Vil

Shortest Paths and
Dynamic Programming

The shortest path problem is a classical and important combinatorial problem that arises
in many contexts. We are given a directed graph and a cost or “length” a;; for each
arc (z,5). The length of a path (z,%y,12,...,ik,1) from node ¢ to node 1 with arcs
(2,%1), (31,%2), . .., (ik—1, tx), (2, 1) is defined to be the sum of the arc lengths (aiil +
iy + 000 F Q5 _yip + a,-kl). The problem is to find a path of minimum length (or
shortest path) from each node % to node 1.

There are many applications of the shortest path problem. One example, of par-
ticular relevance to distributed computation, arises in the context of routing data within
a computer communication network. Here the length a;; represents a measure of cost
(such as average delay) for crossing link (¢, j). Thus, a shortest path is a minimum cost
path and can be viewed as a desirable path for routing data. An interesting feature here
is that the communication network defines the graph of the shortest path problem, and
each node is a processor that can participate in the numerical solution.

Shortest path applications arise also in other types of routing problems, involving,
for example, the flow of vehicles, materials, etc. Other examples include problems of
heuristic search, and deterministic optimal control problems, where the trajectory of a
dynamic system is to be optimized over a given time interval [Ber87]. Here the number
of nodes is often very large, and parallel computation may be required to reduce the
computation time to an acceptable level.

291

292 Shortest Paths and Dynamic Programming Chap. 4

Finally, the shortest path problem frequently arises as a subroutine in algorithms for
solving other, more complicated problems. In this context, the shortest path subroutine
may have to be called many times, so its fast parallel execution can be critical for the
success of the overall algorithm.

The shortest path problem formulation is a special case of a more general modeling
technique known as dynamic programming, which deals with the issue of making optimal
decisions sequentially. Each decision results in a cost, but also affects the options of
subsequent decisions, so the objective is to strike a balance between incurring a low cost
for the present decision and avoiding future situations where high costs are inevitable.
We can also view the shortest path problem as a problem of sequential decision making.
Starting at node 4, the first decision is to select an incident arc (i,4;) of node ¢, then to
select an arc (i1, 42), and so on until the destination node is reached through a final arc
(ik, 1). In the first decision one must balance the desire to select an arc (z, j) with small
length a;; with the desire to avoid going to a node j that is “far” from the destination.
This tradeoff is captured in the equation

* . * .
x; =mj1n(aij +z7), t1=2,...,n,
z; =0,

which, as we shall see, is satisfied by the shortest path lengths z}, i = 1,...,n. The
dynamic programming algorithm for the shortest path problem has the form

T; := min(a;; + z5), 1=2,...,n,
J

which is reminiscent of the relaxation methods of Chapters 2 and 3. This algorithm is
particularly well suited for parallel or distributed implementation since the minimization
over j in the previous equation can be carried out in parallel for all nodes i # 1. Its
convergence to the shortest path lengths will be shown in Subsection 4.1.1 for a broad
range of initial conditions. In Subsection 4.1.2, we will analyze the complexity of other
shortest path methods that are well suited for distributed implementation, and we will
compare them with the preceding algorithm.

In this chapter, we will also discuss dynamic programming problems that are more
general than the shortest path problem in that, once a decision is selected at a given node,
the next node is not predictable, but rather is chosen according to a known probability
distribution that depends on the selected decision. This leads to a model involving a
finite—state Markov chain, the transition probabilities of which are influenced by the
choice of decision. We first consider this model in Section 4.2 for the simpler case
where there are no decisions to be made or, equivalently, the transition probabilities
are independent of the decision. We then consider the effect of decisions in Section
4.3. Much of our dynamic programming analysis is based on a monotonicity property
of the mapping underlying the dynamic programming algorithm [Prop. 3.1(a) in Section

Sec. 4.1 The Shortest Path Problem 293

4.3]. Under additional conditions, this mapping is also a contraction with respect to a
maximum norm [Prop. 3.1(c) and Exercise 3.3]. We use these two properties to show
convergence of the algorithm to the correct solution. In Chapter 6, we show that these
properties also guarantee convergence in a totally asynchronous distributed environment.

4.1 THE SHORTEST PATH PROBLEM

The shortest path problem is defined in terms of a directed graph consisting of n nodes,
which are numbered 1,...,n. We denote by A(%) the set of all nodes j for which there
is an outgoing arc (¢,) from node i. Node 1 is a special node called the destination.
We assume that A(1) is empty, that is, the destination has no outgoing arcs. We are
given a scalar a;; for each arc (7, j), which we call the length of (i, j). We define the
length of a path {(i, 1), (21, 22), ..., ik, j)} starting from node ¢ and ending at node j to
be the sum of the lengths of its arcs (ai,', + i + -+ ag, j). The problem is to find
a path of minimum length (or shortest path) from each node ¢ to the destination. Note
here that we are optimizing over paths consisting exclusively of forward arcs (such paths
are called positive; see Appendix B). When we refer to a path or a cycle in connection
with the shortest path problem, we implicitly assume that it is positive. We assume the
following:

Assumption 1.1. (Connectivity) There exists a path from every node i = 2,...,n
to the destination node 1.

Assumption 1.2. (Positive Cycle) Every cycle has positive length.

We will show that the shortest path lengths z¥, i = 1,...,n, also called shortest
distances, are the unique solution of the system

z; = jgl}lr(li)(aij +), t=2,...,n, (1.1a)
1 =0 (1.1b)

(known as Bellman’s equation). Furthermore, we will show that the iteration

;= jgli{li)(aij +z;), 1=2,...,n, (1.2a)
z1:=0 (1.2b)

(also known as the Bellman—Ford algorithm) converges to this solution for an arbitrary
initial vector x with z; = 0.

Note that the Bellman—Ford algorithm is particularly well suited for parallel and
distributed implementations since the iteration for each node i can be carried out si-
multaneously with the iteration for every other node. The version of the Bellman—Ford

294 Shortest Paths and Dynamic Programming Chap. 4

algorithm that we will focus on in this section can be viewed as a Jacobi relaxation
method for solving the system of n nonlinear equations with n unknowns specified by
Bellman’s equation (1.1). There is also a Gauss—Seidel version, which is considered
in Exercise 1.2, and can be viewed as a coordinate ascent method in the context of
a dual network optimization problem (see Subsection 5.2.1). A totally asynchronous
implementation of the Bellman—Ford algorithm will be discussed in Section 6.4.

One possible set of initial conditions in the Bellman—Ford algorithm is z; = co for
i # 1 and z; = 0; this is the choice most often discussed in the literature. Indeed, in
the absence of additional information, this is a good choice, and results in polynomially
bounded running time for the algorithm, as will be shown shortly. Our interest in arbitrary
initial conditions stems from certain applications where the shortest path problem must be
solved repeatedly and in real time, as the arc lengths change by small increments. A small
change in the arc lengths implies a small change in the shortest path lengths, so it may
be advantageous in terms of speed of convergence to restart the Bellman—Ford algorithm
using as initial conditions the previous shortest path lengths (or approximations thereof).
Another advantage of this approach in a distributed implementation is that it does not
require a potentially complex and time—consuming restart/resynchronization procedure to
inform all the processors of the change in problem data and to restart the algorithm with
a predetermined set of initial conditions. In this context, the processors of the distributed
system can simply incorporate the changes of the arc lengths in their iterations at the
time that they become aware of them. In other words, the processors keep on executing
their portion of the iteration (1.2) using the latest information available regarding the
values of the arc lengths. Naturally, in order for this scheme to be workable, the arc
lengths should not change too frequently relative to the speed of convergence of the
Bellman—Ford algorithm. For further discussion of this type of algorithm in the context
of routing data in a communication network, we refer the reader to Subsection 5.2.4 of
[BeG87]. '

4.1.1 The Bellman—Ford Algorithm

The kth iteration of the Bellman—Ford algorithm has the form

koo kel L

z; = jrenjr(li)(aw +z;7), i=2,...,n, (1.3a)

z¥ =0. (1.3b)

Regarding initial conditions, we assume that 9 = 0, and that for i = 2,...,n, z? is

either a real number or +co. We say that the algorithm terminates after k iterations if
zf = 25~ for all 4.

Given nodes i # 1 and j # 1, we define

wf] = minimum path length over all paths from i to j,
(1.4)
and having k arcs (wf; = oo if there is no such path).

Sec. 4.1 The Shortest Path Problem 295

To complete the definition of wfj, we define for all 7 # 1

wfl = minimum path length over all paths from 7 to 1 having k arcs or less

(1.5)
(wk, = oo if there is no such path).

Note that the path of minimum length in the definition of wf] can contain cycles; this
will certainly happen if j # 1 and k > n — 1.
The following lemma is very useful:

Lemma 1.1. There holds

zf = min (wf+29), Vi=2,...n andk>1. (1.6)
i=l..,n
Proof. We use induction. By the definitions of «} and w}; [Egs. (1.3)~(1.5)], the
result holds for k¥ = 1. Assume that it holds for some k£ > 1. For any nodes i # 1 and j,
let us denote by Pi’;. the set of paths appearing in the definition of wfj [Egs. (1.4)—(1.9)].
We have, using the convention a;; = oo if 1 ¢ A(s),

. K+l 0 . 0
min_(wii" +13) = min (@i, + Giiy + -+ + a;, 5 +29)
j=len [CRIP S el

j=l,..,n
=min | ¢;;, min agi, + min (aii, + - + @i, + 29)
11 €A®),i1#1 (i.,iz‘...,im,j)Eme
ji=l,...,n

. . . k 0
=min (a;; min a;;, + min (w; . + x;
(' ,iIGA(i),il?ﬂ(o+ min (i +25)
: k
= min (a;;, + T;
inEA(i)(i +2)

=zt (1.7)

where we used the induction hypothesis to establish the next to last equality. The
induction is complete. Q.E.D.

The preceding lemma yields the following result:

Proposition 1.1. Let the Connectivity and Positive Cycle Assumptions 1.1 and
1.2 hold:

(a) There exists a shortest path from every node 7 # 1 to node 1. Furthermore, every
one of these shortest paths has at most n — 1 arcs.

296

(b)

(c)

(d)

(a)

(b)

(c)

Shortest Paths and Dynamic Programming Chap. 4

For any set of initial conditions, the Bellman—Ford algorithm terminates after some
finite number k of iterations, with z¥ equal to the shortest distances z}, i =
1,...,n.

If 29 > z} for all i # 1, then the Bellman—Ford algorithm yields the shortest
distances in at most m™* iterations, and terminates after at most m* + 1 iterations,
where

m*= max m; <n-—1, (1.8)
1=2,...,n

and m; is the smallest number of arcs contained in a shortest path from ¢ to 1.

The shortest distances z}, ¢ = 1,...,n, are the unique solution of Bellman’s
equation (1.1).

Proof.

A path from a node 7 # 1 to node 1 containing more than n — 1 arcs must contain

one or more cycles, which, by the Positive Cycle Assumption 1.2, have positive
length. By deleting the cycles from the path, we can obtain a shorter path with no
more than n — 1 arcs. Therefore, only paths with n — 1 or less arcs are candidates
for optimality. By the Connectivity Assumption 1.1, there exists at least one path
having n — 1 or less arcs, and there is a finite number of such paths. Therefore,
there must exist a shortest path.

