
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The third and last step in determining the adiabatic (critical) crack size

is maximizing Eq. 6.7 so that 0 = 0,,, at the end of a. pulse, I = /*. A numerical

search procedure was used to find the the x (0.88) which maximizes the thermal

zone temperature. Using this X, the critical crack size can be expressed as

Ca = 3. 48 VD_ [( - +00 0.56 . (6.9)

When the pulse time for the DTC experiment and the melting temperature

of maraging steel are used in this equation, the predicted adiabatic crack size

and the thermal zone size are 39 and 35 /Am respectively. This result contradicts

a current density assumption made earlier (c >2R). To correct this, the current

density functions are modified to predict a current density which goes to Joo
as r goes to infinity. This will predict a smaller adiabatic crack size since the

current density approximations are larger.

Jz = Jc - +1 os- (6.10)

-+1 S(6.11)

By substituting these equations for Eqs. 6.1 and 6.2 and repeating the derivation

just described, the critical crack size formula reduces to

Ca = 3. 48 VD (m - 00 . (6.12)
0- 0 o

Using Eq. 6.19, the adiabatic crack size of the DTC is just 11 pm and the

thermal zone size is 35 prm. For thermal cycling Test 7, the pulse length was

about 50 ps, the peak temperature was 1133 K and this results in an adiabatic

crack length of 35 pim.

The exact adiabatic crack size is not as important here as the adiabatic

crack size order of magnitude (10 ym). The grain size of maraging steel (about

50 jtm) is of the same order of magnitude. The adiabatic crack size should be

made as large as possible to increase coil life. Crack-tip melting was significant

through most of the DTC life. If crack-tip melting causes cracks to grow by a

thermal zone size with each pulse, then the resulting initial crack growth rate
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is geometric. This supports the idea that the coil life is over when crack-tip
melting begins.

The adiabatic crack size formula contains two parameters critical towards
magnet design. The first is the pulse length t*, and the second is the peak coil
temperature. The pulse length should be made as large as possible without
increasing the peak temperature. Minimizing the peak coil temperature for
a desired magnetic field is accomplished by varying the coil geometry. The
adiabatic crack size formula can also be used as a guide to magnet material
selection, since increased thermal diffusivity and melting temperature increase
the adiabatic crack size.

The important conclusions for this section are that using a conductor near
its melting temperature decreases the service life, and the adiabatic (critical)
crack size can be used predict coil life. The safe use of an electrical conductor
must allow for current density concentrations so that crack-tip melting is not
significant.

Fatigue Life Analysis

There were three different types of fatigue tests performed for this thesis,
low cycle fatigue tests at elevated temperatures under strain control, thermal
cycling tests with rapidly varying temperatures and mechanical loading, and the
DTC tests with combined electromagnetic and thermal loading. Each of these
tests exhibited unique behavior characteristic to the geometry and loading of
the test. The high temperature low cycle fatigue tests predict over 250 cycles to
failure at high temperatures and strain rates. The thermal cycling tests show
less than 50 cycles to failure and a mode of deformation peculiar to the specimen

geometry and the phase transformations which are occurring during the tests.
The DTC had just 16 cycles to failure, and it displayed the saw tooth crack

type of failure. What these different kinds of fa.tigie tests have in common

is the range of temperature and plastic strains which are being measuired and

predicted.

The low cycle fatigue test results are listed in Table 2.2 and plotted in

Fig. 6.7. The number of cycles to failure was determined when the tensile loads

during the test decreased 80 %. The cracks in these specimens were 1 to 3

mm long at faillure. Using Tomkin's theory and the parameters for annealed
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maraging steel in Table 1.3, the number of predicted cycles to failure is 2 to

4 times larger than the observerld nutnber of cycles to failuire. ,i,'llndt(el in Fig.

6.7 are two curves from Tomkin's equation (Eq. 1.15) with final crack lengths

of 33 and 2500 ,tm. The difference between the low cycle fatigue tests and the

predictions from Tomkin's theory is explained by the following factors. The

high temperature environment is the most important factor since it accelerates

crack surface oxidation. Also important are the microstructure changes such as

overaging, the formation of austenite and grain boundary segregation. None of

these parameters were controlled or measured during the tests, so an estimate

of their importance is difficult. A simple estimate of their effect is a factor of 4

reduction in fatigue life from room temperature data.

The thermal cycling test results were unexpected because of the few num-

ber of cycles to failure (less than 50.) The plastic strain ranges were all less than

0.7%, and 6 of the 7 test temperatures were within the temperature range of the

low cycle fatigue tests. There are two reasons for the low number of cycles to

failure in the thermal cycling tests. After approximately a dozen thermal cycles,

temperature gradients in the shoulders of the specimen and phase transforma-

tions in the gage section cause a sharp change or decrease in the cross sectional

area of the thermal cycling specimen. This change causes double necking and

the barrel shape which increased temperatures and stress concentrations in the

specimens. Secondly, oxidation cracks on the surface of the specimens will cause

crack-tip melting, and this leads to the sudden failure observed in these tests.

There are some important differences between the thermal cycling tests

and the DTC test. Structural analyses of thermal cycling specimens predict

deformations which lead to shorter specimen lifetimes. The structural analy-

sis of the DTC does not predict any localized deformation in the magnet, and

this is in agreement with observations of the coil after the final failure. Un-

like the thermal cycling sptrimens, the phase transformatins and i significant

plastic deformations do not occur simultaneously in the same lcation. ,3Ro ,

are occurring within the magnet, but not in the same location. Another nmajor

difference between the two tests is the absence or presence of magnetic fields.

According to the theory advanced by Furth, the magnetic field diffuses into the

crack-tip cavities and this influences the crack alignment and its shape. There

are no large magnetic fields for the thermal tests, and there were no crack-tip

cavities. However, cracks in thermal cycling specimens are more likely to result
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in catastrophic failure, since there is less material supporting the cracks (the

magnet build supports cracks on the inner radius).

The fatigue life analysis of the DTC divides the life of the magnet into
two stages of ci-ack behavior. The first stage is crack initiation and growth to an

adiabatic crack size. The second stage is geometric saw tooth crack growth until
electrical failure. Before the viscoplastic finite element analyses of the DTC, the

estimated plastic strain range per pulse was 2%, and 200 pulses were necessary

to grow a crack to 0.5 mm using Tomkin's equation (Eq. 1.15.) The estimate of

the plastic strain range was too high because the previous finite element analysis

of the DTC (not discussed in this thesis) underestimated the material strength

in the high temperature regime and did not include plastic strain rate effects.

The number of cycles to failure was also too high because the data for Tomkin's

equations are not in the high temperature regime, and the fatigue analysis did

not take into account saw tooth crack growth rates.

The estimated second stage fatigue life for the DTC is b-9 pulses, leaving

just 7-3 pulses for possible crack initiation and growth to an adiabatic crack size

of 11 pm. According to Tomkin's equation, the initial crack size is 10 p.m, and

with a plastic strain range of 0.99 %, 11 pulses are needed to grow a crack to

11 pm. With a factor of 4 reduction (high temperature effects) in the number

of pulses to grow this crack, the estimated first stage life is 3 pulses. However,

Tomkin's equation should not be used to predict the fatigue life for such small

cracks. Instead, the Paris law (Eq. 1.14) and the stress intensity formula shown

below should be used to integrate the crack length from an initial crack size to

an adiabatic (critical) crack size.

AK = 1.12 AV/-r (6.13)

There are three sources of error in predicting the fatigue life of the DTC.

One, if the adiabatic crack size is smaller than 11 pim, then this would reduce the

number of cycles spent in stage one crack growth. Two, the crack growth rate

predictions are known to be too small under these high temperature conditions.

Three, the initial crack size in the DTC might actually be larger than 11 prm.

More research is needed to determine initial crack sizes and to measure short

crack growth rates. The conclusion of this section is that the initial crack size
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is probable 5 to 15 um in size, and that within 3 to 7 pulses saw tooth crack
growth dominates.

Failure Modes and Recommendations

The failure of the DTC has mixed implications towards the safety concerns
of short pulse magnets. On the one hand, the magnet was pulsed with 300 kA
of current with cracks 5 mm long on the inside radius and the outer build of
the magnet did not crack or burst. The coil contained the pressure wave of
the electrical explosion. On the other hand, without visual observations, the
imminent failure of the magnet was not detected. The safe operation of a short
pulse magnet requires some means of detecting an imminent electrical explosion.

Delaying and preventing dangerous electrical failures might be accom-
plished with the following recommendations.

1. In the magnet design stage, make a maximum allowable current density
(peak temperature) a design criterion. Unavoidable micro-cracks in the
material can cause crack-tip melting, reducing coil life. Improved thermal
cycling tests should be employed to simulate the thermal and mechanical
loading conditions of short pulse magnets.

2. The coil construction method should be altered to minimize the initiation
of small cracks in the finished coil. The coil turns should be cut with the
wire EDM method. After aging, the coil could be polished with a diamond
paste and then electro-polished in an acid solution to remove any residual
stresses and cracks near the surface of the magnet.

3. The ratio of magnetic field over current should be monitored during and
between tests to detect the presence of saw tooth cracks. By placing a pick-
up coil at the end of the bore near the inside radius, the radial component of
magnetic field could be measured without interfering with any experiment
occupying the bore of the magnet. As mentioned previously, even when
the charging voltage is varied, the ratio of magnetic field to current should
remain constant.

4. Using a magnetic probe (a small test coil), the magnetic claracterisfics of

the magnet bore could be measured and mapped for a small DC current
in the magnet between test runs. Cracks in the magnet turns might be
detected from the mapped magnetic characteristics.

5. Using a bore-scope, the bore of the magnet should be examined every 5
pulses for saw tooth cracks on the inner radius. An alternative to the
visual examination would be to place an insulated tube next to the inner
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radius, and then just remove and inspect the tube for metal spitting or other
metallic residue. A third alternative is some gaseous metal detector .at the
end of the of the bore which can detect metal vapor from the pulses. All
of these proposals are trying to detect the occurrence of crack-tip melting
and the magnetic saw effect.

6. Periodically (several dozen pulses), a magnet should be electro-polished to
remove micro-cracks from the coil surface. If a crack is removed before it
reaches an adiabatic size, the life of the coil would be increased.

The serious drop in material hardness observed in tile thermal cycling spec-
imens and the DTC tests show that the increased strength of maraging steel in
its aged condition is lost after more than a dozen thermal cycles to temperatures
greater than the austenite start temperature. It is the recommendation of this
thesis that maraging steel not be used at temperatures greater than 950 K. For
the DTC, this would limit the peak magnetic field to 40T. Different magnet
designs could generate fields of greater than 40 T, while still limiting the peak
coil temperature to 950 K. At this temperature, the processes of overaging and
austenite reversion are still significant, but the decrease in strength is not as
rapid. The kinematic phase transformation from martensite to austenite along
with the potential for anisotropic phase transformation strains is eliminated.

The most important effect of a lower operating temperature is the increase
in the adiabatic crack length from 11 to 38 pm. The number of cycles spent
initiating and growing a crack to this size with the smaller 40 T electromagnetic
loads, would certainly dominate the life of the coil. Assuming a plastic strain
range of 0.25 %, the predicted first stage life is 181 pulses (this comes from
Tomkin's equation with a factor of 4 reduction in coil life due to thermal effects).
Future research on short pulse magnet design should concentrate on determining
the number of cycles needed to initiate and grow cracks to 100 pjm.

Two a.dditional recommenda.tions for the short pulse maginet ,ldsieun ,slhouilt
be mentioned. The experience of the DTC is similar to that reported for single-
turn coils. The DTC has pushed maraging steel to its limit as an electrical
conductor. Further increases in non-destructive short pulse magnetic fields will
be made by two changes. First and most important, multiple coil designs must
be employed to increase the efficiency of magnetic field production. By employ-
ing several concentric coils, it is possible to generate the same magnetic field

as a single coil magnet with smaller current densities and lower temperatures.
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Secondly, the experience of this research suggests that different high strength,

high temperature alloys would ma.ke better magnet materials. The criteria for

selecting a material should be a large thermal diffusivity, a high melting tem-

perature and a stable microstructure over a large temperature regime (no phase

changes.) It should also have superior high temperature strength and fatigue

properties.

Conclusions

A failure and fatigue analysis of the DTC reveals several important facts.
The DTC electrically exploded after 16 pulses, and the explosion was caused by

arcing in the bore of the magnet. Tile arcing was due to metal vapor ejected

from the crack-tip cavities. This mode of failure has been observed before and

is common in single turn destructible coils. Due to the high operating current

densities and temperatures, maraging steel as a conductor is at its operational

limit in this application. Under these conditions cracks need only grow to 11 mn

before the thermal conditions at the crack-tip become adiabatic and the crack

growth rate becomes geometric.

Data from the high temperature low cycle fatigue tests of this thesis show

a factor of 4 decrease in life from the room temperature fatigue life predictions.

The thermal cycling test results show that high current densities, temperatures
and mechanical loads can reduce the fatigue life. In these tests, plastic deforma-

tion increases the peak temperatures, and when this is combined with crack-tip

melting, the fatigue life is shortened. Because of the similar number of cycles to

failure between these tests and the DTC, thermal cycling tests should be used

in the future to test the current carrying capacity of a conductor.

Recommendations for a safer operation of short pulse magnets include

lowering the peak current densities and temperatures, modifying the magnet

construction method to minimize micro-cracks, monitoring the field over cur-

rent ratio, and devising a crack detection method. Finally. I lie magnett can he

periodically electro-polished to remove a thin surface layer of the magnet which

contains the micro-cracks.
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/Crack Tip Cavity

Fig. 6.1 Two adjacent turns from the destructive test coil

we
4: ~A2U

Fig. 6.2 Crack tip cavity surface.
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Fig. 6.3 Rockwell C hardness of DTC after 16 pulses.
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Fig. 6.4 Current density concentration at a crack-tip.
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Fig. 6.5 The lumped crack-tip thermal analysis model.
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Fig. 6.6 Current density pulse approximation for material surrounding the crack-tip
thermal zone.
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Fig. 6.7 Low cycle fatigue data from Chap. 2 and Tonikin's

equation for annealed 300 grade Inaraging steel.
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CONCLUSIONS

1. The electromechanical loads in this magnet cause a 350 N/mm3 pulse

of Lorentz body forces. Electrical resistance causes the temperature to rise

from 298 to 1450 K in 250 ps, with a temperature gradient of 200 K/mm.

After 1 min, the temperature of the magnet becomes nearly uniform at 690 K,

and it then cools down to room temperature in 15 min. Under these extreme

electromechanical and thermal conditions, there are microstructural changes,

plastic deformation and crack growth in the maraging steel.

2. The most significant processes which affect the microstructure of marag-

ing steel during its life in a short pulse magnet are phase transformations, aging

and solutionizing, but not austenite reversion. At room temperature, maraging

steel has a BCC martensite microstructure. Upon heating from 968 to 1008 K,

maraging steel transforms to FCC austenite. The steel remains austenitic until

it cools from 470 to 370 K. Phase transformations in maraging steel are time-

independent, diffusionless and predominantly temperature-dependent. During

a phase transformation from martensite to austenite, there is a macroscopic

dilatational compression of 0.18 %, and for the austenite to martensite trans-

formation, an expansion of 0.52 %. There are four major alloying elements in

maraging steel: Ni, Mo, Co and Ti. In the annealed condition at room tem-

perature, these elements are in solution. When the steel is held at 755 K for 4

hr, particles of NisMo and FeTi precipitate out of solution. These precipitates

increase the tensile strength from 1000 to 2070 MPa. Should the precipitates

grow too large and become widely spaced (overaging), the aged strength de-

creases. Solutionizing occurs in the austenite phase, dissolves precipitates and

decreases the strength of aged maraging steel. Grain boundary segregation, and

the formation of high nickel austenite and low nickel martensite by austenite

reversion, occur too slowly to affect the microstructure under these conditions.

3. Four mechanisms contribute to the flow strength of maraging steel. In

decreasing importance they are the precipitate shear resistance, the lattice and

solution shear resistance, the dislocation shear resistance and a grain boundary

contribution. The last one is less than 10 % of the tensile strength at room

temperature. In summary, a physicald"scrip4t.n of the evolution of flow strength

would primarily depend on the applied stress, temperature, volume fraction of

martensite, precipitate sizes and spacings, and the dislocation density. The
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flow strength evolves because phase transformations, aging, solutionizing and
inelastic deformations affect the microstructure.

4. Large current density gradients exist near the inside radius of the
magnet during an electromagnetic pulse. This creates two zones of essentially
different electromagnetic and thermal conditions. Zone 1 extends 3 mm out
from the inner radius, and in this zone, the largest body forces (350 N/mm3 )
and temperatures (1460 K) are found. Zone 2 extends from the middle of the
coil build to the outer radius, and in this zone both the peak Lorentz body
forces (150 N/mm3) and the peak temperatures are smaller (690 K). Initially,
the maraging steel in the coil is in the aged condition, but after 16 pulses, the
material in Zone 1 solutionizes and that in Zone 2 remains aged. Where the two
zones meet, the alloy goes from the solutionized to overaged to aged condition
in a span of about 0.3 mm. The mechanical behavior of the short pulse magnet
is studied with a general material model which includes the behavior in the two
zones.

5. An investigation of the flow strength of maraging steel was carried out
with 23 tensile tests and 6 low cycle fatigue tests. These tests were performed
at temperatures between 773 and 1083 K, and at plastic strain rates between
10- 5 and 10-2 s- 1 . The results show that the flow strength decreases 1000
MPa between 773 and 1083 K. Strain rate effects can more than double the flow
strength at temperatures above 850 K.

6. Flow strength equations are incorporated into a time and temperature-
dependent finite element analysis. This is done with a kinetic equation which
predicts a rate of plastic straining as a function of the applied stress, a back
stress and temperature. Material constants for the kinetic equation are found
with a best fit to the tensile test data. The evolution of back stress is integrated
with a nonlinear strain hardening coefficient function which approximates the
strain hardening behavior observed in the low cycle fatigue tests.

7. Two kinetic equations have been studied and modeled in this thesis.
The first is a phenomenological rate equation which uses a power law stress for-
mula and can be derived from the rule of mixtures formulation of flow strength.
The second is an Arrhenius rate equation which also has a power law stress
term, but it includes a stress-dependent activation energy term. A compari-
son between these two kinetic equations shows that the phenomenological rate
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equation better correlates with the large decrease in strength between 773 and
873 K (due to overaging and possible dynamic recovery), while the Arrhenius
function makes a better prediction of material strength at temperatures greater
than 1083 K.

8. The strain hardening behavior in the low cycle fatigue tests shows
a Bauschinger effect, and neither strain hardening nor strain softening through
half of the cyclic lives. There is not enough experimental data for this thesis to
develop and model the evolutionary strain hardening behavior for complex ther-
mal and mechanical loading histories. Instead, this model assumes an explicit
function for the strain hardening coefficient and fits this to strain hardening
data taken from the low cycle fatigue results at 1073 K. The strain hardening
coefficient is nearly zero for plastic strains greater than 2 % (dynamic recovery
effects are significant at this temperature).

9. During a pulse, the thermal history in Zone 1 of the magnet causes the
material to undergo phase transformations between martensite and austenite
and back again. The changes in temperature and material phase cause thermal
and phase transformation strains. A linear model predicts these strains from
the temperature and current material phase.

10. The fuiite element structural analysis of the short pulse magnet meets
three major requirements. First, the analysis includes the Lorentz body forces
which vary as a function of time and position within the magnet. Second, the
analysis models the thermal and phase transformation strains which also vary
as a function of time and position. Lastly, the kinetic and strain hardening
equations are included to model the flow strength of maraging steel. To meet
these requirements, a time dependent finite element program has been written to
study the mechanical behavior of the short pulse magnet. The program is called
AFESA for Axisymmetric Finite Element Solenoid Analysis. The code uses 8 -
node axisymmetric elements and the frontal solution technique to minimize the
stiffness matrix size. A modified Newton Raphson method is combined with the
Alpha Constant Stiffness method to satisfy the the finite element equilibrium
equations. The subroutine COLSOL written by K.J. Bathe solves the system
of equations for the equilibrium displacements. The stress states within each
element are integrated throughout the analysis. The radial return algorithm
has been modified for this time-dependent analysis and is used with the kinetic
equation to predict the plastic strain rates for the stress rate evaluation.
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11. Thermal cycling tests were performed on different tensile specimen

geometries to investigate the effects of extreme thermal cycling conditions in

the absence of Lorentz body forces. The tensile specimen was constrained from

movement at its ends, while a capacitor bank discharged a large current (20

kA) through the specimen, heating it to between 970 and 1410 K. The thermo -

mechanical loading caused plastic deformation which led to specimen failure in

less than 50 cycles.

12. Two observations dominate a discussion of the thermal cycling

tests. First, localized thinning after a pulse increases the temperatures and

temperature gradients for subsequent pulses. This reduces the specimen life.

For the tapered specimens, a double necking phenomenon is observed after

about 10 pulses. The necking occurs at the ends of the specimen gage length.

Three factors contribute to this necking: the temperature gradient at the ends,

the geometry of the ends which affects the stress-strain state and the strength

(temperature-dependent) and phase transformation (there is a phase transition

from martensite to austenite at the ends) behavior of maraging steel. For the

hourglass specimen, a barrel-shaped deformation forms in the center of the gage

section where the specimen transforms to austenite. The second major obser-

vation concerns the decrease in specimen hardness. The Rockwell C hardness

decreases from 55 to 35 in the tapered and hourglass specimens after 16 and

25 cycles respectively. The hardness decreases between the austenite start and

finish transformation temperatures.

13. Structural analysis of the tapered and hourglass specimens over several

thermal cycles with AFESA predicts the observed double necking and the barrel

shaped deformation. The analysis shows the plastic plastic deformation to be so

localized that it absorbs the increased residual stress on cooling. The deformed

shapes increase the peak temperatures and thermal gradients, the specimen life

is strongly reduced. Thermal cycling shows that specimen life is decreased most

by increased peak temperature. Decreasing the stress levels by altering the

specimen geometry will increase the specimen life to a lesser extent. Thermal

cycling has tested and verified the results predicted by AFESA.

14. The motivation for understanding the mechanical behavior of marag-

ing steel is to produce the highest possible magnetic field with a short pulse

magnet. The central achievement of this thesis is the successful design and con-

struction of a 50 T, short pulse magnet (the destructible test coil, DTC). Design
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methods, ideas and computer codes were tested and verified with this coil. Sev-

eral important goals were achieved, as elaborated in the remaining conclusions.

A) Writing a program MESPA which predicts currents, temperatures, magnetic

fields and Lorentz body forces within the magnet as a function of time.

B) Prevention of insulation failure by altering the shape of the DTC turn pro-

file.

C) Developing an understanding of short pulse magnet failure which can aid

future short pulse magnet design.

15. The program MESPA (Mechanical and Electromagnetic Short Pulse

Analysis) solves the governing circuit equations for the short pulse magnet. It

predicts the current density, temperature, magnetic field and body force profiles

within the short pulse magnet as a function of time. With this code, the magnet

design can be optimized for a given magnetic field and peak temperature. This is

done by varying design parameters such as inner radius, turn thickness, number

of coil turns and capacitor bank charging voltage.

16. A common problem for short pulse magnets of this type is pinched

insulation at the inner radius of the magnet, due to thermal expansion and axial

Lorentz body forces. The cross section of the DTC magnet turn was altered to

create an air gap between the insulation and the coil turn at the inner radius.

Thus, the insulation was not pinched and survived intact throughout the life of

the magnet.

17. Finite element analysis with the phenomenological and Arrhenius

rate equations were performed on the DTC. From these analyses, the follow-

ing comments can be made. Dynamic body forces are insignificant. Permanent

deformation resulting from Lorentz body forces are not large (< 0.01%.) The

thermal loading conditions dominate the plastic straining in this problem. Re-

sults from the phenomenological and Arrhenius analyses predict plastic strain

ranges of 0.56 and 0.99 % respectively. Unlike the thermal cycling tests, the

changes in cross-sectional shape of the coil turn do not change the thermal load-

ing conditions for subsequent pulses. Phase transformations extend a maximum

of 2.7 mm into the 15 mm magnet build. The hoop and axial stresses decrease by
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about 400 MPa across the material phase transition from austenite to marten-

site. Most of the coil build is subjected to a stress range of greater than 1000
MPa per pulse.

18. A hysteresis plot of the deviatoric hoop strain versus stress at the
inside radius indicates that most of the plastic straining occurs immediately after

the electromagnetic pulse when high temperatures exist near the inside radius.
Reverse plastic deformation occurs during cooling when the temperatures in the
coil are nearly uniform. A hysteresis loop for the second pulse is contained
within that for the first pulse, so the largest predicted strain increment is for
the first pulse. The largest plastic strains occur at the inner radius and decrease

into the build of the magnet. There is no plastic deformation predicted in the
outer zone.

19. The DTC was pulsed 16 times to magnetic fields greater than 48
T. After 12 such pulses, 8 cracks were detected on the inside radius of the

magnet along with some metal spatters. On the 16th pulse, a powerful electrical

explosion occurred in the bore of the magnet. The cracks had developed crack-

tip cavities, and material ejected from these cavities electrically shorted the turns

of the magnet, causing an explosion. The crack-tip cavities form because the
electric current must flow around cracks formed on the inside radius, and this

concentrates the current density which melts material at the crack-tip. Crack

growth due to crack-tip melting is called "saw-tooth" crack growth because
externally, it resembles a rough saw cut.

