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ABSTRACT

This thesis presents a trajectory design for a solar sail journey from
low-Earth orbit to an intercept location behind the Moon. The very weak
thrust level (6. 10-5 go) induces extremely slow variations of the orbital
parameters near the Earth.

In a first part, it is intended to leave the Earth's vicinity where the
solar thrust/Earth attraction ratio is very small (less than 0.05).
Averaging methods and basic orbital dynamics are used to define an
efficient strategy to increase the semi major axis and bring the sail's
trajectory into the Moon's orbital plane.

In a second part, unaveraged dynamics of the sail are considered to
define an optimal control problem: minimize the time to bring the sail
from a high-Earth orbit to a given intercept position behind the Moon.

Suboptimal trajectories are computed for various initial positions of
the Moon and several simulations show the design performances.

Thesis Supervisor: Dr. Andreas von Flotow
Title: Associate Professor of Aeronautics and

Astronautics
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INTRODUCTION



CHAPTER I

SOLAR SAILING BASICS

1.1. Historical review of solar sailing

Solar pressure is an effect of the Sun radiation on surfaces of

materials. In space, this phenomenon induces significant forces that

have been studied since the earliest days of space exploration.

At that time, the National Aeronautics and Space Administration

(NASA) had small needles of metal launched in the ionosphere in order

to study wave transmission in space environment. Whether or not solar

pressure would push the needles down to Earth and make them bum in

the atmosphere was a quite controversial issue at the time. When this

actually happened, the effects of solar pressure were confirmed and

practical evidence of this new force was provided.

As early as in the 1920's, two soviet pioneers of Astronautics:

Konstantin Tsiolkovsky and Fridrich Arturovich Tsander had fancied

"spacecrafts with large mirrors being driven by the pressure of sunlight"

(reference [11 and [21). However, iuntil the mid 1950's, most papers dealing

with solar sails were considered in the realm of science-fiction and the



subject had not yet found enough credibility to allow serious studies to be

undertaken.

NASA began examining specific designs and technology issues

related to solar sails in the mid 1960's, when the Apollo missions were

diverting huge budgets to the space agency. However, after the

tremendous success of the first human exploration of the Moon, the

space program began to shrink and so did research projects on solar

sailing.

In the late 1970's, a mission was planned to rendez-vous with Halley's

comet. Jerome Wright found this was a good opportunity for a solar sail

trajectory and hence the first mission analysis was undertaken

(reference [31). At the time (1976-1977), Dr. Bruce Murray was director of

the Jet Propulsion Laboratory (JPL) and created a study team to put

together a project plan for a rendez-vous with the comet. Louis Friedman,

author of Star sailing:solar sails and interstellar travel (reference [4])

was in charge of the study. In 1977-1978, the JPL team conducted a

preliminary design study that showed evidence of the feasibility of this

solar sailing mission (reference [51). However, NASA feared that the

actual development and construction of the sail could not be achieved

before 1981, which was the deadline for the launch since the rendez-vous

was scheduled in 1986. A solar-electric propulsion project was preferred

at the time but was never approved for a Halley mission. Eventually, the

United States ended up with no comet mission at all.



Today, groups of scientists in the U.S., Europe, the Soviet Union and

Japan are still working on solar sailing. In the United States, the World

Space Foundation gathered engineers eager to develop a future solar sail

(reference [6]) whereas in France, the Union Pour la Propulsion

Photonique (U3P) has been conducting research with scientists from the

Centre National d'Etudes Spatiales and other aerospace companies

(reference [71). In the United Kingdom, Cambridge Consultants Ltd is

conceiving a sail for a Mars journey and for other future missions of the

1990's.

1.2. Solar sailing: the physics

1.2.1. Solar pressure

The issue in question through-out all this study is the capability of

using solar radiation pressure to produce thrust. A given piece of

material that is lit by a parallel beam of solar photons receives a power

given by:

A
W=- d2 (1.1)

Where: A is the area of this piece of material that is normal to the

solar radiation.



d is the distance between the piece of material and the

Sun.

( = 3.02 1025 Watt/steradian, which is the power of the

solar radiation.

The momentum P of a parallel beam of photons with energy E is

E
Pcc (1.2)

Where: c is the speed of light.

The exerted force is:

dP W
dt c

which defines the absorbed momentum rate by unit area:

SdPt -=K 2

A dt L d (1.3)

Where: K = 4.5 10-6 N/m 2

do is the distance from the Sun to the Earth, or one

astronomical unit, or 149.6 106 km.

d is the distance from the Sun to the solar sail.

A good solar sail is a very light mirror. This means that it will reflect

the incoming light according to Descartes's law of optical reflection. By



doing so, a momentum will be transmitted to the sail. If during a period

of time At, a momentum AP arrives perpendicularly on a mirror, it will

transmit a momentum 2AP to this mirror.

Lightness of the sail is required so that, despite the low level of thrust

produced by the reflection of solar radiation, the acceleration level is

maximized. To characterize the ability of the sail to create an

acceleration, a parameter was defined: the lightness number. It is usually

denoted by X and is the ratio of the solar thrust that pushes the sail when

it is oriented normally to the Sun radiation, to the gravitational

attraction of the Sun on the sail.

A K 2
X= 2 (1.4)

mss G d2

Replacing K by c do and introducing the Sun's gravitational constant

gs = G ms, where ms is the Sun's mass and G is the universal gravitational

constant, we have the following expression of the lightness number in

terms of the sail's mass (mss) and area (A):

m=2 (1.5)mss cts

Where: - 7.585 10-4 kg/m 2 .
cps

mss is given in kilograms,.

A is given in square meters.



For example: today's technology makes it possible to build a sail in

Kapton that would have a lightness number of 0.1 (Kapton is aluminized

to become a reflective material). This is equivalent to a mass per area

coefficient of 17 g/m 2 . This coefficient corresponds to an aluminized

Kapton film of 7 pm thickness, which is commercially available in large

quantities, and to a non-sail weight fraction of 25% (see reference [81).

With these characteristics, the maximum acceleration that can be

induced by solar pressure is 6. 10-5 go, where go = 9.81 m/s 2 .

1.2.2. Orienting the sail

In order to control the trajectory of the sail, one must rotate the

thrust vector and orient it along the desired acceleration direction.

However, by rotating the sail, one changes the area of the reflecting

surface that is normal to the solar radiation. Hence, changes in the

orientation of the sail are associated with changes in the thrust direction

and magnitude.

1.2.3. Model of the sail reflecting properties

We are only going to present a model of a perfectly reflecting flat sail.

For details about more sophisticated kinds of solar sails such as non flat

sails or for the heliogyro (to be presented in chapter II), it is interesting to

read L. Sackett's report on solar sail escape trajectories (reference [91).

This model is the following: if 0 is the angle between the normal to the



sail in the direction of the thrust and the Sun to solar sail direction, and

if Fo is the thrust due to solar pressure when the reflective side of the sail

is normal to the solar radiation. then:

F(8) = Fo cos2O (1.6)

Fo = •G d2

Where: F(8) is the thrust due to solar pressure when the Sun to

solar sail direction and the thrust vector form an angle of 0 radians.

1.3. Assets of photonic propulsion

Photonic propulsion is provided by the use of solar sails. Its main

asset is that Sun radiation is available in free "unrestricted" quantities.

As long as the Sun shines, solar sails will be able to navigate through-out

space.

Practically, this feature allows one to plan longer missions than in

the past, because propellant will never be lacking. It also facilitates the

transportation of large payloads for which conventional spacecrafts

would have to carry huge amounts of propellant. In theory, the

technology developed in the 70's for the Halley's comet rendez-vous

mission would enable the transport of a payload of 42 tons to Mercury in



less than 4 years (reference [10]). Furthermore, after each mission the

solar sail could return to Earth to be refurbished on a parking orbit.

Solar sails can also achieve exotic orbits, some of which were

unthinkable with conventional spacecrafts. Colin McInnes, a PhD

student at the University of Glasgow, Scotland, wrote several papers on

various kinds of trajectories made possible by solar sailing (see reference

[111 and [121). Among these new trajectories, which are unique to solar

sails, are halo orbits centered on the Sun and out of the plane of the

ecliptic. Observations of the Sun poles would then become possible

without the difficulties that a conventional spacecraft must overcome to

leave the plane of the ecliptic (e.g.,swing-by of Jupiter as was done with

the Ulysses scientific spacecraft, see reference [131 and [14]).

Another interesting application of the solar sail is solar-eruption

warning for Earth-based astronomical surveillance stations. By locating

a conventional spacecraft at the Lagragian point Li of the Earth-Sun

system, signals could be sent to Earth when unusual amounts of particles

are detected. With a solar sail, the location of the spacecraft could be

moved from the Li point to a point closer to the Sun. The bigger the

lightness number of the sail, the closer to the Sun the sail can be located.

Hence, earlier warnings can be sent to Earth and a preliminary study

showed that the amount of warning time doubles and would reach two

hours if a solar sail having a lightness number of 0.1 were to be used.



1.4. Two major designs of solar sails

The two configurations that have received the most attention over

the years of solar sails short history are: the square sail, and

the heliogyro.

1.4.1. The square sail

Originally, when the JPL was working on a Halley's comet rendez-

vous mission, the apparent simplicity of a square sail made it the only

design to be considered. However, when NASA examined the square-sail

design in more detail, several problems emerged. First, folding and

packing a 640,000 square meters thin layer of Kapton in the shuttle's

payload bay seemed to be quite impractical. Then came the problem of

deployment with the fear of causing damage to the sail. Finally,

dynamics of the sail are subject to its ability to be tightened on a

supporting structure and to remain in a given shape. Uncertainty on the

shape of the sail makes it hard to predict the location of the center of

pressure and the thrust direction. These problems can be partly reduced

by increasing the stiffness of the supporting structure but this also

increases the weight of the solar sail and makes its lightness number

decrease. Furthermore, one of the most unpleasant aspects of the square



sail design is the dimensions of the actuators that are required to rotate

the sail and control the thrust orientation. Considering a square sail of

10,000 square meters, and considering that the center of pressure

location is known within 1 meter, the actuators, which are "small"

reflecting areas located at the corners of the sail, must be at least 200

square meters in area (reference [81). The extravagant dimensions of such

devices which are originally meant to steer the sail without adding too

much weight, brought Richard MacNeal to introduce the following

design.

1.4.2. The heliogyro

MacNeal's idea was to divide the sail into several blades. Then, the

sail looked like a helicopter and this resulted in the name: heliogyro.

With this design, the packaging problem turns into a much more

tractable one since the blades rolled-up for storage, spaced

symmetrically about a central core. The deployment issue also

simplifies: the entire spacecraft is spun up when it leaves the rocket that

takes it into its initial orbit, and the blades unroll freely under the

action of the centrifugal force. This happens without the need of any

supporting structure. At first glance, it might seem hard to believe that

very thin and long sheets of plastic (Kapton is somewhat similar to

plastic) can be controlled. Indeed, the orientation of the thrust is done by

pointing the spin axis, which is achieved by pitching the blades. Richard



MacNeal carried out an experiment in 1971, where a sample blade 80

microns thick, 5 centimeters wide and 1.95 meters long was successfully

put through pitch maneuvers in a rotating room (reference [15]).

Avoiding the need of steering surfaces to orientate the sail, the heliogyro

appears to be a more realistic spacecraft to control than the square sail.

1.5. Today's two major solar sailing events

Two solar sailing races are scheduled for 1992.

First, a race to Mars should take place to commemorate the

quincentenary of Colombus' voyage to the new world. Each participant

would carry a plaque weighting 1 kg. The winner would be the first of the

entrants to pass within 10,000 kilometers of Mars. The race organizers

hope to have one entrant from Europe from where Colombus set sail, one

from America where he ended up and one from Asia to where he thought

he was going (reference [101).

The other solar sailing event is a race from the Earth to the Moon.

This is intended to mark the international space year in 1992. It was

originated by the French organization U3P, which persuaded Midi-

Pyrenndes, a regional government in France to sponsor a race to the

Moon and to offer a prize. The race to the Moon, however, does offer one

problem: the sail is best operated in interplanetary space, not near



Earth, where it must make many maneuvers to raise its altitude. The

race will be quite demanding and will require a sophisticated sail,

navigation, guidance and attitude control. For this reason, this study

deals with the design of a trajectory from the Earth to the Moon, thus

attempting to solve the trajectory issue of this race.