Since all cycles have positive length, we have for all ¢ # 1 and j # 1, wfj — 00

as k — oo, and wk = z} < oo for all k > n— 1. From Lemma 1.1 [cf. Eq. (1.6)],
it follows that =¥ = z for all sufficiently large k.

Consider first the initial conditions x? = 00, for all 7 # 1. Then from Lemma 1.1
we see that, for each i # 1 and k, z¥ is the shortest distance from i to 1 using
paths with k arcs or less. Hence =¥ = z* for all 4 and k > m*. Consider next any
set of initial conditions with z} < 93? for all ¢ # 1. From part (b) we have that the

shortest distances x solve Bellman’s equations. Therefore

" . * . 0 1 .
z; = min (a;; +z7) < min (a;; + ;) = x; Vi=2,...,n
: jeA(i)(“ ’)‘jeAu)(i+) =2, e

and by repeating this argument, we obtain

¥ < z* V 4 and k.

i = i

Let .%f be the iterates of the Bellman-Ford algorithm, starting from the initial
conditions 0 = oo, 1 = 2,...,n. We have, using a similar argument as before,

P =

zf<zF<iEF, Viandk.

Sec. 4.1 The Shortest Path Problem 297

Since, as shown earlier, we have ﬁf = z; for all ¢ and kK > m*, the desired
conclusion follows.

(d) If we start the Bellman—Ford algorithm with a solution of Bellman’s equation, we
terminate after a single iteration, so by part (b), this solution must equal the shortest
distances. Q.E.D.

Figure 4.1.1 gives an example showing how Prop. 1.1 fails if the cycle lengths are
assumed nonnegative instead of positive.

Figure 4.1.1 Shortest path problem
involving a cycle of zero length.
Here the shortest distances are

zy =0, z7 = z7 = 1 and satisfy

Length =0 Bellman’s equation. The zero vector also
@% satisfies Bellman’s equation, and if the
Bellman—Ford algorithm is started with that
vector, it will make no progress toward the
Length =0 shortest distance vector.

When the Bellman—Ford algorithm does not terminate, and the Connectivity As-
sumption 1.1 is known to hold, it follows from Prop. 1.1 that the Positive Cycle As-
sumption 1.2 is violated, and there exists a cycle with nonpositive length. If all cycle
lengths are assumed nonnegative (rather than positive), then it is clear that there exist
shortest paths with n — 1 arcs or less from every 7 # 1 to the destination. Lemma 1.1
then implies that the algorithm finds the shortest distances in n — 1 steps or less when
the initial conditions

=00, Vi#l 1.9)
are used. If there is a cycle of negative length, then for the same initial conditions, we
will have z7 < x;"l for some ¢ # 1 (Exercise 1.1), and this can be used to detect the
presence of a negative length cycle.

Generally, the number of iterations for termination depends strongly on the initial
conditions. This number is m* 4+ 1 when the initial conditions x? = 00, 1 # 1, are used,
as shown in Prop. 1.1. For other initial conditions, this number can be much larger,
and may depend on the size of the arc lengths (see Fig. 4.1.2). It appears plausible that
the number of iterations will often be smaller than m* if the initial conditions z? are
chosen to be close to their eventual final values =}. A typical situation occurs when the
initial conditions are the shortest distances corresponding to arc lengths that either differ
slightly from the arc lengths of the problem at hand or else are the same except for a
few relatively inconsequential arcs. The following analysis is geared toward estimating
the number of iterations for initial conditions of this type. Simple examples show that
even if a single arc length changes by a small amount, it is possible that the number
of iterations required is as large as n — 1. In special cases, however, the number is
much smaller (see e.g. Exercise 1.4). The following proposition estimates the number of
iterations in terms of the scalars

298 Shortest Paths and Dynamic Programming Chap. 4

8= max (zF —zY), (1.10)

1=2,...,n

Length of the cycle

L= min .
All cycles Number of arcs on the cycle

(1.11)

The scalar L of Eq. (1.11) is defined only for graphs that contain at least one cycle, and
is known as the minimum cycle mean. Algorithms for computing L are considered in
[Law67] and [Kar78].

Figure 4.1.2 Example shortest path
problem where the number of iterations
of the Bellman—Ford algorithm depends
on the size of the arc lengths. Here arcs
(2,3), (3,4), and (4,2) have length 1, and
arc (2,1) has a large length M. If initially
29 = 0 for all i then, for all k < M,
after k iterations we have

¥ =k, i=234,

(2

a:{“ =0,

so the algorithm terminates after M + 3 iterations. By contrast, m* = 3, and only 4 iterations are needed
for the initial condition zg = o0, i = 2,3,4. Similarly, the number of iterations is ©(M) when the
initial conditions are the shortest distances corresponding to unity length for all arcs. Therefore a large,
length—dependent number of iterations may be necessary to recompute the shortest distances following a
length increase of a single arc lying on a shortest path.

Proposition 1.2. Let the Connectivity and Positive Cycle Assumptions 1.1 and
1.2 hold. The Bellman-Ford algorithm terminates after at most k + 1 iterations (zf =z}
for all ¢ and k > k), where

m*, if 3<0,
n—1, if 8 > 0 and the graph is acyclic, (1.12)
n—2+[B/L], if 8> 0 and the graph has cycles,

o
I

m* is given by

m*= max m; <n-—1, (1.13)
1=2,...,n

and m; is the smallest number of arcs contained in a shortest path from ¢ to 1.

Proof. If 3 < 0, then k = m* and the result has already been proved in Prop.
1.1(c). Assume 3 > 0 and suppose that, for some k > m*, the algorithm has not found
the shortest distances after k iterations, i.e., z} # z¥ for some i. Since wk = z} for
k > m*, by Lemma 1.1 we must have z} > xf for all ¢, and furthermore, for some 1,
and j # 1, we must have

* k __ ..k 0
T > Xy = w; + T

Sec. 4.1 The Shortest Path Problem 299

Consider a minimum length path from 7 to j involved in the definition of wlJ This
path has k arcs, it does not pass through node 1, and either it contains no cycles, or else
it can be decomposed into a simple path from ¢ to j with length L;;, and a nonempty
collection of cycles with total length w — L;; (see the Path Decomposition Theorem
of Appendix B). In the former case we obtain k < n — 1. In the latter case we argue as
follows: since the number of arcs in the simple path is no more than n — 2, the number

of arcs in the cycles is no less than k — (n — 2), and therefore
w = Lij > [k—(n-2)|L
where L is given by Eq. (1.11). It follows that
x> z¥ =wfj+:c2 > L;; +:v2+ [k—n-2)]L
Using the relations z —Band L;; + x;‘ > z;, we obtain
z; > Lij+a;—B+k-—(n—-2|L>zf -8+ [k—(n-2)]L

Therefore, k < max{n —1,n —2+ [3/L]} = n— 2+ [B/L]. Thus we have shown
that if 3 > 0 and the algorithm has not found the shortest distances at iteration k, then
either k < n— 1 (if the graph is acyclic) or k£ < n—2+ [8/L] (if the graph has cycles).
This completes the proof. Q.E.D.

Figure 4.1.3 shows that the estimate of Prop. 1.2 on the number of iterations
is tight in the case of a graph with cycles. To show that the estimate is tight for
acyclic graphs, consider the graph with arcs (i 4+ 1,7), ¢ = 1,...,n — 1, and (n, 1). Let
ai+1) = 1, let ap; = n — (3/2), and consider the algorithm with zero initial conditions.
A straightforward calculation shows that the algorithm finds the shortest distances after
n — 1 iterations while m* =n — 2.

From Prop. 1.2, it is seen that the number of iterations is guaranteed to be relative]y
small if the initial conditions z{ are not much smaller than the true shortest distances z;
If x is much smaller than) for some 7, we may ignore the given initial conditions, and
start the algorithm from the 1nﬁn1te initial conditions of Eq. (1.9), thereby guaranteeing
termination in m* + 1 iterations. A related procedure which changes selectively some
of the initial conditions is given in Exercise 1.4.

Timing Analysis of the Bellman-Ford Algorithm

It can be seen that each iteration of the Bellman—Ford algorithm involves O(] A|) additions
and comparisons, where |A| is the number of arcs. Hence, for the initial conditions
x? = oo, i # 1, the serial solution time for the problem is O(m*|A[). For other
initial conditions, the solution time is O(k|A|) where £ is the estimate on the number
of iterations given by Eq. (1.12).

We consider now two types of synchronous parallel implementations of the Bellman—
Ford algorithm. In the first type, we have a distributed system involving an intercon-

nection network of n processors that is identical with the graph of the shortest path

300 Shortest Paths and Dynamic Programming Chap. 4

Figure 4.1.3 Example shortest path
problem showing that the estimate of Prop.
1.2 on the number of iterations of the
Bellman-Ford algorithm is tight. Here all
arcs have unity length except for (2,1)
which has length equal to the positive odd
integer M. The initial conditions are

29 = max{0,i — 2}, i=1,...,n.

The generated sequence of iterates for
nodes 2 and 3 are

{xg} ={0,2,2,4,4,...,

2[M/2),2|M/2|, M, M, ...},
All arc lengths are unity

except for a,,, which Kl — _
equals a large odd integer {3:3} ={0,1,3,3,5,...,2|M/2] - 1,
M

2\ M/2) +1,2|M/2) +1,
M+1,..}

For ¢ > 2 the shortest distance

z; =i—-2+ Misfoundin:—2+ M
iterations. At iteration n — 2 + M all
shortest distances have been obtained.

In this problem 8 = M, L = 1, so the
estimate of Prop. 1.2 is tight.

pury
oo
< - -
-

problem in the sense that for every arc (i, j) of the latter problem, there is a bidirectional
communication link connecting processors ¢ and j. An iteration consists of the update

; := min (a;; + ; 14

Z; jeA(z')(a” +x])7 (1.14)

at each processor i # 1, followed by a transmission of the result to the neighbor proces-

sors j with i € A(j). It is clear then that the time per iteration is O(r), where r is the
maximum number of outgoing arcs from a node in the graph, that is,

r= rgz.f(|A@)]. (1.15)

Note that if each processor itself consists of a parallel computing system with r proces-
sors, then the time per iteration becomes O(log), assuming negligible communication
delays. It is natural to synchronize this implementation using the local synchronization
method, whereby a processor can proceed to the next iteration once it receives the results
of the previous iteration from its neighboring processors. It is still necessary for each
processor to send its shortest distance estimate to all its neighbors at the end of every
iteration, even if this estimate has not changed over the previous iteration. This can be
wasteful both in terms of time and in terms of communication resources. In Section

Sec. 4.1 The Shortest Path Problem 301

6.4, we will see that it is advantageous in this respect to use an asynchronous version
of the Bellman-Ford algorithm, where shortest distance estimates are transmitted only
when they change values, and processors do not have to wait for messages from all their
neighbors before updating their estimate of shortest distance.