20. An analysis of crack-tip melting shows that cracks smaller than a

calculated adiabatic crack size will not develop crack-tip cavities. Instead, the

additional heat generated by crack-tip current density concentrations is trans-
ported away from the crack-tip by thermal conduction. For cracks larger than

the adiabatic crack size, melting occurs at the crack-tip and the resulting crack
growth rate is geometric. The adiabatic crack size for the DTC was 11 pm and it
took between 5 and 9 pulses (50 T) to grow a crack of this size to 2 mm. Judging

from this estimate, it took the DTC 7 to 3 cycles to grow cracks to the adiabatic
crack size. Thus, crack growth in high magnetic field short pulse magnets can be

divided into two stages, crack initiation and growth to an adiabatic crack length

and then saw tooth crack growth to failure. The DTC probably spent an equal

amount time in the two stages. Because saw-tooth crack growth is geometric, a
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magnet design should have a large adiabatic crack size to increase the number
of cycles spent initiating and growing a crack to the adiabatic crack size.

21. Short pulse magnet design should use an adiabatic crack size as a
criterion for predicting magnet life. Increasing this parameter will increase the
magnet life and is best accomplished by decreasing the peak coil temperature.
It is the recommendation of this thesis that maraging steel coil temperatures
not exceed 950 K. This will lower the peak magnetic field and decrease the
stress range during a pulse. To compensate, multiple magnet coils should be
used to increase the magnetic field. Although maraging steel has a high tensile
strength, its endurance limit is less than half its tensile strength and its strength
is greatly decreased (from 2000 to 200 MPa) at high temperatures (above 1000
K). Different high-strength, high-temperature materials may be better suited
for this application, but this needs more study. These coils should be machined
using electrode discharge machining (EDM), and increased effort should be put
into polishing. This should delay crack initiation to more nearly what would be
expected from low cycle fatigue with a 1 % plastic strain range. Crack detection
methods such as bore-scopic inspection, magnetic field monitoring, and crack-tip
melting detection methods should also be investigated to ensure safer magnet
operation.

In summary, this thesis has investigated the mechanical behavior of marag-
ing steel and applied this knowledge to high magnetic field, short pulse magnets.
From this study two flow strength models, and a thermal and phase transfor-
mation strain model were developed. Programs have been written to predict
and analyze the electromagnetic, thermal and structural behavior of short pulse
magnets. The design, construction and testing of the DTC yielded information
which supports the design methods and ideas discussed here. Furthermore, the
DTC experiment gave insight into the causes of short pulse magnet failure. As
a result, limitations on the use of maraging steel as an electrical conductor were
identified and correlated to important design parameters such as peak magnetic
field and peak temperature.
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Appendix A

Interpolation Functions

The interpolation functions given below correspond to the node numbers shown

in Fig. A.1. These are standard quadrilateral isoparametric interpolation func-

tions, and they are included in this thesis to define the basis of the element

geometry and interpolation functions.

hi= (1 - r)(1 - )(-r - s - (A.1)
4
1

h2 = -(1 - r2)(1 - s) (A.2)
2
1

h3 = -(1 + r)(1 - a)(r - a - 1) (A.3)
4
1

h4 = -(1 - s')(1 + r) (A.4)
2
1h. = -(1 + r)(1 + ,)(r + j - 1) (A.5)
4
1

he = -(1 - r)(1 + s) (A.6)
2
1

h = -(1 - r)(1 + s)(-r + s - 1) (A.7)
4

hs = (1 - s')(1 - r) (A.8)2
Strain-Displacement Matrix Entries

The notation for individual entries within the strain-displacement (B) matrix is

shown below. The first subscript refers to the interpolation function, and the

second subscript refers to the variable over which the derivative is taken.

bi Oh, (A.0)
Or

It is obvious that the derivation of each strain-displacement. matrix entry is a

trivial matter of differentiation of the interpolation functions. However, the

equations are rarely defined explicitly, and they are shown here for the benefit

of the author.

1
bl,, = (1 - s)(2r + s) (A.10)4
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1
bl 1, = (1 - r)(r + 2s) (A.11)

b2,. = -r(1 - s) (A.12)

1
b2,,= -(1 - r2) (A.13)2

1
b3,r = 1(1 - s)(2r - s) (A.14)

1
b,= (1 + r)(2s - r) (A.15)4

1
b4 ,r = 2(1 - s2) (A.16)2
b4,, = -(1 + r)a (A.17)

1
bs., = -(1 + s)(2r -+ s) (A.18)4
bs,a = 1(1 + r)(r + 2s) (A.19)4
be,, = -r(1 + a) (A.20)

1
bs,, = -(1 - r2) (A.21)

2
1

br,, = -(1 +s)(2r - s) (A.22)
4
1

b7,,= (1 - r)(2s - r) (A.23)
4

1
bs,, = -2(1 - s2) (A.24)

bs,, = -(1 - r)s (A.25)

The construction of the H and B matrices is dependent on the conventions

used in the description of the nodal displacements and element stresses. The

interpolation and strain-displacement entries listed here are the key components

necessary to form H and B matrices.
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Finite element node numbering scheme.
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Appendix B

Alpha Constant Stiffness Procedure

Initialize:

U"+ 1 = Un

o0 = I

Phase One :

Phase Two:

AUV = -Ko- i

If A = 0

Else If AuO # 0

Then

Then

a2r = C;J

a = a - ____0

Ui u -l + acLiUý

Test for Convergence :

if abs 0( > 10-l 1 Then

Ui-l = Ui

ai- 1 = i

GO TO PHASE ONE

U n + l = Ui
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(B.1)

(B.2)

Ti = T(Ui- 1 )

A=UJ = -K+ zU'

Uý = Uj-l + AuU:

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

End:

(B.11)

(fl.12)

(P.1rz)

(B.14)



APPENDIX C

AFESA Plasticity Flow Chart

Based upon equilibrium values for the following variables; (eij)n, (JE)",

r , n n1, X,, e, n , eP and P , new equilibrium values for en+ 1  +1, (, t)~n+,

eP+, and e are predicted based upon the input variables •n + 1 and (eij)n+l.

In Step 4, a test for plastic deformation is made, and if none is predicted,
then the process is elastic and the flow chart branches to Step 12. For a plastic

process, Step 5 determines whether a monotonic or cyclic hardening coefficient is

used. This is accomplished by examining the stress state at time tn and compar-
ing it to the maximum back stress predicted with er. If the back stress is equal
to or greater than the maximum stress, then monotonic hardening is assumed.
Next, a determination is made as to whether the stress increment crosses an elas-
tic zone. Whenever a stress increment steps into or across the elastic regime, the
cyclic plastic strain variable ef is set to zero and cyclic hardening is assumed.

Steps 7 through 11 outline the iterative procedures used to reconcile the
kinetic equation with Eq. 3.38. Step 7 uses a predicted plastic strain rate iP to
calculate yn~+. During the iterative process, the predicted plastic strain rate
& may be too large and the resulting yn+1 is negative. To correct this, Y, 1+

is tested, and if it is too large, iP is reduced by a factor of 0.9 and Step 7 is
repeated. This reduction in iH continues until a positive yn+l calculation is
achieved.

In Step 8, h is determined using the method described in Chap. 2. When
& is very small and equal to zero, a direct calculation of h is made by using the
explicit form for h (Eqs. 2.15 and 2.16.)

The iterations between predicted and resulting plastic strain rates continue
until the difference between them is 0.01 %. Each prediction of P is made with
an interpolation based on previous predictions H i, and their resultants iP
and . In Step 10, the latest i and i are examined, and they replace the
predicted and resultant pair which are furthest apart. Step 11 interpolates for a
new H and makes sure the prediction is greater than zero. When H is less than
zero, then i is assumed to be equal to the resultant of the closest pair. The
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procedure outlined here is by no means the optimum method, but it is typically

capable of determining P in 8 iterations.

STEP 1 : Define the input rate variables.

ii=(es)n
+ - (,

S-- At

Determine En+1

0 n+ - en

ee = e At

Determine pn+1 and An+X
An+1 Atn

At
n+l _ n

STEP 2 : Calculate the trial stress.

Tr -= 2,ii + 22 (E~,)" +tj I t

("kk+ f+ (Ekk)n - (3A+ 2p) (it)fl At (0.5)

,Tr = On + A&TrAt
tJ t3 23

STEP 3 : Calculate the approximate unit normnl Ni.i

, *n+1 =Tr -!Tr
23 z / 3 kkz,

Nij= 3/( Sn+1
- _

2 "*
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(C.1)

(C.2)

(0.3)

(C.4)

(C.6)

(C.8)

(C.9)



STEP 4 : Test for plastic deformation.

Assume i = 0

Determine Y"'+' = Y(i~, n0+ 1 )

IF o* < Yn+l THEN

Elastic Process

'j =0

E = 0

GO TO STEP 12

Plastic Process

STEP 5 : Decide on monotonic versus cyclic hardening.

Assume Monotonic Hardening

hoe p

nh
1 -(1 + n ,

p0

IF Q < ,maz and eP : 0 Assume Cyclic Hardening

IF Jlj7 - (r,)" T ll < Il(i) -- ) (ii)"ll GOTO STEP 6

IF I] r_" - (,,j)nI < II.Tr -_ (j)"•J GOTO STEP 6

Assume Cyclic Hardening

e = 0

STEP 6 : Initialize plastic iteration variables.

K=0

K= 0

For Monotonic Hardening
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(C.10)

(C.11)

(C. 12)

(C.13)

(C.14)

(C.15)

(C.16)



S= 0

(CP)" = e

For Cyclic Hardening

(eP)" = e-

STEP 7 : Calculate h.

IF iP < 10- 9 THEN

For Monotonic Hardening

ht = ho (1 S(P) -(nh+)
0

For Cyclic Hardening

GO TO STEP 8

IF iP > 10- 9
P (

(e,)n+l = (eP)" + jpAt

THEN

(C.22)

For Monotonic Hardening
lh]

H"- hoe
nh

H+ hoc
nh ( 1+

)flj+1

For Cyclic TT:irt'liing

- (1 (EP)"+ 2(e2e"

( 1+

)fl1h]I

(eP)n+l

2e0

H n1 - H n

iPzt
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(cC.17)

(C.18)

(C.19)

(c.20)

h = ho ( + (C.21)

th]

(C.23)

(C.24)

2ho'H" n 0
nh

H",+ = 2hoe

nh

ith

(C'.2")

(C.26)

(C.27)

(,,p)n (nh)' l)

.(EP)"



STEP 8 : Calculate Yf+.

Y"ni = o* - (3," + h) HAt

IF Y"- 1 < 0 GO TO STEP 9

iP = 0.9 HP P
REPEAT STEP 8

STEP 9 : Calculate Hi with kinetic equation and test for convergence.

Determine H = if(Yn+1, n+ ).

IF
p piv-> 1o GOTO STEP 10

P

j =

GO TO STEP 12

STEP 10 : Select plastic strain rate variables.

K = K + 1

IF K > 50 EXIT WITH ERROR

IF K = 1 THEN

ip = i

ýp = i
GOTO STEP 7

IF K=2 THEN
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(C.29)

(C'.30)

(C.31)
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iP = dP
P2 P

-p, = ir2  r

GOTO STEP 11

IF l; I >li -i>I

tP = iPP1 P
ip =ip

r, = ifr

GOTO STEP 11

ip = ip
P2 P

d' = d'r2  r

STEP 11: Interpolate for i prediction.p I~·YVI

(C.35)

(C.36)

THIEN

(C.37)

(C.38)

(C.39)

(C.40)

log (ip, / )
X =

log (2,/l)
4 = - ,)

ip -i=P P1

IF iP >P

log (~p, /i )
(GOp -TO STEP 7,)

GO TO STEP 7

,-p rcp~ -C r2

IF IP -i p Il< <P - 2 i CGO TO STEP 7

Gp - rp

GO TO STEP 7
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(C'.42)

(C.43)
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STEP 12 : Determine n"+ 1 , P)n+I and Q!:+.

+ = " - 2tpe At ((.46)
( n)I = (f f) + pAt (C.47)

n+I= ± 3 Xj At (C(.48)

STEP 13 : Update plastic strain variables.

For Monotonic Hardening

EP = ( P)n+1 (C.49)

For Cyclic Hardening

E = (eP)+1 (C.50)

EXIT.
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Appendix D

Finite Difference Heat Transfer

The thermal analysis of thermal cycling specimens has been carried out
with a finite difference numerical method. This analysis is different from most
other finite difference analyses in that the differential volume considered in the
approximation varies. Thermal cycling test specimens are cylindrical in shape
and variable in cross sectional area. In this analysis, the convective heat transfer
between the specimen and the air is ignored. When convective heat transfer (as-
sunming a free convective heat transfer coeffiecient of 25 W m-2K- ') is compared
to the conductive heat transfer the resulting Nusselt No. is approximately 0.16.
The significant heat transfer processes which must be considered are the heat
generated by electrical resistance, and the heat conducted out of the specimen
into the brass holding blocks.

The finite difference equations which are derived here are based upon the
following set of assumptions and equations. Figure D.la shows the finite differ-
ence model used in the analysis of the thermal cycling specimen. The model
divides the specimen in half and then subdivides it into 27 segments of equal
length. The boundary conditions used in this analysis are a constant tempera-
ture 00o at the end of the specimen and a zero temperature gradient at the center
of the specimen. These boundary conditions are expressed in Eqs. D.1 and D.2

z is the axial coordinate of the specimen in meters.

00 = 298 K (D.1)

= 0 (D.2)
9z i=27

The equation which governs this heat transfer problem is shown below. The
finite difference solution for this equation requires additional focus into the heat
transfer occurring in a single differential element volume.

a 820 pJ2 90+ -(D.3)
dcP, Oz2  dcp at

Consider the single differential element shown in Fig D.lb. The element
volume is a tapered cylinder with an area of Ai on the left and an area Ai+l on
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the right. 77 is defined in Eq. D.4 as the ratio of these two areas. The volume of
the differential element is given by Eq. D.5 .

17 = Ai+,/Ai (D.4)

_ AA, (1 + 72 + 1) (D.5)

The heat transfer rate is q and its units are W. Heat flows across the

element areas by conduction according to Eqs D.6 and D.7. A summation of

the heat transfer rates and the ohnmic heat generation is proportional to the rate

of temperature change in the differential volume. This relationship is given by
Eq. D.8. The superscripts t and t + At refer to the finite difference times of the

temperatures.

qi+ = -rAi + ) (D.6)

qi =-A' - ' - '-( (D.7)

dcV (- - )= qi -- qi+ + pJ2V (D.8)

Solving Eq. D.8 for O'+ a t and substituting Eqs. D.4-D.7 into the result gives

the following iterative solution for the temperature at time t + At.

ot+At = 3o+ At) . t [ -(1) W + 9t+) tI PJ2At
2 -_ I +I++J2A (D.9)

t =  dcAz2l [ + + 77dcP

This equation is used in a standard foreward finite difference method to
determine the temperature distribution in the thernial cycling specimens as a

function of both position and time. Normal considerations for an appropriately

small time step and proper boundary conditions are made. The material con-

stants K, c, and p are dependent on temperature, so the change in temperature

with time must be smooth enough to also allow a smooth variation of these

constants with time. Once again, the advantage of this particular finite differ-

ence formulation is the variable differential element volumes which allow easy

analysis of various thermal cycling specimen geometries.
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Finite difference model for the thermal analysis of the

thermal cycling specimens.

AZ

At

I _ IF"- A.m , ,O

A 0

Discrete element of finite difference thermal model.
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Appendix E

AFESA Documentation

This appendix contains a listing of the program AFESA, all the AFESA

input commands and two example problems. Copies of this program can be

obtained from the Francis Bitter National Magnet Laboratory. The program was

developed on the VAX 11-780 computer, and it contains commands which can

only execute on systems using the VAX VMS operating system (v4.0). AFESA

does not have any preprocessing capabilities, so the finite element nodes and

element geometry must be supplied by the user. Commands to generate a finite

element model are stored in a file which is read by AFESA during execution.

The input commands must match a defined input syntax, but numerical data is

read with free format input statements. Two example sets of input commands

are given in this appendix to show the AFESA input file syntax. The first

example is the strain hardening problem discussed at the end of Chapter 3 (pg.

111), and the second example is the tapered test specimen analysis of Chapter

4 (pg. 127).
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C Axisymmetric Finite Element Solenoid Analysis
C
C Written by Peter J. Raboin 9/85 - 2/89
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C
C This code is organized in three major sections that are called
C by the main program AFESA. Since finite element models vary in
C size. a variable array size is used to minimize memory requirements.
C First the model size is determined with the subroutine Intro.
C Next, array sizes are set with the call statement
C call lib$get_vm(# of bytes, memory location). This allocates
C virtual memory on the VAX 11-780 computer for the arrays. The
C subroutine ASSIGN then re-reads the input model and assigns the
C data to arrays. The next section is a frontal analysis which
C assigns degree of freedom numbers to each node. This minimizes
C the reauired stiffness matrix size and decreases execution time.
C The last section is the subroutine MAIN, and this subroutine
C contains most of the finite element coding. The subroutine
C CONSIG is for graphic analysis and is not listed here. This
C code writes OutDut files which contain nodal displacements and
C element stresses and strains.
C
C
C The program AFESA uses 8 node quadratic finite elements, and it
C is applicable to small strain analyses only. The axisymmetric
C components of stress and strain are stored in the following order
C with their arrays: radial, axial, shear and hoop crmoonents.
C
C AFESA can perform eigther on entirely elastic analysis or an
C elastic - plastic finite element analysis. The implementation
C of plasticity into AFESA is made with the subroutine TEPE (Thermal
C Elastic Plastic Equations). Various material laws have been
C examined during the code development, but the version listed here
C is the one described in Chapters 2 and 3. The author suggests
C that a good way to study this code is to begin where variables are
C assigned (ASSIGN) to input parameters and then trace the variable
C name through the code. Variable names do not change in this code.
C Each subroutine is preceeded by a short description of its purpose
C and comment cards are included for additional information. The
C author does not believe he can adequately document this code
C alone, because it requires a fresh, objective study by another
C user to clarify confusing code sections To help those who wish
C to study and change this code, the following code ''map" outlines
C the path of program execution. The items enclosed with parentheses
C below are comments.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C
C AFESA
C
C ------ INTRO
c I
C ------ GAUSS
C
C ASSIGN
C
C ------ MATFIX I-- MATL
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FRONTAL

GAUSS

I
return

MAIN

CONSIG 1-- HE

- - BFI

CMI I------ INTERP
(Elastic) I

TSI return
I I

-- I
I I

return I

(see Appendix C)
TEPE

DYNAMIC

SFORCE

COLSOL

(Output)
(Results)

(------ -

)------

HE

TEMP

TEMP

SFORCE

HE
(Elastic)

(Time)
(Increment)

(Loop)

(Plastic)

----- ISOP TEMP -----

--- TEMP TEPE ---

-- ZERO ZERO -- I

DEVIAT -----I~I

Ireturn
return

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

implicit real*8(a-h.o-z)
implicit integer(i-k.n,m)
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end
end

INTERTP

(Equi I
(Ite

ibrium)
rot ion)
(Loop)

(Time)
(Increment)
(Loop)

III



logical I

dimension iplod(4),rplod(4).sp(7 )
character*30 fnome.fnamesn,fnamesave.t.fnamepit(16).

fgeom.fnameout(16).title*78,ans*1

n2-2
n3-3
n4.4
n5=5
n6-6
n7=7
n8=8
n16-16

write(6,6001)
read(5.6002) fnome

write(6.6M03)
read(5.64) a ons
Itout- false.
If(ans .eq. 'y' .or ans .eq. 'Y') Itout-.true.

call INTRO(title.fnome.fgeom.fnameptt.fnomeout.fnamein,
fnamesove,nmott.nemot.nplm.npltdv.n16.
ix,iy,nn,ne.nlc.nkrd.nkod.nkrf.nkof.
nrbfrt.nrbfrdv.nrbfot.nrbfadv,
nobfrt.nabfrdv.nabfat,nobfadv.nrtt.ntrdv.
nott.ntadv.ildad.nldeneos.laot.start.
Isave.ldebug,inodes.lelem.lmot.lod,.lerr.
Ipit,lrbflrbft,labf.labft,ltmp,ltmpt,
Ifout,leas.ltp.Idyn)

if(lerr) then
write(6,7005)
goto 9999

endif

if(inodes) then
call lib$get_vm(8-nn*2.mx)
call lib$get vm(4*nn*2.mimop)
call lib$get vm(4*nn*2.mic)
call lib$get vm(4*nn*6.mnel)

else
write(6.7001)
goto 9999

endif

if(Idyn) then
ndn-nn

else
ndn-=

endif
call lib$getvm(8*ndnon2,mpld)
call lib$get_vm(8*ndnmn2,mp2d)
call lib$get vm(8*ndnen2,mp3d)

if(lelem) then
cal' lib$getvm(4*ne*8,mit)
call lib$getvm(4*ne.mimem)
call lib$getvm(4*ne,mies)

else
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write(6,7r"2)
goto 9999

endif

if(lmat) then
cal lib$get_vm(4*nmott.mmca)
call lib$getvm(8*nmatt.mden)
call lib$getvm(8*nemot*n4*n4.mc)
call lib$getvm(8*nemoten4.mct)
call lib$getvm(8*nemot*n3.mcmpo)
call lib$get_vm(8*npltdv.mpmto)
call lib$getvm(8*nplmnnpltdven5,mpmpo)
call lib$get_vm(8*nplmen7.mphas)

el s
write(6,7003)
goto 9999

endif

call lib$getvm(8nilc.mtlme)

if(.not. load) then
write(6,7004)
goto 9999

endif

cali lib$get vm(4*nkrd.mlprd)
call lib$get vm(8*nlc.nkrd.mprd)

call lib$get vm(4*nkod.mipad)
call lib$get vm(8*nlc*nkad.mpod)

call lib$get vm(4*nkrfmiprf)
call lib$get vm(8*nlconkrfmprf)

coil lib$get vm(4*nkof,mipof)
call lib$get vm(8*nlcenkaf.mpof)

call lib$get vm(8*nlc*16,mbf)
if(Irbf) then

call lib$getvm(8*nlconrbfrt.nrbfot.mrbfd)
else

call lib$get vm(8.mrbfd)
endif
call lib$get vm(8*nrbfrdv,mrbfrd)
call lib$get vm(8*nrbfadv,mrbfod)

if(lobf) then
call lib$getvm(8*nlc*nobfrt*nobfat,mobfd)

else
call lib$get_vm(8.mobfd)

endif
call lib$getvm(8*nabfrdv.mobfrd)
call lib$get_vm(8*nobfodv.mobfod)

call libSgetvm(8*nlc.msol)
call lib$get_vm(8*nlc*16.mts)
if(Itmp) then

call lib$getvm(8*nlc*nrttnaottmtd)
else

call lib$getvm(8.mtd)
endif
call lib$getvm(8*ntrdvmtrd)
call lib$getvm(8*ntodv.mtod)
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call Ilb$get_vm(4*ilIod.milda)

call lib$getvm(4*neos.mitosp)
call l ib$get_vm(8-neos.maspc)
call l ib$getvm(8*neosmpsd)
call lib$getvm(8*neaos.mospd)
call I ibget vm(8-neas.maspod)

call ASSIGN(%val(mx).nn,Xvol(mit).ne.%vol(mimem).%vol(mtime),
& nlc.%val(miprd),Xval(mprd).nkrd.,val(mipod).
& %val(mpad).nkod.Xval(miprf)..vol(mprf),nkrf.
& %val(mipof).voa(mpof).nkof.voal(mrbfd).nrbfrt.
& nrbfaot,vol(mrbfrd),nrbfrdv,Xval(mrbfod).nrbfndv.
& %vol(mobfd).nobfrt.nobfot.%vol(mobfrd).nobfrdv,
& Xval(mobfod).nabfadv,%vol(mtd).nrtt.nott.
& %val(mtrd).ntrdv.7vol(mtad).ntodv.n2.n3,n4.n5.n8.
& %vol(mc).%vol(mct).Ivol(mcmpo).fname..val(mmca),
& nmott.nemot.nplm.npltdv.%vol(mpmto),~vol(mpmpo),
& iplod,rplod,sp.%vol(me Ia).ildod.%val(mden).
& %val(mitasp),%vol(mospod),eol,umox.%vol(mpsd),
& %val(mospc).%vol(mospd).neas.%val(mphas).n7)

if( not. lot) call MATFIX(%val(mmco).%vol(mimem).nmott.ne)

nkd-nkrd+nkoad-2
nud=2*nn-nkd
nnmrnud+l
nn2=nn*2

call lib$getvm(4*nnm.mmoxa)

call FRONTAL(%vol(mit),ne,vol(mimoap).nn.%vol(mmaxo).nnm.nud.
& %val(mic).nn2.%voi(mies),%vol(mnel),n2.n6.n8,
& %vol(miprd).nkrd.%val(mipad),nkad.mt)

call l ib$get_vm(8*ix*iy,mwt)
call Iib$getvm(8.*ixiy*8,.mh)
call lib$getvm(8*ix*iy*8*2.mb)

call lib$get_vm(8*ixiy*4*4,mtsso)

call GAUSS(%vol(mwt),%val(mh).%val(mb),ixiy.n2.n8)

call lib$get vm(8*mtma)

call lib$get vm(8*nud*nlc.msv)
cail lib$getvm(8*nud,mosv)
call lib$get vm(8*nud.mdisp)
cao lib$get_vm(8*nud.mrv)
call lib$get-vm(8*nud,mrvo)
call lib$getvm(8*nud,mdrvo)
call lib$getvm(8*nud,molpha)
call lib$get-vm(8*nnon2,mpid)
call lib$getvm(8*nnmpit)
call lib$getvm(8*nn.mpft)

call MAIN(fgeom,fnameplt.fnomeout.title,%vol(mit),ne,Xvot (mimop).
& %val(mx),nn.n2.n8.n16.nlc,%val(mtime),%vol(miprd),
& %vol(mprd),nkrd,.vol(mipod).Xval(mpod),nkad),vol(miprf),
& %val(malpho).%vol(mprf),nkrf,%val(mipaf),Xval(mpof),nkof,
& mrbfd.nrbfrt.nrbfat,Xval(mrvo),Xval(mdrvo).mrbfrd,
& nrbfrdv.mrbfod,nrbfadv.mabfd,
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& nobfrt,nobfot,mobfrd.nobfrdv,mobfod.nobfodv,mtd,nrtt,
& nott,mtrd.ntrdv,mtod,ntodv.%vol(mc),vol(mct).
& val(mcmpa),n5.n4,n3.nemat.%val(mwt),ix.iy.%val(ma),
& mt,Xval(mmaxa),nnm.~val(msv),nud.%val(mimem).mb.mh,
& val(msol),%val(mts),Xval(mbf).vaol(mdisp).vaol(mrv),
& vol(mosv).7vol(mpmta),%val(mpmpo),rpladiplod.nplm,
& npltdv,%val(mmca),nmatt,%val(mpid),sp,Yvol(mtsso),
& %val(mildo),ildad,nlde,%vol(mitasp).vaol(maspod),
& eol.umax,%vol(mpsd).vol(moaspc).%vol(mospd).neas,
& Itp,7val(mphos).n7,%val(mden),%vol(mpld),%val(mp2d).
& vol(mp3d),ndn,fnomein,fnamesave. lstart,lsave.lat,
& Irbf.Irbft,lobflobft,ltmp,ltmpt,lplt.ltout,lfout.
& Idebugleas.ldyn.Xvol(mpit),%vol(mpft))

if(Iplt) call CONSIG(fnameplt,fnomeout.ix.iy,nn,ne.nlc.n16,
& Itout,lfout,mx,mit,mies,mnelmwt.mh,mb)