1.6. Basic ideas on an Earth-Moon trajectory for a

solar sail

The departure will take place from a relatively low-Earth orbit. This

orbit will either be a Geosynchronous Transfer Orbit (G.T.O.) or the

geostationary orbit (reference [7]). The first one is characterized by a

perigee altitude of about 7,500 kan and an apogee altitude of about 42,000

ink (both distances are referenced to the center of the Earth). The initial

altitude with respect to the Earth's surface will thus range between 2,000

km and 36.000 km. At these altitudes, the Earth attraction is 500 times

larger than the maximum thrust available through solar pressure on a

sail having a lightness number of 0. 1. Hence, the effect of solar radiation

on the sail's orbit will be very tiny and if the steering law orientating the

sail is chosen so as to increase altitude, the trajectory is going to slowly

spiral away from the Earth.



Except under an extraordinary coincidence, the initial trajectory

will not be in the Moon's orbital plane. For this reason, we must find a

way to rotate the sail's orbital plane while increasing its altitude.

Due to the very slow variation of the orbit during the first months

after departure, numerical simulations as well as analytical approaches

can be greatly simplified by the use of averaging methods. These methods

get rid of the very short term effects of the perturbations in order to

enhance the variations of the solar sail orbit over large periods of time,

such as several orbits. We will describe averaging techniques in the first

part of the trajectory design, where we will make an extensive use of

them.

Once the sail reaches distances equivalent to 60% of the distance

from the Earth to the Moon, parameters characterizing the orbit begin to

vary greatly in the period of one orbit and averaging methods are no

longer valid. Furthermore, at such altitudes and provided that the sail

orbit will then be coplanar with the Moon's orbit, phasing with the Moon

will become a major issue. The overall goal is to pass behind the Moon,

potentially for a gravity assist onto an interplanetary trajectory. This

second part of the trajectory design will be approached from an optimal

control point of view, in order to match an intercept position behind the

Moon while minimizing the amount of time needed to reach this

location.

When this study started, the design of the whole trajectory was

considered in two ways. A first approach was to define a general



optimization problem: minimizing time from the initial low-Earth orbit

to the final location behind the Moon; another possibility was to follow

a more practical and less numerically intensive approach, based on the

physics of the problem. This latter approach would make use of averaged

and simplified dynamics of the solar sail's orbit.

General optimization of an Earth-Moon trajectory had already been

done with propulsion systems developing higher levels of continuous

thrust. For example, the study made by Breakwell and Rauch (reference

[16], [17] and [181) shows an elegant approach to solving this

optimization problem, but their level of acceleration is 10-3go whereas

ours is only 10-5go. In their case, the spacecraft propulsion is electric and

the thrust magnitude is independent of its orientation. In our case, it is

numerically impractical to simulate a solar sail trajectory from low

Earth altitude to a location close to the Moon without using numerical

averaging techniques. That was not the case with a thrust magnitude of

10"3 go. However, as stated earlier, the validity of these averaging

techniques diminishes far from Earth, where the orbital parameters

start to change by large amounts over a single orbit. For this reason,

averaging appears as a need in the first part of the trajectory design,

when the solar sail is spiralling away from the Earth. On the other hand,

these techniques will not be used during the "phasing" part of the

trajectory, when it is desired to catch up with the Moon's motion and

disappear behind it.



Considering these practical facts, we have been led to approach the

first part of the trajectory design from a physical point of view, more

precisely we will derive steering laws from basic considerations on the

dynamic equations of the orbital parameters. Conversely, the lack of

simple physical approach for the phasing and intercept problem led to a

more theoretical and numerical approach to the second part of the

trajectory design. Finally, the goal of this study is to find a trajectory

design for the solar sails race to the Moon and to present simulation

examples showing its efficiency.



PART 1

SPIRALING AWAY FROM THE EARTH AND
MATCHING THE MOON'S ORBITAL PLANE



CHAPTER II

PREVIOUS WORKS AND UNDERLYING
CONCEPTS

2.1. Overview of some major references

Numerous studies have been made and several papers were published

on various ways of using solar sails to escape from planetary

gravitational fields or travel through-out the solar system. Two types of

trajectory designs can be noticed.

The first kind of studies involves most of the early research projects

on solar sailing, often dating back to the 1960's. They deal with the

design of heuristic maneuvers taking advantage of simplified situations

such as planar problems where the trajectory is in the plane of the

ecliptic, or particular initial orbits for which the physics of the solar sail

motion are simplified (reference [19]). These studies are interesting

because of the easy physical interpretation of the orientation laws that

are presented. For example, in reference [201, Norman Sands develops a

steering law that enables the solar sail spacecraft to escape from

planetary gravitational fields by spinning the sail around its axis at half



the orbital rate. Sands concluded by stating that " it is found that for a

practical case of escape from the Earth's gravitational field, solar sailing

could accelerate a payload to escape conditions in a period of time of the

order of several months, during which time it would pass the vicinity of

the Moon's orbit about Earth".

However, Sands also concluded on the lack of efficiency of this

extraordinary simple steering law and suggested taking advantage of the

sail position on its elliptical orbit to select the locations where the rate

of gain of total energy is the largest.

Another approach to escape trajectory design was made in 1977 by C.

Uphoff in a JPL memo to Jerome Wright, the same person who had

proposed a Halley's comet rendez-vous trajectory a few years before

(reference [211). This study shows two interesting features: first, the idea

of increasing the total energy is the main driving concept in this

research of an escaping trajectory. The energy of an orbit is:

E=- 2aa(2.1)2a

Where g is the gravitational constant of the planet (.= G M

G is the universal gravitational constant and M is the

mass of the planet.)

a is the major axis of the orbit.



The differential equation governing the rate of change of the total

energy was used by Uphoff and we will introduce it later since it is also

going to be the cornerstone of our "spiralling away strategy". The other

interesting feature of Uphoffs approach is the use of averaging methods

in order to foresee the changes AE over an arc of trajectory. As mentioned

earlier, we are going to make an extensive use of averaging techniques in

the first part of our Earth-Moon trajectory design.

The second kind of studies on solar sail trajectories deals with the

calculus of variations approach in order to design minimum-time

journeys between given orbits or given planets of the solar system.

Despite several earlier works such as those of Cavoti (reference [221) or

Zhukov and Lebedev (reference [231) who were applying the calculus of

variations to the optimization of solar sail trajectories, Carl G. Sauer

presented in 1976, one of the earliest optimization study on three

dimensional interplanetary solar sail trajectories.

Although the problem that he was considering (Rendez-vous

missions between various planets of the solar system) is quite different

from our Earth-Moon trajectory problem, some of the formulation that

he derived will find counterparts through-out this study, either in the

first part for the derivation of sub-optimal steering laws, or in the second

part in the formulation of the minimum time problem. Actually, Sauer's

publication on Optimum solar-sail interplanetary trafectories (reference

[24]) remains as an important reference for most optimization studies of



solar sail trajectories. The reason is that the optimal orientation of the

sail can always be defined as the orientation that maximizes the

component of the thrust vector along a given vector. Hence the

orientation of the sail is given by a general expression that is

independent of the criteria to be optimized (see maximizing the rate of

change of the semi major axis, minimizing the inclination or

minimizing the time of flight in the last part). This general expression is

presented in Sauer's paper and takes the form:

a=- Atan [3 cos2 + ,8 + cC (2.2)4 sin 2.

Where: a is an angle defining the thrust orientation.

C is an angle defining the orientation of the vector, which

characterizes the criteria to be optimized.

Details about this major formula will be presented on several

occasions in this document, and it will be derived clearly in the next

chapter.

One of the latest works referencing Sauer's paper is Theodore

Edelbaum and Lester Sackett's study of Optimal solar sail Dlanetocentric

trafectories (reference [251). This work presents a fully optimized Earth-

centered trajectory between a low-Earth-orbit and a given sub-escape

orbit. With the help of Mr Sackett, various features of this work were

gathered and applied to our problem. Namely, averaging formulations,



as well as the choice of particular orbital elements are inspired from this

reference.

We are now going to present miscellaneous topics that were necessary

for the design of the first part of the trajectory. More precisely, we will

present the orbital elements that were used to describe the trajectory and

the model of the dynamics that seemed to be a good compromise between

reasonable accuracy and simplicity. An important issue in the

simulation of space trajectories is the choice of units, which may decide

of the numerical behavior of the simulator and this will also be

presented in the next section.

2.2. The equlnoctial elements

For orbits of zero inclination angle, the line of nodes does not exist.

For orbits of zero eccentricity, the line of apsides is meaningless. Hence,

the classical orbital elements, whose definition relies on the ascending

node or on the pericenter, show singularities in their variational

equations. These elements are co: the argument of pericenter, Q: the

longitude of the ascending node as well as any anomaly defining the

position of the body on its orbit.



New orbital elements were introduced in order to describe the

dynamics of orbits which are circular or have zero inclination. One set of

non-singular elements is the set of so-called equinoctial elements, which

are studied extensively in reference 1261 by Paul Cefola. These elements

(a,h.k.p,q,F) are defined by the following expressions referring to the

classical orbital elements (a.e,i.fl.o.E):

a=a

h = e sin(fl + co)

p = tan( ) sin fl

F=E+f+w

k = e cos(n + c))

q = tan()} cos l

The parameter F is called the eccentric longitude and it defines the

position of the body on its orbit.

Note: by using "retrograde" equinoctial elements, inclinations near

180 degrees can be considered but this will not be necessary in our study.

The inverse relation giving the classical elements in terms of the

equinoctial elements is not as straightforward. However classical

elements can always be calculated from the equinoctial ones, whereas

they fail to define values of the equinoctial elements in zero inclination

and zero eccentricity cases.

(2.3)



Eauinoctial to classical elements transformation:

First step: if p=q=0,

then 1i=0, C is not defined and can be set to 0.

else

Q = Atan2(p,q)

1=2 Atan(4p 2 + q2 )

Second step: if h=k=O,.

then e=-O, o is not defined and can be set to 0.

else

o) = Atan2(h.k) - 0

e = 4h2 + ke

Associated with the equinoctial elements is an equinoctial frame.

This frame is used to write the dynamical equations governing the

variations of the equinoctial elements. If Z denotes the five component

vector [a,h,k,p,q]T, these equations can be written in matrix form :

= M(F). u_ (2.4)

Where: M is a 5 by 3 matrix.

u is the three component vector of perturbations,

expressed in the equinoctial frame.



AAA A

The equinoctial frame is defined by its three unit vectors (C. g, w). w

is along the kinetic momentum vector (and thus perpendicular to the
A A

orbital plane, in the orbital sense of rotation). C and g are described in

figure 1 and the components of all three vectors in the Earth equatorial

frame are:

^ 1 1- p2+q
l+p2 +q2 2pp2q2

^ 1 .2pq
A 2pq

Ig= 1+p-p +p 2- q2

1+p 2 = 2 qsw=1+P+q2 -2q
1- p2 q2

(2.5)

Figtyx 1: The CglunoctlaI frame

Unit



Other useful relations involving the equinoctial elements were

provided in reference [261 by Cefola:
A A

Position vector: x = X1 L + Y1 g
* A . A

Velocity vector: v =XJ+ Y g (2.6)

Where:

X1 = a [(1 - h2 ) cosF + hk4 sinF -k)]

Y1 = a [(1 - k2 P) sinF + hkN cosF -h)]
na 2

X1 -=- [ hko cosF - (1 - h2 ) sinF] (2.7)

Y'1 -T [(1 - k2 0) cosF - hkW sinF]

and:

1- = - k cosF -h sinF (2.8)
a

1+ 1-h 2 -k 2

The acceleration u_ is the sum of all perturbations acting on the

spacecraft that are included in our model of the dynamics. This model is

now going to be presented.



2.3. Model of the solar sail's dynamics

In this part of the trajectory, the presence of the Moon will be

neglected with respect to the other sources of perturbations. This

assumption is valid and a detailed approach of the dynamics of the

second part of the trajectory (when the sail phases with the Moon) shows

evidence that accuracy is not jeopardized by assuming so. Using an

Earth-centered frame introduces a Sun gravity gradient acceleration,

which is also going to be neglected since it is at least 100 times smaller

than the solar thrust in the vicinity of the Earth .

Finally, the only two perturbation sources that are going to be taken

into account in the dynamics of the solar sail orbit are :

The solar pressure on the sail.

The oblateness of the Earth (J2 term only).

Actually, another perturbation of the orbit will be considered but it is

not a source of acceleration as the two other ones: it is the effect of the

Earth shadow on the sail whinh sometimes annihilates the effect of solar

radiation.