The second type of synchronous parallel implementation involves the use of a
regular interconnection network of processors such as a hypercube. The situation here is
quite similar as for the matrix—vector type of calculations discussed in Subsection 1.3.6.
This becomes evident when we compare the term

jgl,g(lz‘)(aij +z;) (1.16)

in the Bellman—Ford iteration, with the ith coordinate of the product Az

[Az); =) aiazj, (1.17)

JEA®)

where A is the matrix with entries a;; for j € A(:) and O for j ¢ A(i). The difference
is that addition and minimization in the Bellman-Ford iteration term (1.16) are replaced
by multiplication and summation, respectively, in the matrix—vector product term (1.17).
Thus the computational requirements for a single Bellman-Ford iteration are essentially
identical with those for the matrix—vector product Az. The algorithms and results of
Subsection 1.3.6 apply except for the fact that in that subsection, we assumed that A is a
fully dense matrix, whereas here A has a sparsity structure determined by the neighbor
node sets A(%). '

Assume first that we have a system of p processors, with p less than or equal to
the number of nodes n, and for simplicity assume that n is divisible by p. It is then
natural to let the jth processor update the distance estimates of nodes (j — 1)k + 1
through jk, where k = n/p. Let us assume that the jth processor holds the vector z
and the lengths a;; for all j € A(d), and ¢ = (j — 1)k + 1 through i = jk. Then the
updating of the corresponding coordinates of z according to the Bellman—Ford iteration
takes time O(kr) = O(nr/p) for each processor, where r = max;x; |A()| [cf. Eq.
(1.15)]. To communicate the results of the updating to the other processors, a multinode
broadcast of packets, each containing k numbers, is necessary. If a linear array is used
for communication, the results of Subsection 1.3.4 show that the multinode broadcast
takes O(kp) = O(n) time. The total time per iteration is then O(max(n, nr/p)). If
instead a hypercube with p processors is used, the multinode broadcast time becomes
O(n/ log p), and the total time per iteration becomes O(max(n /logp,nr/ p)). Note that
as the maximum number of outgoing arcs 7 becomes larger, the ratio of computation to
communication time increases, and the communication penalty becomes less significant.
This means that as r becomes larger, more processors can be fruitfully employed to
solve the problem without incurring prohibitive delays due to communications, thereby
resulting in higher speedup.

Assume now that a hypercube with n? processors arranged in an n x n array is
available, where n is a power of 2. Assume also that at the beginning of each iteration,

302 Shortest Paths and Dynamic Programming Chap. 4

each processor (3, j), with j € A(7), holds z; and ajj: Then, based on the relationship of
the Bellman—Ford iteration with the matrix—vector multiplication described previously,
the O(log n) algorithm for matrix—vector multiplication of Fig. 1.3.26 in Subsection 1.3.6
applies.

We have considered so far a single destination. In the all-pairs version of the
problem, we want to find a shortest path from every node to every other node. For
this purpose we can apply the Bellman—Ford algorithm separately for each destination.
Suppose that p processors (p < n) are available and assume for simplicity that n is divis-
ible by p. Then we can assign n/p destinations to each processor and apply the (serial)
Bellman-Ford algorithm for each of these destinations. This requires O(|A|n/p) time per
iteration. (We ignore here the possibility that the shortest distances corresponding to one
destination may provide useful information about the shortest distances corresponding to
other destinations [FNP81].)

Suppose next that a mesh of n? processors is available. The mesh can emulate n
independent linear arrays, each having n processors. We can use each of these arrays
to solve in parallel a different single destination shortest path problem, in time O(n) per
iteration (based on the linear array result given earlier for p = n). It is similarly seen
that based on the single destination results for a hypercube with p = n and p = n? given
earlier, we can solve the all-pairs problem in O(max(n/logn,r)) time per iteration
using a hypercube with p = n? processors, and in O(logn) time per iteration using a
hypercube with p = n3 processors.

To obtain upper bounds on the running time of the Bellman—Ford algorithm, we
should multiply the times per iteration given above with the number of required iterations
for termination. This number is m* + 1 for the case of the initial conditions z; =
00, i # 1, where m* is the maximum number of arcs in a shortest path [cf. Prop.
1.1(c)]. In practice, m* is often much smaller than its upper bound n — 1, so one cannot
accurately predict the running time for the algorithm without additional knowledge about
the problem at hand. In the next subsection, we describe several other algorithms for the
all-pairs problem, and we compare them with the Bellman—Ford method.

4.1.2 Other Parallel Shortest Path Methods

Consider the all-pairs shortest path problem where we want to find a shortest path
from each node to each other node. We first consider the possibility of assigning a
processor to each destination and applying a good serial algorithm to the corresponding
single destination problem. Thus, if T is the serial time complexity of the single
destination algorithm, we obtain a Ts time complexity with n processors, assuming
the required problem data are available at each processor. When all arc lengths are
nonnegative, we can use Dijkstra’s method; this is a popular method for solving the single
destination shortest path problem with nonnegative arc lengths (see, e.g., [PaS82]). There
are implementations of this method that take time O(|A| + nlogn) (see [FrT84]). For
problems where some of the arc lengths are negative, a preprocessing phase is required
to transform the problem into a shortest path problem with nonnegative arc lengths. This
can be done by replacing a;; with

Sec. 4.1 The Shortest Path Problem 303
aj; = aij +pj — Ps

where p; is a set of numbers such that agj > 0 (see Exercise 1.3). Finding such a set
of numbers is equivalent to solving an assignment problem (see Exercise 1.3 in Section
5.1), and can be done in O (n!/?|A|log(nC)) time, where C' = max ;) |a;;| and the
lengths a;; are assumed integer (see [GaT87] and Exercise 4.5 in Section 5.4). Note that
to execute the algorithm, a processor must know the lengths of all arcs, whereas in the
Bellman-Ford algorithm, it requires only the lengths of its incident arcs. To broadcast
all arc lengths from some node to all other nodes over an optimally chosen spanning tree
takes O(d + |A|) = O(|A|) time (by sending each arc length in a separate packet and
pipelining the packets, cf. Exercise 3.19 in Section 1.3), where d is the diameter of the
interconnection network. Hence, the communication time is of order that is comparable
to the order of the computation time. Thus, the time to solve the all-pairs shortest path
problem using Dijkstra’s method and a network of n processors, each handling a different
destination, is O(|A|+n log n) if all arc lengths are nonnegative, and O (n!/2| A|log(nC))
otherwise. The timing estimate obtained earlier for the Bellman-Ford algorithm using n
processors is O(m*lAl), so it is seen that the preceding estimate for Dijkstra’s method
is superior when all arc lengths are nonnegative; the situation is less clear when some
arc lengths are negative.

We now discuss two algorithms that are specially designed for the all-pairs prob-
lem, and have a worst case serial running time which is better than the one of the
Bellman-Ford method. These algorithms are not any faster when applied to the single
destination problem, and are better suited for dense rather than sparse graphs, as they
cannot take advantage of sparsity. By contrast, the serial version of the Bellman—Ford
algorithm is speeded up by a factor of n when applied to the single destination problem,
and it is also speeded up when the graph is sparse. Furthermore, the Bellman—Ford
algorithm has an additional advantage in that it is naturally suited to distributed systems
where the processor interconnection network coincides with the graph of the problem,
and it also admits an asynchronous implementation (see Section 6.4).

In the following complexity analysis, we consider a message—passing system and
we assume that the transmission times of all packets along any link of the processor
interconnection network are the same, and are also nonnegligible. Furthermore, we
assume that each processor can compute, and simultaneously transmit and receive on all
its incident links. The Connectivity and Positive Cycle Assumptions 1.1 and 1.2 are in
effect for each destination, but we relax the assumption that a destination node has no
outgoing arcs.

The Floyd—Warshall algorithm starts with the initial condition

27

0 _ {aija if j € A(d),
T = .
o0, otherwise,

and generates sequentially for all £ =0,1,...,n — 1, and all nodes i and j

304 Shortest Paths and Dynamic Programming Chap. 4

okl = {min{zg, Then +xfk+1)j}, if j#1i,
0, otherwise.

An induction argument shows that xfj gives the shortest distance from node ¢ to node
j using only nodes from 1 to k as intermediate nodes. The serial solution time is
O(n?), which is superior to the corresponding estimate O(nm*|A|) for the Bellman—
Ford algorithm when the graph is dense.

A parallel implementation of a single iteration of the Floyd—Warshall algorithm on
a hypercube with n? processors can be shown to take O(logn) time (see Exercise 1.6).
Therefore, if the iterations are synchronized using the global synchronization method
(i.e., no processor starts a new iteration before all processors complete the previous
iteration and the results of the iteration are communicated to the relevant processors,
cf. Subsection 1.4.1), the total time for the n iterations is O(nlogn). This is slower
by a factor of logn over the bound O(n) for the time taken by the algorithm when all
communication is instantaneous. On the other hand, it is possible to implement the Floyd—
Warshall algorithm on a square mesh of n? processors (and a fortiori on a hypercube of
n? processors) using the local synchronization method, whereby each processor executes
an iteration once it receives all the necessary information (cf. Subsection 1.4.1). This
implementation is described in Exercise 1.7 and takes O(n) time to solve the all—pairs
problem, which is the same order of time as when communication is instantaneous.

The doubling algorithm is given by

a;j, if j € AQ),
zi; =40, ifi=j
oo, otherwise,

Sk {minm{x§m+xfnj}, ifi#j, k=1,2,...,[log(n — 1)],

470, ifi=j k=1,2,...,[logn — 1)].

An induction argument shows that for ¢ # 7, xfj gives the shortest distance from ¢ to j
using paths with 2¥=! arcs or less. A serial implementation takes O (n?logm*) time,
where m* is the maximum number of arcs in a shortest path over all shortest paths [cf.
Eq. (1.8)]. This is inferior to the serial running time of the Floyd—Warshall algorithm,
and roughly comparable to that of the Bellman—Ford algorithm when the graph is dense
and m* is small.

Regarding a synchronous parallel implementation of the doubling algorithm, we
observe that each iteration has the same structure as the multiplication of two n x
n matrices (the multiplications and additions of matrix multiplication are replaced by
additions and minimizations, respectively, in the doubling algorithm iteration). Therefore,
the types of algorithms for matrix—matrix multiplication given in Subsection 1.3.6 apply.
In particular, we see that the doubling algorithm iteration takes time O(n) using an n X n
mesh of processors and an algorithm that is very similar to the one of Fig. 1.3.27 in
Subsection 1.3.6. The total time for the algorithm is O(nlogm®*). It is also possible to
implement the doubling algorithm in O((log n)(logm*)) time using a hypercube of n?

Sec. 4.1 The Shortest Path Problem 305
processors, and the ideas of the matrix—matrix multiplication algorithm of Fig. 1.3.28 in
Subsection 1.3.6. This is the minimum known order of solution time for the all-pairs
problem, even assuming that communication is instantaneous (a smaller order of solution
time can be obtained with a different model of computation than the one we have been
using [Kuc82]).