6001 format(//' Enter the name of the Finite Element input file : '$)
6002 format(a30)
6003 format(//' Do you want terminal output (Y/N) : '$)
6004 format(al)
7001 format(//.' -- ERROR--',/1.' No nodes were specified !')
7002 format(//,' -- ERROR--',/.' No elements were specified !')
7003 format(//,' ---ERROR---',/.' No materals were specified H')
7004 format(//.,' -- ERROR---',/.' No loads were specified !')
7005 format(//.' -- ERROR--',/.' Could not read input data

&file i')
7099 format(//,' ---EXECUTION STOPPED DUE TO INTERNAL ERROR

& DETECTION-')

stop
9999 write(6,7099)

stop
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C INTRO
C
C This subroutine reads the finite element input model
C to determine the array sizes nrpded for the analysis, and
C to define logical variables. If there are errors in the
C model data format, they are detected here.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine INTRO(title,fname,fgeom,fnameplt,fnameout.fnomein,
& fnamesave,nmatt.nemat,nplm,npltdv,nl6.
& ix,iy,nn.ne,nlc,nkrd,nkad,nkrf,nkaf.
& nrbfrt,nrbfrdv,nrbfat,nrbfadv,
& nobfrt,nobfrdv,nobfat.,nbfadv.nrtt,ntrdv,
& natt,ntadv,ildad,nlde,neas.laot,
& Istart,lsave,ldebug,lnodes,lelem,lmat,
& lood, err,lplt,lrbf,Irbft.labf,lobft,
& Itmp,ltmpt,lfout,leos,Itp,ldyn)

implicit reol*8(o-h.o-z)
implicit integer(i-k,n,m)
logical I
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character*(*) titlefnome,fnr-eplt(nl6),fnomeout(nl6),
& fgeom,fnamein,fnoamesove

character*25 inp

ix-3
iy-3
nmatt-1
nemot-=
nplm-1
npltdv=1
nic=-
nkrd-1
nkod1m
nkrf=1
nkaof1
nrbfrt-1
nrbfat-1
nobfrt=1
nobfot=1
nrbfrdv-1
nrbfadv-1
nobfrdv-1
nobfodv-1
nrtt-1
nott=1
ntrdv=l
ntodv=1
ners-1
neas-1
Idod-1

Inodes=.false.
lelem=.folse.
Imot=.false.
lood-.false.
Irbf-.false.
labf-.false.
Itmp-.false.
lot-.true.
Iplt-.false.
Ifout=.false.
Istort-.false.
Isove=.folse.
Idebug-.folse.
lerr-.false.
leos-.false.
Itp-.false.
Idyn=.folse.
title-'NO TITLE'

write(6,.)
write(6.*) ' Echo output of input file
write(6,*)
open(unit-3,file-fname,readonly,status-'old')

10 reod(3,6001) inp
call STRSUPCASE(inp,inp)

write(6,6001) inp
if(inp .eq. 'TITLE') goto 10e
if(inp .eq. 'NODES') goto 200
if(inp .eq. 'ELEMENTS') goto 300
ifinp .eq. 'ELASTIC MATERIALS') goto 400
if inp .eq. 'PLASTIC MATERIALS') goto 425
if inp .eq. 'TWO PHASE') goto 1400
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if(inp .eq. 'LOAD CASES') goto 450
if(inp .eq. 'RADIAL DISPLACEMENTS') goto 500
if(inp .eq. 'AXIAL DISPLACEMENTS') goto 550
if(inp .eq. 'RADIAL NODE FORCES') goto 600
if(inp .eq. 'AXIAL NODE FORCES') goto 650
if(inp .eq. 'RADIAL BODY FORCES') goto 700
if(inp .eq. 'AXIAL BODY FORCES') goto 750
if(inp .eq. 'TEMPERATURES') goto 800
if(inp .eq. 'GAUSS POINTS') goto 900
if(inp .eq. 'AFESAPLT') goto 940
if(inp .eq. 'AFESAOUT') goto 945
if(inp .eq. 'ELASTIC') goto 950
if(inp .eq. 'ELASTIC-PLASTIC') goto 960
if(inp .eq. 'RESTART') goto 1100
if(inp .eq. 'SAVE') goto 1125
if(inp .eq. 'DEBUG') goto 1150
if(inp .eq. 'SOLUTION PARAMETERS') goto 1200
if(inp .eq. 'EXTERNAL AXIAL SPRINGS') goto 1350
if(inp .eq. 'DYNAMIC') goto 1500
if(inp .eq. 'EXIT') goto 9999
write(6,6002)
goto 9999

100 read(3,6009) title
goto 10

200 read(3.*) nn
do 210 i-1,nn

210 read(3,*) il,dl,d2
Inodes=.true.
goto 10

300 read(3,*) ne
do 310 i=1,ne

310 read(3.*) il,i2,(i3,j=1.8)
lelem-=.true.
goto 10

400 read(3,*) nemot
if(nemot .ge. 1) then

do 410 imat=l,nemot
410 read(3.*) il,dl,d2.d3

nmott=nmatt+nemot
if(.not. Imat) nmatt=nmatt-1
Imot=.true.
goto 10

else
write(6,6003)
lerr-.true.
goto 9999

endif

425 read(3,.) nplm,npltdv
if(nplm .ge. 1 .and. npitdv .ge. 1) then

do 430 i-l,npltdv
430 read(3,*) dl

do 440 i-1,nplm
read(3,.) il
do 440 j-,npltdv

440 read(3,*) dl,d2,d3,d4,d5
nmatt-nmott+nplm
if(.not. Imat) nmott=nmatt-1
Imat=.true.
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goto 10
else

write(6,6003)
lerr=. true.
goto 9999

endif

450 reod(3,*) nlc
read(3.,*) (dli=l,nlc)
goto 10

500 read(3.*) nkrd
do 510 j=1.nkrd

510 read(3.*) il,(d1,i=1.nlc)
nkrd-nkrd+l
goto 1000

550 read(3,*) nkad
do 560 j-1,nkad

560 read(3,*) il,(d1,i=1,nlc)
nkad=nkad+1
goto 1eee

600 read(3,*) nkrf
do 610 j=l,nkrf

610 read(3,*) il,(dl.i=1,nlc)
nkrf=nkrf+l
goto 1000

650 read(3,*) nkaf
do 660 j=1,nkof

660 read(3,*) il,(dl.i=1,nlc)
nkaf=nkof+l
goto 1000

700 read(3,6001) inp
call STR$UPCASE(inp,inp)
Irbf=.true.
if(inp .eq. 'POLYNOMIAL') then

read(3,*) nrbfrt,nrbfat
read(3.*) (dl.i=l.nlc)
read(3,*) (d1,i=1,nlc)
read(3.*) (dl,i=l,nlc)
read(3.*) (dl.i=l,nlc)
nrbfrdv=2*nlc
nrbfadv=2*nlc
do 710 i=1,nrbfat
do 710 jl1,nrbfrt

710 read(3,*) (dl.k-1,nlc)
I rbft=.true.

elseif(inp .eq. 'INTERPOLATION') then
read(3,) nrbfrt,nrbfat
nrbfrdv-nrbfrt
nrbfadv-nrbfat
do 720 i-=,nrbfrdv

720 read(3,*) dl
do 730 i-l,nrbfodv

730 read(3,*) dl
do 740 i-l1,nrbfat
do 740 j-l,nrbfrt

740 read(3,*) (dl,k-l,nlc)
Irbft-.false.
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e I so
write(6.6002)
lerr-. true.
goto 9999

endif
goto 1000

750 read(3,6001) inp
call STR$UPCASE(inp, inp)
labf=.true.
if(inp .eq. 'POLYNOMIAL') then

read(3.*) nobfrt,nobfat
read(3.*) (dl.i=I.nlc)
read(3.*) (dl.i-1,nlc)
read(3.*) (dl.i=l.nlc)
read(3.*) (dl,i=l,nlc)
nobfrdv-2*nlc
nobfadv-2*nlc
do 760 i=l.nobfot
do 760 j-=.nobfrt

760 read(3,*) (dl.kl.,nlc)
lobft=. true.

elseif(inp .eq. 'INTERPOLATION') then
read(3,-) nobfrt.nobfat
nobfrdv=nobfrt
nobfadv=nobfot
do 770 i-=.nobfrdv

770 read(3,*) dl
do 780 i=1.nabfadv

780 read(3.*) dl
do 790 i-1,nabfat
do 790 j-1.nabfrt

790 read(3.*) (dl.k-l,nlc)
lobft=.false.

else
write(6,6002)
lerr=. true.
goto 9999

endif
goto 1000

800 read(3,6001) inp
coal STR$UPCASE(inp, inp)
Itmp~. true.
if(inp .eq. 'POLYNOMIAL') then

read(3,*) nrtt,natt
read(3.*) (dl.i-=,nlc)
read(3.,) (dl.i=lnlc)
read(3,.) (dl.i=1,nlc)
read(3.,) (dl.i=l,nlc)
ntrdv-=2nlc
ntadv-=2nlc
do 810 i-1.natt
do 810 j-l,nrtt

810 read(3,*) (dl,k-1,nlc)
Itmpt=. true.

elseif(inp .eq. 'INTERPOLATION') then
read(3,*) nrtt,natt
ntrdv-nrtt
ntadv-natt
do 820 i-l,ntrdv

820 read(3,*) dl
do 830 i=l,ntadv
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830 read(3,.) dl
do 840 i-=,nott
do 840 j-,1nrtt

840 read(3.*) (dl,k=l,nlc)
Itmpt=.folse.

else
write(6.6002)
lerr-.true.
goto 9999

endif
goto 1000

900 read(3,*) ix.iy
if(ix .It. 1 .or. ix .gt. 5) goto 918
if(iy .ge. 1 .and. iy .Ie. 5) goto 10

910 write(6.6004)
goto 9999

940 Iplt-.true.
read(3.6001) fgeom
do 941 i=1,nlc

941 read(3,6001) fnomeplt(i)
goto 10

945 Ifout-.true.
do 946 il,.nlc

946 read(3,6001) fnomeout(i)
goto 10

950 Iot-.true.
goto 10

960 lat-.false.
read(3,*) il,i2,i3,i4,dl,d2
goto 10

1000 lood=.true.
goto 10

1100 read(3,6001) fnamein
Istort=.true.
goto 10

1125 read(3,6001) fnamesove
Isove=.true.
goto 10

1150 Idebug-.true.
read(3,.) nlde
ildod-=nde
read(3,*) (il,i-1,nlde)
goto 10

1200 read(3,*) dl,d2.d3,d4,d5,d6,d7
goto 10

1350 read(3,*) neas.eol,umax
do 1360 i-1,neos

1360 reod(3,*) il,dl,d2
leas-.true.
goto 10

1400 do 1410 i=l,nplm
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1410 read(3.*) (dlj=1,.7)
Itp-.true.
goto 10

1500 do 1510 i-1,nmatt
1510 read(3.*) dl

Idyn=.true.
goto 10

6001 format(a30)
6002 format(//,' ERROR !!: Input command not recognized !')
6e03 format(//,' ERROR !!: Incorrect number of materials specif

&ied i')
6004 format(//.' ERROR !!: Incorrect number of Gauss points spe

&cfied !')
6009 format(a78)
9999 close(unit=3)

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C ASSIGN
C
C ASSIGN does just what its name implies and assigns the
C finite element model data to variable arrays.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine ASSIGN(x.nn.it,ne,imem,time.nlc,iprd,prd.nkrd,
& ipad,pad,nkad,iprf.prf,nkrf,
& ipafpaf,nkaf,rbfd.nrbfrt.nrbfat.
& rbfrd,nrbfrdv,rbfod,nrbfodv,
& abfd,nabfrtnabfat,abfrd,nabfrdv,
& abfad.nabfadv,td.nrtt,nott,
& trd,ntrdv.tad.ntadv,n2,n3.n4,n5.n8,
& c,ctcmpa.fnamemca.nmatt.nemot.nplm.
& npltdv,pmto,pmpa,iplad,rplod,sp, ilda,
& ildad.den,itasp,aspod.eol.umax.psd,aspc.
& aspd,neas,phos,n7)

implicit real*8(a-h,o-z)
implicit integer(i-k,nm)
logical I

character*25 inp.dum*78,fnome*(*)
dimension x(nn.n2).it(ne,n8).imem(ne),time(nlc),den(nmatt),

& iprd(nkrd),prd(nlc.nkrd),ipad(nkad).pad(nlcnkad),
& iprf(nkrf).prf(nlc,nkrf),ipaf(nkaf),paf(nlc.nkof),
& rbfd(nlc.nrbfat.nrbfrt).rbfrd(nrbfrdv),rbfad(nrbfadv),
& abfd(nlc,nobfat.nabfrt),abfrd(nabfrdv),abfad(nabfadv),
& td(nlc,nott,nrtt),trd(ntrdv),tod(ntadv),mco(nmatt),
& c(nematn4.n4).ct(nemat,n4),cmpa(nemat,n3),sp(n7),
& pmta(npltdv),pmpo(nplm,npltdv,n5),iplad(n4),rplod(n4),
& ilda(ildod),psd(neas),aspod(neas),
& itasp(neas),aspc(neas),aspd(neas),phas(nplm,n7)

C INITIALIZE SOLUTION PARAMETERS
sp(1)=e0.
sp(2)=le-6
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sp(3)=1e-15
sp(4)=le-15
sp(5)=30.e
sp(6)=e.0
sp(7)-=0.

open(unitm3,file-fname,readonly,status-'old')
10 read(3.6001) inp

coll STR$UPCASE(inp,inp)

if(inp .eq. 'TITLE') goto 100
if(inp .eq. 'NODES') goto 200
if(inp .eq. 'ELEMENTS') GOTO 300
if(inp .eq. 'ELASTIC MATERIALS') goto 400
if(inp .eq. PLASTIC MATERIALS') goto 425
if(inp .eq. 'TWO PHASE') goto 1400
if(inp .eq. 'LOAD CASES') goto 450
if(inp .eq. 'RADIAL DISPLACEMENTS') goto 500
if(inp .eq. 'AXIAL DISPLACEMENTS') goto 550
if(inp .eq. 'RADIAL NODE FORCES') goto 600
if(inp .eq. 'AXIAL NODE FORCES') goto 650
if(inp .eq. 'RADIAL BODY FORCES') goto 700
if(inp .eq. 'AXIAL BODY FORCES') gato 750
if(inp .eq. 'TEMPERATURES') goto 800
if(inp .eq. 'GAUSS POINTS') goto 900
if(inp .eq. 'AFESAPLT') goto 950
if(inp .eq. 'AFESAOUT') goto 955
if(inp .eq. 'ELASTIC') goto 10
if(inp .eq. 'ELASTIC-PLASTIC') goto 960
if(inp .eq. 'RESTART') goto 1100
if(inp .eq. 'SAVE') goto 1100
if(inp .eq. 'SOLUTION PARAMETERS') goto 1200
if(inp .eq. 'DEBUG') goto 1150
if(inp .eq. 'EXTERNAL AXIAL SPRINGS') goto 1350
if(inp .eq. 'DYNAMIC') goto 1500
if(inp .eq. 'EXIT') goto 9999

100 read(3.6001) dum
goto 10

200 reod(3.*) ii
do 210 i=1,nn

210 read(3,.) i1.x(i,1),x(i,2)
goto 10

300 read(3.*) il
do 310 i-1,ne

310 read(3,*) il,imem(i),(it(i,j),j=1,8)
goto 10

400 read(3,*) il
do 410 imat-1,nemat
read(3,.) il,ym,pr,ol
mca(il)mimat
cmpa(imat,1)-ym
cmpo(imat,2)mpr
cmpa(imat,3)=ol

410 call MATL(c.ct,imot.ym,pr,ol,nemat,n4)
goto 10

425 read(3,*) 11,i2
do 430 i-1,npltdv

430 read(3,s) pmto(i)
do 440 i=l,nplm
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read(3,*) ii
mco( il )=-i
do 440 j=1.npltdv
read(3,*) ym,pr.vys.et.al
pmpa(i,j,1)=ym
pmpa(i,j .2)pr
pmpa(i,j.3)-vys
pmpa(i.j .4)et

440 pmpa(ij,5)=al
goto 10

450 read(3.*)
read(3..)
goto 10

500 read(3.*)
do 510 j=1

510 read(3.*)
goto 10

550 read(3.*)
do 56 j=1l

560 read(3.*)
goto 10

600 reaod(3.*)
do 610 j=1

610 read(3,*)
goto 10

650 read(3,*)
do 660 j-1

660 read(3.*)
goto 10

ii
(time(i),i=1 ,nlc)

it
,nkrd-1
iprd(j), (prd(i,j),i=1.nlc)

,nkod-1
ipad(j),(pad(i,j),i=l.nlc)

it
,nkrf-1
iprf(j).(prf(ij).i-=.nlc)

il
.nkof-1
ipaf(j).(pof(i,j).i=- .nlc)

700 read(3,6el1) inp
call STRSUPCASE(inp,inp)
if(inp .eq. 'POLYNOMIAL') then

read(3.*) dl,d2
read(3.*) (rbfrd(i),i-1,nlc)
read(3,*) (rbfrd(nlc+i),i-l.nic)
read(3,*) (rbfad(i),i=1.nlc)
read(3,*) (rbfad(nlc+i),i=1,nlc)
do 710 i-1,nrbfat
do 710 j-1,nrbfrt

710 read(3.) (rbfd(k,i.j),k=1.nlc)
elseif(inp .eq. 'INTERPOLATION') then

read(3,*) dl,d2
do 720 i=l,nrbfrdv

720 read(3,*) rbfrd(i)
do 730 i=1,nrbfodv

730 read(3,*) rbfad(i)
do 740 i-l,nrbfat
do 740 j-l,nrbfrt

740 read(3.*) (rbfd(k,i,j),k-1.nlc)
endif
goto 10

750 read(3.6001) inp
call STR$UPCASE(inp,inp)
if(inp .eq. 'POLYNOMIAL')

read(3,s) dl,d2
then
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read(3.*) (abfrd(i),i=1,nlc)
read(3,.) (obfrd(nlc+i),i=1.nlc)
read(3,.) (abfad(i),i=1,nlc)
read(3,*) (abfad(nlc+i).i=1.nlc)
do 760 i=1,nobfat
do 760 j=1,nobfrt

760 read(3,*) (obfd(k.i,j),k-1,nlc)
elseif(inp .eq. 'INTERPOLATION') then

read(3.*) dl.d2
do 770 il.,nobfrdv

770 read(3.*) obfrd(i)
do 780 i-l,nobfodv

780 read(3,.) obfad(i)
do 790 i-l,nobfot
do 790 j=1,nabfrt

790 read(3,*) (abfd(k,i,j),k-1,nlc)
endif
goto 10

800 read(3.6101) inp
call STR$UPCASE(inp.inp)
if(inp .eq. 'POLYNOMIAL') then

read(3.*) dl,d2
read(3,*) (trd(i),i=1.nlc)
read(3,*) (trd(nlc+i).i=l,nlc)
read(3.*) (tad(i),i=1.nlc)
read(3,*) (tad(nlc+i),i=1.nlc)
do 810 i-l.nott
do 810 j-l.nrtt

810 read(3,*) (td(k.ij),k=l,nlc)
elseif(inp .eq. 'INTERPOLATION') then

reod(3,*) dl,.d2
do 820 i=l,ntrdv

820 read(3,*) trd(i)
do 830 i=l.,ntadv

830 read(3.*) tod(i)
do 840 i=1,nott
do 840 j=l,nrtt

840 reod(3,*) (td(k.ij),k=1,nlc)
endif
goto 10

900 read(3,*.) dl,d2
goto 10

950 read(3,6001) inp
do 951 i-1,nlc

951 read(3,6001) inp
goto 10

955 do 956 i-=,nlc
956 read(3,6001) inp

goto 10

960 read(3,*) (iplod(i),i=1,4),(rplod(j),j=1.2)
goto 10

1100 read(3,6001) inp
goto 10

1150 read(3.*) nide
read(3,*) (ilda(i),i-l,nlde)
goto 10
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1200 read(3.,) (sp(i).i=1.7)
goto 10

1350 read(3.*) neas,eol,umax
do 1360 i=1,neas
aspod(i)=0.
psd(i)=0.

1360 read(3.*) itosp(i).ospc(i).aspd(i)
goto 10

1400 do 1410 i=l.nplm
1410 read(3,*) (phas(i,j),j=1.7)

goto 10

1500 do 1510 i=1,nmatt
1510 reod(3,*) den(i)

goto 10

9999 write(6,6002)
close(unit-3)

6001 format(a3O)
6002 formot(//.' Echo print of input file complete. ',//)

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C MATFIX
C
C This subroutine assigns a negative element material number
C to plastic materials. imem is the element material number.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine matfix(mca.imem.nmatt.ne)
implicit real*8(a-h,o-z)
implicit integer(i-k,n,m)
dimension mco(nmatt).imem(ne)

do 20 i-1,ne
if(mca(imem(i)) .It. 0) imem(i)=-imem(i)

20 continue

do 40 i-Inmatt
if(mca(i) .It. 0) mca(i)--mco(i)

40 continue

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccCCCCCCCCCCCCCCCCCCCcCCCCCCCC
C
C MATL
C
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C This subroutine colulotes the elastic constitutive matrix.
C for each elastic material type.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine MATL(c,ct,imat,ym,pr,al,nemat.n4)
implicit reol*8(o-h.o-z)
implicit integer(i-k.n,m)
dimension c(nemat.n4,n4),ct(nemot.n4)
dimension db(4)

f=ym/(ldB+pr)
g=f*pr/(ldO-2d0*pr)
hnf+g
c(imat.1,1)=h
c(imat 1 2)=g
c(imot.1.3)-=ed
c(imat.2.1)=g
c(imot,2.2)=h
c(imat.2,3)=-Od
c(imat.3.1)-=ed
c(imat 3,2)=OdO
c(imat,3,3)=f/2d0
c(imat.1,4)=g
c(imat.2.4)-g
c(imat,3,4)-ede
c(imot,4,1)=g
c(imot.4,2)=g
c(imat.4,3)-=ed
c(imot.4,4)=h

db(1)oal
db(2)=al
db(3)=-de
db(4)=al
do 100ee i=1,4
ct(imat,i)-=de
do 100 j=1,4

100 ct(imot,i)=ct(imat,i)+c(imot,i,j)*db(j)

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C FRONTAL
C
C FRONTAL is a subroutine which assigns degrees of freedom to
C the finite element model. Nodes which have defined displacements
C ore assigned negative degrees of freedom. Besides the degrees
C of freedom, this subroutine also calculates the skyline matrix
C MAXA needed in COLSOL.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c Finite Element Frontal Analysis of 8 node elements
subroutine FRONTAL(it.ne.imap,nn.maxo,nnm,nud,

& ic,nn2,ies,nel,n2,n6,n8,
& iprd,nkrd,ipod,nkad,mt)
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implicit real*8(a-h,o-z)
implicit integer(i-k,n,m)
logical I

dimension it(ne.n8),imap(nn,n2).maxa(nnm).
& ic(nn2),ies(ne).nel(nn,n6).
& iprd(nkrd).ipad(nkad)

dimension ifl(4).itel(5.6)

c Initialize and Load NEL (Nodal Element List)
do 100 i=1.nn
do 100 j-1.6

100e nel(i,j)=e
ncn-0

C NNE IS THE MAXIMUM NUMBER OF ELEMENTS CONNECTED TO A CORNER NODE
nne-i
do 120 i-1,ne
do 120 j-1.8.2
icn-it(i,j)
do 110 k=1.6
if(nel(icn,k) .ne. 0) goto 110
if(k .gt. nne) nne=k
nel(icn.k)=i
goto 120

110 continue
120 continue

c Find starting node for frontal analysis.
c Look for corner node.

do 130 i=1,nn
if(nel(i,1) .eq. 0) goto 130
if(nel(i,2) .ne. 0) goto 130
its-1
ies(1)=nel(il1)
goto 150

130 continue

c Look for edge node
do 140 i=1,nn
if(nel(i,1) .eq. 0) goto 140
if(nel(i,3) .ne. 0) goto 140
its=2
ies(1)-nel(i,1)
ies(2)=nel(i,2)
goto 150