The J2 term of the Earth's gravitational potential induces an
1

acceleration which is proportional to P where r is the distance from the

Earth's center to the sail and is thus decreasing quite rapidly while the



solar pressure magnitude remains roughly constant along the path from

the Earth to the Moon. At a distance r = 27,000 km of the Earth's center,

the accelerations due to the oblateness and to solar pressure are of

comparable magnitudes: 6.10-sgo. At geosynchronous altitude: r = 42,000

kmn, solar pressure can induce accelerations 70 times greater than the

effects due to oblateness. Hence, considering the effects of the J 2 term of

the Earth's gravitational field is more important at low altitudes and, in

particular, in the case of an initial Geosynchronous Transfer Orbit.

As mentioned above, the other feature of our model of the dynamics

is the consideration of Earth shadowing. We will define shadow

situations by the following formulations: if tis is the unit vector pointing

from the Sun to the Earth, and ifLsT is a unit vector perpendicular to the

previous one, the sail will be in the Earth's shadow when both of the

following statements are true:

r_-. Ls(s >2.9)
IILr - { r. i. s II > REarth (2.9)

REarth is the Earth radius and it will be taken as the Earth's equatorial

radius: 6,378 kmn.

Our goal, in this first part is to define the orientation of the sail and

consequently the thrust history u(t) to raise the apoge of the orbit and

decrease its inclination with respect to the Moon's orbital plane.



2.4. Notions of cone and clock angles

To characterize the sail orientation and consequently the direction

of the thrust due to solar pressure, we are going to use two particular

angles, which are referred to as the cone and clock angles (these angles

where introduced in Zukhov and Lebedev's paper, see reference 1231)

More generally, we are going to define the cone and clock angles as a
A

means to specify the orientation of any unit vector Lx. Associated with

these two angles, are two reference directions, which can be chosen

arbitrarily as long as they are not parallel to each other. In our case, the

two reference directions are : the Sun to solar sail direction,
A

characterized by its unit vector Ls, and the normal to the ecliptic
A

pointing towards the North with its unit vector i . It is assumed

through-out this document that these two unit vectors are orthogonal.
A A

The cone angle of i.x is defined with respect to is only, it is referred- to

by ex and its definition is given by

A 'A

Ox = Acos ix. s) (2.10)

A A
The clock angle is defined with respect to is and N and is referred to

A A A A
by Px. It is the angle between the two half planes (s, i,N) and (i , ix).



r A A
sin IYx = - 11 . i2Yxis gtvenby~ Io " (2.10)
COS T IX N .2

A A A
Where: i, =L x Ls

A A

S(Lx X Is)

A
Given the values of 0x and '1 x. ix is completely characterized and can

A A
be expressed in terms of i and Is according to :

A A A A A

i x=cOSOx s+ s+inx (cos'Yx IN- sinTx xL.s) (2.10)



Steering laws for the solar sail are given as cone and clock angle

histories: (8(t), '(t)), to < t < tr. These two functions of time determine the

thrust vector pointing direction. To evaluate the performances of these

control laws on the evolution of the orbital parameters, we will simulate

the dynamics of the solar sail orbit by numerically integrating the 5

equations giving the variations of the equinoctial elements that define

the size, shape and orientation of the orbit.

However, simulations are typically done over time periods of 150

days, which is roughly the time that will be required to reach 50 to 60%

of the distance to the Moon's altitude. During these long periods of time,

and especially when the sail is in the vicinity of the Earth, the orbital

parameters vary slowly (a few percent over 100 orbits). This remark

suggests the use of averaging methods to speed up the simulation

program.

2.5. The averaging methods

There are two kinds of averaging methods: one is analytical and the

other one is numerical. Both of these methods enable long term orbit

predictions when knowledge of the short term variations of the orbital

elements is not required (reference [27] and [281) .



The main idea is to replace the instantaneous rates of change of each

orbital element by averaged rates that take into account the size, shape

and orientation of the orbit, but not the spacecraft position on the orbit.

Here again, several possibilities occur: rates of change can be averaged

with respect to each kind of anomaly. If a denotes a given orbital

element, a is the averaged rate of change of a and can be defined by at

least three different expressions (each of these is associated with a

different anomaly).

2x 2X 2%-- 1 O . a- 1=. - 1 .
ad &- acdE d • jadM (2.11)

Where: f is the true anomaly, E is the eccentric anomaly

and M is the mean anomaly.

Most of the references use the last expression, which defines an

average with respect to time since the mean anomaly is proportional to

time. Hence, the most commonly used averaged rate of change is defined

as:

2x T

f=&dM = 1&dt (2.12)

Where T is the orbital period T = 21 .

The evaluation of the average rate & requires a quadrature.

Depending on the complexity of the perturbation, i.e. of the expression of



&, this quadrature is done analytically (analytical averaging) or

numerically (numerical averaging). In both cases, & is a function of the 6

orbital elements. Among these 6 parameters, 5 characterize the size,

shape and orientation of the orbit and they are held constant during the

quadrature (for example a, e i, Q, o) or a, h, k, p and q), the 6 th element

characterizes the position on the orbit and the evaluation of the integral

makes it disappear. The only assumption required to perform averaging

methods is that the orbital elements do not change drastically (less than

5% for example) during one revolution of the satellite on its orbit. As far

as accuracy is concerned, a rule of thumb was introduced in reference

[25]. The error induced by simulating averaged dynamics of a solar sail

in the vicinity of a planet was approximated by the ratio of the

acceleration due to solar pressure to the acceleration due to the planet's

gravitational field. This ratio is a function of the distance to the center of

attraction; for a sail with a lightness coefficient of 0.1 orbiting around
Solar pressure 0.218 r2 where

the Earth, it takes the following form: Earth attraction = 0.218 where

r is the distance between the sail and the Earth's center (r = 1 if the sail is

at the Moon's altitude: 384,400 kilometers). Table 1 shows that

averaging methods bring about less than 5.5 percent errors as long as the

sail's altitude is less than half of the Moon's altitude.



Altitude 0.2 0.3 0.4 0.5

Error (%) 0.872 1.96 3.5 5.45

Table 1: Validity of the averaging methods

For the purpose of our solar sail trajectories simulations, both

analytical and numerical averaging were used.

2.5.1. Analytical averaging : effects of the

Earth's oblateness

The effects of the J2 term in the Earth gravitational potential concern

the four equinoctial elements: h, k, p and q. Indeed, no variations of the

semi-major axis are induced by this gravitational perturbation. From

reference [261, we have the following closed form expressions of the

averaged rates of change for h, k, p and q.

- 3R 2 J2 k [1-6(p2 +q 2) + 3 (p2 + q2)2]

J2 2 n a5 (1 - h2 - k2)2 (1 + p2 + q2)2

- - 3 R2 J2 h [1 - 6 (p2 + q2) + 3 (p2 + q2)2 ]
g = (2.13)

J2  2 2na s (1 - h2 - k2)2 (1 + p2 + q2)2

- 3 j- R 2 J 2 q (I - p2 q2)

J2  2na5 (1 - h2 -k 2)2 (1+p 2 +q2)

- 3 R 2 2 2  (1 -p 2 - q2)
eq

J2 2 na 5 (1-h 2 -k 2)2 (+p 2 + 2)

Where: Rq is the Earth's equatorial radius.



Analytical averaging will also be considered to foresee the range of

variations of the semi major axis or of the inclination when particular

orientation schemes will be tried. Analytical averaging methods are well

suited for preliminary studies because of the lack of computational

overhead that is associated with them, however for various kinds of

perturbation sources, analytical quadrature may become cumbersome or

even impossible (e.g. elliptic integrals).

2.5.2. Numerical averaging

Numerical algorithms for quadrature are discussed in Numerical

Averaging in Orbit Prediction by C. Uphoff (reference [27]). A Gaussian

integration algorithm was used as recommended in this reference. The

averaging interval can be broken up into several sub-intervals if more

information about the behavior of the integrand & is required. The

number of intervals and the order of the quadrature formula for each

interval are variables that can be adjusted to bring about a compromise

between numerical overhead and accuracy. In our case, we chose to use a

single interval (one revolution) and the number of points could be chosen

freely and 16 points or 32 points were usually defined. Gaussian

quadrature theory and algorithms were based on Numerical ReCiDes in C

by William H. Press (reference 1291). The advantage of numerical

averaging is that any kind of perturbation can be incorporated:

shadowing is as easy to consider as the oblateness of the Earth. Hence,



fairly sophisticated models can be built as long as perturbations can be

deterministically described.

Eventually, averaging methods remove the high frequency (higher or

equal to once per orbit) variations from the perturbation equations. It is

then possible to use large computing intervals in the numerical

integration of the differential equations governing the equinoctial

elements variations. Fast simulations of 150 days low-altitude-

trajectories become possible (typically 2 to 5 minutes of C.P.U. time on a

Sun Sparkstation).

2.6. Units

The last of our general considerations is the choice of units to be used

to describe the trajectories. It is quite important to scale lengths and

time. Using meters and seconds in astrodynamics studies can lead to

numerical problems despite the use of very efficient algorithms. For this

reason, we chose to use the following fairly intuitive units.

The unit of length will be the mean distance from the Earth to the

Moon:

1 unit of length = 384400 km
1 unit of time = 1 day =86400 seconds (2.14)

Then the unit of acceleration is defined as:



1 unit of acceleration = 1 unit of length/(unit of time)2

= 5.14 10-2 m/s2

= 5.25 10-3 go with go = 9.81 m/s 2

In these units, gravitational constants of the three celestial bodies

that are relevant to this study have the following numerical values:

Gravitational constants: (in (unit of length)3/(unit of time)2)

Earth E = 0.05238601

Moon M = E / 81.31

Sun ps = 333432 pE

Finally. the maximum acceleration due to solar pressure on a solar

sail having a lightness number of 0.1 is: Ao = 0.0117 unit of length/(unit

of time)2 .



CHAPTER III

STEERING LAW DESIGN

3.1. A strategy to increase the energy

In the two body problem, the energy of an orbit is given by its semi

major axis, as it was already presented in the previous chapter:

(3.1)E- 2a

The energy is negative when the orbit is an ellipse (a>O). In that case,

the spacecraft, or more generally the orbiting object, is captured by the

gravitational field. The energy is split in two parts: the kinetic energy

and the potential energy. The relation governing this partitioning of the

energy is the vis-viva integral:

V2 _U IL
2Tr 2a (3.2)

Where: r is the distance between the orbiting object and the

center of attraction.



v is the velocity of the orbiting object with respect

to the center of attraction.

As stated earlier, our first goal is to increase the solar sail altitude

with respect to the Earth. One of the most obvious thing to try is to

increase the semi major axis of the orbit. One could have thought of

increasing the apogee altitude (which is given by a(l+e) where e is the

orbit eccentricity) but it would then be tempting to increase the

eccentricity and this would lead to lower and lower perigee altitudes,

which is not desirable because of the threat of atmospheric drag (the

perigee altitude is a(l-e)). Hence. we are first interested in increasing the

semi major axis or equivalently, in increasing the orbital energy.

The variation of parameter equations are given by expressions of the

form:

dEl ElI
dt- .va~ d  (3.3)

Where: El is a given orbital element.

Ad is the perturbing acceleration vector.

Here, Ir is derived from the vis-viva integral:

2 r -2al aý a ZIr



Finally, we have Gauss's form of the variational equation for the

semi major axis:

da 2a 2

_dt J. '.ad (3.5)

Hence, our first conclusion is that : "to increase the instantaneous

semi major axis, one must maximize the dot product: v. ad". This leads

to two considerations:

First, it will be interesting to have a maximum component of the

perturbing acceleration along the velocity vector.

Second, changes in the semi major axis will be more efficient when

the magnitude of the velocity vector is large i.e. around the perigee.

The idea of maximizing the projection of the thrust on a given vector

will be used in each part of the trajectory design. Hence, we will develop it

in details in the next section.

3.1.1. Maximizing the projection of the thrust

on a given unit vector

A
Let Lv be a unit vector along which one wishes to maximize the

projection of the solar thrust. We will use the notions of cone and clock

angles that were introduced earlier in this document.

With i being a unit vector perpendicular to the ecliptic and pointing
A

to the North and is being a unit vector pointing from the Sun to the solar



A
sail, we can define the cone and clock angles for both Lv (Ov, Yv) and the

thrust unit vector L (,u. 'u}).