Table 1.1 provides a comparison of the Bellman—Ford, Floyd—Warshall, and dou-
bling algorithms. The estimates given are based on specific implementations of each
method, and have either been derived earlier or can be inferred from those derived ear-
lier. For example, the O(n?/p) estimate for the Floyd—Warshall using a linear array of
p processors follows from the O(n) estimate for an n x n mesh, since each processor of
the linear array can emulate n%/p mesh processors with a slowdown factor of at most
n?/p. The entries of the table suggest that the Bellman—Ford algorithm is superior for the
single destination problem, particularly when m* is relatively small; the Floyd—Warshall
and the doubling algorithms are designed for the all-pairs problem, and they are not any
faster when applied to the single destination problem. For the all-pairs problem, the
Floyd—Warshall is superior to the doubling algorithm when a linear array or an n x n
mesh is used, but the doubling algorithm achieves the smallest known order of solution
time when a hypercube with n® processors is used. Under some circumstances, where
m* is small and the problem is sparse, the Bellman—Ford algorithm is superior to the
Floyd-Warshall using a linear array with p < n processors.

Table 1.1: Solution times of shortest path algorithms using various interconnection networks. The times for

the single destination problem are the same as for the all—pairs problem for both the Floyd—Warshall and the
doubling algorithms. Here n is the number of nodes, r is the maximum number of outgoing arcs from a node
[cf. Eq. (1.15)], p is the number of processors, and m* is the maximum number of arcs in a shortest path [cf.

Eq. (1.8)].

Problem Network Bellman—Ford Floyd-Warshall | Doubling

Single Destination | Linear Array p < n | O (m* max (n, %))
Hypercube p < n O(m*max (ﬁ,%))
Hypercube p = n? | O(m* logn)

All-Pairs Linear Aray p< n | O (m—zl,ﬁ‘-'-’l) o ("Tf) o (ﬂgﬂ)
Mesh p = n? O(m*n) O(n) O(n logm*)
Hypercube p=1n2 | O (m* max (]o;'" , r))
Hypercube p =n3 | O (m* log n) o ((log n)(log m*))

EXERCISES

1.1. Consider the Bellman-Ford algorithm for the initial conditions z‘,? = 00, ¢ # 1. Use Lemma

1.1 to show that we have z} < z?‘l for some ¢ if and only if there exists a cycle of

negative length.

306 Shortest Paths and Dynamic Programming Chap. 4

1.2. (Gauss—Seidel Version of the Bellman-Ford Algorithm.) Consider the shortest path prob-
lem under the Connectivity and Positive Cycle Assumptions.

(a) Viewing the Bellman-Ford algorithm as a Jacobi relaxation method, construct its
Gauss—Seidel version, and show that it terminates finitely for any initial condition
vector z° with ¥ = 0. Hint: Let J : R" — R™ and G : R" — R" be the Jacobi
and Gauss—Seidel relaxation mappings, respectively. Let u be the vector with all
coordinates equal to 1 except for u; = 0. Show that for any scalar v > 0 we have

" —yu < J(@@" —yu) £ Gz —yu) L z* < Gz" +vu) < J(@@* +vu) < =" +vu.

For any initial condition vector z° with =% = 0, consider v > 0 such that z* — yu <
2° < z* + yu.

(b) For the case of the initial conditions arg = oo for all ¢ # 1, z; = 0, show that the
Gauss—Seidel version converges at least as fast as the Jacobi version.

(c) Assume that the graph is acyclic. Show that there exists a node relaxation order for
which the Gauss—Seidel version converges in a single iteration.

1.3. Let the Connectivity and Positive Cycle Assumptions hold, and consider the shortest path
problem with arc lengths a;; and shortest distances z;. Let p;, 2 = 1,...,n, be any scalars.
Consider also the shortest path problem with arc lengths a;; = a:; + p; — pi.

(a) Show that the length of every cycle with respect to a;; is equal to its length with
respect to a;,., and, therefore, the Positive Cycle Assumption holds for the arc lengths
a;.

(b) ShJow that a path is shortest with respect to a;; if and only if it is shortest with respect
to af;, and that the shortest distances z; with respect to a;; satisfy

z:=$:+pz—Ph Vi:l,...,n.

1.4. Let ; be the shortest distances corresponding to a set of arc lengths @;;. Consider the
shortest path problem for another set of arc lengths a;; and assume that the Connectivity
and Positive Cycle Assumptions 1.1 and 1.2 hold.

(a) Assume that a;; — @;; > O for all arcs (3, j), and that a;; — @;; > 0 only for arcs
(4, 7) such that Z; < @;; + Z;. Show that the Bellman—Ford algorithm starting from
the initial conditions ¥ = %; for all ¢ terminates in one iteration.

(b) Define for k =1,2,...

N, = {i | for some arc (3, j) with a;; > @;; we have &; = @i; + ,},

Ni41 = {3 | for some arc (3, j) with j € Ni we have %; = &@;; + %, }.

Show that the Bellman—Ford algorithm starting from the initial conditions z? = %; for
i ¢ UrNy and 22 = oo for ¢ € U Ny, terminates in no more than m* + 1 iterations. Hint:
Show that for ¢ ¢ Ux Nk, Z; is not smaller than the shortest distance of i with respect to
lengths a;;.

1.5. Consider the shortest path problem for the case where the graph is a 2—dimensional grid
with mk nodes in each dimension (all links are bidirectional). Consider the Bellman—
Ford algorithm on a m x m mesh array of processors with each processor handling the
computations for a k x k “square” block of nodes. Verify that the parallel computation time

Sec. 4.1 The Shortest Path Problem 307

1.6

1.7

1.8

<

per iteration is O(k?), and that the corresponding communication time is equal to the time
needed to transmit a message carrying k numbers plus overhead over a mesh link. Discuss
the implication of this result for the upper bound on speedup imposed by the communication
penalty, and quantify the role of packet overhead (cf. the analysis of Subsections 1.3.4 and
1.3.5).

Consider the following implementation of the Floyd—Warshall algorithm on a hypercube of
n? processors. We asssume that n is a power of 2 and that the processors are arranged in
an n X n array. At the beginning of the algorithm, each processor (4, j) holds a;;. At the
kth iteration, processor (¢, j) (with ¢ # j) computes zfj. Show that the computation and the
communication times per iteration are O(1) and O(log n), respectively. Assuming that the
computations of an iteration can only start after the previous iteration has been completed,
establish that the overall time taken by the algorithm is O(n log n).

(Parallel O(n) Implementation of the Floyd-Warshall Algorithm.) Consider the fol-
lowing parallel implementation of the Floyd-Warshall algorithm on a square mesh of n?
processors using the local synchronization method (cf. Subsection 1.4.1). At the beginning
of the algorithm each processor (i, j) with ¢ % j holds a;j, where a;; = oo if (i,5) ¢ A.
Processor (2, j) calculates for k =0,1,...,n -1,

. k k k . . .
ZhH = mm{zij, Tik+1) T I(k+l)j}y if j#4,
i .
oo, - otherwise,

once it has calculated zfj and has received a:f(kH) and z(kk+l)j from its neighboring nodes.
Processor (7, j) transmits a:f; ! to its neighboring nodes (3, j — 1) and (i, J—+1) (if they exist)
immediately upon calculating zf]" '; transmits xf;’ to its neighboring nodes (i — 1, 7) and
(41, 5) (if they exist) immediately upon calculating :cij"; transmits to processor (i, j — 1)
(if it exists) whatever it receives from processor (i, j + 1); transmits to processor (3, j +1) (if
it exists) whatever it receives from processor (z, j — 1); transmits to processor (i — 1, §) (if it
exists) whatever it receives from processor (i + 1, j); and transmits to processor (i + 1, §) (if
it exists) whatever it receives from processor (i — 1, 7). Assuming that an addition followed
by a comparison requires unit time and that transmission of a single number on any one
link also requires unit time, show that the algorithm terminates after O(n) time.
(Parallel Computation of Minimum Weight Spanning Trees [MaP88).) We are given an
undirected graph G = (IV, A) with a set of nodes N = {1,2,...,n}, and a scalar a;; for
each arc (4, J) (ai; = aj;) called the weight of (3, j). The weight of a spanning tree of G is
defined to be the sum of its arc weights. We refer to the maximum over all the weights of
the arcs contained in a given walk as the critical weight of the walk. Consider the problem
of finding a minimum weight spanning tree (MST).

(a) Show that an arc (¢, j) belongs to an MST if and only if the critical weight of every

walk starting at ¢ and ending at j is greater than or equal to a;;.
(b) Consider the following iterative algorithm:

o _ [ay, f@EJ)EA,
" oo, otherwise,

. k . k k . . .
mff‘”] _ mm{a:ij, min {xi(k+,),x(k+,)j}}, if j#4,
J .
00, otherwise.

308 Shortest Paths and Dynamic Programming Chap. 4

Show that :cfj is the minimum over all critical weights of walks that start at i, end at j, and
use only nodes 1 to k as intermediate nodes.
(c) Show how to compute z7; in O(n) time using a square mesh with n? processors,
assuming that processor (¢, j) holds initially a;;. Hint: Observe the similarity with
the Floyd—Warshall algorithm and use Exercise 1.7.

1.9. (Transitive Closure of a Boolean Matrix.) Consider a Boolean n x n matrix B, that is, a
matrix with elements b;; being either zero or one. The transitive closure of B is the matrix
B* obtained by repeated multiplication of I+ B with itself, that is, B* = limx_.oo(I + B)*,
where T is the identity matrix, and binary addition and multiplication are replaced by logical
OR and logical AND, respectively. Consider the directed graph G with nodes 1,2,...,n,
and the arc set {(¢,j) | ¢ # j and b;; = 1}.

(a) Show that the ijth element of (I + B)* is 1 if and only if either i = jorelset # j
and there exists a directed path from 3 to j in G having k arcs or less.

(b) Use the result of (a) to show that B* = (I + B)* for all k greater or equal to some
k, and characterize k in terms of properties of the graph G.

(c) Show how B™ can be computed with a variation of the Floyd—Warshall algorithm.

(Shortest Path Calculation by Forward Search.) Consider the problem of finding a
shortest path from a single origin s to the destination 1. We assume that the Connectivity
Assumption 1.1 holds and furthermore a;; > 0 for all (z, 7) € A. The following algorithm
makes use of a set of nodes L and of a scalar d; for each node 4. Initially L = {s}, d; = oo
for all ¢ # s, and d, = 0. Let h; > 0 be a known underestimate of the shortest distance
from node ¢ # 1 to the destination 1 and let A; = 0. (One can always take h; = 0 for all
2, but the knowledge of sharper underestimates is beneficial.) The algorithm consists of the
following steps:

Step 1: Let M be the set of nodes j with j € A(:) for at least one i € L, and let M be
the set

1.10

A

M= {] EM| {ieLrlr;?A(i)}(di + a;;) < min{d;,d; — hj}}.

Set d; = minger|jeawy(di +ai;) forall j € M,and set L = {5 € M | j # 1}.
Step 2: If L is empty stop; else go to Step 1.
(a) Show that the algorithm terminates, and that upon termination d; is equal to the
shortest distance from s to 1.
(b) Show that the conclusion of (a) holds for the (Gauss—Seidel) version of the algorithm
where Step 1 is replaced by the following:
Step 1: Remove a node ¢ from L. For each j € A(3), if d; + a;; < min{d;,di — h;} set
d;j = d; + aij, and if j # 1 and j is not in L, place j in L.
(c) Supplement the algorithms of (a) and (b) with a procedure that allows the construction
of a shortest path following termination.
Hint: Show that for both algorithms of parts (a) and (b), the scalar d; is at all times either co
or the length of some path from s to ¢. Use this fact to show that the algorithms terminate
finitely.