140 continue
lerr-.true.
goto 460

c Load ITEL (Temporary Eleme
150 isp-1
160 if(its .eq. ne) goto 330

ice-ies(isp)
ispi sp+l
do 170 i-1,4
ksm,
do 170 j-l,nne
ite-nel(it(ice.2*i-1),j)
if(ite .eq. ice) goto 170
k-k+l
itel(i,k)=ite

170 continue
do 180 i-1,nne

ent List)
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180 itel(5,i)=itel(1.i)

c Eleminate Elements in ITEL already in IES (Element Stock)
do 220 i-1,4

199 do 210 jl,.nne
if(itel(i,j) .eq. 0) goto 220
do 210 k-1,its
if(ies(k) .ne. itel(i,j)) goto 210
do 200 n=j.nne

200 itel(i,n)=itel(i.n+l)
itel(i,nne)=0
goto 190

210 continue
220 continue

c Determine IFL (Face elements List)
do 300 1=1.4
do 290 j=1.nne
ite-= tel(i,j)
if(ite .eq. 0) goto 290
do 280 k-1,nne
if(ite .ne. itel(i+1,k)) goto 280
ifl(i)=ite
do 230 n=j,nne-1

230 itel(i.n)=itel(i,n+1)
itel(i,nne)=0
do 240 n=k,nne-1

240 itel(i+1,n)=itel(i+1,n+l)
itel(i+l,nne)=0
if(i .ne. 1) goto 260
do 250 n-1.nne

250 itel(5.n)-itel(1,n)
goto 300

.60 if(i .ne. 4) goto 300
do 270 n-1.nne

270 itel(1,n)=itel(5,n)
goto 300

280 continue
290 continue

ifl(i)-e
300 continue

c Load ITEL into IES
do 320 i=1.4
if(ifl(i) eq. 0) goto 310
its-its+1
ies(its)=ifl(i)

310 do 320 j=1.nne
if(itel(i,j) .eq. 0) goto 320
its=its+1
ies(its)=itel(i,j)
itel(i,j)-e

320 continue

goto 160

c Initialize and load
330 do 350 i-1.nn

imap(i.1)=-
350 imap(i,2)-e

k1-0
k2-e
do 390 i-1,ne

the DOF IMAP (Degree Of Freedom)
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do 390 j-1,8
icn-it(ies(i).j)
if(imap(icn,1) .ne. 0) goto 390

do 360 k=l,nkrd-1
if(iprd(k) .ne. icn) goto 360
k2-k2-1
imap(icn,1)=k2
goto 365

360 continue
kl=kl+1
imap(icn,1)=kl

365 do 370 k.1,nkad-1
if(ipad(k) .ne. icn) goto 370
k2-k2-1
imop(icn.2)=k2
goto 375

370 continue
kl-=k+1
imop(icn.2)-kl

375 continue

390 continue

c load the Maxo matrix needed in COLSOL
do 420 i-1,nn2

420 ic(i)=10000
do 440 i-1,ne
iln-10000
do 430 j-1,8
do 430 k=1,2
nc-imap(it(i,j),k)
if(nc .It. 0) goto 430
if(nc .It. iln) iln-nc

430 continue
do 440 j=1,8
do 440 k-1,2
nc=imap(it(i,j),k)
if(nc .It. 0) goto 440
if(ic(nc) .gt. iln) ic(nc)-iln

440 continue
maxa(1)=1
mt-=
do 450 i-2,nud
mt-mt+l
maxo(i)=mt

450 mt=mt+i-ic(i)
maxo(nnm)=mt+l

460 return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCcCCCCCCCC
C
C GAUSS
C
C GAUSS calculates the interpolation matrix H and the strain-
C displacement transformation matrix B for each interpolation
C point. The information for each interpolation point is stored
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C in the arrays wt, h and b. The author believes this calculate
C it (wt, h and b) once and store it method significantly reduces
C repetitive calculations during execution.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine GAUSS(wt,h,b.ixiy,n2.n8)

implicit real*8(o-h,o-z)
implicit integer(i-k,n,m)
logical I

dimension wt(ix.iy),h(ix.iy,n8).b(ix,iy,n8,n2)

dimension data(5),weight(5),rd(5),sd(5),xwd(5),ywd(5)

ipass-1
goto (10.20,30,40,50),ix

1 goto (10.2e.30,40,s5),iy

10 data(l)- .0
weight(1)-2.0
goto 60

20 data(1)--.5773502691896257
dato(2)- .5773502691896257
weight(1)=1.0
weight(2)=1.0
goto 60

30 data(1)--.7745966692414834
data(2)- .0
data(3)- .7745966692414834
weight(1)= .5555555555555556
weight(2)- .8888888888888889
weight(3)= .5555555555555556
goto 60

40 data(1)=-.8611363115940526
dota(2)--.3399810435848563
data(3)- .3399810435848563
data(4)- .8611363115940526
weight(1)- .3478548451374539
weight(2)= .6521451548625461
weight(3)- .6521451548625461
weight(4)- .3478548451374539
goto 60

50 data(1)--.9061798459386640
dota(2)--.5384693101056831
data(3)- .0
data(4)- .5384693101056831
data(5)- .9061798459386640
weight(1)- .2369268850561891
weight(2)- .4786286704993665
weight(3)- .5688888888888889
weight(4)- .4786286704993665
weight(5)- .2369268850561891

60 if(ipass .eq. 1) then
ipass-2
do 70 ilix
rd(i)-data(i)
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70 xwd(i)=weight(i)
goto 1

else
do 80 i-l.iy
sd(i)-dato(i)

80 ywd(i)=weight(i)
endif

do 100 i=l.,ix
do 100 j=1.iy
r=rd(i)
s=sd(j)
rm-ldO-r
sm-ldO-s
rp=ld0+r
sp-ldO+s
rs=-de-re*2
ss=lde-s**2
h(i.j,1)=rm*sm*(-r-s-1d0)/4d0
h(ij.2)-rs*sm/2dO
h(i,j,.3)rp*sm*(r-s-ldO)/4d0
h(i,j,4)-ssarp/2d0
h(i,j.5)=rp*sp*(r+s-l1d)/4dO
h(i.j,6)=rs*sp/2d0
h(ij,7)=rmosp*(-r+s-lde)/4de
h(i.j.8)=ss*rm/2dO
b(i,j,1,1)-sm*(2dOer+s)/4d0
b(i.j,1,2)-rm*(r+2dd*s)/4d0
b(i,j,2.1)=-r*sm
b(ij,2,2)=-rs/2d0
b(i.j.3.1)-sm*(2d0*r-s)/4dO
b(i.j.3.2)-rp*(2dO*s-r)/4d0
b(i.j.4,1)-ss/2d0
b(i,j.,42)=-rp*s
b(i,j,.51)=sp.(2d0*r+s)/4d0
b(i,j.5.2)-rp,(r+2d0*s)/4d0
b(i,j,6.1)=-sp*r
b(i.j,6.2)-b(i.j.2.2)
b(i ,j,71)-sp*(2d0*r-s)/4d0
b(i,j,7.2)-rm*(2d0*s-r)/4dO
b(ij.8.1)=-b(i,j.4.1)
b(ij.8,2)=-rm*s

10e wt(i,j)=xwd(i).ywd(j)

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C HE
C
C This subroutine uses the H and B matrices to calculate the
C element interpolation point position (rad,z) and the
C interpolation point strain array E.
C
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine HE(b.e.h,rod,w,xo,z,ir,is,ix.iy,n2,n4,n8,n16)
implicit real*8(a-h,o-z)
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implicit integer(i-k,n.m)

dimension b(ix,iy,n8,n2).e(n4.n16),h(ix,iy.n8).xo(n8.n2)
dimension d(2,2),di(2,2)

pi2-2.0*3.141592653589793
rad-ede
z-0ed
do 75 1-1,8
rod-rod+h(ir,is,l)*xo(I.1)

75 z=z+h(ir,is,l)*xa(I,2)

C

c EVALUATE JACOBIAN MATRIX
do 1900 i-1,2
do 100 j-1,2
d(i,j)=-de
do 100 k-1,8

100 d(i,j)-d(ij)+b(ir.is.k,i)*xo(kj)
dt-d(1.1)*d(2.2)-d(2,1)*d(1.2)
if(dt .gt. 0.) goto 101
write(6,.) 'ERROR !!! Jocobian Matrix Indefinite in HE.'

write(6,*) d(1,1),d(1.2)
write(6..) d(2.1).d(2.2)
goto 9000

101 dm-1./dt
di(1.1)-d(2.2).dm
di(1.,2)=-d(2,1)*dm
di(2,1)=-d(1,2)*dm
di(2.2)=d(1,1)*dm

C EVALUATE STRAIN MATRIX FOR NON ZERO RADIUS
if(rad .It. le-9) goto 130
k2-0
do 120 k-1,8
k2-k2+2
e(1,k2-1)=-de
e(1,k2)=ede
e(2,k2-1)=Ode
e(2,k2)=-dO
do 110 i-1,2
e(1,k2-1)=e(1,k2-1)+di(1.i)*b(ir.is,k,i)

110 e(2,k2)=e(2,k2)+di(2,i)*b(iris,k,i)
e(3,k2)-e(1,k2-1)
e(3.k2-1)=e(2,k2)
e(4,k2)-=0d

120 e(4,k2-1)=h(ir,is,k)/rad
goto 160

130 k2-0
do 150 k-1,8
k2-k2+2
e(1.,k2-1)-=ed
e(1,k2)-=de
e(2,k2-1)-0d0
e(2,k2)-=de
do 140 i=1,2
e(1.k2-1)-e(1,k2-1)+di(1.i)*b(ir,is,ki)

140 e(2,k2)-e(2,k2)+di(2,i)*b(ir,is,k,i)
e(3,k2)=e(1,k2-1)
e(3,k2-1)=e(2,k2)
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e(4,k2)=OdO
150 e(4,k2-1)-e(1,k2-1)

160 w-radodtspi2
9000 return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C BFI
C
C BFI (Body Force Integration) calculates the body force
C loads for each element node for a given interpolation
C point. First the body force load corresponding to the
C interpoation point location is calculated, and then the load
C contribution to each element node is determined.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine BFI(bf.h,w.rod.z,il,ir,is.ix,iy.nlc.n8,nl6. bft.
& sol.bfd.nbfat.nbfrt.bfrd.nbfrdv,bfod,nbfodv)

implicit real*8(o-h.o-z)
implicit integer(i-k,n.m)
logical I

dimension bf(nlc.nl6),h(ix,iy,n8),bfd(nlc,nbfot,nbfrt),
& bfrd(nbfrdv),bfad(nbfadv),sol(nlc)

if(lbft) then
do 200 i=1,nlc
rl=bfrd(i)
rh-bfrd(nlc+i)
al-bfad(i)
ah=bfod(nlc+i)
sol(i)=Ode

if(rad .It. rl .or. rod .gt. rh) goto 200
if(z .It. al .or. z .gt. oh) goto 200
dumz=-ld
do 190 j-l,nbfat
dumr=1de
do 180 k-l,nbfrt
sol(i)=sol(i)+bfd(i,jk)*dumr*dumz

180 dumr=dumrrod
190 dumz=dumzoz
200 continue

goto 800
else

coll INTERP(bfd,nbfat.nbfrt,bfrd,bfad,rad,z,nlcsol)
endif

800 do 880 j-l,nlc
sol(j)=soi(j)*w
do 880 i=1,8

880 bf(j,2*i-il)=bf(j,2*i-il)+h(ir,is,i)*sol(j)

return
end
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
TSI

TSI (Thermal Stress Integration) is used in elastic analyses
only. This subroutine calculates the interpolation pont
temperature, and then it determines the equivalent nodal forces
for the prescribed temperature change.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine TSI(tref,e.ct,iemt,rad.z,sol.ts,w,nemat,n4,n16,
nicItmpttdnrttnotttrdntrdytodnt )

implicit real*8(a-h.o-z)
implicit integer(i-k,n,m)
logical I

dimension e(n4,nl6).ct(nemat,n4),ts(nlc,nl6).sol(nlc),
td(nlc,natt,nrtt),trd(ntrdv),tod(ntadv)

if(Itmpt) then
do 200 i-1,nlc
rl-trd(i)
rh=trd(nlc+i)
ol=tod(i)
oh-tod(nlc+i)
sol(i)-tref
if(rod .It. rI .or.
if(z .It. oal .or. z
sol(i))-0.0
dumz-lde
do 190 j=1.nott
dumr-=de
do 180 k=l.nrtt
sol(i)=sol(i)+td(i.
dumr-dumr*rod
dumz=dumz*z
continue
goto 800

else
call INTERP(td,natt

endif

180
190
200

rad .gt. rh) goto 200
.gt. ah) goto 200

j,.k)*dumr.dumz

,nrtt,trd,tod,rad,z.nlc.sol)

800 do 900 i-l,nlc
te--(sol(i)-tref).w
do 850 j=1,16
do 850 k-1,4

850 ts(i,J)-ts(i,j)+e(k.j)*et(iemt,k)*te
900 continue

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
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C INTERP
C
C This subroutine is used throughout AFESA to interpolate
C data values from 2 dimensional data tables. this interpolation
C routine will extrapolate outside the input data ranges.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine INTERP(dv,nadv,nrdv,rdo,ado.,rodz,nlc.sol)

implicit real*8(o-h.o-z)
implicit integer(i-k,n,m)
logical I

dimension ada(nodv),rdo(nrdv),dv(nlc,nedv.nrdv).sol(nlc)
iz-1
if(nadv .eq. 1) goto 200
iz=2
if(z .le. ada(l)) goto 200
if(z .le. oda(iz)) goto 200
do 100 i-2,nodv
if(z .gt. ada(i)) goto lee
iz-i
goto 200

100 continue
iz-nadv

200 ir=l
if(nrdv .eq. 1) goto 400
ir=2
if(rad .le. rdo(1)) goto 400
if(rad .le. rda(ir)) goto 400
do 300 i-l,nrdv
if(rad .gt. rda(i)) goto 300
ir=i
goto 400

300 continue
ir-nrdv

400 do 1000 ii=l.nlc
if(iz .eq. 1) goto 600
dz-ado(iz)-odo(iz-1)
if(ir .eq. 1) goto 500
dlh-dv(ii,iz, ir-1)
dll-dv(ii,iz-1,ir-1)
dvl-dlh+((dlh-dll)*(z-ada(iz))/dz)

500 d2h=dv(ii,iz,ir)
d21=dv(iiiz-1.ir)
dv2=d2h+((d2h-d21)*(z-ada(iz))/dz)
if(ir .ne. 1) goto 800
sol(ii)=dv2
goto 1000

600 if(ir .ne. 1) goto 700
sol(ii)-dv(ii,1,1)
goto 1060

700 dvl-dv ii.l,ir-1)
dv2idv ii,l1,ir)

800 dr-rda ir)-rda(ir-1)
sol(ii)=dv2+((dv2-dvl)*(rad-rda(ir))/dr)

1000 continue

return
end
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CCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C ISOP
C
C ISOP calculates the interpolation point temperature from the
C element node temperatures.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCcCCCCCCCCCCCCC

subroutine ISOP(temp,h.to.ir,is.ix,iy,n8)
implicit real*8(o-h,o-z)
implicit integer(i-k,n.m)

dimension h(ix,iy,n8),ta(n8)

tempeOdO
do 75 1-1,8

75 temp=temp+h(ir.is.l)*ta(l)

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C DYNAMIC
C
C DYNAMIC is a subroutine which calculates equivalent nodal
C forces based upon nodal occellerations. AFESA uses the
C Houbolt method (see 'Finite Element Procedures in Engineering
C Analysis,'' K.J. Bathe, 1982).
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine DYNAMIC(cmassdyd.dld.d2d.d3ddyf,ao.a2,o4,a6,n16)

implicit real*8(a-h,o-z)
logical I
dimension cmoss(n16,n16).dyd(n16),dld(nl6),d2d(nl6).dyf(n16)
dimension d3d(n16)

do 100 i-1.16
dyf(i)=0.0
do 100 j=1,16
dyf(i)=dyf(i)+cmass(i,j)*(a0*dyd(j)-a2*dld(j)-a4*d2d(j)-a6*d3d(j))

100 continue

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C CMI
C
C This subroutine calculates the element mass matrix for the
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C dynamic analysis.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine CMI(cmass.h.w,rod,ir,is.ix.iy.n8,nl6)

implicit real*8(o-h.o-z)
logical I
dimension cmoss(n16.n16),h(ix,iy,n8)

do 100 i=1.8
il=2* i-1
do 10e j=1.8

100 cmass(il,2*j-1)=cmass(il,2.j-l)+w*rod*h(iris,i).h(ir,is,j)

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCcCCCCCCcCCCCCCCCCCCCCC
C
C MAIN
C
C This subroutine contains the bulk of the finite element coding.
C When the program reaches this point during execution, all
C the virtual memory arrays have been assigned, all the input
C data has been read and oil the nodal degrees of freedom have
C been determined. The first thing MAIN does is initialize
C displacements and open all the necessary files. Secondly,
C AFESA integrates the elements to determine body
C force loads, the dynamic mass matrix and the thermal stress
C loads. The third stage in MAIN is the equilibrium iteratation
C loop. When the equilibrium displacemens have been determined,
C MAIN enters the fourth and lost stage where output information
C is written to the screen, output files and plot files. The
C third and fourth stages are repeated for each sub-increment
C load case,
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine MAIN(fgeom,fnameplt.fnameout,title.it.neimapx.nn.n2.n8,
& n16,nlc.time,iprdprd .nkrd,nkrdipad,pod,nkod,iprf,alpha
& prf,nkrf,ipaf,pof,nkof,mrbfd,nrbfrt,nrbfat,rvo,drvo,
& mrbfrdnrbfrdv,mrbfad.nrbfodv,mabfd,nobfrt,
& nabfat,mabfrd.nobfrdv.mabfad,nobfadv,mtd.nrtt,
& natt,mtrd,ntrdv,mtod,ntadv.c,ctcmpo.n5,n4,n3,
& nemat,wt,ixiy,a,mwk,maxannm,sv,nud,imem,mb.
& mh,sol,ts,bf,disp.rv,osv,pmta,pmpa,rplad,
& iplad,nplmnpltdv,mcanmattpid,sp,tsso,
& ilda,ildad,nlde.itasp,aspod,eol.umax,psd.
& aspc,aspd,neas,ltp.phas,n7,den,pld,p2d,p3d,
& ndn,fnamein.fnamesave,lstart,
& Isave,lat,lrbf,lrbft,lobf,lobft.ltmp,ltmpt,
& Iplt,ltout.Ifout,ldebug,leaos,ldyn,pit,pft)

implicit real*8(a-h,o-z)
implicit integer(i-k.n,m)
logical I
character*(*) title.fnamein,fnamesave,fnameplt(n16),

& fnomeout(n16),fgeom
character*30 fonm
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dimension it(ne.n8),imap(nn,n2),x(nn.n2).c(nemot.n4.n4).
& ct(nemat.n4),iprd(nkrd),prd(nlc,nkrd).ipad(nkad),
& pad(nlc.nkad),iprf(nkrf),prf(nlc,nkrf),ipaf(nkof).
& paf(nlc,nkaf),time(nic).wt(ix.iy),ao(mwk),maxa(nnm),
& sv(nlc,nud),ts(nic,n16),bf(nlc.nl6).sol(nic).
& imem(ne),cmpa(nemot,n3),disp(nud),rv(nud).rvo(nud).
& pmta(npltdv).pmpo(npim,npltdv,n5).iplad(n4),
& rplad(n4),mca(nmatt),pid(nn,n2),sp(n7).Alpha(nud),
& tsso(ix.iy,n4.n4),ilda(ildad).itasp(neas).
& aspod(neas),oaspc(neas),aspd(neas),psd(neas),
& phas(nplm.n7).osv(nud),den(nmatt).pld(ndn.n2).
& pit(nn),pft(nn),p2d(ndn,n2),p3d(ndn.n2).drvo(nud)

dimension db(4),e(4.16),ilis(16).so(16.16).xo(8.2),
& u(16),strain(4).stress(4),f(16).eps(4).prop(5),
& epspl(4).epsp2(4),sig(4).alfol(4),alfa2(4),
& cep(4,4).up(16),ut(16),cmoss(16.16).dyd(16).
& dld(16),d2d(16).d3d(16),dyf(16).ta(8),emo(4),emb(4)

dimension nelnu(16),iipt(8)

common /PLASDAT/ epm.Sigmax.Tbor
common /THERMDAT/ tref,templ,temp2.tdot.tsl.ts2.xn.xo
common /RATEDAT/ dt,epdl,epd2

c Real Plastic Data
c beta Kinematic vs Isotropic Hardening constant

betaorplod(1)

c Integer Plastic Data
c luf Logical user output floag
c lym Logical Non-Linear Young's Modulus

luf-.folse.
if(iplad(1) .eq. 1) then

luf=.true.
write(6,8127)
read(5,8128) fonm
write(6.8130)
read(5.*) nnels
do 3 i-1,nnels
write(6,8126)

3 read(5,.) nelnu(i).iipt(i)
open(unit=11llfile=fonm,status='new')
write(11,*) (int(sp(6))+1)*nlc,nnels

endif
lym-.false.
if(iplad(2) .eq. 1) lym-.true.

c Solution Parameters
c tref Reference Temperature
c tollv Tolerance for tangental load iterations
c zd Zero value tolerance for displacements
c tolz Zero value tolerance for output
c imax Max. number of step iterations
c nsi Number of sub-increments
c loop Logical for Alpha Acceleration Procedure

tref-sp(1)
tolilvsp(2)
zd-sp(3)
tolz=sp(4)
imax=int(sp(5))
nsi-int(sp(6))
loop-.false.
if(int(sp(7)) .eq. 1) loop-.true.
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#2
#3
#4
#5
#6
#7
#7
#8
#9
#10
#11

File designation numbers
Element Mass file
AFESA Input file
Plot Output file
Screen Input
Screen Output
Restart file
Save file
AFESA Output file
Elastic Element Stiffness file
Plastic Integration file
User Output File

s12-dsqrt(lde/2de)
s23-dsqrt(2de/3de)
s32-dsqrt(3de/2de)
iii=2
nsv-=
lerr=.false.
Idout-.false.

if(ldebug) write(6,8122)

C INITIALIZE PRESCRIBED INITIAL DISPLACEMENTS
if(Istart) then

open(unit-7,file-fnamein.readonly,status='old')
read(7.*) timeold
do 5 i-1,nn

5 read(7,*) pid(i,1).pid(i,2),pit(i)
if(leas) then

do 7 il1,neas
aspod(i)=pid(itasp(i).2)

7 read(7,*) psd(i)
endif
do 8 i-l,nud

8 read(7,*) osv(i)
if(Idyn) then

do 9 i=1,ndn
9 read(7,*) pld(i,1),pld(i,2).p2d(i.1),p2d(i,2)

endif
else

timeold=Ode
do 12 i=1,nn
pid(i .1)-=ed
pid(i.2)=ede
pit(i)=tref
if(ldyn) then

do 14 il1,ndn
pld(i,1)=-Od
pld(i,2)-=ed
p2d(i.1)=-Od
p2d(i.2)-Ode

endif
endif

C INITIALIZE SOLUTION
do 16 j-l.nud
disp(j )-ede
do 16 il1.nlc

16 sv(i,j)Oede

VECTOR AND DISPLACEMENTS

C Open mass element matrix
if(ldyn) open(unit=2.file='LIBD$:[scratch]jnk2.dat',
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occess'ODIRECT',stotus='SCRATCH'.reci=-188)

C OPEN ELASTIC ELEMENT STIFFNESS FILE
open(unit=9,file-'LIBD$:(scratch]jnk9.dot'.