A A A A
Iv= cosv is + sinev (cosYv iN - sin'~v iL)

A A A A
iu = cosOu is + sinfu (cosPu iN - sinU L1)

A A A
Where: ii = iN x Ls

A
The thrust vector is given by : = Ao os iu (3.6)

A
Maximizing the projection of the thrust on iv is equivalent to

A
maximizing: cos2 iu •U . Lv. We are now facing the following problem:

Max {cos29u Icosev cosOu + sinv sineu cos(Yv - }u)1
Ou and YPu

Cone angles are always between 0 and 180 degrees, hence sinev sinOu is

always positive and the term:

cos2Ou sinev sineu (cos'Yv cosYu + sinIv sin•Yu)

will be maximized if Yu is chosen to be equal to TYv.

We are now reduced to a one parameter optimization problem:

Max {cos2Ou [cos&v cosu + sinOv sinJ }
0<8U<t

Calling this expression F(Ou,Ov), we want to maximize it with respect to

(U.



S=-2 sinOu coseu (cos9v coseu + sinev sinOu) +cos?'u sin(v - Ou)

If cosOu = 0, we are not maximizing the projection of the thrust since its

magnitude is then zero. Hence, we may divide the whole above expression

by cos39u, which implies the following equivalence:

{1 = O (-2 sin0v tan2 Ou - 3 cosev tanOu + sinv = O )

The latter equation has two solutions in tan0u:

- 3 cosev t+ 8 + cos2 (37)
taneu = 4sin(v (3.7)4sin0v

In order to get rid of the indetermination, let us consider the following

particular case: if Ov = , then F(Ou = sinOu cos2Ou so that taneu= - -

F(u,) will be maximized if tanOu = --. We have thus derived the closed

form solution:

['Yu = 'Yv

Tu = Atan -3 cosOv + 48 + cos20v (3.8)
eu = _ 4 sinev

These two relations completely specify the orientation of the thrust

vector in terms of its cone and clock angles (Ou,'u). This formulation

maximizes the projection of the thrust vector on a given unit vector



specified by its cone and clock angles (Ov.,v), the slight difference

between this expression and formula 2.2 is due to the fact that cone

angles are defined in the opposite sense than those in Sauer's paper.

It is interesting to notice that the relation defining the cone angle Ou

automatically constraints it to be in the (0, 90 degrees) range which is
A

physically reasonable. Indeed, the cone angle 8v of the vector Lv is, by

definition between 0 and 180 degrees, implying that sinov is positive.

Then, it is easy to verify that the expression

- 3 cosx +48 + cos 2x

is always positive when x belongs to [0,n]. Hence, the thrust vector cone

angle is always between 0 and 90 degrees thus complying with the fact

that no thrust can be oriented towards the Sun.

3.1.2. Analytical evaluation of the increasing

energy strategy

Before simulating a steering law based on maximizing the projection

of the solar thrust on the velocity vector, we are going to evaluate its

performance. More precisely, we want to have an estimate of the

averaged value of the rate of change of the semi major axis: a .

From Gauss's variational equation:

. 2a 2
a=- v_ .a d (3.9)At



We have the averaged equation:

- 2 a2 -
a = .. -d. (3.10)

We will approximate v_. -d by Vcirc, a d, where Vcirc is the velocity of an

object orbiting on a circular trajectory of radius a:

Vcirc =  (3.11)

gd denotes the averaged level of acceleration along the velocity vector. It

can be characterized as a fraction of the maximum acceleration:

- k
ad = 10UM., with uM = 6. 10-5 g (3.12)

We are now going to try to estimate a reasonable value for k. k does

obviously depend on the shape and inclination of the orbit: if the orbital

plane is normal to the Sun-Earth line, the acceleration along the

velocity vector is constant since the angle between the Sun to solar sail

line and the velocity vector is always 90 degrees; for an orbit in the plane

of the ecliptic, this angle takes all values between 0 and 360 degrees

during one revolution around the Earth. Despite this dependence on the

orbital characteristics, we want to find a value of k for near equatorial

orbits (i.e. between -30 and +30 degrees of inclination with respect to the

ecliptic).



The amount of acceleration along the velocity vector is a function of

the cone angle of the velocity vector: Ov.

v -Lrcos2U COS(Ov - u)
uMax

(3.13)

Where: OU = Atan -3 cosev +;8 + cos2v]-
4 sin~v

This relation is plotted on figure 3 and shows that for velocity vector

cone angles that are less than 120 degrees, the acceleration is greater

than 15% of the maximum acceleration level.

0 20 40 60 80 100 120 140

Figure 3: Thrust along the velocity vector vs velocity cone angle

160 180



Around 100 degrees, this fraction is more than 30% and this value is

going to be selected to define the average amount of acceleration along

the velocity vector. There is no rigorous mathematical reason for this

choice but for orbits that are not normal to the solar radiation, the

velocity vector cone angle can take on all values between 0 and 180

degrees. Selecting 100 degrees for an average value of the sail's cone angle

seems to define a reasonable value of the average level of thrust. Having

selected this evaluation of the averaged amount of acceleration along the

velocity vector, we now have the semi major axis average rate of change

as a function of the semi major axis itself:

a=-0.3 uI] a15  (3.14)

Typical values of a are presented in table 2:

a: in % of the Earth-Moon distance 0.05 0.1 0.2 0.4

a in km/day 130 360 1030 2900

a in 10-3 Earth-Moon distance/orbit 0.1 0.8 6.6 52

Table 2: Efficiency of the "increasing energy strategy".

This table shows that orientating the solar thrust along the velocity

vector is an efficient way to increase the semi major axis, moreover, the



simplified expression of i (3.14) enables us to have a first estimate of the

time needed to reach a given value of the semi major axis.

a = 2 0.3um]a'L} 5tfr -to = ) [ 03 L (3.15)

For example, starting from a geosynchronous transfer orbit (semi

major axis = 0.065 unit of length) and reaching a semi major axis of half

the distance to the Moon (af = 0.5 unit of length) requires a travel time of:

tf -to = 164 days.

If the initial orbit is the geostationnary orbit (ao = 0.11 unit of length),

the travel time becomes:

tf - to = 105 days.

3.1.3. Numerical simulation of increasing

energy trajectories

Now that the steering law has been specified ("maximize the thrust

along the velocity vector") and that its efficiency has been established,

particular trajectories are going to be computed to show how this strategy

enables a solar sail to spiral away from the Earth and how particular

initial orientations of the orbital plane may contribute to its efficiency

or dramatically ruin its performances.



All the following simulations share several joint features:

semi major axis: a = 0.065 Earth-Moon distance.

eccentricity: e=0.7.

argument of perigee: co = -90 degrees.

inclination with respect to the ecliptic: i = 28 degrees.

At t=O, the Sun position is always the same: it is on the vernal axis

which is directed along the positive x-axis of the trajectory plots (see

Appendix 1). Finally, only the longitude of the ascending node

distinguishes all the following simulations. Practically, this allows to

set the initial orientation of the apsidal line (perigee-apogee) with respect

to the Earth-Sun line. Trajectories have been computed in cases where

these two lines define angles of : 0, 45, 90, 135, 180, 225, 270 and 315

degrees, each of them lasts 120 days.

Conclusions about this increasing energy strategy can be drawn from

the following table which summarizes the set of numerical simulations.

Angle a -90 -45 0 45 90 135 180 225

af 0.44 0.50 0.47 0.37 0.28 0.25 0.28 0.36

a(l+e)f 0.78 0.82 0.72 0.63 0.52 0.48 0.55 0.65

ef 0.74 0.66 0.60 0.66 0.83 0.93 0.97 0.84

Table 3: Effects of the apsidal line initial orientation.



The angle a is given in degrees and specifies the orientation of the

apsidal line, af is the final value of the semi major axis, a(l+e)€ is the

final apogee altitude and ef is the final value of the eccentricity.

Keeping in mind that our goal is to reach as high an apogee altitude as

possible without too much decreasing the perigee altitude to prevent the

sail from the effects of atmospheric drag, it readily appears that some

particular initial orientations of the apsidal line with respect to the

Earth-Sun line are more favorable than others.

Namely, the best case seems to be associated with an initial

orientation between -45 and 0 degrees (values of the angle a), i.e. with the

Sun slightly ahead of the perigee in its apparent circular motion around

the Earth.

Projection of the apsidal
line on the Ecliptic at t=O.

Vernal axis:
towards the
Sun at t=O.

Figure 4:Initial orientation of the apsidal line.



In this case, a semi major axis of 0.5 Earth-Moon distance is reached

in 120 days thus proving that our previous analytical flight-time

estimate (164 days) was not too optimistic in an average case. This '"best

case" is presented on the next pages: initial and final values of the main

orbital elements are provided, as well as time histories of some

particular parameters such as the perigee altitude and the inclination

with respect to the ecliptic. The 7 other simulations are included in

Appendix 1, they show how particular initial orientations of the apsidal

line may induce large eccentricities and thus jeopardize the sail's

mission.

It is interesting to notice that this inclination is varying under the

action of solar pressure and the perturbation due to the J2 term of tJ"

Earth gravitational potential. Bringing the sail in the vicinity of the

Moon is going to require control on the locations where the sail's

trajectory intersects the Moon's orbital plane. This emphasizes the

notions of node of the sail's trajectory with the Moon's orbital plane as

well as the inclination of the sail's trajectory with respect to the Moon's

orbital plane. The next section is going to present a modified version of

the previously developed "increasing energy strategy" which intends to

solve this inclination versus node issue.



Projections of the initial, intermediate and fimal trajectories on the ecliptic
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32. Inclination change strategy

The previously developed "increasing energy strategy" provides an

efficient way of spiralling away from the Earth by means of solar

pressure. However, as can be seen on simulation examples, the

inclination, and more generally, the orientation of the sail's orbital

plane is not controlled and varies freely as a consequence of the

application of this steering law.

In this section, we want to develop a strategy that will provide control

on the orientation of the orbital kinetic momentum in order to bring the

sail's orbital plane in an adequate position for a later intercept of a near-

lunar 'ocation.

Two possibilities were first envisioned. The first one, was to schedule

an intercept at one of the nodes of the solar sail trajectory with the

orbital plane of the Moon. This idea had already been used and developed

in James S. Miller's thesis (reference [301) for a low-thrust lunar

reconnaissance trajectory, and is the basis of navigation schemes

developed by Dr Richard Battin in his book Astronautical Guidance

(reference [311). Despite the good performances of such trajectories. it was

decided to look for another type of strategy. This decision was motivated

by the fact that intercepts at the node of the trajectory put the emphasis



on two short periods of time around the passage at the nodes. Any error

during these short phases must be rapidly corrected, a solution

conceivable with the electric propulsion considered in Miller's thesis,

but, in our case, the very low level of acceleration coupled with the

orientation of the sail make fast orbital corrections impossible. Hence,

it was preferred to focus on a plane change maneuver, which would bring

the sail's orbital plane in the Moon's orbital plane.

This second possibility offers the advantage that future intercept will

be possible in all directions of the sail's orbital plane and not only at two

specific locations. Furthermore, this will allow looking for an intercept

at apogee, whereas in the previous scheme, the apogee was not

necessarily located at one of the nodes.

3.2.1. Matching the Moon's orbital plane

If classical orbital elements are used (or equinoctial elements based

on the classical ones), two parameters must be matched with two

elements of the Moon's orbital parameters. Namely, the inclination (i)

and the longitude of the ascending node (0) of both orbits must have the

same value for the two orbital planes to coincide. These orbital elements

are referenced to the Earth equatorial plane. We thus have at least three

planes to consider: the equator, the Moon's orbital plane and the solar

sail's orbital plane.



An interesting simplification occurs when the equatorial plane is no

longer used as a reference. Instead, the Moon's orbital plane is considered

to define new orbital elements of the solar sail trajectory. When

considering only the solar sail trajectory and the Moon's orbital plane, it

is clear that matching the two planes is equivalent to bringing to zero the

inclination of the solar sail orbit with respect to the Moon's orbital

plane. Instead of matching two sets of two orbital elements it is only

necessary to bring one parameter to zero.

3.22. Inclination with respect to the Moon's

orbital plane

The Moon's orbit is not fixed in an Earth centered inertial frame, its

motion has long been a research topic. In 1920, E.W. Brown published a

quite complete set of tables of the Moon's motion. Mean elements of the

Moon's orbit are given in Dr Battin's book Astronautical Guidance. In

particular, the mean inclination of the Moon's orbit with respect to the

ecliptic is 5.15 degrees. We also learn in this reference that the line of

nodes rotates with a period of 6,798 days. These two features of the

Moon's orbit, associated with the value of the longitude of the node 9o at

a given epoch, enable one to define iM and RM: the inclination with

respect to the ecliptic and the longitude of the ascending node of the

Moon's orbit.