4.2 MARKOV CHAINS WITH TRANSITION COSTS

In this section, we lay the groundwork for the formulation of stochastic dynamic pro-
gramming models, which will be introduced in the next section.

Sec. 4.2 Markov Chains with Transition Costs 309
Consider a stationary discrete-time Markov chain with state space
S={1,2,...,n},

and transition probability matrix P with elements p;; (see Appendix D for a review of
Markov chains). Suppose that if the state is s(t) = j at time ¢, there is a cost a’c;
incurred, where c¢; and o are given scalars. We assume that 0 < o < 1, and we refer
to o as the discount factor. The implication here is that the cost for being at state j at
some time is reduced by a factor a over the cost for being at j one period earlier. Thus,
when a < 1, costs accumulate primarily during the early periods. Since we have

Pr(s(t) = j | s(0) = i) = [P'];;,

the total expected cost associated with the system starting at state ¢ is

o o
z; = Z o'E [caw | s(0) = i) = Zat [Ptc]i'
t=0 =0

Equivalently, we have
Tt = ZatPtc, Q.1

where z* and c are the vectors with coordinates z} and c;, respectively. In this section, we
show, under reasonable assumptions, that the series defining z* in Eq. (2.1) is convergent
and that * = ¢ + aPz*. We then consider the iteration

z:=c+ aPx,

which can be implemented in both Gauss—Seidel and Jacobi modes (cf. Chapter 2), and
we show that it converges to z*. We differentiate between the two cases where 0 < o < 1
and a = 1.

Assumption 2.1. 0<a< 1.

Under Assumption 2.1 the cost is said to be discounted. In this case, the series
defining the cost vector z* in Eq. (2.1) can be shown to be convergent. Indeed, we have

n
I1Pllec = maxy_pi; =1,
j=1

310 Shortest Paths and Dynamic Programming Chap. 4

where || - ||co denotes the maximum norm. Consider the equation z = ¢ + aPz. It has
a unique solution since p(aP) < ¢||P|| = @ < 1. This solution, call it Z, satisfies

m—1
F=c+aPlc+aPt)=---= Z o!Plc+a™P™%, Vm. 2.2)
t=0

By taking the limit in this equation as m — oo, we obtain that the series in Eq. (2.1) is
convergent and that £ = z*. Therefore, the optimal cost vector z* is well defined and
satisfies

" = c+ aPzr*. 2.3)
Consider now the iteration
z:=c+aPzx 2.4)

for an arbitrary initial condition. Since ||aP||sc = a, the function c+a Pz is a contraction
of modulus o with respect to the maximum norm when 0 < o < 1. It follows that the
iteration x := ¢ + aPx converges to the unique fixed point z* [cf. Eq. (2.3)] when
implemented in a synchronous parallel setting, as discussed in Chapter 2. This is true
for both a Jacobi and a Gauss—Seidel mode of implementation (Props. 6.7 and 6.8 in
Section 2.6).

We now turn to the case @ = 1, and consider the question whether the series
in Eq. (2.1) defining the cost vector z* is convergent and whether z* = ¢ + Px* [cf.
Eq. (2.3)]. The equation z = ¢ + Pz may or may not have a solution. If it has a
solution z, it will have an infinite number of solutions (for every scalar r, the vector
with coordinates x; +7 is also a solution). To delineate situations where a solution exists,
we draw motivation from the special case where ¢ > 0 and we reason as follows. If
¢ > 0 and for some state 4, the cost x; is finite, then starting from ¢, the system must
enter eventually (with probability one) a set of zero—cost states, and stay within that set
permanently; otherwise the number of times a positive cost state is visited would be
infinite with positive probability, contradicting the finiteness of x;. Therefore, if z is
finite for some 3, there is a nonempty subset of the set of zero—cost states,

Sc{jeS|c=0},
which is absorbing in the sense
Pim =0, ViesS, m¢gs, 2.5)
and is such that there is a sequence of positive probability transitions leading from ¢ to

at least one state in S. To guarantee that z} is finite for all i, we consequently lump all
states in S into a single state, say state 1, and consider the following assumption.

Sec. 4.2 Markov Chains with Transition Costs 311

Assumption 2.2. o = 1, state 1 is absorbing and costfree (p;; = 1,¢; = 0),
and there exists some £ > O such that state 1 is reached with positive probability after at
most { transitions regardless of the initial state ([P?];; > 0 for all 7).

To establish the equation z* = ¢ + Pz* under the preceding assumption, we write
P in the form

1 0...0
p=" . 2.6)
: P
Pni1
It was shown in Prop. 8.4 of Section 2.8 that for some § > 0, we have
PP < Pl <1-6. @.7)

Since ¢; =0, it is seen from Eq. (2.6) that for all ¢ > 0, we have

Ptc= [P‘Zé} , 2.8)
where
C2
c=1:
Cn

From Eq. (2.7) we see~that the spectral radius p(P) of P satisfies p(P) < 1. Therefore
the equation Z = ¢ + PZ has a unique solution. This solution, call it Z*, satisfies

—

' =¢+PE+Pi*)y=---= Pté + Pmg*, VYm. 2.9)
t

3

Il
=)

Since p(P) < 1, we have lim,,_,., P™%* = 0. Therefore, by taking the limit in Eq.
(2.9) as m — oo, we obtain that the series > .°) Ptc defining the optimal cost vector
z* is convergent and that

Since #* = &+ Pz*, ¢; =0, and z7 =0,it follows using Eq. (2.6) that z* satisfies the
equation * = ¢ + Pz*. Furthermore, since p(P) < 1, the iteration

% := ¢+ Pz,

312 Shortest Paths and Dynamic Programming Chap. 4

converges to £* starting from an arbitrary initial condition. In Section 6.3, we will see
that this iteration converges even if executed in a totally asynchronous environment.

EXERCISES

2.1. (Upper and Lower Bounds on the Cost Vector.) Let 0 < o < 1, let z be an arbitrary
vector in R™, and let

Z =c+ aPzx,
¥ = max(Z; — z:), v = min(Z; — x;).
k3 k3
Show that
T+ — e<z+ i e<z"<zZ+ oy e<z+ il e,
l-« l-a 1-«a l-a

where z* is the unique solution of the system z = c+aPxz, and e is the vector (1, 1,..., 1).

2.2. Let Assumption 2.2 hold, and let ¢; denote the mean first passage time from state 7 to state
1, that is, the average number of steps required to reach state 1 starting from state 7. Show
that these times are the unique solution of the system of equations

n
ti=1+zpijtj, 1=2,...,n,
=2

t1=0.

4.3 MARKOVIAN DECISION PROBLEMS

We now generalize the problem of the previous section by allowing the transition proba-
bility matrix at each stage to be subject to optimal choice. At each state i, we are given
a finite set of decisions or controls U(z). If the state is ¢ and control u is chosen at time
t, the cost incurred is olc;(u), where o > 0, ¢;(u) are given scalars; the system then
moves to state j with given probability p;;(u). Consider the finite set of functions y that
map states ¢ into controls u(i) € U(37), that is, the set

M={u|ui)eUG, i=1,...,n}.

Sec. 4.3 Markovian Decision Problems 313

We can identify each p with a rule for choosing a control as a function of the state.
Similarly we identify a sequence {1, 11, ...} (1 € M for all t), with a rule for choosing
at time ¢ and at state ¢ the control p:(7). Such a sequence is called a policy and if u; is
the same for all £, it is called a stationary policy.

Let P(p) be the transition probability matrix corresponding to u, that is, the matrix
with elements

[P@],; =pii (u@), ij=1,...,n.
Define also the cost vector ¢(u) corresponding to u € M,

e (1))
() = :
en (p(n))

For any policy m = {uo, p1,...}, we have

Pr(State is j at time ¢ | Initial state is 4, and 7 is used) = [P(uo)P(u1). .. P(us-1)] "

Therefore, if x;(m) is the expected cost corresponding to initial state 7 and policy © =
{uo, p1, ...}, and z(x) is the vector with coordinates (), ..., T,(r), we have

o(m) =Y o [P(uo)P(m1) - - - Plus—1)] clpse), 3.1)
t=0

assuming the above series converges. Conditions for convergence will be introduced
shortly. When the above series is not known to converge, we use the definition

k
z(m) = limsup Y o [P(uo)P(u1) -+~ Plug—1)] clpae)- (3:2)

k—oo t=0

For a stationary policy {g, g, ...}, the corresponding cost vector is denoted
k
o(p) = limsup Y _ o P(u) c(p). (33)
k—co t=0
We define the optimal expected cost starting at state ¢ as
z; = infz;(7), V. (3.9)
K

We say that the policy 7* is optimal if

z;(7*) = inf z;(7), V1.

314 Shortest Paths and Dynamic Programming Chap. 4

It is convenient to introduce the mappings 7, : 8" — R™ and T : R" — R
defined by

Ty(z) = c(p) + aP(wz, peM, (3.5)
T(x) = min [c(p) + aP(p)z] = min 7, (). (3.6)

The minimization in the preceding equation is meant to be separate for each coordinate,
that is, the ith coordinate of T'(z) is

[T@)], = min|ciw) +e > piiwa; | - (3.7

=1

Note that 7}, is the mapping involved in the iteration z := ¢ + aPz of the previous sec-
tion, with ¢ and P replaced by c(u) and P(u), respectively. A straightforward calculation
verifies that for all £ > 1 and =

k
(T Ty -+ T @) = &' P(uo)P() - - P(ui)z+ Y o [P(uo)P(u) - - - P(pe—1)] elpr)
t=0
where (T),,T},, - - - T},) is the composition of the mappings T, ..., T, . Therefore, we
can write [cf. Egs. (3.1)-(3.3)]
x(r) = 11;:1 sup(Tyo Ty, - - - T, N0, (3.8)
z(u) = limsup T} (z?), (3.9)
k—o0
where z° is the zero vector
20 =(0,0,...,0),

and TF is the composition of T, with itself k times.
Our main result will be to show, under reasonable conditions, that the optimal cost
vector z* is a fixed point of the mapping 7, that is,
z* =T(z"),
and that * can be obtained in the limit through the iteration

x :=T(x),

known as the dynamic programming iteration.

Sec. 4.3 Markovian Decision Problems 315
The following proposition gives some basic properties of T and T,.

Proposition 3.1. The following hold for the mappings T" and T, of Egs. (3.5)
and (3.6):

(@) T and T, are monotone in the sense
z<a = T(z) < T(z"),
z<z = T,(z) < T(z'), vV u€eM.
(b) For all z € R™, scalars r, integers ¢ > 0, and functions y;,...,u: € M, we have

Tz + re) = Tt (z) + alre,
T Ty, Tu)z + 7€) = T, Ty, - - Ty, @) + alre,

where e is the vector (1,1,...,1).
(¢) For all z and =’ € ®™, we have

T(x) — T(@")|oo < allz - ' ||oo,

“Tp,(x) - Tﬂ(x/)”w < allx - xlllooa VpeM.