& access-'DIRECT',status-'SCRATCH',recl-1088)

C OPEN PLASTIC INTEGRATION STIFFNESS FILE
if(.not. lot) then

open(unit-10.file-'LIBD$:(scratch]jnkl0.dot',
occess='DIRECT',status='SCRATCH',recl-160)

endif

C WRITE PLOT GEOMETRY FILE
if(lplt .ond. (.not. Istort)) then

open(unit=4,file=fgeom.stotus-'new')
write(4,.*) nn,ne,ix,iy
do 20 i-1,nn

20 write(4,.) x(i,1),x(i,2)
do 22 i-1,ne

22 write(4,.*) bs(imem(i)),(it(i,j).j=l,8)
close(unit=4)

endif

C CALCULATE ELASTIC STIFFNESSES
knee-e
knpe-=
do 1000 ine=1,ne

C INITIALIZE ELASTIC
do 30 i-1,16
do 30 j-i,16

30 so(j,i)=OdO

C INITIALIZE ELEMENT
if(ldyn) then

do 31 i=1,16
do 31 j-1,16

31 cmass(j,i)=OdO
endif

STIFFNESS MATRIX

MASS MATRIX

if(Idebug) then
Idout=.folse.
do 32 i=l,nlde
if(ildo(i) .eq. ine) then

Idout=.true.
write(6,8119) ine
goto 36

endif
continue

endif

C DECIDE IF ELEMENT TYPE IS ELASTIC OR PLASTIC
36 iemt-imem(ine)

if(iemt .gt. 0) then
Iplastic-.folse.
ielm-mco(iemt)
knee-knee+1
if(ldout) then

write(6,*) ' Elastic material matrix
do 40 i-1,4

40 write(6,8110) (c(ielm,i,j),j-1,4)
endif

else

: C '
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iemt--iemt
iplastic=.true.
ipim-mco(iemt)

endif

C READ IN ELEMENT NODE #'S AND NODE GEOMETRY
do 50 i-1,8
icn-it(ine,i)
do 50 j 1,2
ilis(2*(i-1)+j)=imap(icn.j)

50 xa(i.j)=x(icn,j)

C INITIALIZE THERMAL AND LORENTZ LOADS
do 110 i=l,nlc
do 118 j-1,16
ts(i,j)-0ed

110 bf(i,j)=-0d

C INTEGRTE OVER ELEMENT INTEGRATION POINTS
do 500 ir-l,ix
do 500 is=1,iy

call HE(%vol(mb).e.%val(mh).rad.w.xa.z.ir.is.ix.iy.n2,n4,n8,n16)
w=w*wt( ir.,is)

if(Irbf) call BFI(bf,%vol(mh),w.rod,z,l.ir,is.ix,iy,nlc,
& n8,nl6.lrbft,sol.,vol(mrbfd),
& nrbfot,nrbfrt,7vol(mrbfrd).nrbfrdv,
& %vol(mrbfad),nrbfadv)

if(labf) call BFI(bf,=val(mh),w,rod,z.0.ir, is.ix,iy,nlc,
& n8,nl6.labft.sol.Xvol(mobfd).
& nobfot,nobfrt,Xvol(mabfrd).nobfrdv,
& %val(mabfod).nobfadv)

if(Idyn) call CMI(cmass,%val(mh),w,rod,ir,is,.ix,iy,n8.nl6)

if(.not. Iplastic) then
C INTEGRATE UPPER ELASTIC ELEMENT STIFFNESS MATRIX

do 160 j-1,16
do 131 k-1.4
db(k)=0de
do 130 il-1,4

130 db(k)-db(k)+c(ielm.k.il)*e(ilj)
131 continue

do 150 i=j,16
st-=de
do 140 il-1,4

140 st=st+e(il,i)*db(il)
150 sa(i.j)-sa(i,j)+st*w
160 continue

if(ltmp) call TSI(tref.e,ct.ielm,rod,
& z,sol,ts.w,nemat.n4.nl6,nlc.
& Itmpt,Xval(mtd),nrtt.natt,%val(mtrd).
& ntrdv,Xval(mtad),ntodv)

else

C INITIALIZE PLASTIC ELEMENT INTEGRATION POINT DATA
knpe-knpe+l
if(lstort) then

read(7,*) templ,epm,epdl,xo,
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else
epm-0d0
epdl=OdO
templ=tref
xo-Id0
do 300 i=1,4
eps(i)=ede
epspl(i)=OdO
sig(i)=OdO
alful(i)-OdO

endif
writel10,rec-knpe)

(eps(

300

(eps(i),epspl(i),sig(i),alfal(i).binl.4)

templ ,epm,epdl.xo.
i),epspl(i),sig(i).alfa l(i).i=1,4)

endif

500 continue

if(Iplastic) goto 700

c Fill out Stiffness Matrix
do 510 j-1,16
do 510 i-j.16

510 so(j,i)-sa(i.j)

c store elastic stiffness matrix
write(9,rec=knee) ((sa(i.j).i=j,1S),j=1.16)

c Define the Load Vectors SV
c Condense prescribed radial disp

do 550 i11,16,2
nc=ilis(i)
if(nc .gt. 0) goto 550
node=it(ine,(i+l)/2)
do 540 k-=,nkrd-1
if(node .ne. iprd(k)) goto 540
do 530 ii=1.16
nd-ilis(ii)
if(nd .It. 0) goto 530
do 520 jj-1.nlc

520 sv(jj,nd)=sv(jj.nd)-sa(ii,i)*p
530 continue

goto 550
540 continue
550 continue

c Condense prescribed axial displ
do 600 i-2,16,2
nc-ilis(i)
if(nc .gt. 0) goto 600
node=it(ine, i/2)
do 590 k-1,nkad-1
if(node .ne. ipad(k)) goto 590
do 580 ii-1,16
nd-ilis(ii)
if(nd .It. 0) goto 580
do 570 jj-1,nlc

570 sv(jj,nd)=sv(jj,nd)-sa(i,ii)*pa
580 continue

goto 600
590 continue
600 continue

placements

rd(jj,k)

lacements

ad(jj,.k)
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c Add thermal and body forces
700 do 830 i=1,16

nc-ilis(i)
if(nc .It. 0) goto 830
do 820 j=l.nlc

820 sv(j,nc)=sv(j,nc)-ts(j,i)+bf(ji)
830 continue

if(ldout) then
do 950 j=l,nlc
write(6,8120)
do 950 i=1,8
il=2*i-1
i2=2*i
write(6,8117 )

endif

it(jne, i),ilis(il,ilis(i2),xo(i,1),xo(i,2),
bf(j,il),bf(j,i2),ts(j,il).ts(j,i2)

C Fill out mass matrix
if(Idyn) then

do 980 i=1,16.2
do 980 j=i,16.2
cmass(i,j)=den(iemt)*cmass(i,j)

980 cmass(j,i)=cmass(i,j)
do 990 i=2,16,2
do 990 j=2,16,2

990 cmass(i,j)=cmass(i-1,j-1)

c store moss matrix
write(2,rec=ine) ((cmass(i,j),i=j,16),j=1,16)

endif

1000 continue
close(unit=7)

c Add prescribed radial forces
do 1002 i=1l,nkrf-1
nc=imap(iprf(i).1)
if(nc .lt. 0) goto 1002
do 1001 j=1,nlc

1001 sv(j,nc)=sv(j,nc)+prf(j,i)
1002 continue

c Add prescribed axial forces
do 1004 i=1,nkof-1
nc=imap(ipaf(i),2)
if(nc .it. 0) goto 1004
do 1003 j=1.nlc

1003 sv(j,nc)=sv(j,nc)+paf(j.i)
1004 continue

if(Idebug) then
Idout-.false.
write(6,8121)

endif

Ilastime-.false.
iconi0

c Loop Through Time for the Solutions
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1010

do 4000 isn=l,nlc
if(Itout) write(6,8131) title
dt=(time(isn)-timeold)/(nsi+lde)

if(ldyn) then
do 1010 i=1,nn
dar=p2d(i,1)
daz=p2d(i.2)
dvr=pld(i,l1)
dvz-pld(i,2)
pld(i,l1)=pid(i,1)
pld(i,2)=pid(i,2)
p2d(i,1)-pid(i,1)-dt*dvr+dt*dt*dar/2dO
p2d(i,2)=pid(i.2)-dt*dvz+dt*dt*doz/2dO
p3d(i,1)=pid(i,1)-2d0*dt*dvr+2d0*dt*dt*dor
p3d(i,2)=pid(i 2)-2d0*dt*dvz+2d0*dt*dt*doz
continue
oO=2dO/(dt~dt)
ol=11dO/(6d0*dt)
o2=5dO/(dtsdt)
a3=3d0/dt
a4=-2de*.a
a5=-a3/2dO
a6=oO/2d0
o7=a3/9d0

endif

c Loop through subincrements
I lostinc=.false.
do 3800 isin-l,nsi+l
rtime=time(isn)-dt*(nsi+1-isin)
if(isin .eq. nsi+l) Ilastinc=.true.
if((isn .eq. nic) .ond. Ilostinc) Ilaostime=.true.
Iost=.folse.

write(6.8107) isn,isin,rtime
if(.not. lot) icon=0

1020 if(lat .and. icon .gt. 0) goto 1450
if(icon .gt. imax) then

if(Itout) write(6,8114)
goto 2000

endif

C INITIALIZE ITERATION ARRAYS
if(icon .eq. 0) then

iii=2
do 1025 i=l,mwk

1025 a(i)=0.
do 1026 i=1,nud

1026 alpho(i -ld0
if(loop) then

do 1027 i-1,nud
1027 rvo(i)=disp(i)

endif
else

iii=3
endif
do 1030 ir-,nud

1030 rv(i)-OdO

C LOOP THROUGH ELEMENTS
knee-0
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knpe-0
do 1300 ine=1,ne

if(Idebug .and. (icon .eq. 0)) then
Idout=.false.
do 1040 i=1,nlde
if(ilda(i) .eq. ine) then

Idout=.true.
write(6,8119) ine
goto 1050

endif
1040 continue

endif

C LOAD ELEMENT NODE RESULTS
C UT TOTAL DISPLACEMENT VECTOR FOR STRAIN CALCULATIONS
C UP PRESCRIBED DISPLACEMENT INCREMENT VECTOR FOR LOAD CALCULATION
C U DISPLACEMENT VECTOR FOR CONDENSING ELASTIC STIFFNESS MATRIX
1050 do 1090 j=1,8

icn=it(ine,j)
icd=imap(icn,l)
ilis(2*j-1)=icd
xa(j,1)=x(icn.1)
if(icd .It. 0) then

do 1060 ii=1,nkrd-1
if(iprd(ii) .ne. icn) goto 1060
if((icon .eq. 0) .and. (isn .eq. 1)) then

if(Istart) then
ut(2*j-1)=pid(icn,1)
up(2*j-1)=(prd(isn,ii)-pid(icn,1))/(nsi+2d0-isin)

else
ut(2*j-1)=prd(isn,ii)*(isin-lde)/(nsi+lde)
up(2*j-1)=prd(isn,ii)/(nsi +ld0)

endif
elseif(icon .eq. 0) then

ut(2*j-1)=prd(isn.ii)-(prd(isn,ii)-prd(isn-l.ii))*
(nsi+2d0-isin)/(nsi+1)

up(2*j-1)=(prd(isn,ii)-prd(isn-l,ii))/(nsi+1de)
elseif(isn .eq. 1) then

ut(2*j-1)=pid(icn,1)+(prd(isn,ii)-pid(icn.1))/
& (nsi+2de-isin)

else
ut(2*j-1)=prd(isn,ii)-(prd(isnii)-prd(isn-1,ii))*

& (nsi+ld0-isin)/(nsi+1)
endif
u(2*J-1)=OdeO
goto 1070

1060 continue
else

if(isn .eq. 1 .and. icon .eq. 0 .and. Istart)
& disp(icd)-pid(icn,1)

ut(2*j-1)=disp(icd)
u(2*j-1)udisp(icd)
up(2*j-1)=Od0

endif
1070 icd=imap(icn,2)

ilis(2*j)=icd
xo(j,2)-x(icn,2)
if(icd .It. 0) then

do 1080 ii-1,nkad-1
if(ipad(ii) .ne. icn) goto 1080
if(icon .eq. 0 .and. isn .eq. 1) then

if(Istort) then
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ut(2*j)=pid(icn.2)
up(2*j)=(pad(isn,ii)-pid(icn,2))/(nsi+2de-isin)

else
ut(2*j)=pad(isn,ii)*(isin-1de)/(nsi+ldO)
up(2*j)=pod(isn.ii)/(nsi +1d0)

endif
elseif(icon .eq. 0) then

ut(2*j)=pad(isn.ii)-(pad(isn,ii)-pad(isn-1.ii))*
& (nsi+2de-isin)/(nsi+1)

up(2*j)=(pad(isn.ii)-pod(isn-1.ii))/(nsi+ldO)
elseif(isn .eq. 1) then

ut(2*j)=pid(icn,2)+(pad(isn,ii)-pid(icn,2))/
& (nsi+2de-isin)

else
ut(2*j)=pad(isn,ii)-(pad(isn,ii)-pad(isn-1,ii))*

& (nsi+ldO-isin)/(nsi+1)
endif
u(2*j)=OdO
goto 1085

1080 continue
else

if(isn .eq. 1 .and. icon .eq. 0 .and. Istart)
& disp(icd)=pid(icn,2)

ut(2*j)=disp(icd)
u(2*j)=disp(icd)
up(2*j)=0d0

endif

C Update Dynamic variables
1085 if(ldyn) then

if(icon .eq. 0) then
dar=(pld(icn,1)-2d0*p2d(icn.1)+p3d(icn,l))/(dtodt)
daz=(pld(icn.2)-2d9*p2d(icn,2)+p3d(icn.2))/(dtodt)
dvr=(pld(icn,l)-p2d(icn,1))/dt
dvz=(pld(icn,2)-p2d(icn,2))/dt
dyd(2*j-1)=pld(icn,l1)+dt*dvr+dtsdtsdar/2d0
dyd(2*j)=pld(icn.2)+dt*dvz+dt*dt*daz/2de

else
dyd(2*j-1)=u(2*j-1)
dyd(2*j) =u(2*j)

endif
dld(2*j-1)=pld(icn,1)
dld(2*j) =pld(icn,2)
d2d(2*j-1)=p2d(icn,1)
d2d(2*j) =p2d(icn.2)
d3d(2*j-1)=p3d(icn,1)
d3d(2*j) =p3d(icn,2)

endif

1090 continue

iemt-imem(ine)
if(iemt .gt. 0) then

knee=knee+1

C Read Elastic Stiffness Matrix and Calculate F Vector
read(9,rec-knee) ((soa(i,j),i=j,16),j=1,16)
do 1100 j-1,16
do 1100 i-j,16

1100 so(j,i)=so(i,j)
do 1110 i-1.16
f(i)=ede
do 1110 j=1,16
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1110 f(i)=f(i)+so(i.j)*u(j)
else

C Calculate the Plastic Stiffness Matrix and F Vector
iplm=mca(-iemt)
do 1120 i=1,16
f(i)=OdO
do 1120 j=1,16

1120 sa(i.j)=0d0

C Loop Through Integration Points
do 1200 ir=l,ix
do 1200 is=1,iy

C Read The Element Integration Data
knpe=knpe+l
ipt=(ir-1)*iy + is
read(10,rec=knpe) templ,epmepdl,xo.

& (eps(i),epspl(i).sig(i).alfal(i),i=1,4)

C Calcuate Strains
call HE(vaol(mb),e.vaol(mh),rad.w.xo.z,ir,is,ix,iy,

& n2,n4,n8,n16)
w=wswt(ir,is)

do 1130 j=1,4
strain(j)=0d0
do 1130 k=1,16

1130 strain(j)=stroin(j)+e(j.k),ut(k)

temp2=tref
IF(LTMP) CALL TEMP(rad,z,temp2,nlc,ltmpt,Xval(mtd).isn.

& nrtt,nott,%vol(mtrd),ntrdv,%vol(mtad),ntadv)

temp2-templ+(temp2-templ)/(nsi+2-isin)
tdot=(temp2-templ)/dt

call TEPE(strain,stress,sigepsepspl.epsp2.alfolalfo2.
& pmtapmpo,phos,cep,prop,last,ldebugltp,nplm,
& iplm,npltdv,iym.n4,n5.n7)

if(ldout) then
write(6,*)
write(6,*) ' Plastic material matrix : CEP
do 1135 i=1,4

1135 write(6,8110) (cep(i,j),j=l,4)
endif

C CALCULATE PLASTIC STIFFNESS
if(icon .eq. 0) then

do 1170 j-1,16
do 1141 k-1,4
db(k)=ede
do 1140 i1-1,4

1140 db(k)=db(k)+cep(k, il)*(il,j)
1141 continue

do 1160 i=j,16
st-0d0
do 1150 il=1,4

1150 st=st+e(i1,i).db(il)
sa(i,j)=sa(i,j)+stew
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1160 sa(j,i)=sa (i,j)
1170 continue

endif

C CALCULATE F MATRIX
do 119e i=1,16
st-OdO
do 1180 j=1,4

1180 st=st+e(j,i)*stress(j)
1190 f(i)=f(i)+st.w

1200 continue

C CONDENSE PRESCRIBED DISPLACEMENT INCREMENTS
if(icon .eq. 0) then

do 1210 i=1,16
do 1210 j=1,16

1210 f(i)=f(i)+sa(i,j)*up(j)
endif

endif

if(ldout .and. (icon .eq. 0)) then
write(6,*)
write(6,*) 'Element Stiffness Matrix'
write(6,8110) ((sa(i,j),i=j,16),j=1,16)

endif

C Determine Dynamic Loads and add to element load matrix
if(ldyn) then

read(2,rec-ine) ((cmass(i,j),i=j,16),j=1,16)
do 1215 j-1,16
do 1215 i=j,16

1215 cmaoss(j,i)-cmGss(i,j)
call DYNAMIC(cmass,dyd,dld,d2d,d3d.dyf,oa,o2,a4,o6,n16)
do 1220 i=1,16

1220 f(i)=f(i)+dyf(i)

C Add appropriate Moss matrix for dynamic Analysis
if(icon .eq. 0) then

do 1230 i=1,16
do 1230 j=1,16

1230 sa(i,j)=so(i,j)+oa*cmass(i,j)
endif

endif

C Load Element Load Matrix into Global Load Matrix
do 1270 i=1,16
nc=ilis(i)
if(nc .It. 0) goto 1270
rv(nc)-rv(nc)+f(i)

1270 continue

C Load Element Stiffness Matrix into Global Stiffness Matrix
if(icon .eq. 0) then

do 1290 i-1,16
nc-ills(i)
if(nc .It. 0) goto 1290
do 1280 j-1,16
nd-ilis(j)
if(nd .It. 0) goto 1280
if(nc .It. nd) goto 1280
mlmmaxo(nc)+nc-nd
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a(ml)-a(ml)+sa(i,j)
1280 continue
1290 continue

endif
1300 continue

if(ldebug) Idout=.false.

C CALCULATE TANGENTAL LOAD VECTOR RV
do 1390 i=l,nud

1390 rv(i)=-rv(i)+osv(i)+(sv(isn,i)-osv(i))/(nsi+2de-isin)

C ADD EXTERNAL SPRING FORCES
if(leas) call SForce(aspc,aspd.psd,itosp,rv,disp,aspod.

& imap,umax,eol,last.,ltout,lfout.neas,nn.nudn2)

C Examine the residual vector and test for convergence
Irv=.true.
if(icon .eq. 0) then

osvn-svn
osvt-svt
Icut=.true.
svn=Ode
do 1430 i=1l,nud
rvs=rv(i).rv(i)
if(rvs .gt. svt*le-6) Irv=.false.

1430 svn=svn+rvs
svt=tollv * svn / nud
rvn-svn
prvn-svn
if(Irv) then

write(6,8116) icon,1.0
svnmosvn

svt-osvt
goto 2000

endif
else

prvn-rvn
rvn=OdO
do 1440 i=1,nud
rvs=rv(i)*rv(i)
if(rvs .gt. svt) lrv=.false.

1440 rvn-rvn+rvs
if(rvn .gt. prvn) then

Icut=.false.
do 1445 i=l,nud

1445 alpha(i)=ldO
if(rvn .eq. prvn) Irv=.true.
endif

endif
write(6,8116) icon,rvn/svn
if(Irv) goto 2000
goto 1500

c Load Elastic Forces
1450 do 1460 i-1,nud

disp(i)-=de
1460 rv(i)-osv(i)+(sv(isn,i)-osv(i))/(nsi+2de-isin)

C SOLVE FOR THE DELTA DISPLACEMENTS
1500 if(ldebug) then

write(6,*)
write(6,*) 'Load Vector'
write(6,8110) (rv(i),i-l,nud)
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endif

call COLSOL(a,rv,moxa.nud,mwk,nnm.iii,nsv.lerr)
icon-icon+1
if(lerr) goto 9999
if(lat) iii=3

c Increment displacement vector
if(looap .and. (icon .It. 7) .and. Icut) then

if(mod(icon,2) .eq. 1) then
do 1520 i=1,nud
drvo(i)=rv(i)
rvo(i) = disp(i)

1520 disp(i) = disp(i) + alpha(i) * rv(i)
else

do 1540 i=1,nud
alpha(i) = olpha(i) + rv(i) / drvo(i)

1540 disp(i) = rvo(i) + alpha(i) * drvo(i)
endif

else
do 1560 i=1,nud

1560 disp(i) = disp(i) + alpha(i) * rv(i)
endif

if(lat) goto 2000
goto 1020

c Finite Element Output
2000 if(Itout) write(6,8115) icon

last=.true.
if(lsave .and. Ilastime) then

open(unit=7,file=fnamesove,stotus='new')
write(7,.) rtime

endif
if(Ifout .and. (isin .eq. 1)) open(unit=8,file-fnameout(isn),

& status='new')
if(Ifout) write(8,8131) title
if(Ifout) write(8,8107) isn,isin,rtime
if(luf) write(11,8132) rtime
if(lplt .and. Ilastinc) open(unit=4,file=fnomeplt(isn),

& status='new')

c Nodal Output
if(Itout) write(6,8101)
if(Ifout) write(8,8101)
do 2050 i=1,nn
ir=imap(i,1)
if(ir .It. 0) then

do 2e10 j=l,nkrd-1
if(iprd(j) .ne. i) goto 2010
ur=pid(i,1)+(prd(isn,j)-pid(i,1))/(nsi+2d0-isin)
goto 2020

2010 continue
ur-de

else
ur-disp(ir)

endif
2020 iz-imap(i,2)

if(iz .It. 0) then
do 2030 j=1,nkad-1
if(ipad(j) .ne. i) goto 2030
uz-pid(i,2)+(pod(isn,j)-pid(i,2))/(nsi+2de-isin)
goto 2094
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2030 continue
uz=de

else
uz=disp(iz)

endif
2040 utot=ur*ur+uz*uz

if(utot .gt. ld-20) utot=utoto*.5
if(dabs(ur) .It. zd) ur=Od8
if(dabs(uz) .It. zd) uz=0d0
if(dabs(utot) .It. zd) utot=0ed
if(mod(i,20) .eq. 0 .and. Itout) write(6,8101)
if(mod(i.20) .eq. 0 .and. Ifout) write(8,8101)

temp2=tref
templ=pit(i)
if(ltmp .or. (.not. lot)) then

call TEMP(x(i.1),x(i.2),temp2,nlc,ltmpt,Xval(mtd),isn,
& nrtt,natt.%val(mtrd),ntrdv.,val(mtad),ntadv)

temp2=templ+(temp2-templ)/(nsi+2-isin)
endif

pid(i,1)=ur
pid(i.2)=uz
pft(i)=temp2

if(Isave .oand. Ilastime) write(7,.) ur,uz,temp2
if(lplt .and. llastinc) write(4,8188) ur,uz.temp2
if(Itout) write(6,8125) i,x(i,1),x(i,2).ur,uz,utot,temp2
if(ifout) write(8,8125) i,x(i,1).x(i,2),ur,uz.utot,temp2

2050 continue

C External Axial Spring Output
if(leas) call SForce(aspc.aspd,psd.itasp,rv,disp.aspod,

& imap,umax,eol,Iast,ltout,lfout,neas,nn,n ud,n2)

C Save External Axial Spring Data
if(Isave .and. Ilastime .and. leas) then

do 2052 i=1,neas
2052 write(7,*) psd(i)

endif

C Update old solution vector OSV
do 2054 i=1,nud

2054 osv(i)-osv(i)+(sv(isn,i)-osv(i))/(nsi+2de-isin)

C Save Solution Vector Nodal Forces
if(Isove .and. Ilastime) then

do 2056 i=1l,nud
2056 write(7,*) osv(i)

if(ldyn) then
do 2058 i-1,ndn
dar-ae0pid(i,1)-a2*pld(i,1)-a4*p2d(i,1)-a6*p3d(i,1)
dozuoe*pid(i,2)-o2*pld(i,2)-a4,p2d(i,2)-a6*p3d(i,2)
dvr-al*pid(i,1)-a3*pld(i,1)-o5*p2d(i,1)-a7*p3d(i,1)
dvz=al*pid(i,2)-a3*pld(i,2)-a5*p2d(i,2)-a7*p3d(i,2)

2858 write(7,*) dvr,dvz,dar,doz
endif

endif

C ELEMENT OUTPUT ROUTINES
if(Itout) write(6,8106)
if(Ifout) write(8,8106)
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knpe-0
do 3000 ine-1.ne
iemt=imem(ine)
if(iemt .gt. 0) then

Iplastic-.false.
ielm-mca(iemt)

else
iplm=mco(-iemt)
Iplastit=.true.

endif

if(Itout) write(6,8103) ine,(it(ine,j),j=1,8)
if(Ifout) write(8,8103) ine.(it(ine,j),j=1l,8)

c Load Element Node Results
do 2090 j=1,8
icn=it(ine,j)
xo(j,1)=x(icn,1)
xa(j,2)=x(icn,2)
u(2*j-1)-pid(icn,1)
u(2*j)=pid(icn,2)
to(j)=pit(icn)

2090 continue

if(Itout .and. (lot .or. (.not. Iplastic))) write(6,8104)
if(Ifout .and. (lot .or. (.not. Iplastic))) write(8,8104)
if(Itout .and. Iplastic) write(6.8111)
if(Ifout .and. Iplastic) write(8.8111)

do 2600 irl-,ix
do 2600 is=1,iy

C CALCUATE STRAINS
call HE(Xval(mb),e,Xvol(mh),rod,w,xa,z,ir,is.ix,iy,n2,n4,n8,n16)
do 2100 j=1,4
strain(j)=Ode
do 2100 k=1,16

2100 strain(j)=strain(j)+e(j,k)*u(k)

C DETERMINE INTEGRATION POINT STRESSES AND STRAINS
if(dabs(rod) .it. zd) rad=dO
if(dobs(z) .It. zd) z=dO
if(lat .or. (.not. Iplastic)) then

C CALCULATE INTEGRATION POINT TEMPERATURE
templ=tref
if(Itmp) call isop(templ,Xvol(mh),to,.ir.is,ix,iy,n8)
temp2=tref
if(Itmp) call TEMP(rad.z,temp2,nlc,ltmpt,.val(mtd),isn,

& nrtt.natt.Xval(mtrd).ntrdv,Xval(mtad),ntadv)
temp2-templ+(temp2-templ)/(nsi+2-isin)
te-cmpa(ielm,3)*(temp2-tref)

strain(1)=strain(1)-te
strain(2)=strain(2)-te
strain(4)=strain(4)-te

C CALCULATE STRESSES
do 2125 ii-1.4
do 2125 ji1.4

2125 stress(j)=stress(j)+c(imem(ine).j,ii)*strain(ii)
vm=(.5*((stress(1)-stress(2))**2+(stress(1)-stress(4))**2+