We now want to derive an expression for the inclination of the solar

sail orbit with respect to the Moon's orbital plane. Assuming values of i

and Q for the solar sail orbit inclination and longitude of the ascending

node with respect to the equator, we are able to compute the components

of the unit vector along the kinetic momentum of the solar sail orbit in

the classical geocentric inertial frame:

^A[ sini sinl1
ih solarm = -sini cosf (3.16)

cosi

Since the ecliptic is inclined at an angle a = 23.45 degrees with respect to
A

the equator, the components of th in the ecliptic inertial frame are:

1 0 0 sinisinQ
ih s = 0 cosa sina . -sini cosi (3.17)

0 -sina cosa cosi

In the ecliptic inertial frame, the components of the unit vector along the

kinetic momentum of the Moon's orbit are:

A [ siniM sinO1
ih onm = -siniM cosM (3.18)

L cosiM

Given these two unit vectors, the inclination of the solar sail's orbit with

respect to the Moon's orbital plane is given by:

= A A
i' = Acos th .Sla * 1h Moon (3.19)



Note: We can also easily compute the direction of the ascending node of

the solar sail trajectory in the Moon's orbital plane: this direction is

pointed to by the vector:

A A A

I Node = ih xm x ih so••maw (3.20)

3.2.& Strategy to decrease the inclination with
respect to the Moon's orbital plane

The equatorial plane does not play any physical role in the

derivation of the variation of parameters equations for the classical

orbital elements. If another reference plane is chosen, the form of these

equations will remain the same but the parameters involved in these

new equations will all be referenced to the new plane.

In particular, the variational equation governing the evolution of the

inclination angle is:

di r cosO
dt - h adh (3.21)

Where: 0 is the sum of the argument of perigee (o) and of the true

anomaly (f).

h is the norm of the kinetic momentum (does not depend

on the reference plane).

adh is the component of the disturbing acceleration along

the kinetic momentum of the oibit.



An interesting way of looking at this variational equation is to

consider the orbit as a rigid body. Then, the rate of change of the kinetic

momentum is given by the sum of the torques applied to the orbit.

In our case, we want to rotate the kinetic momentum around the line

of nodes. We thus have to generate a torque, whose axis will be

perpendicular to the line of nodes. This torque can be generated by

orientating the thrust perpendicularly to the solar sail's orbital plane

and in a direction opposite to the kinetic momentum when the sail is

near the ascending node and along the kinetic momentum when it passes

in the vicinity of the descending node.

This approach of the orbit's dynamics is quite simple and is in

agreement with the variational equation of the inclination angle.

Hence, the inclination decreasing strategy can be stated as follows:

A
Maximize the thrust component along - ih so..in the vicinity of

the ascending node.

A

Ma3imize the thrust component along + ih so8,Ua the vicinity of

the descending node.

The steering laws associated with this strategy are easily derived

since they are characterized by the maximization of the thrust along a

vector. Once more, we will use the expressions of the cone and clock

angles of the thrust vector, that were derived earlier. This time, we will



need to compute the cone and clock angles of the kinetic momentum unit
A A

vector ih Solar sail and of its opposite - ih Solar sail'

Before showing some numerical simulations of these orientation

schemes, we are going to evaluate their performances by a simplified

analytical approach.

3.2.4. Analytical evaluation of the efficiency of

the inclination decreasing strategy

The so-called inclination decreasing strategy is actually an improved

version of the "increasing energy strategy". On most of the orbit, the

thrust vector is oriented so as to maximize its component along the

velocity vector. Only in the vicinity of the nodes, is the thrust oriented

according to the above inclination decreasing strategy. Moreover,

depending on each case, the latter strategy is applied only after a given

value of the semi major axis is reached. The region around the nodes,

where inclination control is applied, also needs to be defined

experimentally.

For the sake of this analytical evaluation, we will consider that the

inclination strategy does not perturb the increase of the semi major axis

and we will apply it from the initial orbit to our goal: a semi major axis

equal to half of the Earth-Moon distance. The region on which

inclination control is active, is defined by an angular range of + --6



around each node (this value will later be selected as an efficient one in

the light of various numerical simulations).

From Gauss's variational equation for the inclination, we have:

di r cosO
dt h "adh

In order to simplify the analysis, we consider a circular orbit of

radi.s r=a and cosO is taken to be equal to 0.95 which is its average value

on the interval [- , + - ]1. As in the case of the energy strategy. adh is

chosen to be equal to 0.3 uMax. Finally we have an approximated

averaged equation:

di -1 0.3 uMax
dt - 3 0.95 . A in rad/day (3.22)

Where: the factor accounts for the fact that this steering law is

only applied on a third of the length of the orbit (one

region around each node, each region being E wide)

The time-averaged rate of change of the inclination turns out to be a

function of the semi major axis. We are now interested in getting an

estimate of the inclination changes that are possible during the first

phase of the trajectory i.e. during the spiralling away from the Earth.

From the previous section, we have the time averaged rate of change

of the semi major axis:



da 2
dt- 0.3 uM= a1-5

Combining these two equations, we can estimate the range of the

inclination changes that can be achieved along a trajectory leading from

an initial value of the semi major axis ao to a final value of the semi

major axis af.

tf af af

Ai • dt T• 'dt da d /dt da (3.23)
to ao da/dt

ao

This leads to the following expression for the inclination change:

-0.95 r[afAt- 6 Ln (3.24)

For ao = 0.065 (G.T.O.) and af = 0.5, we obtain Ai - - 19 degrees.

For ao = 0.11 (geostationnary initial orbit), we get Ai - - 14 degrees.

This analysis shows that our inclination decreasing strategy is

efficient and that it is reasonable to base our trajectory design on an

orbital plane change that will occur simultaneously with the semi major

axis increase.

However, this approach does not pretend to foresee actual values of

the inclination changes nor did the analytical evaluation of the changes

in the semi major axis. The values that were obtained in these two



preliminary evaluations were just intended to bring about confidence in

strategies that were derived from basic equations of the orbital

dynamics.
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3.2.5. Numerical simulations of the general

strategy: increasing energy and
decreasing inclination

As presented in the above figure the general strategy to orientate the

sail during the first part of the trajectory is a combination of three

different steering laws. The first scheme was developed in section 3.1.

and intends to raise the apogee of the sail's orbit by maximizing the

component of the thrust along the velocity vector. The two other schemes

are designed for the same goal: decreasing the inclination of the sail's

orbital plane with respect to the Moon's orbital plane. One of them

maximizes the component of the thrust along the kinetic momentum of

the sail's orbit and takes place around the descending node of the sail's

trajectory with respect to the Moon's orbital plane, whereas the other

scheme takes place around the ascending node and minimizes the

component of the thrust along the orbital kinetic momentum.

Simulating trajectories with this kind of steering laws requires the

definition of regions around each node where the inclination change

schemes are to be applied. These regions were found to be always less

than ! wide around each node. However, depending on the initial

orientation of the sail's orbit with respect to the Sun, particular values

were selected to obtain the greatest change in inclination without loosing

too much performance on the semi major axis increase that was



provided by the "increasing energy strategy". Numerical examples are

included in Appendix 2 but one of the most efficient cases is presented

hereafter. It was shown that for different orientations of the apsidal line

with respect to the Earth-Sun direction, the "increasing energy strategy"

was more or less efficient, best initial situations were defined when these

two lines were separated by angles ranging between -45 and 0 degrees (see

section 3.1.3.). It is pleasant to see that these cases are also suitable for

the inclination change strategy. Indeed, little loss is induced on the semi

major axis increase that was provided by the "increasing energy

strategy". Table 4 shows a comparison of both strategies:

a -45 0 45

Ai? no yes no yes no yes

af 0.498 0.35 0.47 0.42 0.38 0.34

if 32 O 25 0 35 O

apf 0.82 0.66 0.72 0.7 0.62 0.58

Table 4: Efficiency of the "general strategy".

a is the angle (in degrees) defining the relative orientation of the

apsidal line and the Sun-Earth direction (see section 3.1.3.).



Ai? states whether the "increasing energy strategy" was applied alone

(Ai?=no) or if the "general strategy" was applied in order to provide

inclination control (Ai?=yes). It is important to know that the

trajectories generated by the "increasing energy strategy" last 120 days

whereas those generated with the "general strategy" require an

additional 50-60 days.

ar is the final value of the semi major axis in Earth-Moon distance.

if is the final value of the inclination with respect to the Moon's

orbital plane. For simplicity, this plane was considered to be coplanar

with the Ecliptic since its inclination is only 5.15 degrees and its

orientation varies in an inertial frame. However this inclination

control strategy can be applied to decrease the inclination of an orbit

with respect to any well defined plane (i.e. as long as the components of

the normal to the plane are known as functions of time).

apr is the final value of the apogee altitude in Earth-Moon distance.

In every case it appears that matching the sail's orbital plane with

the Moon's orbital plane (which has been approximated by the Ecliptic in

these simulations) is possible and that it does not conflict with the semi

major axis increase. Following, is the simulation of a solar sail

trajectory from low-Earth orbit to a high-Earth orbit with zero final

inclination with respect to the Ecliptic. At initial time, the apsidal line

and the Sun-Earth direction coincide since, according to the above table

this seems to define one of the most favorable case. However, as it may be

seen on other cases which are included in Appendix 2, it is possible to



reach high-Earth orbit with zero final inclination with respect to the

Ecliptic with other initial orientations of the apsidal line.



Projections of the initial, intermediate and final trajectories on the ecliptic
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ORBITAL ELEMENTS

Semi major axis

Excentricity

INITIAL VALUES

0.065

0.7

FINAL VALUES

0.3472

0.9065

The following elements are referenced to the Ecliptic:

Inclination 28

Ascending node 45

Argument of perigee -90

Inclination control if: a < 0.2 and theta < 30 degrees, or

a > 0.2 and theta <18 degrees

where theta is the sail's angular position with respect to the nearest node.
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To conclude this first part, a characterization of the global strategy

performances can be stated as follows: typical flight times of 160 days

from an initial orbit characterized by a semi major axis of 0.065 Earth-

Moon distance and 28 degrees of inclination with respect to the Ecliptic,

enable to reach an orbit with zero-inclination and a semi major axis of

0.42 Earth-Moon distance (apogee at 0.62 Earth-Moon distance).



PART 2

THE MINIMUM TIME INTERCEPT PROBLEM



CHAPTER IV

THE OPTIMAL CONTROL PROBLEM

4.1. Assumptions

The second part of this study deals with intercepting a chosen

location in the vicinity of the Moon (an intercept is characterized by

reaching a given position without specifying the terminal velocity). As it

was defined in the framework of the future Earth- Moon "race", a target

point behind the Moon was chosen.

Until now, we have assumed that the gravitational attraction of the

Moon could be neglected in the equations of the solar sail's dynamics. In

this last phase of the Earth-Moon journey, dynamics must be re-

established to account for perturbations of the Keplerian orbit (solar sail

around the Earth) other than solar pressure and the effects of the Earth's

oblateness.

Due to our previous inclination control results, the rendez-vous

problem is going to be studied in the planar case. This introduces an

approximation into our model since the Moon's orbital plane is slightly

inclined with respect to the ecliptic (5.15 degrees). This is acceptable for



two reasons. First it would just be a matter of computer and

mathematical overhead to develop a three dimensional approach for the

intercept problem, deriving it would not introduce any new difficulties in

comparison to the planar case although numerical convergence may

become harder to achieve. Second, given the limited actual knowledge

about the behavior of a solar sail in space environment, it is not worth

developing a highly accurate model of the perturbations when we are not

able to assert with equal accuracy the model of the sail's dynamics.

Reducing our problem to a planar one enables us to avoid including a

model of the Moon's motion and decreases the number of variables in the

optimal control problem. Four state components are needed instead of

six, as well as four costate components (Lagrange multipliers) instead of

six and finally one control parameter (angle characterizing the setting of

the sail) instead of two in the three dimensional problem (cone and clock

angles). These variables will be described more carefully in the

formulation of the minimum time intercept problem.

4.2. Dynamics of the solar sail

We first write the equations of motion of the Earth, Moon and solar

sail in a Sun centered inertial frame. The x- axis of this frame is pointing

to a given star or as usually used, towards the y direction (or vernal



direction, which is defined as the line from Earth towards the point of

intersection of the ecliptic and the equator where the Sun crosses the

equator from South to North in its apparent annual motion along the

ecliptic). The y- axis is chosen to define a direct orthonormal frame in

the sense of rotation of the Earth's trajectory.

Let: XE denote the Earth's position vector.

iM denote the Moon's position vector.

rss denote the solar sail's position vector.