In particular, if o < 1, then T" and T}, are contraction mappings with respect to the
maximum norm || - ||eo-

Proof. Assertion (a) is obtained using the nonnegativity of the elements of aP(u).
Assertion (b) is obtained for ¢ = 1 using the fact P(u)e = e, and is generalized to
arbitrary t using induction. To prove (c), we note that

T(z) = min [e(w) + aP(w)z' + aP(u)(z — z')]

= m‘}n [Tu(@") + aP(u)(z — a:')] <T@ + oz — 2’| e
Similarly,
T(@') < T(z) + a|lz — 2’| e
Cbmbining these two inequalities, we obtain
—al|z = z'||ece < T(z) — T(z) < allz — 2| e,
which shows that

[T(z) = T(@)|loo < allz — 2’| 0.

316 Shortest Paths and Dynamic Programming Chap. 4

A similar argument shows that ||T,(z) — Tu(ar’)”ao < oflz — 2’| for all p € M.
Q.E.D.

4.3.1 Discounted Problems

Consider now the case where there is a discount factor.
Assumption 3.1. (Discounted Cost) 0 < o < 1.
The main results follow from the contraction property of Prop. 3.1(c).
Proposition 3.2. Under the Discounted Cost Assumption 3.1 the following hold:

(a) The optimal cost vector z* is the unique fixed point of 7" within R".
(b) For every z € R™ and u € M, there holds

lim T%z) = z*, lim T} (x) = z(u),
t—oo t—o0

and the convergence is geometric.
(c) A stationary policy {u*, u*,...} is optimal if and only if

Ty (™) = T(z™).

Proof.
(@ By Prop. 3.1(c), T is a contraction mapping and hence has a unique fixed point
Z. We will show that # = z*. Let z° be the zero vector. For any policy
m = {40, p1, ...}, we see from the definition (3.6) of T' that T(z°) < T},,(z°), and
by using the monotonicity of T', we obtain
T*(2%) < (TT,)(=z°) < Ty, T,)(@0).
Proceeding similarly, we obtain for all ¢,

T (@) < (T, Ty, -+ - Ty,)(@0).

By taking the limit superior as t — oo, and using the definition (3.8) of z(r), and
the fact lim;_ o, T%*!(z°) = %, we obtain for all 7

T < x(m).
Therefore,

< z*. (3.10)

S]]

Sec. 4.3 Markovian Decision Problems 317
To prove the reverse inequality, we select a function x4 € M such that
T,(&) =T(Z).
Applying T, repeatedly and using the fact T(Z) = Z we obtain
TL(&) = &.
We showed in the previous section that lim; .o T, ﬁ(:‘i:) = z(u), so we must have
z(p) = Z.

Since z* < z(p), we obtain z* < %, which, combined with the inequality z* > &
proved earlier, shows that * = Z.

(b) This follows from the contraction property of 1" and T),, and part (a).

(¢) Suppose that T,-(z*) = T(z*). Using part (a), we have T'(z*) = z*. It follows that
T,-(z*) = z*, and by the analysis of the previous section, we obtain z(u*) = z*,
so {u*,u*,...} is optimal. Conversely, suppose {u*, u*,...} is optimal. Then z*
is the cost corresponding to u*, so z* is the unique fixed point of T}, as well as
the unique fixed point of T" [by part (a)]. Hence, T« (z*) = z* = T(z*). Q.E.D.

Note that Prop. 3.2(b) guarantees the validity of the dynamic programming algo-
rithm that starts from an arbitrary vector = and successively generates T'(x), T%(z),....
This algorithm yields in the limit z*, and from z* one can obtain an optimal stationary
policy using Prop. 3.2(c) (see also Exercise 3.1). The contraction property of T guar-
antees also that the Gauss—Seidel algorithm based on T converges to z* (Prop. 1.4 in
Section 3.1).

4.3.2 Undiscounted Problems—Stochastic Shortest Paths

When o = 1, the problem is of interest primarily when there is a cost—free state, say
state 1, which is absorbing (this is similar to the case of a single policy in the previous
section). The objective then is to reach this state at minimum expected cost. We say that
a stationary policy {x, 4, ...} is proper if lim;_ o [Pt(,u)]i1 = 1 for all ¢ € S; otherwise,
we say that 7 is improper. We will operate under the following assumption:

Assumption 3.2. (Undiscounted Cost)ae = 1, py1(u) = 1, and ¢;(u) = 0 for
all w € U(1), and there exists at least one proper stationary policy. Furthermore, each
improper stationary policy yields infinite cost for at least one initial state, that is, for each

improper {u, i, ...}, there is a state 7 such that limsup,_, [Zf:o Pt(p,)c(u)] = oo0.
7

The shortest path problem of Section 4.1 is an important example of a dynamic
programming problem where the above assumption holds. To establish this fact, we
view the nodes of the given graph as the states of a Markov chain. A stationary policy

318 Shortest Paths and Dynamic Programming Chap. 4

{i, p,...} is identified with a rule that assigns to each node ¢ # 1 a neighbor node
w(@) = j with (z, j) € A(3). Given such a y, the transitions are deterministic and the cost
of the transition at ¢ is a;,(;) (see Fig. 4.3.1). The destination node 1 has no outgoing
arcs by assumption, and is viewed as an absorbing and cost—free state for all . For
each initial state i # 1 and each stationary policy, there are two possibilities. The first is
that the sequence of generated states does not contain state 1, in which case the policy
is improper; in this case, the Positive Cycle Assumption 1.2, implies that this state is
associated with infinite cost. The second possibility is that the policy is proper, so the
system eventually reaches state 1 and subsequently stays there, in which case, the total
cost equals the sum of the transition costs up to the time state 1 is reached first. In
this case, the sequence of transitions defines a simple path starting at ¢ and ending at 1,
and the corresponding total cost equals the length of the path. It is seen, therefore, that
optimal stationary policies are those that correspond to shortest paths. The Connectivity
Assumption 1.1 is seen to be equivalent to the existence of at least one proper policy,
while the Positive Cycle Assumption 1.2 is seen to be equivalent to the existence of an
infinite cost state for every improper policy. Therefore, the assumptions made in Section
4.1 are, in effect, equivalent with the Undiscounted Cost Assumption 3.2 as applied to
the shortest path problem. We may view the general problem under Assumption 3.2 as
a stochastic version of the shortest path problem whereby at any given node, instead of
choosing a successor node, we choose a probability distribution over the successor nodes
with the objective of minimizing the expected length of the path that will be traveled
from the given node to the destination node 1.

Figure 4.3.1 Viewing a shortest path
problem as a (deterministic) dynamic
programming problem. The figure shows
the paths corresponding to a stationary
policy {p, p,...}. The control u(3)
associated with a node ¢ 7 1 is a node
adjacent to 7. The policy shown is proper
because the path from every state leads to
the destination.

Exercise 3.2 explores conditions under which the Undiscounted Cost Assumption
3.2 is guaranteed to hold. If all stationary policies are proper, it can be shown (Exercise
3.3) that the mapping T is a contraction over the subspace X = {z € ®" | z; = 0} with
respect to some weighted maximum norm. This is not true in general, however, as the
example of Fig. 4.3.2 shows. Despite this fact, essentially the same results as for the
Discounted Cost case hold (cf. Prop. 3.2).

Proposition 3.3. Let the Undiscounted Cost Assumption 3.2 hold. Then:

(a) The optimal cost vector z* is the unique fixed point of T within the subspace

X ={zeR" |z =0}

Sec. 4.3 Markovian Decision Problems 319

O @ (O—0

Cost=0 Cost =1 Cost=0 Cost=2
Transition diagram Transition diagram
and costs under and costs under
policy {mn,. ..} policy {p'w',. ..}

Figure 4.3.2 Example problem where the Undiscounted Cost Assumption 3.2 is sat-
isfied, but the mapping T is not a contraction mapping over the subspace X = {z €
R™ | z;y = 0}. Here M = {u, p’} with transition probabilities and costs as shown.

The mapping T over the set X = {(xl,a:z) |z = 0} is given by

[T@)], = min{1 + 22,2}.
Thus for z = (0, z2) and =’ = (0,x}), with 22 < 1 and 2, < 1 we have
|[T@)], - [Te)],] = 10+ 2 = A +2h)] = oz - 25]-
Therefore, T is not a contraction mapping with respect to any weighted maximum norm.
(b) For every z € X, there holds
Jim Ti(z) = z*.
(c) A stationary policy © = {u*, p*,...} is optimal if and only if

T,- (") = T(z*).

Proof. We first show the following:
Lemma 3.1. Let Assumption 3.2 hold:

(a) If the stationary policy {u, , ...} is proper, then z(p) is the unique fixed point of
T, within X. Furthermore, lim;_.o T;,(z) = () for all z € X.

(b) If z > T, (z) for some z € X, then {u, u,...} is proper.

Proof.

(@) If {u,u,...} is proper, then Assumption 2.2 of Section 4.2 is satisfied and the
conclusion follows from the results of that section.

320 Shortest Paths and Dynamic Programming Chap. 4

(b) If z € X and = > T,,(z), then by the monotonicity of T,

t—1
22 Ty@)=P'wz+)_ Piuew), Vi1 (3.11)
k=0

If {u,p,...} were improper, then some subsequence of Zf;__lo P*(u)c(u) would
have a coordinate that tends to infinity, thereby contradicting the above inequality.
Q.E.D.

We now return to the proof of Prop. 3.3. We first show that 7" has at most one
fixed point within X. Indeed, if = and z’ are two fixed points in X, then we select
p and ' such that £ = T(z) = T,(z) and =’ = T(2') = T, (z"). By Lemma 3.1(b),
we have that {u,p,...} and {g',p/,...} are proper, and furthermore r = () and
z' = z(y'). We have z = Tt(z) < Tﬁ,(w) for all t > 1, and by Lemma 3.1(a), we obtain
z < lim;_, o TZ,(:c) = z(y') = 2. Similarly, ' < z, showing that z = z’ and that T
has at most one fixed point within X.

We next show that T has a fixed point within X. Let {u, 4,...} be a proper policy.
Choose n' € M such that T, (2(n)) = T(2(u)). Then we have z(u) = T, (x(w) >
T (2(w)). By Lemma 3.1(b), {4/, 4/,...} is proper, and by the monotonicity of Ty,
we obtain

o(u) 2 lim T, (z(w)) = 2(4). (3.12)

If 2(p) = z(u'), then we obtain z(u) = z(1') = Ty (x(u)) = Ty (z(w)) = T ((w))
and z(y) is a fixed point of T If x(u) # x(u'), then, from Eq. (3.12), z(u) > z(u') and
z;(u) > x;(u) for at least one state 5. We then replace 1 by 4 and continue the process.
Since the set of proper policies is finite, we must obtain eventually two successive proper
policies with equal cost vectors, thereby showing that T has a fixed point within X.