& (stress(2)-stress(4))**2)+3dO*stress(3)*stress(3))**.5
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call ZERO(strain,aver,n4.tolz)
call ZERO(stress,over,n4,tolz)
if(dabs(vm/over) .It. tolz) vm=edO

if(Itout) write(6,8105) ir,is.rod,z,strain(1),strain(4),
&strain(2),strain(3),stress(1),stress(4),stress(2),stress(3),vm

if(Ifout) write(8.8105) ir,is,rod.z.strain(1),strain(4),
&strain(2),strain(3),stress(1),stress(4).stress(2),stress(3),vm

if(lplt .and. Ilostinc) then

write(4,.*) (strain(i),i=1.4).(Stress(j),j=1,4)
endif

else

C Read The Element Integration Data
knpe=knpe+l
ipt=(ir-1)*iy + is
read(10,rec=knpe) templ,epm,epdl,xo,

r& (eps(i),epspl(i),sig(i),alfal(i),i=1.4)

C CALCULATE INTEGRATION POINT TEMPERATURE
temp2=tref
call TEMP(rod,z.temp2.nlc.ltmpt,Xvol(mtd),isn.

nrtt.nott.%val(mtrd),ntrdv.Xval(mtod).ntadv)
temp2-templ+(temp2-templ)/(nsi+2-isin)
tdot=(temp2-templ)/dt

call TEPE(strain,stress.sig,eps.epspl.epsp2.alfol,.lfao2
& pmta,pmpa,phoscep.prop,lost,ldebug,itp,nplm,
& iplm,npltdv,lym,n4,n5,n7)

write(10,rec=knpe) temp2.epmepd2,xn.
& (strain(i),epsp2(i),stress(i),alfo2(i).i=-.4)

call ZERO(epsp2,over,n4,tolz)
call ZERO(strain.overn4.tolz)

call ZERO(alfo2,aver,n4,tolz*tolz)
call ZERO(stress.over,n4,tolz)

C STORE STRESSES AND STRAINS FOR OUTPUT
ema(1)=strain(1)-ts2
ema(2)=strain(2)-ts2
ema(3)=strain(3)
ema(4)=strain(4)-ts2
do 2400 i-1,4
tsso(ir,is,i.1)-olfa2(i)
tsso(ir.is,i,2)=stress(i)
tsso(ir.is,i.3)-epsp2(i)

2400 tsso(ir,is,i,4)=ema(i)

C Calculate Effective mechanical and plastic strain
call deviat(epsp2,emb,epp,n4)
call deviat(ema,emb,eptn4)
call deviat(Stress,emb,Tbar,n4)
epp-s23*epp
ept=s12*ept
Tbaors32*Tbor

C Call user output file
if(luf) then

344



do 2500 i-=,nnels
if(nelnu(i) .eq. ine .and. iipt(i) .eq. ipt) then

write(11l,811) temp2,epm,epd2,xn,ts2,Tbor,Sigmox
write(11,8110) (strain(j),epsp2(j),j=1,4)
write(11,8110) (stress(j).alfo2(j),j=1l4)

endif
continue

endif
2500

C PRINT PLASTIC RESULTS
ixfl=int(50*(l+xn))
ixf2=100-ixfl
if(Itout) write(6,8112)

if(Ifout) write(8,8112)

endif

ipt,ixfl.ixf2,temp2,ts2.epp.epd2,
ept,Tbor,Sigmox
ipt,ixfl,ixf2,temp2,ts2,epp.epd2,
ept,Tbar,Sigmax

2600 continue

C OUTPUT PLASTIC STRESSES
if(lplastic) then

if(Itout) write(6,8118)
if(lfout) write(8,8118)
do 2620 ir=1l,ix
do 2620 is=1.iy
if(Itout) write(6,8105)

if(Ifout) write(8,8105)

if(Itout) write(6,8113)
if(Ifout) "vrite(8,8113)

do 2640 ir=l,ix
do 2640 is=1l,iy
if(Itout) write(6,8105)

if(Ifout) write(8,8105)

if(Iplt .and. Ilostinc)
write(4,8109) (tsso(

(tsso(ir,is,
endif
continue

S ir,is,(tsso(ir.is,i.1),i=1,4).
(tsso(ir,is,j,2),j=1,4)

ir,is,(tsso(ir,is,i,1),i=1,4),
(tsso(iris.j,2),j=1,4)

ir,is,(tsso(ir.is,i,3),i=1,4),
(tsso(ir.is,j,4).j=1,4)

ir,is,(tsso(ir,is.i,3),i=1.4),

(tsso(ir,is.j,j.4),j=1.4)
then
ir,is,i,4).i=1,4),
j,2).j=1,4)

endif

3000 continue

if(Itmp) then
do 3010 i=1l,nn

3010 pit(i)=pft(i)
endif

if(Idyn) then
if Itout) write(8,8123
if Itout write(6,8124)if Itout) write(6,8124)
if(Ifout) write(8,8124)
do 3100 i=l,nn
if(mod(i,20) .eq. 0 .and.
if(mod(i,20) .eq. 0 .and.
dar=oO*pid(i,1)-a2*pld(i,1

Itout) write(6,8124)
Ifout) write(8.8124)
)-a4*p2d(i,1)-a6*p3d(i,1)
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doz-oO.pid(i,2)-o2*pld(i,2)-o4*p2d(i,2)-o6-p3d(i.2)
dvr=al*pid(i,1)-ao3pld(i,1)-o5p2d(i,.1)-o7*p3d(i,1)
dvz=alepid(i,2)-o3*pld(i,2)-o5*p2d(i,2)-o7*p3d(i.2)
if(Itout) write(6,8102) i.dvr,dvz,dor,doz
if(lfout) write(8,8102) i,dvr,dvz,dor.doz
if(isin .ne. (nsi+l)) then

p3d(i 1)=p2d(i,1)
p3d(i,2)=p2d(i.2)
p2d(i ,1)=pld(i,1)
p2d(i,2)=pld(i,2)
p1d(i.1)=pid(i,1)
pld(i,2)=pid(i,2)

else
pld(i,1)=dvr
pld(i,2)=dvz
p2d(i,1)=dor
p2d(i,2)=doz

endif
3100 continue

endif

3800 continue

if(Iplt) close(unit=4)
if(Ifout) close(unit=8)
timeold=time(isn)

4000 continue
close(unit=9)
if(luf) close(unit=11)

C SAVE INTEGRATION POINT DATA AT END OF RUN
if(Isave) then

knpe-0
do 5100 ine=1,ne
iemt=imem(ine)
if(iemt .gt. 0) goto 5100
do 5000 ipt=l.ix*iy
knpe=knpe+1
read(10,rec=knpe) temp1,epm,epdl,xo.

& (eps(i),epspl(i),sig(i),olfal(i).i=1.4)
5000 write(7,*) templ,epm,epdl,xo.

& (eps(i),epspl(i),sig(i),olfol(i),i=1,4)
5100 continue

close(unit=7)
endif
if(.not. lot) close(unit=10)

8099 format(2x,16(1pe8.1))
8101 format(///,t33,'Nodal Output',//,3x,'Node',5x,'Radiol',7x,'Axial

&',5x,'Radial',6x,'Axial',7x,'Total',/.2x,'Number',5x,'Coor.',7x,'
&Coor.',5x,'Disp.',7x,'disp.',7x,'Disp.',6x,'Temp.')

8102 format(2x,i5,6(2x,lpele.3))
8103 format(//,30x,'Element Results',//,' Element',35x.'Nodal'/' N

&umber'.33x,'Topology'/,3x,i4,5x,8(3x.i5))
8104 format(//' Element Strains & Stresses',

&//,2x,'Guass',116x,'Von',/.2x,'Point',3x,'Radial',6x,'Axial',5x,'R
&odial',7x,'Hoop',Sx,'Axial',6x,'Sheor',6x,'Radial',7x,'Hoop',6x,'A
&xial',6x,'Sheor',6x,'Mises',/,' IR IZ',4x,'Coor.',6x,'Coor.',5x,'
&Strain',5x,'Strain',5x,'Strain',Sx,'Stroin',5x,'Stress',5x,'Stres
&s',5x,'Stress',5x.'Stress',5X,'Stress')

8105 format(2x.i2,1x,i2,11(1x.lpelO.3))
8106 format(///,t32,'Element Output')
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8107 format(/,' Load Case #',i3,' Sub Increment #',i3,
& ' Time =',1pe14.6)

8108 format(lx.2(lpelO.3.','),lpele.3)
8109 format(lx,7(lpelO.3,','),lpel1.3)
8110 format(8(lx,lpel0.3))
8111 format(//.' Gauss M / A Thermal

&' Plastic PI. Strain Uniaxial Unioxial Flow'./,
&' Point / % Temp. Strain Strain
&' Rate Strain Stress Stress')

8112 format(lx,i4.lx,i4,' /',i4,1x.F8.2,6(1x.1pe10.3))
8113 format(/' Element Integration

&Point Strains',/,' Guass Plastic
& Total ',/,' Point Radial
& Axial Shear Hoop Radial Axial Shear
& Hoop',/,' IR IZ Strain Strain Strain Strain St
&rain Strain Strain Strain')

8114 format(///,' -- EXECUTION TERMINATED -- ',/,' Maximum number of
& time step iterations exceeded I')

8115 format(//,' There were ',i3,' iteratations performed for this
& solution.'//)

8116 format(' Iteration # : ',i3,' R/S : ',1pe10.3)
8117 format(/,lx,i3,2x,i3,2x.i3,6(lx,lpelO.3))
8118 format(/' Element Integration Po

&int Stresses',/,' Guass Kinematic
& Total ',/,' Point Radial
& Axial Shear Hoop Radial Axial Shear
& Hoop',/.' IR IZ Stress Stress Stress Stress Str
&ess Stress Stress Stress')

8119 format(//,' Element # : ',i5)
8120 format(' Load Case # : ',i3./,' Node Elem

& Body Thermal'./,' No. Dof.
& Coor. Forces Forces')

8121 format(///.' Iterative solution phase.',//)
8122 format(///,' Initialization and integration of elastic

& components phase.',//)
8123 format(///.t23,'Dynamic Output')
8124 format(//,3x,'Node',4x.'Radial',7x,'Axial'.6x,

&'Radial',7x,'Axial'./,2x.'Number',4x.'Vel.',8x,'
&Vel.',8x.'Acc.',8x,'Acc.')

8125 format(2x,i5,5(2x,lpele.3),2x,gle.4)
8126 format(//,' Enter the element # and Integration # : '$)
8127 format(//,' Enter the user output file name : '$)
8128 format(a30)
8130 format(//,' Enter the number of output points : '$)
8131 format(//,lx.a78)
8132 format(lx,l1pe20.6)

9999 return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C TEMP
C
C This subroutine calculates the temperature from eigther a
C polynomial or a data table using an input point given by (rod,z)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine TEMP(rad,z,tmp,nlc,ltmpt,td,isn,nrtt,natt,
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trd,ntrdv,tod.ntadv)

implicit real*8(a-h.o-z)
implicit integer(i-k,n,m)
logical I

dimension td(nlc.nott.nrtt),trd(ntrdv),tod(ntadv)

if(Itmpt) then
rl=trd(isn)
rh=trd(nlc+isn)
al=tod(isn)
ah-tad(nlc+isn)
if(rad .It. rl .or. rod .gt. rh) goto 30
if(z .It. ol .or. z .gt. oh) goto 30
tmp=-de
dumz=lde
do 20 j=1,natt
dumr=ldO
do 10 k=1l,nrtt
tmp=tmp+td(isn,j,k)*dumr.dumz

10 dtlmr-dumr*rad
20 dumz=dumz*z
30 continue

else
iz=l
if(nott .eq. 1) goto 200
iz=2
if(z .le. tad(1)) goto 200
if(z .le. tad(iz)) goto 200
do 100 i=2,natt
if(z .gt. tad(i)) goto 100
iz=i
goto 200

100 continue
iz=natt

200 ir=1
if(nrtt .eq. 1) goto 400
ir=2
if(rad .le. trd(1)) goto 400
if(rod .Ie. trd(ir)) goto 400
do 300 i=l,nrtt
if(rad .gt. trd(i)) goto 300
ir-i
goto 400

300 continue
ir=nrtt

400 if(iz .eq. 1) goto 600,
dz-tod(iz)-tod(iz-1)
if(ir .eq. 1) goto 500
dlh-td(isn,iz,ir-1)
dll-td(isn,iz-1,ir-1)
dvl-dlh+((dlh-dll)*(z-tod(iz))/dz)

500 d2h-td(isn,iz,ir)
d21-td(isn,iz-l,ir)
dv2=d2h+((d2h-d21)*(z-tod(iz))/dz)
if(ir .ne. 1) goto 800
tmp-dv2
goto 90e

600 if(ir .ne. 1) goto 700
tmp-td(isn,1,1)
goto 900

700 dvl=td(isn,1,ir-1)
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80ee

900

dv2=td(isn, 1,ir)
dr-trd(ir)-trd(ir-1)
tmp-dv2+((dv2-dvl)*(rad-trd(ir))/dr)
continue

endif

return
end

CCCCCCCCCCcCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C ZERO
C
C This is a frivolous subroutine which sets array numbers
C to zero if their relative magnitude (relative to other
C array values) is less than tolz (tolz-le-10). The author
C found it annoying to scan output results which were very
C near zero.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine ZERO(array.aver.n.tolz)
implicit real*8(a-h,o-z)
implicit integer(i-k,n,m)
logical I

dimension array(n)
aver=-de
do 100 i=l,n

100 aver=over+dobs(array(i))
aver=over/n
if(aver .eq. Ode) aver=1e25
do 200 i-l,n
if(dabs(orray(i)/over) .It.

200 continue
tolz) array(i)=Od0

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCcCCCCCCCCCCCCC
C
C MTIP
C
C This subroutine is used by the plastic analysis to determine
C temperature dependent material properties.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine MTIP(tmp,pmta,pmpo.prop,nplm.iplm,npltdvlym.n5)

implicit real*8(a-h,o-z)
dimension pmta(npltdv),pmpa(nplm,npltdv,n5),prop(n5)

PROP(1)- YOUNGS MODULUS
PROP(2)- POISSONS RATIO
PROP(3)- VIRGIN MATERIAL YIELD STRESS
PROP(4)= HARDENING MODULUS
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C PROP(5)- MEAN COEFFICIENT OF THERMAL EXPANSION

il-1
ih=npltdv
do 20 i-2.npltdv
if(tmp.le. pmto(i)) then

ih-i
goto 25

endif
20 il=i
25 if(ih .eq. il) then

xrotio-=de
else

xratio=(tmp-pmta(il))/(pmto(ih)-pmto(il))
endif

do 30 i=1.5
30 prop(i)=pmpo(iplm,il,i)+xrotio*(pmpa(iplm,ih,i)-

& pmpa(iplm,il,i))

if(lym) prop(1)=1.5374e11+4.41276ele.dexp(-(tmp/734.26)**3.81)

return
end

CCCCCCCCCCCC'CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C SFORCE
C
C This is the spring force subroutine. Based upon input
C displacements, spring forces are calculated. When a spring
C displacement exceeds a prescribed maximum value (umax), then the
C prescribed maximum displacement is used to calculate the
C spring force. These springs will only react in compression
C and will not import tensile forces. Warning, this subroutine
C causes convergence difficulties and should be used with caution
C (this subroutine needs improvement).
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine SForce(aspc,aspd,psd,itfsp,rv,disp,aspod,imop,umax,
& eol,lost,ltout.lfout.neas,nn,nud,n2)

implicit real*8(a-h,o-z)
implicit integer(i-k,n.m)
logical I

dimension aspc(neas),aspd(neas),psd(neas),itasp(neas),
& rv(nud),disp(nud),imap(nn,n2),aspod(neas)

if(lost) then
do 100 i-1,neas
if(mod(i-1,40) .eq. 0) then

if(Itout) write(6,6001)
if(Ifout) write(8,6001)

endif
nc-imap(itasp(i),2)
if(nc .It. 0) goto 100
u=ospd(i)-disp(nc)-psd(i)
if(u .gt. Ode) then
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u=Od0
else if(abs(u) gt. uiv) then

U=-umax
psd(i)=aspd(i)-disp(nc)-umax

endif
ut=u+psd(i)
st ress=eolu
f=aspc(i)*u
if(Itout) write(6,6002) i,ut,psd(i),stress,f
if(Ifout) write(8,6002) i,ut,psd(i),stress,f

100 continue
else

do 300 i=l,neas
nc=imap(itasp(i),2)
if(nc .It. 0) goto 300
un-disp(nc)
dun=aspd(i)-psd(i)-un
if(dun .ge. OdO) then

f=0de
else

f=aspc(i)*dun
aspod(i)=un

endif
rv(nc)=rv(nc)+f

300 continue
endif

6001 format(//,t2,'Elastic-Plastic Contact Springs',//,
& t2,'Spring',3x,'Total Spring',3x,'Plastic Spring',6x,
& 'Spring',10x,'Spring',/,t2,' #',6x,'Displacement',3x,
& ' Displacement',7x,'Stress',10x,'Force')

6002 format(t2,i6,3x,lpel2.4,4x,ppe12.4.4x,lppe2.4)

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C TEPE
C
C A description and flowchart for this subroutine are given in
C Appendix C. This subroutine implements the time-dependent
C plasticity formulation discussed in Chapter 3. Initially. TEPE
C was developed for time-independent, bi-linear plasticity, and
C the data input parameters for plastic materials is suited for
C this older material model. These input parameters are not used
C by the version of TEPE listed here. Another version of TEPE
C exists for the older material model (see ''An Effective Solution
C Algorithm for Finite Element Thermo - Elastic - Plastic and creep
C Analysis,'' M.D. Synder, PhD Thesis, MIT 1982).
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine TEPE(strain,stress,sig,eps.epspl,epspp2,
& alfol.alfa2,pmtopmpa.phas.cep.prop, lost,
& Idebug,ltp,nplm,iplm,npltdv,lym,n4,n5,n7)

implicit real*8(a-h.o-z)
logical I
dimension strain(n4),stress(n4),sig(n4).eps(n4).pmto(npltdv),

& epspl(n4).epsp2(n4),.lfol(n4),alfa2(n4),
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& pmpa(nplmnpltdv.n5).
& cep(n4.n4),phas(nplm,n7).prop(n5)

dimension sig2(4),snor(4),TTh(4).a(4),b(4),c(4),eto(4)
dimension cepdot(4,4)
dimension epse(4),D(4),DP(4)
common /PLASDAT/ epm.epc.Y2
common /THERMDAT/ tref,templ.temp2.tdot.tsl.ts2.xn.xo
common /RATEDAT/ dtepdl,epd2

c23= 2d0 / 3de
s23= dsqrt(c23)
s32= dsqrt(1de/c23)

C STEP 1. Define the input rate variables.

C Calculate elastic strain at time 1
do 5 i=1.4

5 epse(i)=eps(i)-epspl(i)

C Determine Thermal States.
call GBYP(templ.pmta,pmpa,.prop.G1,B1,E1,Vl.nplm.iplmnpltdv.lym.n5)
call GBYP(temp2,pmta,pmpa.prop,G2.82.E2.V2.nplm. iplm.npltdv.lym.n5)
Gdot=(G2-G1 )/dt
Bdot=(B2-B1)/dt
Edot=(E2-E1)/dt
Vdot=(V2-Vl)/dt
if(Itp) then

call TPTS(tsl,ts2,xn,xo.tdot,templ.temp2.tref.
r& phas,iplm.nplm.n7)

else
ts2-prop(5)*(temp2-tref)

endif
tsdot=(ts2-tsl)/dt

call EMAT(Edot,Vdot.cepdot.n4)
call EMAT(E1,V1,cep,n4)

consf3d0 * (Bdot * tsl + 81 * tsdot)
TTh(1)=cons
TTh(2)=cons
TTh(3)=edO
TTh(4)=cons
do 10 i=1,4
do 10 j=1.4

10 TTh(i)=TTh(i)-cepdot(i,j)*epse(j)

C STEP 2. CALCULATE TRIAL STRESS RATE AND STRESSES
C Calculate total strain rate D.

do 20 i-1,4
20 D(i) - (strain(i) - eps(i)) / dt

do 30 i-1,4
sig2(i) - sig(i) - TTh(i) * dt
do 30 j=1,4

30 sig2(i -sig2(i) + cep(i,j) * D(j) * dt

C STEP 3. Calculate normal N
C Account for kinematic effects

do 40 i=1,4.
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40 a(i) = sig2(i) - alfal(i)
call DEVIAT(a,snor,tou,n4)
T2 = tau * s32

C Normalize snor with tau
if(tau .gt. le-9) then

do 50 i=1,4
50 snor(i) = snor(i) / tau

else
do 51 i=1,4

51 a(i)=siq(i)-alfal(i)
call DEVIAT(a,snor,tau,n4)
if(tau .gt. le-9) then

do 52 i=1,4
52 snor(i) = snor(i) / tau

else
do 53 i=1,4

53 snor(i) = OdO
endif

endif

C STEP 4. Test for plastic deformation

C Determine Y1 and Y2.
epd2 = OdO
gpdp = id-15
Imocy = .false.
call YVALUE(templ,epdl,Y1)
call YVALUE(temp2.epd2,Y2)

C Calculate Initial Deviatoric Yield Stress
do 70 i=1,4

70 a(i)=sig(i)-alfal(i)
call DEVIAT(a,eta,etam,n4)
T1 = etam * s32

if(Y2 .gt. T2) then

C Elastic Process

C Define Plastic Strain Rate
do 80 i-1,4

80 Dp(i) - OdO
epc = OdO
epd2 = OdO
gpdp = OdO

else

C Plastic Process
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C STEP 5 Decide on monotonic versus cyclic hardening.

C Initaliaze plastic variables epl and Imocy.
C Determine previous state

Imocy - .true.
call HVALUE(epm,Hmax,lmocy)
if(Hmax .eq. Od) then

Isw = .false.
Omega = ede
goto 88

else
call DEVIAT(alfal,eta,tou,n4)
Omega = tau * s32
if(Omega .It. Hmax .and. epc .ne. OdO) lmocy-.false.

endif

C Determine Stress Distances
do 84 i=1,4
a(i) = sig(i) - alfal(i)
b(i) = sig2(i) - alfal(i)

84 c(i) = sig2(i) - sig(i)
call DEVIAT(a.eta,tau.n4)
sol = tau
call DEVIAT(b,eta,tou,n4)
so2 = tcu
call DEVIAT(c.eta.tau,n4)
ss = tau
call DEVIAT(sig,eto,tou,n4)
sl = tau * s32
call DEVIAT(sig2.eto,tou,n4)
s2 = tau * s32

C Decide if Stress crosses elastic zone
Isw=.false.
if(ss .It. ld-6) goto 88
Error=dabs((ss-sol)/ss)

C
C The next two statements are not mentioned in Appendix C.
C When the stress strain behavior is not uniaxial, the rules
C created to decide on monotonic versus cyclic hardening break
C down. The first statement uses a switching variable Isw
C which is true when the stress magnitude decreases to a value
C less than Omega. Isw is a variable designed to switch the
C deformation mode to cyclic. The second statement makes Isw true
C when the stress magnitude approaches zero during a stress
C reversal, but because of non uniaxial loading, the stress state
C decreases and then increases without passing through a zero stress
C state.
C

if(s1 .gt. Omega .and. s2 .It. Omega) Isw = .true.
if(sl .It. 2*0mega .and. obs(s2-st) .It. .15*ss) Isw=.true.

if(ss .le. sol .or. Error .It. ld-3) goto 88
if(as .It. so2) goto 88
lswa.true.

C Determine what process takes place this time step.
88 if(Imocy) then

if(Isw) then
Imocy-.false.
epc=edO
epl=0d0

else
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call HEP(Omega,epm,lmocy,Irr,last)
epc-=0d
epl=epm

endif
else

if(Isw) then
epc-=0d
epl=0d0

else
epl=epc

endif
endif

C Step 6. Initialize plastic iteration variables.
K=0
gpdpl = id-15
gpdp2 = ld-15
gpdrl = ld-15
gpdr2 = id-15
gpda = id-15
goto 95

C Step 10. Define gpd iteration parameters.

C Although the steps seem out of order, notice
C that step 6 has a goto which branches to step 7
C and step 7 follows step 11.