.E, M and gs denote the gravitational constants of the

Earth, Moon and Sun.

The equations of motion of the three bodies with respect to the Sun are:

d2 tE r - M
dt- -= I -11 1 ILE -lr. . M  11

(4.1)

d2 LM r M r M  LE
d--ty-- =P '-- IilrLM .- E  II3

(4.2)

d2 Lss r ss I-lEs " xE SS r-Mdt2 A_1_ llr lI Ir_ -r E l 11 ss-rM1 3 +

acceleration due to solar pressure + effect of J2. (4.3)

Our vector of interest is L = rss -LE, the position vector of the solar

sail with respect to the Earth. Its dynamics are given by the equation:



d2 (tss. -.LE)
dt2 I II ss I13 It E I I

IIL •S 1 IM

11 ss' :E 3

+ acceleration due to solar pressure

+ effect of J2.

The solar sail is submitted to:

1/ Solar gravity gradient:

2/ Moon gravity:

3/ Earth gravity:

4/ Solar pressure:

Where:

Ps S-7-II13) IIILSILE II81=-Cit tl' XE -114 14
2 2 CJM TMs~-L 113- IItE -ýM 113

AS A
~4 =X - Tcos~q U(O)

X is the lightness number of the solar sail ( X = 0.1).

0 is the angle between the Sun to solar sail line and the

normal to the sail in the direction of the thrust.
A
_u(0) is the unit vector along the thrust.

5/ Effect of J2.

(4.4)



4.2.1. Approximate ranges of the different

accelerations

Solar gravity gradient: al = -U s s 4i r-II
Iý l Ir IlFE 1!

We want to give an upper bound to this source of acceleration. The

'"worst case" happens when the Sun, the Earth and the solar sail are

aligned with the Earth between the two others. Then, the magnitude of

this acceleration is maximum when the solar sail is in the vicinity of the

Moon, and its value reaches 1.6 10-6 go.

I al I < 1.6 10-6 go. (4.5)

Moon gravity: Ia a pg I f + 1 (4.6

1 (47)
Earth gravity: la3 1 E r - 2 (4.7)

Solar pressure: I a4 I 6. 105 go (4.8)

Oblateness: From reference [31] the acceleration due to the J2 term of the

Earth's gravitational potential is given by:

adri 3 2 E J2Rq2 r1 - 3 sin2O sin 2i
ad =2 si=sin28 sin2i (4.9)
adh 2 1rss rE sin sin sn2i

Where: adr, ado and adh are the components of the acceleration in

the classical orthoradial orbital frame (adr along the position vector,



adh along the kinetic momentum of the orbit and ade so that

(adr,ade,adh) defines a direct frame).

The magnitude of this acceleration can then be approximated by:

3 PE J2 R2 th: J2 = 1.08228 10- 3

2(1 - I ss -M 114) = 1.66 10-2 unit of length

1.229 10-10 { 9.81 m/s2
as I - sswith: 190.47 unit of length / day2

We can summarize these results by the following table:

Sun's gravity gradient -1.5 10-6 go

1
Moon's gravity -(-- 1) 3.4 10 6g

2.75 10-4

Earth's gravity (1 - r) 2

Solar pressure - 6. 10-5 go

1.23 10-10
2 (1- r) 4

Table 5: Approximate range of each acceleration source.

(r is the distance between the solar sail and the Moon)

This study of the various accelerations is going to help us choose a

dynamical model for the intercept part of the trajectory. Out of the five



sources of acceleration, we are only keeping three into account. We

decided to neglect the Sun's gravity gradient since its magnitude is low all

along the path from the Earth to the Moon. We will also neglect the

acceleration due to the J2 term. For the latter, the approximation is valid

at high altitude above the Earth, whereas it is not so accurate around.a

low perigee. However our planar model is already a source of

approximation and taking the oblateness in consideration in this "high"

part of the trajectory would not be in agreement with the degree of

accuracy that is defined by the planar model.

Figure 6 shows the range of each kind of acceleration as functions of

the distance between the solar sail and the Earth.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 6: Acceleration sources vs distance from the Earth (in Earth-Moon distance)
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Our model of the dynamics needs to be relevant for orbits with semi

major axis larger than 50% of the Earth-Moon distance (384,400 km).

Figure 6 shows that it is acceptable to neglect the Sun gravity gradient

and the effect of the J2 term at such altitudes. Eventually, our model of

the solar sail motion includes the Earth's attraction, the Moon's

attraction (with its two terms) and the acceleration due to solar pressure.

d2 (LssrxE) S -r L
dt2 - FE ILSS I -MILWLM 113t 11r -IM 113dt2  I~ i ss .rE i I i 3

+ uMx cos20 ~0) (4.10)

It can be written in terms of the position vector of the solar sail with

respect to the Earth: r_ = Ess - E.

d2 r r r+ -r-M I E I)
dt2" '-LE [ q13 - ii _ + _ rM 1 3  -rMr M 1 3

+ UMax Cos2 8 _() (4.11)

43. Formulation of the minimum time intercept

problem

The general problem can be stated as follows:

1/ given an initial orbit and a position on this orbit.

2/ given the model of the solar sail dynamics.



3/ given a desired final position: r.(tf) = .f.

4/ given the initial positions of the Sun and of the Moon.

find the control law 0(t) for tO<t<tf that minimizes the time tf to reach

our final desired position.

Through-out this study, our desired final position is going to be a

given location behind the Moon: behind meaning that the sail cannot be

seen from the Earth.

In order to find a solution to this problem, the optimal control theory

and the calculus of variations will be used (formulations and derivations

of the optimal control law will be in agreement with the Minimum

Principle). As a result, we are going to be faced with a two-point-

boundary-value-problem (TPBVP), that must be solved numerically.

For a complete derivation of the necessary conditions for optimality

of the control law we will use as a reference: Applied Optimal Control by

Bryson & Ho, and more precisely: their minimum-time section (see

reference [32]).

Our state vector is composed of the position and velocity vectors of

the solar sail in an Earth centered inertial frame. The dynamics of the

solar sail can be formulated by:

dt B L J (r.O.t) 1 (4.12)

rd r EvM(
f(r_-,e1t)) EP ii=M 11-) ,, + UMCOS ()ulr- iiy iir -r~ m~ ~i(0



y = £ + r- LM

Our criterion to be minimized is: J = fI dt .13.
to

Hence we have defined the Hamiltonian of the problem:

T TH = 1 + ~ t + •(•t(L..t)) • 14.

Where: XI is the costate of the position vector.

Xv is the costate of the velocity vector, it is often called

the primer vector (see reference ,r4.3,) and bears a very

important property as it will be seen when deriving the

optimal setting of the sail.

4.3.1 Optnmal setting of the sail

The optimality of the angle 0 is provided by the following relation:

Oopt = Arg Min ( H(L,e,t) .15,

2 2

The constraint - 1 < 0 < accounts for the requirement that the sail

must always be oriented so that the reflecting side is towards the solar

radiation and thus, no thrust can be applied towards the Sun.

A necessary condition is that:

&H
G--e op) = 0 16.



The only part of the Hamiltonian that depends on the angle 0 is:

- T

H(O) = uMax cos 20 U(0)

This expression shows the general result about the primer vector :

0 must be chosen so as to maximize the projection of the thrust on -k.

Oopt = Arg Max {- cos 20 u_(O)} (4.17)

0 denotes the angle between the Sun to solar sail direction and the

thrust vector. Let us define C as the angle between the Sun to solar sail

line and the primer vector v.

H(0) = uMax cos2 0 ( cosC cosO + sing sin0) (4.18)

The extreme values 0 = +± are to be avoided since they define settings

of the sail that provide no thrust because the sail is only "showing its

edge" to the Sun. The following derivation Is quite similar to the one that

was done in the first part, but the final expression is going to be slightly

different.

{ =H O} (2 sintgtan 20 + 3 costan-sin= O}a0- (4.19)

We thus have two solutions: tanO = -3cosý ± 48+cos204 sinC



One is going to maximize H(8) and the other one is going to minimize

it. To get rid of the indetermination, let us consider the case where 7 = 2'

then tane = . H(O) will be minimized if tan = - 4.

We now have a closed form expression for the optimal setting of the

sail in terms of the primer vector angle C:

eopt -Atn[3 cosý + 48 + cos2•] (4.20o A4 sing (4.20)

This expression is the same as in Sauer's paper (reference 124]) and

complies with the constraints: - < 0 <2 because of the Atan(x) domain.

4.3.2. Dynamics of the Lagrange multipliers

The formulation of the minimization problem, involves two sets of

differential equations. First, the dynamics of the state vector, which has

been studied in the preceding section. Second, the dynamics of the

Lagrange multiplier vector associated with the state vector.

The general expression of this set of first order differential equation

is:

d [T] H
d't I = "-ax (4.21)

Where: x is the state vector.

, is the vector of Lagrange multipliers (or costate vector).

H is the Hamiltonian of the problem.



Here, we have:

with:

SdT
dt 1
dT

at- A

aH
-a r
aH
iay.

T T
H = 1 + • + f+,.L(r_.,8,t))

from which: _ = - r

Let us now derive the expression of X_.

aH T af (r,e,t)
-= - - ar

fl'~t=-~:i~i _ - CbiM(j~i"~jj

XE "M-rM
II• LM I ) uMaxcos2 u10)

Eventually, the dynamics of the Lagrange multipliers are given by:

{r = -Mk

af r2 12 -3 r r.T
M -a= -E r5

y2 12-3y .yT
PM Y5

y = r + ri -rM position vector with respect to the Moon.

4.3.3. Boundary conditions

At to: position and velocity of the solar sail are given:

r(to) = ro (to) =V..o

(4.22)

(4.23)

(4.24)

(4.25)

I _ ~



Hence, the costate vectors Y,(to) and j(to) are free .

At te: position is given: r(ta) = (1 + e) tMoon(ta) with O<e<<1.

velocity is free.

Hence ;v(t) has to beQ and Xr_(tf) is free.

Optimality condition for tf : H(td = 0

4.3.4. The two-point-boundary-value-problem

Given the parameters: L(to).v(to).

Guess: Ar(to), v(to) and tf (5 unknowns).

r =v

S= f(lropt,t)

So that, using the dynamics:

opt = -Atan [3 cosC + 48 + cos2]
LA4 sinC

ritf) = (1 + e) rMoon(tf)
we reach: X (td) = Q (5 equations)

IHTt) = 0

The general minimum time problem is thus presented as a system of

five non linear equations in five unknowns, solving it produces a local-

minimum-time trajectory.



CHAPTER V

FINDING A SOLUTION TO THE
INTERCEPT PROBLEM

Numerical methods become necessary to solve the system of five non-

linear equations that characterize the minimum time intercept problem.

However, before applying a Newton-Raphson algorithm, there are

several remarks that can be made and simplifications that are possible

to reduce the complexity of our numerical problem.

5.1. Simplifications of the two-point-boundary-

value-problem

5.1.1. Scaling of the Lagrange multipliers

Based on reference [32] and on a previous work on solar-sail

trajectory optimization by Dr. D. Flament (reference [341), several

simplifications can be applied to the two-point-boundary-value-problem

that was defined in chapter IV.



Let us consider a first guess of the five unknowns Xr(to), k (to) and tf.

This choice leads to final values r(tf),vL(tf), Xr(tr) and v(tf).

Let us now consider a new guess, which differs from the first only by

the fact that the Lagrange multipliers are all multiplied by a given factor

k. Our new guess is now, k Ar_(to), k _(to) and tr. These initial values of the

Lagrange multipliers, together with the initial values of the state: r_(to)

and v_(to) are propagated from to to tf according to the equations of the

sail's dynamics.

First remark: The sail's dynamics depend on the dynamic

equations of the costate only through the formula defining the optimal

setting angle: Gop t .

Second remark: The determination of Oopt requires only the

knowledge of the direction of the primer vector Av. The magnitude Iy II

does not matter in the computation of Oop t .

Third remark: From the two previous remarks and given the

linear form of the equations of the dynamics of the Lagrange multipliers,

we conclude that: guessing k1%(to) and kW_(to) is not going to change the

history of the state's dynamics: f(r_,8,t), toStStr. Hence, only the final

values of the costate components are going to change by a factor of k, the

state components at final time will be the same as with the first guess.



Given L(to) andvt(to):

rXT(to) =
Guess1: oxv(to)= ------------- >

t-

dt

r (tf)
y (t)

dt ------------ > k Xr(t)
k A (tf

Ges (to) = k
Guess2: 1v (to) =k .-----------.>

Itf"

This scaling property is going to reduce the order of the system of non

linear equations from 5 to 4.