Next we show that the unique fixed point of T within X is equal to the optimal cost
vector z*, and that T%(z) — z* for all z € X. Indeed, the construction of the preceding
paragraph provides a proper policy {x, 4, ...} such that T}, (z(w)) = T (z(w) = z(w).
We will show that T%(z) — x(u) for all z € X, and that z(u) = x*. Let A be the vector
with coordinates

0, ifi=1,
A"‘{&, ifi#1, (3.13)

where 6 > 0 is some scalar, and let 2 be the vector in X satisfying
T,(z%) =z% - A (3.14)

[There is a unique such vector because the equation 2 = c(i) + A + P(u)z? (=
T,(x®) + A) has a unique solution within X by the analysis of Section 4.2.] Since z2

Sec. 4.3 Markovian Decision Problems 321

is the cost vector corresponding to u for c(u) replaced by c(u) + A, we have 22 > z(p).
Furthermore, for any = € X, there exists A > 0 such that z < z®. We have

o(p) = T(z(w) < T@@®) < T@®) =2 - A < z?.
Using the monotonicity of 7" and the previous relation, we obtain
) =T (z(w) <T@ <T@ <2®, Vixl (3.15)
Hence, T%(z2) converges to some £ € X, and by continuity of 7, we must have

% = T(Z). By the uniqueness of the fixed point of 7' shown earlier, we must have
% = z(u). It is also seen using the fact z;(u) = 0, that

() — A =T(x(w) — A < T(x(p) — A) < T(z(w) = z(w), (3.16)

0 z(p) — A < limy—oo T (z(u) — A) < z(p). Similarly, as earlier, it follows that
lim; o T (z(1) — A) = (). For any = € X, we can find § > 0 such that

x(u)—AﬁxSwA.
By monotonicity of T, we then have
THz(w) - A) <T'@) < T, Vix1, (3.17)

and since limy—.o0 T (2(p)—A) = limy—.oo TH(@?) = z(p), it follows that limy .o, T*(x) =
(). To show that z(u) = z*, take any policy © = {uo, p1,-..}. We have

Ty - - Ty (&0 > TH(z0),

where 20 is the zero vector. Taking the limit superior in the preceding inequality, we
obtain

z(m) > z(w),

so {u, p,...} is an optimal policy and z(i) = z*.

To prove part (c), we note that if {u*, u*,...} is optimal, then z(p*) = z*, so
Ty (z*) = Tp- (z(p*)) = z(u*) = z* = T(z*). Conversely, if z* = T(z*) = Tj,-(¢*) it
follows from Lemma 3.1 that {u*, *,...} is proper, and by using the results of Section
4.2, we obtain z* = z(u*). Therefore, {p*, p*,...} is optimal. Q.E.D.

We note that the convergence property of Prop. 3.3(b) can also be shown for the
Gauss—Seidel algorithm based on T (Exercise 3.7). An alternative method of proof for
Prop. 3.3 is outlined in Exercise 3.4 under somewhat different assumptions.

322 Shortest Paths and Dynamic Programming Chap. 4

The results of Prop. 3.3 may not hold if the Assumption 3.2 or the undiscounted
cost model are modified in seemingly minor ways. Figure 4.3.3 gives an example where
there is a (nonoptimal) improper policy that yields finite cost for all initial states and
Prop. 3.3 fails to hold. Exercise 3.8 gives an example where Prop. 3.3 fails to hold when
the set of decisions U (7) is not finite, even though all stationary policies are proper.

Cost=0 Cost=—1 Cost=0 Cost=0 Cost=0 Cost=0
Transition diagram and Transition diagram and
costs under policy costs under policy
{ra.. .} (W'}

Figure 4.3.3 Example where Prop. 3.3 fails to hold. Here there are two stationary
policies, {u, ,...} and {u’,p/,...} with transition probabilities and costs as shown.

The equation = = T'(x) over the subspace X = {(zl,xz,z3) |z = 0} is given by

T = 0,
x2 = min{--l,z;;},
3 = T2,

and is satisfied by any vector of the form =z = (0,6,6) with § < —1. Here the
proper policy {u, ,...} is optimal and the corresponding optimal cost vector is z* =
(0,—1, —1). The difficulty is that there is the nonoptimal improper policy {u’, i/, .. 3
that has finite (zero) cost for all initial states. This example depends on the existence of
a negative state cost (see Exercise 3.4).

The construction used in the proof of Prop. 3.3 to show that T" has a fixed point
constitutes an algorithm, known as policy iteration, for obtaining an optimal proper policy
starting with an arbitrary proper policy. In the typical iteration of this algorithm, given
a proper policy {u,u,...} and the corresponding cost vector z(u), one obtains a new
proper policy {4/, i/, ...} satisfying the equation Ty (x(,u)) = T(x(u)), or, equivalently,

n
U — 3 N —
W@ = arg min c,<u>+Z;p,J(u)xg<u> ,i=23,..,n
J:

The new policy is strictly better if the current policy is nonoptimal; indeed, it was
shown by Eq. (3.12) and the discussion following that equation that z(y') < z(p),
with strict inequality z;(u') < z;(u) for at least one state x;, if the policy {, ...}
is nonoptimal. Because the number of stationary policies is finite, it follows that this
policy iteration algorithm terminates after a finite number of iterations with an optimal
proper policy. Note that each iteration involves a “policy evaluation” step, whereby,
given p € M, we obtain the corresponding cost vector z(u) by solving the system of

Sec. 4.3 Markovian Decision Problems 323

equations z(u) = c(u) + P(u)x(p) subject to the constraint x.(p) = 0. This step can
be very time-consuming when the number of states is large. If a powerful parallel
machine is available, however, the policy evaluation step can be speeded up a great
deal [to as little as O(n) as shown in Section 2.2, or O(log2 n) as shown in Section
2.9]. Under these circumstances, the policy iteration algorithm can be attractive, since it
typically requires very few iterations for termination. We note also that a similar finitely
terminating policy iteration algorithm can be shown to yield an optimal stationary policy
under the Discounted Cost Assumption 3.1 starting from an arbitrary stationary policy
[Ber87].

4.3.3 Parallel Implementation of the Dynamic Programming
Iteration

We now consider the implementation of the dynamic programming (D.P.) iteration

n
T; := min (u) + o (U5
ii= min | ciw) + ;pzj();
]=

in a message—passing system [cf. Eq. (3.7)]. The situation here is similar as for the
matrix—vector type of calculations discussed in Subsection 1.3.6. The main difference
is the presence of the minimization over v € U(¢). Indeed when U(z) consists of a
single element, the D.P. iteration consists of a matrix—vector multiplication followed by
a vector addition [cf. Eq. (3.5) in Subsection 1.3.6].

We first assume that there are p processors, with p less than or equal to the number
of states n, and for simplicity, we assume that » is divisible by p. It is then natural to
let the jth processor update the cost of states (5 — 1)k + 1 through jk, where k = n/p.
Let us assume that each set U(7) contains r elements, p;;(u) is nonzero for all u [so the
matrix P(u) is dense], and the jth processor holds the vector = and the values c;(u), and
pim(w) for all uw € U(3), m, and ¢ = (j — 1)k + 1 through ¢ = jk. Then the updating
of the corresponding coordinates of = according to the D.P. iteration takes O(knr) time
for each processor. To communicate the results of the updating to the other processors,
a multinode broadcast of packets, each containing k& numbers, is necessary. If a linear
array is used for communication, then we see, using the results of Subsection 1.3.4, that
the multinode broadcast takes O(kp) = O(n) time. Thus, the total time per iteration is
O(knr) = O(n?r/p).

Assume now that a hypercube with n? processors is available. We assume that n is
a power of 2, and that the processors are arranged in an n X n array, with each “row” of n
processors being itself a hypercube (cf. the algorithm for matrix—vector multiplication of
Fig. 1.3.26 in Subsection 1.3.6). We also assume that at the beginning of each iteration,
each processor (z, j) holds z; and p;;(u) for all u € U(3). Furthermore, every processor
(z,7) holds c;(u) for all w € U(%). Each D.P. iteration consists of four phases. In the
first phase, each processor (, j) forms the product p;;(u)z; for all v € U(7); this takes
O(r) time. In the second phase, the sums c;(u) + Z;;l pij(u)z;, for all u € U(7), are

324 Shortest Paths and Dynamic Programming Chap. 4

formed at node (%, ¢) by using r single node accumulations along the ith row hypercube;
these can be pipelined (cf. Exercise 3.19 in Section 1.3) so that they take O(r + logn)
time. In the third phase, each processor (i,4) computes the new value of z;, which is the
minimum over u € U(%) of the sums c;(u) + Z;’:l pij(u)z; over all u € U(3); this takes
O(r) time. Finally, in the fourth phase, each processor (z,7) broadcasts the new value
of z; to all processors (j,7), j = 1,2,...,n along the ith column hypercube, requiring
O(logn) time. The total time taken by the D.P. iteration is O(r + logn).

Suppose, finally, that a hypercube with n?r processors is available. We assume
that both r and n are powers of 2, and that the processors are arranged in an n X n X r
array, with each “row” of n or r processors being itself a hypercube. We number the r
elements of U() as 1,2,...,7, and we assume that at the beginning of each iteration,
each processor (3, j, u) holds x; and p;;(«), and each processor (4, i, u) holds c;(u). Then
the D.P. iteration can be implemented similarly as in the preceding paragraph, but with
modifications to take advantage of the additional processors. One difference is that the
first and second phases are parallelized over u, so that they take time O(1) and O(log n),
respectively; furthermore, the minimization over u € U(3) of the third phase yielding z;
is done in time O(log) using a single node accumulation at node (3, 7, 1). Finally, at the
fourth phase, x; is transmitted from processor (i, i, 1) to all processors (3,7, u) in time
O(log(rn)) using a single node broadcast. If 7 < n, the total time per D.P. iteration is
O(log n).

Note that the bound on the order of time per D.P. iteration given above for each case
of number of processors and interconnection network cannot be improved in the absence
of additional problem structure, even if all communication is assumed instantaneous.

EXERCISES

3.1. Let Assumption 3.1 hold, e = (1,1,...,1),and ¢ > 0 be a given scalar:
(a) Show that if u € M is such that

Tu(z") < T(z") + ee,
then

() <z" + S e
-«

(b) Suppose that z satisfies |z; — z}| < € for all 5. Show that if u € M is such that
T,.(z) = T(z), then

2ce

x'Sa:(,u)Sz*+1 e.

Sec. 4.3 Markovian Decision Problems 325

3.2,

3.3.

Assume that o = 1, p;;(u) =0 forall i # 1 and u € U(z), and p11(u) = 1 for all u € U(1).
For an improper policy {x, 4, ...}, consider the directed graph having nodes 1,2,...,n,
and an arc (2, 5) for each pair of nodes ¢ and j such that p;; (y(i)) > 0. Define the length
of a cycle (i1, 2, ..., 4k, 1) as the sum c;, (u(i1)) + -+ + cq, (u(ix)). Show that if all
cycles have positive length, the policy yields infinite cost for at least one initial state (cf.
Assumption 3.2).

Assume that & = 1, pii(u) = 1 and ¢i1(u) = 0 for all w € U(1), and, furthermore, all
stationary policies are proper. Show that the mappings T and T, of Egs. (3.5) and (3.6),
respectively, are contraction mappings with respect to some weighted maximum norm ||- ||,
over the subspace

X ={zeR" |z =0}

Abbreviated proof. Partition the state space as follows. Let S; = {1} and for
k =2,3,..., define sequentially

sk={z-

Let Sy, be the last of these sets that is nonempty. We claim that the sets S, cover the entire
state space, that is, Ujw; Sk = S. To see this, suppose that the set Soo = {z |2 ¢ UZLlSk}
is nonempty. Then for each i € Sw, there exists some u; € U(7) such that p;;(u;) = 0
for all j ¢ Soo. Take any p such that u(f) = wu; for all ¢ € Sy. The stationary policy
{u,, ...} satisfies [P*(u)] ,; =0foralli € Ses, j ¢ Seo, and t, and, therefore, cannot be
proper, which contradicts the hypothesis.