91 if(k .eq. 1) then
gpdpl = gpdp
gpdrl = gpdr
gpdp = gpdr
goto 95

elseif(k .eq. 2) then
gpdp2 = gpdp
gpdr2 = gpdr

elseif(abs(gpdpl-gpdrl) .gt. obs(gpdp2-gpdr2)) then
if(abs(gpdp2-gpdpl) .It. ld-22) then

gpdp2 = gpdp
gpdr2 = gpdr

else
gpdpl = gpdp
gpdrl = gpdr

endif
else

if(abs(gpdp2-gpdpl) .It. ld-22) then
gpdpl = gpdp
gpdri = gpdr

else
gpdp2 = gpdp
gpdr2 = gpdr

endif
endif

c Step 11. Interpolate for gpd prediction
if(dobs(gpdp2-gpdpl) .It. ld-22) then

gpdp = .8 * gpdpl
else

xp - log(gpdp2/gpdpl) / (gpdp2-gpdpl)
xr - log(gpdr2/gpdrl) / (gpdp2-gpdpl)
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xx = idO - xr/xp
gpdp = (gpdpl1xx + log(gpdrl/gpdpl)/xp)/xx

endif

c Test for gpdp < 0
95 if(gpdp .le. Ode) then

gpdp=dabs(gpdrl)
if(gpdr2 .gt. gpdrl) gpdp=dabs(gpdr2)

endif

C STEP 7. Calculate h using cyclic rules.
gpda = (gpdpl + gpdp2) / 2d0
kk = 0

epd2 = s23 * gpdp-r--.. ..-. - Vt -V

call CYCLIC(hbar,epd2,epl,dt,lmocy)
hbor = c23 * hbar

C Step 8. Calculate Y2
Y2 = T2 - s32 * (2d0 * G1

c Test gpdp for Y2 < 0 or gpdr
if(Y2 .it. 0) then

kk - kk + 1
if(kk .gt. 100) gpdo =
gpdp = (gpda + gpdp) /
goto 96

endif

+ hbar) * gpdp * dt

<0

.8d0 * gpdo
2d0

C STEP 9. Calculate gpdr.
call EPDvalue(temp2,Y2.epdr)
gpdr = s32 * epdr

C Test convergence of plastic strain rate.
k=k+l
if(k .gt. 50) then

if(dabs(gpdpl-gpdrl) .It. dabs(gpdo-gpdr)) then
if(dabs(gpdpl-gpdrl) .It. dabs(gpdp2-gpdr2)) then

gpdp = gpdpl
else

gpdp = gpdp2
endif

elseif(dabs(gpdp-gpdr) .gt. dabs(gpdp2-gpdr2)) then
gpdp = gpdp2

endif
if(last .and. (gpdp*dt .gt. ld-12)) then

write(6,.*) 'Error in plastic strain rate convergence.'
write(6,.) gpdpl,gpdrl
write(6.*) gpdp2,gpdr2
write(6,*) gpdp

endif
goto 110

endif
if(gpdr .It. ld-15) then

gpdr = ld-15
goto 91

endif
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if(abs((gpdp-gpdr)/gpdr) .It. ld-4) goto 110
if(abs(gpdp-gpdr).dt .It. ld-12) goto 110
goto 91

endif

C STEP 12. Calculate final stress, plastic strain and back stress.

C Calculate Plastic Strain Tensor DP and Hbor.
110 do 120 i=1,4
120 DP(i) - gpdp * snor(i)

epd2 = s23 * gpdp
call CYCLIC(hbor,epd2,epl,dt,lmocy)
hbar = c23 * hbor

C Integrate elastic-plastic and thermal stress
do 130 i=1,4
stress(i) = sig(i) - TTh(i) * dt
do 130 j=1,4

130 stress(i)=stress(i) + cep(i,j) * (D(j) - DP(j)) * dt

C Integrate plastic strain, and back stress
do 140 i=1,4
epsp2(i) = epspl(i) + DP(i) * dt

140 olfo2(i) = alfal(i) + hbor * gpdp * snor(i) * dt

C STEP 13 Update plastic strain variables
if(last) then
calol DEVIAT(stress,a,etam,n4)
Tbar = etam * s32
if(epd2 .gt. 0) then

if(Imocy) then
call DEVIAT(alfo2,eto,tau,n4)
Hmax = tau * s32
call HEP(Hmax,ept,lmocy,!rr,lost)
if(ept .gt. epm) epm=ept

else
epc=epl+epd2*dt

endif
endif
endif

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C EMAT
C
C EMAT calculates the elastic constitutive matrix based
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C upon the input parameters ym and pr.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine EMAT(ym,pr,cp,n4)

implicit real*8(o-h,o-z)
dimension cp(n4,n4)

al=ym/(lde+pr)
c1=1*.5
aolal/(1de-2dO*pr)
bl=al*pr
a1=al-bl

do 10 i=1,4
do 10 j=1,4

10 cp(i,j)=0de
cp(1,1)=al
cp(1 ,2)=bl
cp(1,4)=bi
cp(2,1)=bl
cp(2,2)=al
cp(2.4)=bl
cp(3,3)=cl
cp(4,1)=bl
cp(4,2)=bl
cp(4 ,4)=ol

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C GBYP
C
C This subroutine calculates the shear and bulk modulus
C from the Young's modulus and the Poisson ratio.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine GBYP(tmp,pmto,pmpo,prop.G.B,Ym,Pr,
& nplm,iplm,npltdv.lym.n5)

implicit real*8(a-h,o-z)
dimension pmta(npltdv),pmpo(npim,npltdv,n5),prop(n5)

call MTIP(tmp,pmto,pmpa,prop.nplm,iplm,npltdv,lym,n5)
ym=prop(1)
pr-prop(2)
G-ym/(2d*(1d0O + pr))
8=ym/(3d0*(1d0 - 2dO * pr))

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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C
C Two Phase Thermal Strains
C
C This subroutine calculates the thermal and phase transformation
C strains (tsl,ts2) for times 1 and 2 based upon input temperatures
C (tmpl,tmp2) and material phases (xo,xn). This subroutine is
C based upon the thermal and phase transformation model described
C at the end of Chapter 2.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine TPTS(tsl,ts2.xn,xo,tdot,tmpl,tmp2,tref,
& phos,iplm,nplm,n7)

implicit real*8(a-h,o-z)
implicit integer(i-k,n.m)
logical I

dimension phas(npim,n7)

C phas(iplm,1) Martensite Thermal Coefficient of Expansion
C phos(iplm,2) Austenite Thermal Coefficient of Expansion
C phas(iplm,3) Austenite Start Temperature
C phas(iplm,4) Austenite Finish Temperature
C phas(iplm,5) Mortensite Start Temperature
C phas(iplm,6) Mortensite Finish Temperature
C phas(iplm,7) Phase Transformation Strain

C Initial Condition
if(tmol .It. phas(iplm,6)) then

C Fully Martensite response
tsl=phas(ipIm,1)*(tmpl-tref)

else if(tmpl .gt. phas(iplm,4)) then
C Fully Austenite response

tsl=phas(iplm,2)*(tmpl-tref)-phas(iplm,7)
else

C Martensite - Austenite Transition
call TPI(tmpl,xo,tsl,tref,phos,nplm,iplm,n7)

endif

C Final Condition
if(tmp2 .It. phas(iplm,6)) then

C Fully Martensite response
xn=ld0
ts2=phos(iplm,1)*(tmp2-tref)

else if(tmp2 .gt. phas(iplm,4)) then
C Fully Austenite response

xn=-ldG
ts2=phas(iplm,2)*(tmp2-tref)-phas(iplm,7)

else if(tdot .gt. Od0) then
rtmp=phas(iplm,3)+(1-xo)*(phas(iplm,4)-phas(iplm,3))/2d0
if(tmp2 .gt. rtmp) then

C Mortensite to Austenite transformation
xn-lde-2de*(tmp2-phas(iplm,3))/(phos(ipim,4)-phos(iplm,3))
call TPI(tmp2,xn,ts2,tref,phas,nplm,iplm,n7)

else
C Martensite - Austenite response

xnxxo
call TPI(tmp2.xn,ts2,tref,phasnplm,iplm,n7)

endif
else

rtmp=phas(ipim,6)+(1-xo)*(phas(iplm,5)-phas(iplm,6))/2dg
if(tmp2 .It. rtmp) then
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C Austenite to Martensite transformation
xn=ldO-2d0*(tmp2-phas(iplm,6))/(phas(iplm,5)-phas(iplm,6))
call TPI(tmp2.xnts2.tref,phos.nplm,iplm,n7)

else
C Austenite response

xn=xo
call TPI(tmp2.xn.ts2.tref,phas,nplm,iplm.n7)

endif
endif

300 return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C TPI

TPI (Two Phase Interpolation) interpolates with the temperature
and material phase to determine the thermal and phase
transformation strain.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine TPT(tmp,x,ets,tref,phos,nplm,iplm.n7)

implicit real*8(o-h,o-z)
implicit integer(i-k,n,m)
logical I

dimension phas(nplm,n7)

tl=(x-ld0)*(phos(iplm,6)-phas(iplm,5))/2d0 + phas(iplm,6)
t2=(x-ld0)*(phas(iplm,3)-phas(iplm,4))/2d0 + phas(iplm,3)
r=2de*(tmp-tl)/(t2-tl) - ldO
hl=(ld0-r)(1ld0+x)*(phas(iplm.1)*(phos(ipim.6)-tref))/4d0
h2=(1d0+r)*(ld0+x)*(phas(ipim,1)*(phos(iplm,3)-tref))/4d0
h3=(ldO+r)*(1de-x)*(phas(iplm.2)*(phas(iplm,4)-tref)-

phos(iplm.7))/4de
h4=(ldO-r)*(lde-x)*(phas(iplm,2)*(phos(iplm.5)-tref)-
phos(iplm,7))/4d0

ets=hl+h2+h3+h4

return
end

CCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C DEVIAT

C DEVIAT calculates the mean of on input tensor, the devictoric
C tensor and the deviatoric radius.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine DEVIAT(a,b,am,n4)

implicit real*8(a-h,o-z)
implicit integer(i-k,n,m)
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logical I

dimension a(n4),b(n4)

C Find mean component of sig
sigm=(a(1)+a(2)+a(4))/3d0

C Calculate deviatoric component of sig
b(1)=a(1)-sigm
b(2)=a(2)-sigm
b(3)=o(3)
b(4)=a(4)-sigm

C Calculate Radius of b (dot) b

am=dsqrt( b(1)*b(1) + b(2)*b(2) + 2d0*b(3)*b(3) +
& b(4)*b(4) )

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C CYCLIC
C
C This subroutine calculates the strain hardening coefficient.
C The input parameters are the mode of cyclic deformation
C (monotonic or cyclic. Imocy), the initial plastic strain
C (epl) and the strain increment (epdodt).
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine CYCLIC(hbar,epd,epl,dt,lmocy)

implicit real*8(a-h,o-z)
implicit integer(i-kn,m)
logical I

dep = epd * dt
ep2 = epl + dep
he = 45483889739.6631
epO = 6.53d-5
en = -.198d0

if(dep .It. id-9) then
if(Imocy) then

hbar = he * (1de + (ep1/epO))**(en-ldO)
else

hbar = he * (1de + (epl/epO/2de))**(en-1de)
endif

else
call HVolue(epl,H1,lmocy)
call HValue(ep2,H2,lmocy)
hbar = (H2 - H1) / dep

endif

return
end
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C HVALUE
C
C HVALUE calculates the integrated strain hardening from
C 0 to ep for eigther monotonic or cyclic strain hardening.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine HValue(ep,H,Imocy)

implicit real*8(a-h.o-z)
logical I

A = 150d6
epO = 6.53d-5
en = -. 198d0

if(ep .le. Ode) then
H = OdO
return

endif

if(Imocy) then
H = A * (1dO - (1id + (ep / epe))**en)

else
H = 2de * A * (1de - (1de + (.5de * ep / epe))**en)

endif

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCcCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCC
C
C HEP
C
C This subroutine examines the integrated strain hardening
C and calculates the total plastic strain increment associated
C with this hardening.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine HEP(T,ep,lmocy,lrr.last)

implicit real*8(o-h,o-z)
logical I

A - 150d6
epe = 6.53d-5
en - -1de / .198d0
Irr=.false.

if(T .le. OdO) then
ep = OdO
return

endif

if(Imocy) then
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if(T .ge. A) then
if(last) then

write(6,*) ' Error : Hardening too high for Monotonic T2'
write(6,.) 'T,A',t,a

endif
Irr = .true.
ep = 1e6
return

endif
ep = epe * ((1de - (T / A))**en - 1de)

else
if(.5d0 * T .ge. A) then

if(last) then
write(6,*) ' Error : Hardening too high for Cyclic T2'
write(6,*) 'T.A',t,a

endif
Irr = .true.
ep = le6
return

endif
ep = 2d0 * epe * ((1de - (.5d0 * T/ A))**en - 1de)

endif

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C YVALUE
C
C YVALUE determines the elastic limit strength for an input
C temperature (t) and plastic strain rate (epd). The subroutine
C listed herre is for the Arrhenius rate equation. A similar
C subroutine exists for the Phenomelonological rate equation.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine Yvalue(t,epd,sig)

implicit real*8(a-h,o-z)
logical I

dimension bg(11,2)

en=6.725635
eni=-ld/en
epO=,1.215e24e3
epOi=lde/epe
delHO=222.868
yO-2351.0
rt=8.3145e-3 * t
el-7.e
e2=6.0
sl9-2.607838
a=-((sl+e2)/(e2-el))
b=(sl+el)/(e2-el)

G= (153.7 + 44.1 * exp( -(t/734)**3.81 ))/2.6
testO = log( epO * (yO/G)**en )
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ep=epd
if(epd .It. le-12) ep=1le-12

c Set first limits
YI=1.0
Yu=Yo

10 dY=(Yu-YI)/10.0

for sig search

c Begin search for sig bounds
do 50 i=1,11
Yg = YI + dY * (i - 1)

c Calculate delH from Yg guess
x=Yg/YG
v=l+a.(x**el)+b*(x**e2)
delH = delHO * v

c Calculate Yr
test = log( ep ) + delH/rt
if( test .ge. testO) then

Yr = YO
else

Yr = G * (ep*epoi*exp(delH/rt))**eni
endif

bg(i,1) = Yg
bg(i,2) - Yr

if(Yr .It. Yg) then
YI=bg(i-1,1)
Yu=bg(i ,1)
k=i
if((Yu-YI)/YI .It.
goto 10

endif

50 continue
YI=YI+(Yu-YI)/2d0
goto 10

le-3) goto 100

c Set
100 Ypl

Yrl
Yp2
Yr2
dil
di2

up interpolation
= bg(k-1,1)
= bg(k-1,2)
= bg(k,1)
= bg(k.2)
= abs(Yri-Ypl)
= abs(Yr2-Yp2)

c Make interpolation for new Yp
200 ysl = (Yr2 - Yrl) / (Yp2 - Ypl)

yp = (Yrl - ysl * Ypl) / (1dO - ysl)

c Calculate delH from Yp guess
210 xmyp/ye

v-l+a.(x**el)+b.(x,*e2)
delH - delHO * v

c Calculate Yr
Yr - G * (ep*ep0i*exp(delH/rt))**eni
di = abs( Yr - Yp )
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c Test for convergence
if (di/yp .It. le-6) goto 300

c Replace largest difference
if(dil .gt. di2) then

Ypl = Yp
Yrl = Yr
dil = di

else
Yp2 = Yp
Yr2 = Yr
di2 = di

endif
goto 200

300 sig = le6 * Yp

return
end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C EPDVALUE
C
C This subroutine calculates the plastic strain rate with
C the Arrhenius rate equation.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

subroutine EPDvalue(t,sig,epd)

implicit real*8(a-h,o-z)
logical I

en=6.725635
epe=1.215024e3
delH0=222.868
y0=2351.0
rt=8.3145e-3 * t
el=7.0
e2=6.0
s l-2.607838
a=-((sl+e2)/(e2-el))
b=(sl+el)/(e2-el)

c Calculate Shear Modulus G
G = (153.7 + 44.1 * exp( -(t/734)**3.81 )) / 2.6

c Calculate delH from Yp guess
y = sig * le-6
x = y / ye
v - 1 + a * (xo*el) + b * (x.*e2)
delH = delHO * v

c Calculate Epd
Epd = ep0 * exp(-delH/rt) * (Y/G)**en

return
end

365



CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C COLSOL

This subroutine was written by K.J. Bathe and is describe
in detail in his book " Finite Element Procedures in
Engineering Analysis,'' 1982. The subroutine stores just
the top half of the stiffness matrix using a skyline technique.
The subroutine is broken into two sections. The first
triangularizes the stiffness matrix and the second section
reduces the load vector and back substitutes for the solution.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
subroutine COLSOL(a.sv,maxa,nn.nwk.nnm,kkk,nsv.lerr)

cI
-- INPUT --

A(NWK)
SV(NN.NSV)
MAXA(NNM)
NN
NWK
NNM
KKK

NSV
-- OUTPUT --

A
SV(NN)

Stiffness matrix in compacted form
Right hand side load vector
Diagnol address vector
Number of Equations
Number of Elements below skyline
NN + 1
Input Flag

.EQ. 1 Triangularize A

.EQ. 3 Reduction and back substition of V

.EQ. 2 Do kkk .eq. 1 & 3
Number of Solutions to be obtained

D and L factors of A
Displacement Vector

implicit realeB(a-ho-z)
implicit real*8(a-h,o-z)
logical I

dimension a(nwk),sv(nn,nsv),maxo(nnm)

if(kkk .GT. 2) GOTO 150
40 do 140 n=1,nn

kn-maxa(n)
kl-kn+l
ku-maxo(n+1)-I
kh-ku-ki
if(kh) 110,90,50

50 k=n-kh
ic=0
klt=ku
do 80 j-=,kh
ic-ic+1
klt-kit-1
ki=maxa(k)
nd-maxa(k+1l)-ki-I
if(nd) 80,80,60

60 kk-mine(ic,nd)
c-Ode
do 70 nl-l,kk

70 c-c+o(ki+nl)*o(klt+nl)
a(klt)oa(klt)-c

80 k=k+1
90 k=n

b=-0d
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do 100 kk=kl,ku
k=k-1
k i=maxa(k)
c=a(kk)/a(ki)
b=b+c*a(kk)

100 a(kk)=c
o(kn)=o(kn)-b

110 if(a(kn) .le. Ode) then
write(6,*) 'ERROR !! : Diagnol stiffness was negative !'
lerr=.true.
goto 9999

endif
140 continue

if(kkk .It. 2) return

C SOLVE LOAD VECTORS
150 do 300 isn=1l,nsv

do 180 n=l,nn
kl -maxa(n)+l
ku-maxa(n+l)-i
if(ku-kI) 180,.160,160

160 k=n
c=-0d
do 170 kk=kl,ku
k=k-1

170 c-c+a(kk)*sv(k,isn)
sv(n, isn)=sv(n. isn)-c

180 continue
do 200 n=l,nn
k=maxa(n)

200 sv(n,isn)=sv(n,isn)/a(k)
if(nn .eq. 1) return
nn n
do 230 nl=2,nn
kl=rnaxa(n)+l
ku=maxa(n+l)-I
if(ku-kl) 230,210,210

210 k=n
do 220 kk=k I , ku
k=k-i

220 sv(k,isn)=sv(k,isn)-a(kk)*sv(n,isn)
230 n=n-1
300 continue

return
9999 write(6,.) '*** Indefinite A Matrix ***'

return
end
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AFESA Input Commands

The program AFESA begins by asking for an input file name. AFESA
will open this file and read the AFESA input commands. The input
commands are used to define the finite element model. There are 4
commands which must be specified to complete an analysis. These commands
are NODES, ELEMENTS, ELASTIC or PLASTIC MATERIALS and some loading or
displacement command(s). The input commands are read until the EXIT
command is given, and then AFESA closes the input file.

In the listing of input commands which follows, capitalized words
are input commands which must be entered just as they are typed here.
Lower case letters and words represent numerical input. Groups of
letters which begin with a capital letter and continue in the lower case
are alphanumeric data (usually specifying a file name or title). The
* character indicates a numeric input which must be repeated. When the *
character is repeated on a single line, then all the data should be
specified on one line and the repeat quantity is given in parenthesis.
When the * character is repeated on successive lines, then the input
statement is repeated. When the * character is indented and repeated
on successive lines, then that group of lines is repeated. The repeat
quantities are given with lower right subscripts. The description of
repeat input statements here is confusing, but this will be made clearer
when specific examples are shown. Each of the command definitions is
followed by a description of its purpose and the input parameters.

TITLE
Title

The TITLE command will cause AFESA to read a Title which can be
78 characters long. This title is used for screen and file output.

NODES
nn
i 1, r 1, z 1

i nn, r nn, z nn

The NODES command tells AFESA to read the number of nodes nn.
Then AFESA reads the node geometry with nn input statements. Each
input line gives a node number i, and the node coordinates r and z.
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ELEMENTS
ne
j _, a i, i 1, i_2, i 3, i 4, i 5, i 6, i 7, i 8

jne, ma2, i 9, i_10, i_11, i 12, i 13, i_14, i 15, i 16

This command gives AFESA the number of elements ne, and the
element geometry. Like the NODES command, the element geometry is
read with ne input statements. Each input statement includes the
element number j, the material number a for that element and the
element topology which consists of a list of 8 node numbers (see
Appendix A). In another command, material properties are assigned
a material number. Here, each element is given a material number
which assigns certain material properties to that element.

ELASTIC MATERIALS
nemat
aml, e anl, vnl , alphamnl

m nemat, eonemat, v_neomat, alphanemat

The ELASTIC MATERIALS command specifies elastic stress-strain
behavior and a linear thermal coefficient of expansion to all elements
assigned that material number a. The parameter nemat gives the number
of elastic materials nemat in the model nemat. The properties o,v and
alpha are the Young's modulus, Poisson's Ratio and the thermal coefficient
of expansion. The elastic material properties input statement is
repeated for each of the elastic materials specified by nomat.

PLASTIC MATERIALS
nplm,npltdv
temp 1

tempnpltdv
mn 1

e vl 1, 1, y_1_1, ot 1_1, al11

e __1 npltdv, vl_npltdv, y_l_npltdv, et_l1_npltdv, al_l_npltdv

nnnpla
enplml, v_nplml1, y_nplm_1, et_nplu l, al_nplml
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e_nplm_npltdv, v_nplm_npltdv, y_nplm_npltdv, et_nplm_npltdv, al_nplm_npltdv

This command specifies an elastic plastic stress-strain behavior
to a material number m. This PLASTIC MATERIAL input command was designed
to input the parameters necessary for a temperature dependent bi-linear
stress strain approximation. The listing of AFESA given here does not
use this material model, but a reference to a computer code which
does (ADINA) is given in the AFESA listing. In any case, this command
must be issued to make AFESA predict the stress strain behavior modeled
in this thesis. So the values entered for this command will not affect
the finite element results. The parameters npla and npltdv are the number
of plastic materials and the number of plastic temperature data values.
The first set of input data is the plastic data temperatures. Next, the
plastic data for each of the plastic materials is read. First the material
number for the material data is read and then the Young's modulus e, the
Poisson's ratio v, the initial flow stress y, the stress strain tangent
modulus et, and the thermal coefficient of expansion al. This input
statement is repeated for each of the plastic data temperatures, and then
these statements are repeated for each of the plastic material numbers.

TWO PHASE
phasl 1 , phas_2 , phas 3 , phas 4 , phas_5 , phas_6 , phas 7

The TWO PHASE command tells AFESA to implement the thermal and
phase transformation strain model described at the end of Chapter 2.
phas_ and phas 2 are the thermal coefficients of expansion for the
low (martensite) and high (austenite) temperature phase. For
maraging steel, phas_3 and phas 4 are the austenite start and finish
temperatures and phas_5 and phas 6 are the martensite start and
finish temperatures. phas_7 is the phas transformation strain
used in Eq. 2.23 of this thesis.

LOAD CASES
nlc
time 1

time nlc

The LOAD CASES command tells AFESA how many time steps there
are in the analysis. After the number of load cases nlc is given,
the time step times for each load case are read.

RADIAL DISPLACEMENTS
nkrd
i 1, d l(time 1) * * * d l(time nlc)
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i nkrd, d nkrd(time 1) * * * d nkrd(time nic)

This command is used to specify radial node displacements.
The number of known radial displacements is nkrd. The node number
is given with i, and the radial displacements must be specified for
each load case time. This command can be used to constrain a node
in the radial direction (zero displacement) and apply a displacement
loading as well.

AXIAL DISPLACEMENTS
nkad
i 1, d l(time 1) * * * dl(time nlc)

i nkad, d nkad(time 1) * * * d nkad(time nlc)

This command is used to specify axial node displacements.
The number of known axial displacements is nkad. The node number
is given with i, and the axial displacements must be specified for
each load case time. This command can be used to constrain a node
in the axial direction (zero displacement) and apply a displacement
loading as well.

RADIAL NODE FORCES
nkrf
i 1, f l(time 1) * * * f l(time nlc)

i nkrf, f nkrf(time 1) * * * f nkrf(time nlc)

This command can specify radial forces on specific nodes.
The number of known radial forces is nkrf. The node number
is given with i, and the radial forces must be specified for
each load case time.

AXIAL NODE FORCES
nkaf
i 1, f l(time 1) * * * f l(time nlc)
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i nkaf, f nkaf(time 1) * * * f nkaf(time nic)

This command can specify axial forces
The number of known axial forces is nkaf.
is given with i, and the axial forces must
each load case time.

on specific nodes.
The node number
be specified for

RADIAL BODY FORCES
INTERPOLATION
nrbfrt,nrbfat
rbfrd 1

rbfrd nrbfrt
rbfad I

rbfad nrbfat
rbfd 1 l(tiue 1) * * * rbfd 1 l(time nlc)

rbfd 1 nrbfrt(time 1) * * * rbfd 1 nrbfrt(tiae nlc)

rbfd nrbfat l(time 1) * * * rbfd nrbfat l(time nlc)

rbfd nrbfat nrbfrt(time 1) * * * rbfd nrbfat nrbfrt(tine nlc)

The RADIAL BODY FORCES command is used to enter a grid of
radial body forces for each load case time. First, the number
of radial body force radial and axial terms are specified, nrbfrt
and nrbfat. Then, the radial and axial grid coordinates are entered
with radial and axial data, rbfrd and rbfad. Finally, the three
dimensional array of radial body force data rbfd is entered. Each
radial body force input line contains data for all the time steps.
When reading the radial and axial grid data, the axial grid position
changes after all the radial grid positions at that axial position
have been read.

AXIAL BODY FORCES
INTERPOLATION
nabfrt,nabfat
abfrd I

abfrd nabfrt
abfad 1
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abfad nabfat
abfd T l(time 1) * * * abfd 1 1(timenlc)

abfd 1 nrbfrt(time 1) * * * abfd 1 nabfrt(time nlc)

abfd nabfat l(time 1) * * * abfd nabfat l(time nlc)

abfd nabfat nrbfrt(time 1) * * * abfd nabfatnabfrt(time nlc)

The AXIAL BODY FORCES command is used to enter a grid of
axial body forces for each load case time. First, the number
of axial body force radial and axial terms are specified, nabfrt
and nabfat. Then, the radial and axial grid coordinates are entered
with radial and axial data, abfrd and abfad. Finally, the three
dimensional array of axial body force data abfd is entered. Each
axial body force input line contains data for all the time steps.
WJhen reading the radial and axial grid data, the axial grid position
chances after all the radial grid positions at that axial position
have been read.