5.1.2. Reducing the order of the system

Since the vector of Lagrange multipliers can be scaled, we can get rid

of one component of the primer vector at initial time. Indeed, the primer

vector at to cannot be Q since the value of the final time (which is the

performance index) does obviously depend on the initial magnitude and

orientation of the velocity vector (the primer vector is the costate of the

velocity vector). By choosing an appropriate frame, we can make sure

that the first component of the primer vector at to is not equal to zero.

I -



Instead of having the five components: Xrx(to), ry(to). vvx(to) Xvy(to) and

tf, we end up with the four variables to be guessed:

Xrx(to) Xry(to) xvy(to)x .t tand tr.XVXto)' XVx(to)' Xvx(to)

We can also get rid of one equation, namely H(td = 0.

T T T*
H(td = 1 + tr v)(tjd + fl(r,O.td or more compactly- H(td = 1 + b X

If a first choice of initial Lagrange multipliers A(to) satisfies both of the

following boundary conditions:

fXv(td) =0Q
I(tf) = (1 + k) rMoon(tf)

Then the new choice of initial costates will still bring these two

equations to zero but for a particular value of K, H(td will also be equal to
T T

zero. This value of K is: x = - ( t(t 1 + U(rt,.t) (5.1)

The new system of non-linear equations that needs to be solved is of

order 4 and can be put in the form:

F (q) =Q

al = krx(to) Fli_(q) = rx(td - (1 + e) rxMoon(tf)

a2 = ry(to) -- F----F2( = ry(t) - (1 + e) ryMoon(tf)

a4 = tr ,4(Q_) =vy(tf)



5.2. Looking for a sub-optimal solution

The above system of equations can be interpreted as the

minimization of the norms of two vectors: v_1 = lT(td - (1 + e) rMoon(tf) and

V2 = Xv (tf). Minimizing each of these two vector norms defines two

coupled problems. However, we are going to consider solving the

intercept problem alone:

Min { I IL (tf) - (1 + e) EMoon(td I I (5.2)

What sort of a solution can we obtain when ignoring the final norm

of the primer vector?

First, the trajectory that will be defined by solving this intercept

problem will reach the target point behind the Moon, which is our

primary goal.

Second, this trajectory is still a minimum time trajectory. If we call

vf the final velocity of the solar sail at the target point, the trajectory

that we obtained, is the minimum time trajectory that leads to the target

point with a final velocity vf.

Bringing Xv(tf) to zero will make sure that all neighboring

trajectories, no matter what their final velocityv(t) are, require a longer

flight time tf.



The biggest asset of solving the intercept problem alone is that it

brings down the system of non-linear equations to a single equation for

which all the techniques of non-linear programming are available:

I I r(t - (1 + e)rMoon(t) I I =0 (5.3)

5.3 Solving the simplified intercept problem

We are now faced with a single non-linear equation: ftI) = 0, where a

has four components: Xrx(to). ,ry(to), vy(to) and tf.

There are two aspects in the search of a solution ac to this problem:

1/ A good algorithm: which means robustness and good convergence rate.

2/ A good initial guess to start the algorithm: a.

5.3.1. A good algorithm

With the appearance of a new set of Matlab functions in the frame of

the "Optimization Toolbox" it has been possible to avoid coding a

minimization algorithm. There are actually several kinds of algorithms

devoted to non-linear unconstrained minimization. In the case of our

scalar function, quasi-Newton methods are available in several Matlab

routines since September 1990.



The Broyden-Fletcher-Godfarb-Shanno (BFGS) method is the best

quasi-Newton method currently known and we are going to present the

basics of this algorithm which has been coded in the Matlab routine

fminu.m.

The BFGS method is a quasi-Newton method in the sense that every

iteration of the algorithm is of the form (reference [35]):

Xk+ 1 = Xk - (k Dk Vf(Xk) (5.4)

Where f(X) is to be minimized.

For the Newton method, Dk = IV2 f(Xk)1-" and ak = 1; here Dk is an

approximation of the inverse of the Hessian matrix and is updated

according to the set of formula:

Dk+1 = Dk +pk -Dk qkT Dk + ~ k k VkT (5.5)

Pk Dk qk(5.6)
Vk pTq- (5.6'K--pkT Gk Tk

rk = qkT Dk qk (5.7)

Pk = Xk+1 -Xk (5.8)

qk = VflXk+1) - Vf(Xk) (5.9)

In our case, the function f does not have an analytical expression for

its gradient which must be calculated through finite differences. The

function f(_.} is calculated according to the following description:



I(tO) andyv(t0) are given.

tf _

aI = krx(tO)a3 = y(to) > dt ------ > f t) = r.(tf) - (1 +e) rMoon(tf ) Ij

(a4 = tf

5.3.2. A good guess for the initial costate vector

and the final time

To guess a good value for the four variables Xrxto), ry(to ,vy(to) and

tf, we make various evaluations of the function fiy) which needs to be

brought to zero.

The special form of the function makes it possible to guess by using

graphical outputs. The evaluation of f_) requires the numerical

integration of eight first order differential equations from to to tf. The

eight variables are L.r_, , r and X_ (4 two-dimensional vectors) and

plotting r gives a graphical view of the trajectory.

Combined with a plot of the Moon's trajectory between to and tf, each

evaluation of f) shows how changes in _a induce changes in the final

position of the solar sail with respect to the Moon. Then, given a large

value of tf, variations on the three parameters al = Xrx(to), a2 = Xry(to)

and a3 = Xvy(to) make it possible to reach a near-lunar location. Reducing



tf until the final point of the trajectory is at the near-lunar location,

enables the full starting guess of the four parameters to be optimized.

For reasons of easy graphical output and practical coding, the main

routine was coded in the Matlab language. However, to increase the speed

of each function evaluation (one function evaluation is equivalent to the

computation of a whole trajectory), the computation of the derivatives of

the state and costate was coded in C (reference [361) and compiled to

define a new Matlab function. This procedure speeded up the whole

program by a factor of 60 and made each function evaluation last less

than three seconds (on a Sun Sparkstation).

5.2.3. Numerical simulations of the intercept

The near lunar location that is chosen as the intercept point is 15.600

kmn behind the Moon's center. Several cases were solved but all were

associated with the same initial elliptic orbit which characteristics are:

semi major axis: a=0.7 Earth-Moon distance.

eccentricity: e=0.7.

inclination with respect to the ecliptic: i=0.

angle between the apsidal line and the Sun radiation: a=90 deg.

Then, each case was defined by a different initial position of the

Moon. Four values of the angle between the apsidal line and the Earth-

Moon direction were considered: 0, 90, 180 and 270 degrees. The four



associated intercept trajectories are shown in Appendix 3. They all share

the joint feature that they last less than 30 days.

Those trajectories are extremal trajectories since they are the

minimum-time trajectories that lead to the required location with the

final velocity that is reached. However these trajectories are not local

minimum-time trajectories since the final norm of the primer vector

has not been brought to zero, which means that neighboring trajectories

with slightly different final velocity vectors may require less time to

reach the intercept position.

We are now going to present one of those intercept trajectories and the

associated initial and final values of the optimization parameters.

Initial position of the Moon. + 90 deg. wrt the apsidal line.

Desired final position. 15,600 kan behind the Moon.

Optimized value of the final time. 24.19 days.

Distance from goal at tf. 0.048 kilometers.

Optimized value of the costate at to. 0.123 -0.67 -4.10

Table 6: Characteristics of the intercept trajectory (Moon(to)= 90deg.)



Trajectory in the Earth-Moon frame (Earth:(O,O) Moon:(1,O))
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CHAPTER VI

CONCLUSIONS

The simulations of the intercept phase of the trajectory bring the

solar sail to its final location and bring this study to an end. One of its

main feature is the fact that it dealt with both parts of the Earth-Moon

"race" trajectory. Until now, most of the work done on solar sail

trajectory design was focused on either the planetocentric part (see

references [19], [201 and [25]) or on the interplanetary part (see references

[24] and [37]). The two parts of this document intend to cover the whole

length of the trajectory, from low-Earth departure (perigee at 7,500 kmn

and apogee at 42,000 km from the Earth's center), to the near-lunar

intercept point (15,600 km behind the Moon). A steering law is associated

with each phase of the trajectory, and we are now going to summarize the

two orientation schemes that were developed.

In the first part of the flight from GTO to approximately half of the

distance to the Moon, the steering law was based upon heuristic law

design: the semi major axis was increased by orientating the thrust along

the velocity vector and the inclination with respect to the Ecliptic was

brought to zero by orientating the thrust along the orbital kinetic

momentum or its opposite in the vicinity of the nodes. In this part of the

flight, an averaging technique was used for simulation. These



simulations became questionable at semi major axis of a=0.5 Earth-

Moon distance when Aa/a = 5% per orbit. A more complete study would

integrate further (even from GTO) without averaging. This part of the

flight (from GTO to a=0.5) requires about 160 days.

The goal of raising the semi major axis (a) will not lead to lunar

intercept. For this reason, the guidance for the second phase of the flight

is aThieved with an optimal control formulation. For this flight portion,

from an elliptical orbit with e=0.7 and a=0.7 Earth-Moon distance to

lunar fly-by, about 1.5 revolution i.e. 30 days are necessary.

As one can notice in tables 7 and 8, there is a gap between the values

of the semi major axis at the end of the first phase (a=0.5), and at the

beginning of the second phase (a=0.7). The arc associated with these two

values is defined by the strategy used during the first phase. However, its

actual simulation requires switching back to an unaveraged formulation

of the sail's dynamics since the validity of the averaging methods is no

longer guaranteed with such values of the semi major axis (see table 1).



PART 1 I

GOAL Increase the semi major axis and decrease the

inclination with respect to the Moon's orbital plane.

STRATEGY Maximize the thrust along: H in the vicinity of the

descending node , -H in the vicinity of the descending

node and V on the rest of the orbit.

FEATURES Uses averaging methods, lasts 160 days, a(to) = 0.065,

af= 0.5

BASED ON Variational equations of the orbital elements.

Table 7: Characteristics of the first part of the trajectory design.

H denotes the orbital kinetic momentum and V the sail's velocity vector

PART 2

GOAL Reach a given location behind the Moon

STRATEGY Maximize the thrust along the opposite of the primer

vector.

FEATURES Lasts less than 30 days, a(to) = 0.7, final position: less

- than 1 km from goal.

BASED ON Optimal control theory, non-linear programming.

Table 8: Characteristics of the second part of the trajectory design.



Recommendations for further study,.

Several aspects of the trajectory design can be improved.

In the frame of the first part, where the sail's trajectory goes through

fast revolutions about the Earth, the rate of change of the angle defining

the sail's orientation is quite high, which is not practically acceptable. It

is interesting to consider the orientation history provided by the strategy

developed in part 1 and to constrain it so that the precession rate of the

thrust axis would always remain between realistic values. First ideas

and issues concerning this problem are presented in appendix D.

For the intercept part, some improvement could be done in order to

solve the full two-point-boundary-value-problem. It would then be

possible to consider locally minimum-time trajectories instead of

extremal trajectories which satisfy all but one of the optimality

conditions (necessary conditions for stationary value of the

performance index). Several approaches are possible. The two-point-

boundary-value-problem is in the form:

fi(al, a2, a3, X4) = 0

f2(al, cc2, a3, 4 ) = 0

Where al, a2 and a3 are the unknowns initial values of the costate, a4

is the unknown final time tf, f, is the distance from the desired final

position at tf and f2 is the norm of the primer vector at tf. The first
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technique that has been tried was to minimize a combination of the two

functions that need to be brought to zero. In this case, convergence of the

BFGS algorithm was hard to obtain and other possibilities were

considered. fl and f2 are actually the norms of two two-component

vectors so that instead of having two equations in four unknowns, a

system of four equations in four unknowns could be defined by trying to

bring each component of the two vectors to zero. This would allow a

Newton-Raphson approach or a least square minimization approach. On

the other hand, keeping only two equations allows us to consider one of

the equations as an equality constraint in the minimization problem

defined by the other equation.

However, one problem emerged with these new minimization

problems: particular initial values of the costate are defined by the

minimization algorithms and lure the sail into crashing on the Moon's

surface. For this reason, one of the interesting feature of Breakwell's

approach in reference [18] is to consider a new two-point-boundary-

value-problem. It is then intended to generate two different arcs of

trajectory, one being simulated forward from the given initial sail's

position and another one starting from the desired final intercept

location, running backwards in time. Both arcs are then modified until

the state and costate components match at an intermediate location.