We will choose a vector w > 0 so that T is a contraction with respect to || - ||% on
the set X. We will take the ith coordinate w; to be the same for states 7 in the same set
Sk. In particular, we will choose the coordinates w; of the vector w by

1¢ S1U---USk—1 and min max pij(u) > 0} .
w€U(E) jESU--USk_,

Wi = Yk if i € Sk,

where y1,. .., ym are appropriately chosen scalars satisfying
l=y1<yp<- < Yn. (3.18)
Let
€= k=r§unm ;21& z1'213111c Z [P(p)] i (3.19)

JESIU-USk_y

and note that 0 < € < 1. We will show that it is sufficient to choose ¥, ...,y so that for
some v < 1, we have

Img_eg+Lle<y<t, k=2,...,m, (3.20)
Yk Yk

326

Shortest Paths and Dynamic Programming Chap. 4

and then show that such a choice of y,...,ym exists.
Indeed, for z,z’ € X, let u € M be such that T,(z) = T(z). Then we have for all

i’
n
[T)-T@) = [T@) - Tu@)): < [T -Tu@)k = Y pis (1) @5 5. (3.21)
j=1
Let k(j) be such that j belongs to the set Sk(;). Then we have, for any constant c,
lz' —z|| < e = zi — x5 < cYkg), i=2,...,m,
and Eq. (3.21) implies that for all ¢,

[r@)], - [T@)]

< L Z pis (G)) vk

CYk() Yk o
e R1(70) Bl S -21 (70)
Yk(i) Yk(i)
JESIU - USk(i)—1 JESkHY - USm
Yk()—1 Ym . Ym
= (Lot Y pis (u) + 2=
< Yki) yk(z‘)) Z CR) Yk(i)

JESIU--USky—1

< Ye@-1 _ Ym €+ Ym <A,
YkG) Yk() Ykai)

where the second inequality follows from Eq. (3.18), the third inequality uses Eq. (3.19)
and the fact yii)—1 — ym < 0, and the last inequality follows from (3.20). Thus, we have

[T@")], - [T@); <

cy, 1=1,...,n,
w;
so we obtain
[T(")], - [T@);
max ——— < ¢v,
i w;

or
|T@ - T@)|” <ev, forallz,z’ € X with ||z — 2% <c.
It follows that T is a contraction mapping with respect to || - ||, over X.
We now show how to choose the scalars yi, y2, . . ., ym so that Egs. (3.18) and (3.20)

hold. Let yo = 0, y1 = 1, and suppose that yi,2,..., yx have been chosen. If € = 1, we
choose yr+1 = yx + 1. If € < 1, we choose yx+1 to be

1
Ykt1 = i(yk + M),

Sec. 4.3 Markovian Decision Problems 327

34.

where

. €
Mk = Ig!ilgk [yz + I__G(yz - yz—l)] .

Using the fact

€

Mi+1 = min {Mk,yk+1 + Yr+1 — yk)})

1—¢

it is seen by induction that for all k,
Yk < Y+t < Mit1.

In particular, we have

Ym < My = é?ig"m [yz + l—ie(yi - yi—l)])
which implies Eq. (3.20).

Prove Prop. 3.3 under a variation of Assumption 3.2, whereby, instead of assuming that
every improper policy yields infinite cost for some initial state, we assume that c;(u) > 0
for all < and u € U(3), and that there exists an optimal proper policy. The set X is now
defined as X = [z|z > 0,z; = 0]. Hint: Lemma 3.1 is not valid, so a somewhat different
argument is needed. The assumptions guarantee that z* is finite and z* € X. [We have
z* > 0 because ci(u) > 0, and zj < oo because a proper policy exists.] The idea now is
to show that £* > T'(z™), and then to choose y such that T,(z*) = T(z*) and show that
{u, 1, ...} is optimal and proper. Let 7 = {uqo, p11,...} be a policy. We have for all 4,

[2(m)], = ci (@) + ipij (ko) [2(m)] |
j=1
where 7 is the policy {u1, 2, ...}. Since z(m) > z*, we obtain
[e(m)], > ci (@) + Z pii (Wo@®) 2} = [Tue@)], > [T@™)] -
j=1
Taking the infimum over = in the preceding equation, we obtain

z* > T(z™). (3.22)

Let u € M be such that T,,(z*) ="T(z"). From Eq. (3.22), we have z* > T,(z"),
and using the monotonicity of T},, we obtain

t—1 t—1

T 2T = P’ +) Prwew 2 Y Priew), Vi1 (3.23)
k=0 k=0

328

3.5.

3.6.

3.7.

338

b

Shortest Paths and Dynamic Programming Chap. 4

By taking limit superior as ¢ — co, we obtain ™ > xz(u). Hence, {u, y,...} is an optimal
proper policy, and z* = z(). Since p was selected so that T, (z*) = T(z*), we obtain,
using * = z(u) and z(p) = T, (:c(,u)), z" = T(z"). For the rest of the proof, use the
vector A similarly as in the proof of Prop. 3.3.

Under the Discounted Cost Assumption 3.1, show that if £ € R™ is such that T'(z) > z,
then ™ > z. Use this fact to show that z* solves the linear program

. . /
maximize Sz

n
subject to c;(u) + aZpij(u):cj >z, i=1,...,n, u e U®E),
i=1

where (3 is a nonzero vector with nonnegative coordinates. Derive a similar result under the
Undiscounted Cost Assumption 3.2.

[Tse85] Consider the linear program in R™:

. . /
maximize Gz

subject to Crx < di, k=1,...,m

where 3 is a nonzero vector with nonnegative coordinates, d are given vectors, and C
are square n X n matrices with positive elements on the diagonal and nonpositive elements
off the diagonal. Assume that all matrices Cj are diagonally dominant. Use the result of
Exercise 3.5 to transform the problem into a dynamic programming problem.

Under the Undiscounted Cost Assumption 3.2 show that the Gauss—Seidel algorithm based
on T' (as defined in Subsection 3.1.2 of Chapter 3), converges to z* for any initial vector
z € X. Hint: Compare with Exercise 1.4 in Section 3.1.

(The Blackmailer’s Dilemma [Whi83).) The analysis given for undiscounted problems in
this section relies on the finiteness of the set U(z) of available decisions at state i. This
exercise shows that if U(%) is not finite, then Prop. 3.3 need not hold even if all stationary
policies are proper. In particular, the optimal cost may be —oo for some initial states, there
may exist an optimal nonstationary policy but no optimal stationary policy, and the dynamic
programming algorithm may converge to a wrong point for some initial conditions.

Consider a controlled Markov chain with two states, 1 and 2. State 1 is absorbing
and cost—free. In state 2 we must choose a control u from the interval (0, 1] and incur a
cost —u; we then move to state 1 at no cost with probability u®, where 3 is a fixed positive
scalar, and we stay in state 2 with probability 1 — u®. (We may view here u as a demand
made by a blackmailer, and state 2 as the situation where the victim complies. State 1 is
the situation where the victim refuses to pay and denounces the blackmailer to the police.
The problem of this exercise models the blackmailer’s effort to maximize the total expected
gain through balancing at each time the desire for a high demand u with a low probability
u® that the victim will not comply.)

The mapping T takes the form

[f@], =0, [T@],= inf [-u+(1-v")z].

Sec. 4.3 Markovian Decision Problems 329

Show that:

(a) All stationary policies are proper and yield finite cost.

(b) If 3 > 1, then the optimal cost x5 starting from state 2 is —co. Show also that if
B = 2 then the nonstationary policy that chooses in state 2 the control uy, = v /(k+1)
at time k is optimal provided ~ € (0, 1/2]. Hint: Use the fact that) >~ 1/k = oo,
and also that the product [T;2 (1 —+?/k?) is greater than 1 — +* 3°2° (1/k?) and
is therefore positive for v € (0,1/2].

(¢) If 3 < 1then z; = —1, and for all z with z; = 0, z; > —1 we have T(z) = z*.
On the other hand we have z = T'(z) for all x with ; =0, z, < —1.

NOTES AND SOURCES

4.1 The shortest path problem is discussed in nearly every book on combinatorial
and network optimization, see, e.g., [Law76], [PaS82], and [Roc84]. For a literature
survey, see [DeP84] and for an extensive computational study, see [DGK79]. The
Bellman-Ford algorithm is derived in [Bel57] and [For56]. Our treatment of arbitrary
initial conditions (Prop. 1.2 in particular), appears to be new. The distributed Bellman—
Ford algorithm as well as a parallel form of Dijkstra’s method with a separate processor
assigned to each origin node have been used in routing algorithms for data networks,
including the ARPANET (see [BeG871, [Eph86], [MRR80], and [ScS80]). For distributed
shortest path algorithms, appropriate for message—passing systems and data networks, see
[Gal82] and [AwG87]. The parallel implementation of the Floyd-Warshall algorithm of
Exercise 1.7 is similar to implementations on array processors and systolic arrays (see
[AtK84], [DNS81], and [Kun88]). The parallel solution of a number of graph problems
using various processor interconnection networks is discussed in [DNS81]. Shortest path
algorithms based on forward search (cf. Exercise 1.10) are commonly used in artificial
intelligence applications and are related to some branch—and-bound methods for integer
programming; see [Ber87] and [Pea84].

4.2 Treatments of dynamic programming can be found in many textbooks, includ-
ing [Bel57], [Ber87], [BeS78], [HeS82], [KuV86], [Nem66], [Ros83b], [Whi82], and
[Whi83].

4.3 Discounted Markovian decision problems have been exhaustively analyzed and
a detailed account with references and additional computational methods can be found
in [Ber87].

Special cases of undiscounted Markovian decision problems, called stopping prob-
lems or first passage problems, have been considered extensively in the literature (see
[Ber87] for an account and references). The theory existing up to now assumes that state
costs are either all nonnegative or all nonpositive. Our treatment extends the theory to
the case where both positive and negative state costs are allowed. Because our assump-
tions generalize naturally the standard Connectivity and Positive Cycle assumptions of
the shortest path problem, we refer to the undiscounted problem as the stochastic shortest
path problem.

330 Shortest Paths and Dynamic Programming Chap. 4

Contraction mappings in dynamic programming are treated in [Den67] and [BeS78].
The weighted maximum norm contraction result of Exercise 3.3 has been attributed to
A. J. Hoffman. The monotonicity of the dynamic programming mapping is emphasized
in [Ber77], [BeS78], and [VeP87]; it will play an important role in the asynchronous
version of the Bellman-Ford algorithm discussed in Section 6.4.

The complexity analysis of [PaT87b] strongly suggests that in contrast with the
shortest path problem, there do not exist any parallel algorithms for solving the dynamic
programming problems of this section in time O(logk n) for any integer k.