----------------------------------------------------------------

TEMPERATURES
INTERPOLATION
nrtt,natt
trd 1

trd nrtt
tad 1

tad natt
td 1 1 * * * td 1 1(time nlc)

td 1 nrtt(time 1) * * * td 1 nrtt(time nlc)

td natt l(time 1) * * * td natt l(time nlc)

rbfd natt nrtt(time 1) * * * td natt nrtt(time nlc)

The TEMPERATURES command is used to enter a grid of temperatures
for each load case time. First, the number of radial and axial
temperature terms are specified, nrtt and natt. Then, the radial
and axial grid coordinates are entered with radial and axial data,
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trd and tad. Finally, the three dimensional array of temperate data
is entered, td. Each temperature input line contains data for all
the time steps. When reading the radial and axial grid data, the
axial grid position changes after all the radial grid positions at
that axial position have been read.

EXTERNAL AXIAL SPRINGS
neas, eeol, umax
itasp_ 1 , aspc 1 , aspd_1

itasp_neas , aspc neas , aspd neas

The EXTERNAL AXIAL SPRINGS input command attaches spring
elements to the finite element model. The parameters neas, eol
and umax are the number of axial springs, the ratio of the Young's
Modulus to spring length (used to calculate a spring stress) and
the maximum spring displacement respectively. The last parameter
can limit the force exerted by these springs. This spring model
will only exert compressive forces on the finite element model.
The individual springs are attached to a node number itasp, and
each spring has its own spring constant aspc and a prescribed
initial displacement aspd.

DYNAMIC
den 1

den nplm

The DYNAMIC command tells AFESA to include dynamic body
forces in the finite element equilibrium equations. The densities
den of all the input materials are read with this command.

GAUSS POINTS
ix,iy

This input command controls the number Gauss points used to
integrate the finite elements. AFESA allows between 1 and 5 Gauss
points for eigther the radial ix or axial iy integration data points.
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AFESAPLT
Fgeom
Fpltl 1

Fplt nlc

The AFESAPLT command causes AFESA to write output files which
are used for post-processing. The file named Fgeom contains nodal
and element geometry, and the plot files Fplt_l through Fpltnlc
contain displacements, strains and stresses for each time step.

AFESAOUT
Fout 1

Fout nlc

This command writes the information printed to the screen
to files specified by this command. The displacements, strains
and stresses for each time step are written with descriptive format
statements to these files.

ELASTIC

This single line input command tells AFESA the analysis is a
linear elastic analysis only. This command shortens the execution
time.

ELASTIC-PLASTIC
il,i2,i3,i4,dl,d2

The ELASTIC-PLASTIC input command supplies input parameters
for an elastic plastic finite element analysis. When il equals
the integer 1, AFESA will interactively ask for an output file name
and element integration point information so that displacements,
strains and stresses can be saved for all the subincrement times
during an analysis. When i2 equals the integer 1, the Young's modulus
approximation (Eq. 1.1 of this thesis) for maraging steel is used.
The parameters i3,i4,dl,d2 are not used at this time, but numbers
should be entered to complete this input command.
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SAVE
Fsave

This input tells AFESA to save all data necessary for
continuing the finite element analysis after the last time step.
Only a file name Fsave is required for this option. This option
is needed when a lot of time steps (greater than 10) are used
and/or the analysis is to be continued over several loading cycles.

RESTART
Frestart

This input command tells AFESA to initialize and restart the
finite element analysis with the conditions specified in an Fsave file.

DEBUG
nlde
ilda 1 * * * ilda nlde

The DEBUG command is for users wishing to make program changes
and for those who want more program variable information during
code execution. The element debug information is only written for
elements specified with this command. The number of debug elements
is given by nide, and the element numbers ilda are read on the next
line.

SOLUTION PARAMETERS
sp_ , sp_2, sp 3, sp_4, sp 5, sp_6, sp 7

The SOLUTION PARAMETERS input command supplies solution
parameters to the finite element analysis. sp 1 is the reference
temperature used in the calculation of thermal strains. At the
reference temperature, thermal strains are zero. sp 2 is the
load vector convergence tolerance used to decide if equilibrium
is satsified. sp 3 is the zero displacement tolerance which sets
round-off error in the displacements to zero. sp 4 is the zero
tolerance dimension which sets other round-off errors to zero.
These last two parameters affect the printed results only. sp 5
is the maximum number of iteration steps allowed in equilibrium
calculations. sp_6 is the number of sub-increments between time
steps. When sp_7 equals 1, the alpha constant stiffness acceleration
procedure (see Chapter 3) is used. For all other values of sp_7,
the elastic stiffness matrix approximates the tangent stiffness
matrix.
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EXIT

The EXIT command terminates the reading of input commands
from the input file.
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Example 1

The input commands for this example generate a single element model.
The element is subjected to a uniform axial strain which increases from 0 % at
0 s to 2 % at 1 s. Nodes which lie on the Z axis are restrained in the radial
direction. Otherwise, there are no radial displacement restrictions. The element
and reference termperature is 950 K, so the thermal strains are zero. There are
15 subincrement time steps (14 subincrements) in this example. The load vector
convergence tolerance is 10-18 and up to 50 equilibrium iterations are allowed.
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TITLE
1 ELEMENT; Test of hbar using subincrements
NODES
8
1, 0.0 , 0.0
2, 0.0015875 , 0.0
3, 0.003175 , 0.0
4, 0.0 , 0.005
5, 0.003175 , 0.005
6, 0.0 , 0.01
7, 0.0015875 , 0.01
8, 0.003175 , 0.01

ELEMENTS
1
1112358764
LOAD CASES
1
1.0
PLASTIC MATERIALS
1,1
298.0
1
186.9e9, 0.3, 0.0, 0.0, 0.0
GAUSS POINTS
3 3
RADIAL DISPLACEMENTS
3
1, 0.0
4, 0.0
6, 0.0
AXIAL DISPLACEMENTS
6
1, 0.0
2, 0.0
3, 0.0
6, 2.0a-4
7, 2.0e-4
8, 2.0e-4
TEMPERATURES
INTERPOLATION

1, 1
0.0
0.0
950.0
SOLUTION PARAMETERS
950.0, 1e-18, le-10, le-6, 50, 14, 1
ELASTIC-PLASTIC
1,1,0,0,0.0,0.0
EXIT
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Example 2

This set of input commands generates the finite element model for the
first thermal cycle of the tapered test specimen (see Chapter 4). The model has
271 nodes and 72 elements. Displacement boundary condition and temperature

data are given for 8 time steps. There are 15 subincrement time steps (14

subincrements). The TWO PHASE input command is used here to model the

phase transformation strain behavior of maraging steel. All the nodes which lie

on the Z axis are radially constrained, and the nodes which lie on z = 0.0 and .012

m are axially constrained. The temperatures in this model are defined with 25 Z

coordinate data points for each of the 8 time steps. The load vector convergence

tolerance is 10-"8 and up to 50 equilibrium iterations are allowed. After the last

time step in the analysis, a restart file called Cyc.dat is written with the SAVE

command. Another thermal cycling analysis can be performed with data saved

in this file. Geometric output data are written to the file Geom.dat and output

at each time step is written to the files Pltl.dat through Plt8.dat.
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TITLE
72 ELEMENT;

NODES
271
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Tapered test specimen analysis; 1st pulse

0
.000205
.00041
.000615
.00082
.001025
.00123
0
.00041
.00082
.00123
0
.000205
.00041
.000615
.00082
.001025
.00123
0
4.100255E-04
8.20051E-04
1.230076E-03
0
2.050255E-04
4.10051E-04
6.150765E-04
8.201021E-04
1.025128E-03
1.230153E-03
0
4.105527E-04
8.211054E-04
1.231181E-03
0
2.055272E-04
4.110543E-04
6.165815E-04
8.221086E-04
1.027636E-03
1.233163E-03
0
4.121938E-04
8.243877E-04
1.236105E-03
0
2.066667E-04
4.133333E-04
.00062
8.266667E-04
1.033333E-03
.00124
0
4.143349E-04
8.286697E-04
1.243005E-03
0
2.076682E-04

0
2.50009E-04
2.50009E-04
2.50009E-04
2.50009E-04
5.00018E-04
5.00018E-04
5.00018E-04
5.00018E-04
5.00018E-04
5.00018E-04
5.00018E-04
7.50027E-04

7.50027E-04

1.000036E-03

1.000036E-03

1.25004E-03

1.500044E-03

1.750029E-03

2.000014E-03

2.000014E-03

2.000014E-03
2.250029E-03

2.500045E-03

7.50027E-04

7.50027E-04

1.000036E-03

1.000036E-03
1.000036E-03
1.000036E-03
1.000036E-03

1.25004E-03
1.25004E-03
1.250043E-03

1.500044E-03
1.500044E-03
1.500044E-03
1.500044E-03
1.500044E-03
1.500044E-03

1.750029E-03
1.750029E-03
1.750036E-03

2.000014E-03
2.000014E-03

2.000014E-03
2.000014E-03

2.250029E-03
2.250029E-03
2.250029E-03

2.500045E-03
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4.153364E-04
6.230045E-04
8.306727E-04
1.038341E-03
1.246009E-03
0
4.16632E-04
8.33264E-04
1.249896E-03

2.089638E-04
4.179277E-04
6.268915E-04
8.358554E-04
1.044819E-03
1.253783E-03

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

2.750055E-03
2.750055E-03
2.750055E-03

3.000065E-03

3.250059E-03

3.500053E-03

3.500053E-03

3.500053E-03

3.750027E-03

.004

.004

.004

.004

.004

.004

.004
4.250068E-03

4.500136E-03

4.750204E-03

5.000272E-03

5.25029-E-03
5.250297E-03

2.500045E-03
2.500045E-03
2.500045E-03
2.500045E-03
2.500045E-03

2.750055E-03

3.000065E-03
3.000065E-03
3.000065E-03
3.000065E-03
3.000065E-03
3.000065E-03

3.250059E-03
3.250059E-03
3.250059E-03

3.500053E-03

3.500053E-03

3.500053E-03
3.500053E-03

3.750027E-03
3.750027E-03
3.750027E-03

4.250068E-03
4.250068E-03
4.250068E-03

4.500136E-03
4.500136E-03
4.500136E-03
4.500136E-03
4.500136E-03
4.500136E-03

4.750204E-03
4.750204E-03
4.750204E-03

5.000272E-03
5.000272E-03
5.000272E-03
5.000272E-03
5.000272E-03
5.000272E-03
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4.195383E-04
8.390766E-04
1.258615E-03
0
2.105745E-04
4.21149E-04
6.317235E-04
8.42298E-04
1.052873E-03
1.263447E-03
0
4.230745E-04
8.461489E-04
1.269223E-03
0
.0002125
.000425
.0006375
.00085
.0010625
.001275
0
4.270838E-04
8.541676E-04
1.281251E-03
0
2.145838E-04
4.291677E-04
6.437515E-04
8.583353E-04
1.072919E-03
1.287503E-03
0
4.312516E-04

t 8.625032E-04
1.293755E-03
0
2.166678E-04
4.333357E-04
6.500035E-04
8.666713E-04
1.083339E-03
1.300007E-03
0
4.35899E-04



120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

8.71798E-04
1.306631E-03
0
2.192312E-04
4.384624E-04
6.576935E-04
8.769246E-04
1.096156E-03
1.315387E-03
0
4.425645E-04
8.85129E-04
1.326526E-03
0
2.233333E-04
4.466667E-04
.00067
8.933333E-04
1.116667E-03
.00134
0
4.51576E-04
9.031519E-04
1.354728E-03
0
2.282427E-04
4.564853E-04
6.84728E-04
9.129706E-04
1.141213E-03
1.369456E-03
0
4.613945E-04
9.22789E-04
1.384184E-03
0
2.331518E-04
4.663037E-04
6.994555E-04
9.326073E-04
1.165759E-03
1.398911E-03
0
4.722005E-04
9.44401E-04
1.413624E-03
0
2.390487E-04
4.780973E-04
7.17146E-04
9.561946E-04
1.195243E-03
1.434292E-03
0
4.907153E-04
9.814306E-04
1.466424E-03
0
2.516667E-04
5.033334E-04
.000755
1.006667E-03

5.250297E-03

5.500321E-03

5.750161E-03

5.750161E-03

.006

.006

.006
6.250687E-03
6.250687E-03

6.501374E-03

6.501374E-03

6.75206E-03

6.75206E-03

7.002747E-03

7.253214E-03

7.253214E-03

7.503681E-03

7.503681E-03

7.751841E-03

.008
.008
.008

.008
.008
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5.250329E-03

5.500321E-03
5.500321E-03
5.500321E-03
5.500321E-03
5.500321E-03
5.500321E-03

5.750161E-03

5.750219E-03

.006

.006

.006

.006

6.250687E-03
6.250687E-03

6.501374E-03
6.501374E-03

6.501374E-03
6.501374E-03
6.501374E-03

6.75206E-03

6.75206E-03

7.002747E-03
7.002747E-03
7.002747E-03
7.002747E-03
7.002747E-03
7.002747E-03

7.253214E-03

7.253424E-03

7.503681E-03
7.503681E-03

7.503681E-03
7.503681E-03
7.503681E-03

7.751841E-03
7.751841E-03
7.752713E-03



1.258333E-03
.00151

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

5.43089E-04
1.086178E-03
1.599795E-03
0
2.914223E-04
5.828447E-04
8.74267E-04
1.165689E-03
1.457112E-03
1.748534E-03
0
6.474432E-04
1.294886E-03
1.940483E-03
0
3.560209E-04
7.120417E-04
1.068063E-03
1.424083E-03
1.780104E-03
2.136125E-03
0
7.779322E-04
1.555864E-03
2.333797E-03
0
4.219114E-04
8.438227E-04
1.265734E-03
1.687645E-03
2.109557E-03
2.531468E-03
0
8.822863E-04
1.764573E-03
2.701176E-03
0
4.60375E-04
9.2075E-04
1.381125E-03
.0018415
2.301875E-03
2.76225E-03
0
9.2075E-04
.0018415
2.76225E-03
0
4.60375E-04
9.2075E-04
1.381125E-03
.0018415
2.301875E-03
2.76225E-03
0
9.2075E-04
.0018415
2.76225E-03
0

.008
.008
8.271985E-03
8.271985E-03

8.543968E-03

8.543968E-03

8.771984E-03

8.999999E-03

9.228818E-03

9.457639E-03

9.728819E-03

.01

.01

.01

.01

.01

.01025

.01025

.01025

.01025

.0105

.0105

.0105

.0105

.0105

.01075

.01075

.01075
.01075
.011
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8.271985E-03
8.284908E-03

8.543968E-03
8.543968E-03

8.543968E-03
8.543968E-03
8.543968E-03

8.771984E-03
8.771984E-03
8.773553E-03

8.999999E-03
8.999999E-03
8.999999E-03
8.999999E-03
8.999999E-03
8.999999E-03

9.228818E-03
9.228818E-03
9.228818E-03

9.457639E-03
9.457639E-03
9.457639E-03
9.457639E-03
9.457639E-03
9.457639E-03

9.728819E-03
9.728819E-03
9.705706E-03

.01

.01

.0105

.0105



244 4.60375E-04 .011
245 9.2075E-04 .011
246 1.381125E-03 .011
247 .0018415 .011
248 2.301875E-03 .011
249 2.76225E-03 .011
250 0 .01125
251 9.2075E-04 .01125
252 .0018415 .01125
253 2.76225E-03 .01125
254 0 .0115
255 4.60375E-04 .0115
256 9.2075E-04 .0115
257 1.381125E-03 .0115
258 .0018415 .0115
259 2.301875E-03 .0115
260 2.76225E-03 .0115
261 0 .01175
262 9.2075E-04 .01175
263 .0018415 .01175
264 2.76225E-03 .01175
265 0 .012
266 4.60375E-04 .012
267 9.2075E-04 .012
268 1.381125E-03 .012
269 .0018415 .012
270 2.301875E-03 .012
271 2.76225E-03 .012

ELEMENTS
72
1, 1, 1, 2, 3, 9, 14, 13, 12, 8
2, 1, 3, 4, 5, 10, 16, 15, 14, 9
3, 1, 5, 6, 7, 11, 18, 17, 16, 10
4, 1, 12, 13, 14, 20, 25, 24, 23, 19
5, 1, 14, 15, 16, 21, 27, 26, 25, 20
6, 1, 16, 17, 18, 22, 29, 28, 27, 21
7, 1, 23, 24, 25, 31, 36, 35, 34, 30
8, 1i, 25, 26, 27, 32, 38, 37, 36, 31
9, 1, 27, 28, 29, 33, 40, 39, 38, 32

10, 1, 34, 35, 36, 42, 47, 46, 45, 41
11, 1, 36, 37, 38, 43, 49, 48, 47, 42
12, 1, 38, 39, 40, 44, 51, 50, 49, 43
13, 1, 45, 46, 47, 53, 58, 57, 56, 52
14, 1, 47, 48, 49, 54, 60, 59, 58, 53
15, 1, 49, 50, 51, 55, 62, 61, 60, 54
16, 1, 56, 57, 58, 64, 69, 68, 67, 63
17, 1, 58, 59, 60, 65, 71, 70, 69, 64
18, 1, 60, 61, 62, 66, 73, 72, 71, 65
19, 1, 67, 68, 69, 75, 80, 79, 78, 74
20, 1, 69, 70, 71, 76, 82, 81, 80, 75
21, 1, 71, 72, 73, 77, 84, 83, 82, 76
22, 1, 78, 79, 80, 86, 91, 90, 89, 85
23, 1, 80, 81, 82, 87, 93, 92, 91, 86
24, 1, 82, 83, 84, 88, 95, 94, 93, 87
25, 1, 89, 90, 91, 97, 102, 101, 100, 96
26, 1, 91, 92, 93, 98, 104, 103, 102, 97
27, 1, 93, 94, 95, 99, 106, 105, 104, 98
28, 1, 100, 101, 102, 108, 113, 112, 111, 107
29, 1, 102, 103, 104, 109, 115, 114, 113, 108
30, 1, 104, 105, 106, 110, 117, 116, 115, 109
31, 1, 111, 112, 113, 119, 124, 123, 122, 118
32, 1, 113, 114, 115, 10, 126, 125, 124, 119
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34, 1, 122, 123, 124, 130, 135, 134, 133, 129
35, 1, 124, 125, 126, 131, 137, 136, 135, 130
36, 1, 126, 127, 128, 132, 139, 138, 137, 131
37, 1, 133, 134, 135, 141, 146, 145, 144, 140
38, 1, 135, 136, 137, 142, 148, 147, 146, 141
39, 1, 137, 138, 139, 143, 150, 149, 148, 142
40, 1, 144, 145, 146, 152, 157, 156, 155, 151
41, 1, 146, 147, 148, 153, 159, 158, 157, 152
42, 1, 148, 149, 150, 154, 161, 160, 159, 153
43, 1, 155, 156, 157, 163, 168, 167, 166, 162
44, 1, 157, 158, 159, 164, 170, 169, 168, 163
45, 1, 159, 160, 161, 165, 172, 171, 170, 164
46, 1, 166, 167, 168, 174, 179, 178, 177, 173
47, 1, 168, 169, 170, 175, 181, 180, 179, 174
48, 1, 170, 171, 172, 176, 183, 182, 181, 175
49, 1, 177, 178, 179, 185, 190, 189, 188, 184
50, 1, 179, 180, 181, 186, 192, 191, 190, 185
51, 1, 181, 182, 183, 187, 194, 193, 192, 186
52, 1, 188, 189, 190, 196, 201, 200, 199, 195
53, 1, 190, 191, 192, 197, .203, 202, 201, 196
54, 1, 192, 193, 194, 198, 205, 204, 203, 197
55, 1, 199, 200, 201, 207, 212, 211, 210, 206
56, 1, 201, 202, 203, 208, 214, 213, 212, 207
57, 1, 203, 204, 205, 209, 216, 215, 214, 208
58, 1, 210, 211, 212, 218, 223, 222, 221, 217
59, 1, 212, 213, 214, 219, 225, 224, 223, 218
60, 1, 214, 215, 216, 220, 227, 226, 225, 219
61, 1, 221, 222, 223, 229, 234, 233, 232, 228
62, 1, 223, 224, 225, 230, 236, 235, 234, 229
63, 1, 225, 226, 227, 231, 238, 237, 236, 230
64, 1, 232, 233, 234, 240, 245, 244, 243, 239
65, 1, 234, 235, 236, 241, 247, 246, 245, 240
66, 1, 236, 237, 238, 242, 249, 248, 247, 241
67, 1, 243, 244, 245, 251, 256, 255, 254, 250
68, 1, 245, 246, 247, 252, 258, 257, 256, 251
69, 1, 247, 248, 249, 253, 260, 259, 258, 252
70, 1, 254, 255, 256, 262, 267, 266, 265, 261
71, 1, 256, 257, 258, 263, 269, 268, 267, 262
72, 1, 258, 259, 260, 264, 271, 270, 269, 263
LOAD CASES

8
50e-6
100e-6
500e-6
.005
.05
1.0
4.0
180.0

PLASTIC MATERIALS
1,1
298.0
1
186.9e9, 0.3, 0.0, 0.0, 0.0

TWO PHASE
10.1E-6,17.7E-6,968.0,1008.0,473.0,373.0,7.523E-3

GAUSS POINTS
3 3

RADIAL DISPLACEMENTS
49
1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
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8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
12, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
19, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
23, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
30, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
34, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
41, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
45, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
52, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
56, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
63,, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
67, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
74, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
78, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
85, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
89, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
96, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
100, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
107, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
111, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
118, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
122, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
129, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
133, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
140, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
144, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
151, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
155, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
162, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
166, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
173, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
177, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
184, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
188, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
195, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
199, 0.0, 0.0, 0.0, 0.0, 0.0.0, 0.0, 0.0, 0.0, 0.0
206, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
210, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
217, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
221, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
228, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
232, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
239, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
243, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
250, 0.0, 0.0, 0.0, 0.0, 0.0, 0 0, 0.0, 0.0
254, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
261, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

AXIAL DISPLACEMENTS
14
1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
4, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0. 0.0
6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.". 0.0
7, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.,, 3.0
265, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, .:.J, 0.0
266, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0. ..0, 0.0
267, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0. .2, 0.0
268, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0. 1.-3. .0
269, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.ý . 3.0
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270, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
271, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

TEMPERATURES
INTERPOLATION
1, 25

.0

.0

.0005

.001

.0015

.002

.0025
.003
.0035
.004
.0045
.005
.0055
.006
.0065
.007
.0075
.008
.0085
.009
.0095
.010
.0105
.011
.0115
.012

614.1, 973.3, 1046.6, 1046.5, 1043.5, 945.9, 584.9, 298.0
614.0, 973.1, 1046.4, 1046.0, 1041.8, 943.6, 583.7, 298.0
612.5, 970.0, 1042.8, 1042.0, 1036.5, 936.5, 580.2, 298.0
607.9, 960.5, 1031.8, 1031.4, 1027.4, 924.8, 574.4, 298.0
602.1, 948.2, 1017.9, 1017.8, 1015.0, 908.5, 566.5, 298.0
596.0, 935.5, 1003.5, 1003.1, 1000.0, 887.6, 556.5, 298.0
588.5, 919.7, 986.0, 985.6, 982.5, 862.3, 544.5, 298.0
579.6, 901.3, 965.5, 965.3, 962.9, 832.9, 530.9, 298.0
570.0, 881.1, 943.3, 943.3, 941.4, 799.6, 515.7, 298.0
560.4, 861.1, 921.2, 921.5, 917.7, 762.8, 499.2, 298.0
553.0, 845.5, 903.8, 901.4, 890.1, 722.9, 481.5, 298.0
536.4, 810.9, 865.8, 865.2, 856.4, 680.0, 462.6, 298.0
519.2, 774.9, 826.0, 825.8, 816.2, 635.5, 443.4, 298.0
502.2, 739.2, 786.6, 786.1, 766.8, 590.4, 423.9, 298.0
485.2, 703.6, 747.0, 743.3, 702.7, 545.0, 404.4, 298.0
460.0, 650.4, 687.6, 676.9, 620.2, 500.1, 385.1, 298.0
407.9, 540.0, 565.9, 558.9, 527.2, 458.2, 367.2, 298.0
353.6, 422.8, 437.2, 440.5, 450.0, 426.1, 353.5, 298.0
325.1, 359.7, 367.3, 372.6, 399.5, 403.9, 344.0, 298.0
314.5, 335.8, 340.6, 344.2, 369.4, 387.6, 336.9, 298.0
312.0, 330.0, 333.9, 335.4, 351.5, 373.4, 330.8, 298.0
312.0, 330.0, 333.7, 333.9, 339.8, 358.8, 324.5, 298.0
312.0, 330.0, 333.7, 333.7, 331.0, 343.9, 318.0, 298.0
312.0, 330.0, 333.7, 333.0, 322.1, 328.7, 311.4, 298.0
311.9, 329.9, 333.0, 326.9, 311.0, 313.4, 304.7, 298.0

SOLUTION PARAMETERS
298.0, 1l-18, le-10, 1o-6, 50, 14, 1

ELASTIC-PLASTIC
1,1,0,0,0.0,0.0

SAVE
Cyc.dat
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AFESAPLT
Geom.dat
Pllt.dat
Plt2.dat
Plt3.dat
Plt4.dat
Plt5.dat
P1t6.dat
Plt7.dat
Plt8.dat
EXIT
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