Finally, in the frame of a race to the Moon, the time optimization of

the entire trajectory is desirable.

101



APPENDICES



APPENDIX A

SIMULATIONS OF THE "INCREASING
ENERGY STRATEGY"'

This appendix presents different trajectory simulations generated

with the "increasing energy strategy" and associated with various initial

orientations of the apsidal line.

All simulations were performed with a Runge-Kutta-Fehlberg

integrator provided by Matlab, but the averaging methods were coded in

the C language thus improving by an estimated factor of 300 the speed of

the simulation program. Defining new Matlab functions coded in C

enabled writing a relatively concise and simple code.

The following simulations are associated with orientations of the

apsidal line of 0, 45, 90, 135, 180, 225, 270 and 315 degrees (the angle that

is considered here is the angle a defined in figure 4).

-Time histories of the orbital elements show that some particular

initial orientations of the apsidal line (180-270 degrees) bring about

large eccentricity increases and enable little semi major axis increase,in

comparison with the "best" cases (0-90 degrees).
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Projections of the initial, intermediate and final trajectories on the ecliptic

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

ORBITAL ELEMENTS

Semi major axis

Excentricity

INITIAL VALUES

0.065

0.7

FINAL VALUES

0.444

0.743

The following elements are referenced to the Ecliptic:

Inclination

Ascending node

Argument of perigee

-0.2934

-177.4

104

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

48.5

I
I



20 40 60 80 100

20 40 60 80 100

20 40 60 80 100

20 40 60 80 100

50

45

40

35

30

25
0

0.8

0.6

0.4

0.2

0

0.15

0.1

0.05

105

120

v



Projections of the initial, intermediate and final trajectories on the ecliptic

-0.5 0 0.5

ORBITAL ELEMENTS

Semi major axis

Excentricity

INITIAL VALUES

0.065

0.7

FINAL VALUES

0.4983

0.6648

The followi•ng elements are referenced to the Ecliptic:

Inclination 28

Ascending node 45

Argument of perigee -90

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

32.14

18.64

153.4
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Projections of the initial, intermediate and final trajectories on the ecliptic

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

ORBITAL ELEMENTS

Semi major axis

Excentricity

INITIAL VALUES

0.065

0.7

FINAL VALUES

0.4735

0.6067

The following elements are referenced to the Ecliptic:

Inclination

Ascending node

Argumnent of perigee

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

25.51

55.23

100.2
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0.065

0.7

FINAL VALUES

0.3772

0.6654

The following elements are referenced to the Ecliptic:

Inclination

Ascending node

Argument of perigee

34.73

95.66

37.28
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Projections of the initial, intermediate and final trajectories on the ecliptic
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ORBITAL ELEMENTS
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Excentricity

INITIAL VALUES
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0.7

FINAL VALUES
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The following elements are referenced to the Ecliptic:

Inclination

Ascending node

Argument of perigee
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28
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69.55
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3.191
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Projections of the initial, intermediate and final trajectories on the ecliptic

-0.4 -0.2 0 0.2 0.4

ORBITAL ELEMENTS

Semi major axis

Excentricity

INITIAL VALUES

0.065

0.7

FINAL VALUES

0.2506

0.8973

The following elements are referenced to the Ecliptic:

Inclination 28

Ascending node -135

Argument of perigee -90

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

113.3

-217.9

-18.82
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Projections of the initial, intermediate and final trajectories on the ecliptic

-0.4 -0.2 0 0.2 0.4

ORBITAL ELFEMENTS
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Excentricity

INITIAL VALUES

0.065

0.7

FINAL VALUhS

0.2838

0.9669

The following elements are referenced to the Ecliptic:

Inclination

Ascending node

Argument of perigee

84.02

-24.59

-149.3
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Projections of the initial, intermediate and final trajectories on the ecliptic
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0.2

0
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-0.4

-0.6

-0.4 -0.2 0 0.2 0.4 0.6

ORBITAL ELEMENTS

Semi major axis

Excentricity

INITIAL VALUES

0.065

0.7

FINAL VALUES

0.3617

0.8368

The following elements are referenced to the Ecliptic:

Inclination

Ascending node

Argument of perigee

70.31

-10.8

-159.7
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APPENDIX B

SIMULATIONS OF THE "GENERAL
STRATEGY"'

The trajectories presented in this appendix show the performances of

the "general strategy". This strategy intends to increase the semi major

axis and decrease the inclination with respect to the Moon's orbital

plane. Three different initial orientations of the apsidal line are

considered: 45, 90 and 135 degrees with respect to the initial Sun

direction. These orientations proved to be the most efficient ones

according to the results presented in appendix 1.

In each of these cases, the inclination with respect to the Moon's

orbital plane is brought back to zero and the semi major axis increases

as shown on the time histories of the orbital elements. The semi major

increase provided by the "general strategy" enable reaching high-Earth

orbits (a=0.4 Earth-Moon distance).

Each initial orientation of the apsidal line defines a different case

for which one needs to define the region around the nodes of the sail's

trajectory where the inclination control is to be applied.
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Projections of the initial, intermediate and final trajectories on the equatorial plane

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

ORBITAL ELEMENTS

Semi major axis

Excentricity

INITIAL VALUES

0.065

0.7

FINAL VALUES

0.3472

0.9065

The following elements are referenced to the Ecliptic:

Inclination

Ascending node

Argument of perigee

Inclination control if:

0.141

35.38

163.2

a < 0.2 and theta < 30 degrees, or

a > 0.2 and theta <18 degrees

where theta is the sail's angular position with respect to the nearest node.
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SEMI MAJOR AXIS (in Earth-Moon distance)
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Projections of the initial, intermediate and final trajectories on the ecliptic

0,4

0.2

0

-0.2

-0.4

-0.6

ORBITAL ELEMENTS

Semi major axis

Excentricity

INITIAL VALUES

0.065

0.7

FINAL VALUES

0.4197

0.6397

The following elements are referenced to the Ecliptic:

Inclination

Ascending node

Argument of perigee

Inclination control if:

0.004816

47.5

150.8

a < 0.2 and theta < 30 degrees, or

a > 0.2 and theta <18 degrees

where theta is the sail's angular position with respect to the nearest node.
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SEMI MAJOR AXIS (in Earth-Moon distance)
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Projections of the initial, intermediate and final trajectories on the ecliptic

-0.4 -0.2 0 0.2 0.4

ORBITAL ELEMENTS

Semi major axis

Excentricity

INITIAL VALUES

0.065

0.7

FINAL VALUES

0.3401

0.7099

The following elements are referenced to the Ecliptic:

Inclination 28

Ascending node 135

Argument of perigee -90

Inclination control if: a > 0.1 and theta <18 degrees

where theta is the sail's angular position with respect to the nearest node.
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APPENDIX C

SIMULATIONS OF THE INTERCEPT
PHASE

In this appendix, the second part of the trajectory is presented. An

initial high orbit is chosen (a=0.7, e=0.7 for the semi major axis and the

eccentricity). The initial point of this arc of trajectory is at apogee, and

the Sun initial position is always chosen to be towards the negative y-

axis of the trajectory plots thus making an initial angle of -90 degrees

with the apsidal line.

Three cases are presented, each case is associated with a different

initial position of the Moon with respect to the apsidal line of the sail's

initial orbit. For each case a table gives the characteristics of the

intercept trajectory.
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Initial position of the Moon. 0 deg. wrt the apsidal line.

Desired final position. 15,600 km behind the Moon.

Optimized value of the final time. 27.69 days

Distance from goal at tf. 0.015 km

Optimized value of the costate at to. 0.918 -3.97 23.01

Table 9: Characteristics of the intercept trajectory (Moon(to)=0 deg.)
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Trajectory in the Earth-Moon frame (Earth:(O,O) Moon:(1,0))

-1 -0.5 0 0.5 1

Trajectory in an Earth-centered "inertial" frame (Earth:(O,O))
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Initial position of the Moon. 180 deg. wrt the apsidal line.

Desired final position. 15.600 kmn behind the Moon.

Optimized value of the final time. 27.33 days

Distance from goal at tf. 0.04 km

Optimized value of the costate at to. -1.01 -1.03 1.771

Table 10: Characteristics of the intercept trajectory (Moon(to)=+90 deg.)
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Trajectory in the Earth-Moon frame (Earth:(O,0) Moon:(1,O))

-1 -0.5 0 0.5

Trajectory in an Earth-centered "inertial" frame (Earth:(0,0))
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Initial position of the Moon. 270 deg. wrt the apsidal line.

Desired final position. 15,600 km behind the Moon.

Optimized value of the final time. 29.7 days

Distance from goal at tf. 0.014 kmn

Optimized value of the costate at to. 0.132 0.045 4.85

Table 12: Characteristics of the intercept trajectory (Moon(to)=270deg.)
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APPENDIX D

PRECESSION RATE CONSTRAINT

This appendix presents a first approach to the problem raised by the

impossibility of rotating the thrust vector arbitrarily fast. Various

heliogyro designs were studied by Blomquist in reference [8] and show

that the precession rate is bounded and must usually remain smaller

than 500 degrees per day.

To investigate the importance of this constraint, we will only

consider the planar case in which the sail, the Earth and the Sun are in

the same plane and for which it is intended to increase the semi major

axis. In that case, the "optimal" sail orientation is defined by

maximizing the component of the thrust along the velocity vector. The

limitation on the thrust vector precession rate prevents from following

the "optimal" sail orientation scheme in two particular situations.

The first of these situations happens when the velocity vector is

changing direction so fast that the thrust vector cannot follow it. This

occurs when the orbit is low and especially in the vicinity of the perigee.

The lower the perigee altitude, the larger the are along which the

"optimal" orientation law cannot be applied. Hence, the maximum
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precession rate required by the "optimal" orientation law, as well as the

length of the arc on which this law cannot be applied are decreasing

functions of the semi major axis and increasing functions of the

eccentricity.

The other situation where boundedness of the precession rate

prevents the application of the "optimal" orientation law is defined as

follows. In the planar case, once per orbit, the velocity vector points

towards the Sun and obliges the thrust vector to achieve an

instantaineous 180 degree flip in order to keep on maximizing the thrust

component along the velocity vector. If one does not use both sides of the

sail this requires that the precession rate be infinite. This happens

regardless of the values of the eccentricity and of the semi major axis. It

should be noted that for the three dimensional problem, there will still

be an instantaneous flip required by the "optimal" orientation law. It

will take place when the component of the velocity vector that lies in the

ecliptic points towards the Sun, but due to the orbit inclination with

respect to the ecliptic, the flip will require an instantaneous change of

less than 180 degrees.

These considerations are going to define requirements for the initial

orbit of the solar sail. In order to achieve the 180 degree flip without

losing too much performance on the semi major axis increase, it is

desirable to have the flip taking place in the vicinity of the apogee.

Indeed, the time required to perform the flip is only specified by the

maximum precession rate available (e.g. 500 degree/day enables a 180
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degree flip In 8.6 hours). Hence. it is best to schedule the flip where the

rate of change of the semi major axis is minimum, which happens to be

at apogee. The best orientation of the initial orbit would be such that

during the first days of the trajectory the velocity vector at apogee would

be pointing towards the Sun.

The maximum precession rate available is also going to define a

lower bound on the initial perigee altitude in order to decrease as much

as possible the length of the orbital arc around the perigee where the

precession rate required by the "optimal" orientation law cannot be

achieved.

Table 13 summarizes the approximate required rates. We can see that

a sail capable of a thrust vector precession rate of 500 degrees per day will

be severely handicapped in the highly elliptical GTO and not at all

constrained with an initial GEO.

Three kinds of precession rates are given for three different orbits.

The rate at perigee is an approximation of the maximum rate required

when the sail passes at perigee. It is given as half of the angular rate of

1 1 1L a(1 -e2 )
the sail on its orbit ( rate at perigee= = a2 (1 -e) 2

On the other hand. the rates presented for the flip at apogee are

calculated by dividing 180 degrees by the time required to fly a 40 or 60

degree arc of orbit centered on the apogee.
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Orbit GTO: a=0.065 GEO: a=0.11 and e=0.7 and

and e=--0.7 e=0 a=0. 13

Rate at perigee 3140 deg/day 180 deg/day 1100 deg/day

Flip at apogee 707 deg/day 1620 deg/day 250 deg/day

(40 degrees)

Flip at apogee 309 deg/day 1080 deg/day 110 deg/day

(60 degrees)

Table 13 : Required precession rates for GTO. GEO and higher orbits.
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