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Abstract

In order to deploy intelligent, next-generation applications on Unmanned Aerial Ve-
hicles (UAVs), we must first develop a software architecture that supports onboard
computation and flexible communication. This thesis presents an Onboard Planning
Module developed from an embedded PC/104 Linux-based computer that commu-
nicates directly with the UAV's autopilot to retrieve telemetry data and update the
UAV's flight path. A serial communication program exchanges data with the UAV's
autopilot while a multithreaded module enables concurrent onboard Mixed-Integer
Linear Programming (MILP) optimization. The Mission Manager Graphical User
Interface (GUI) monitors the status of each Onboard Planning Module on a team
of UAVs using the onboard planning protocol. Two task assignment scenarios are
simulated to demonstrate the system operating with both a single and multiple UAV
task selection algorithm.
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Chapter 1

Introduction and Background

Unmanned Aerial Vehicles (UAVs) provide the ability to perform tasks too dangerous

or mundane for humans. In militaristic applications, UAVs effectively serve as long-

endurance platforms for data collection and have been used for reconnaissance during

recent wars and conflicts. In the present fight against terrorism, the United States

military has used UAVs to patrol hostile areas of Afghanistan and Iraq, to seek out

enemies, and to deliver missiles to targets. At home, the Predator B drone aircraft

helps to combat illegal immigration by patrolling the border [1, 2].

UAVs can also be used in non-militaristic applications such as surveillance of

infrastructure and acquisition of data. Because disasters often impair communication

abilities by destroying infrastructure, UAVs are currently being developed to quickly

restore utilities such as phone and Internet services [3]. UAVs are also used to inspect

long stretches of remote pipelines or locate traffic accidents on major interstates.

Due to their relatively low cost, multiple UAVs can be used in activities that

are coordinated, yet decentralized. However, coordination and cooperation requires

reliable communication, which is a challenging design goal in hostile and ever-changing

environments [4].



1.1 Overall Goal

The purpose of this project is to develop a software architecture to support decen-

tralized and distributed missions on multiple UAVs. An embedded Linux PC/104

computer installed on each UAV will provide an Onboard Planning Module that en-

ables the calculation of optimal flight paths and the completion of assigned tasks,

even in the event of communication outages. This Master of Engineering thesis aims

to solve many of the challenges posed by the implementation of this hardware and

software system.

To operate properly, the Onboard Planning Module must communicate with the

UAV's autopilot to monitor flight status, perform Mixed-Integer Linear Programming

optimizations onboard, and communicate with other UAVs and the ground. A GUI

must be developed to monitor the onboard status of the UAV, and task assignment

scenarios must be developed to ensure correct operation.

1.1.1 Autopilot Communication from Linux

The Aerospace Controls Lab at MIT uses the Cloud Cap Technologies' Piccolo [5] as

an autopilot for the UAVs. Unfortunately, software libraries required to communicate

with the autopilots are provided only in binary format and for the Microsoft Windows

platform. Thus, it is first necessary to develop an implementation of the Cloud Cap

Piccolo Communications Protocol [6] to run on the Linux-based embedded computer.

1.1.2 Onboard MILP Computation

One goal of the system is to develop the infrastructure necessary to run Mixed-Integer

Linear Programming (MILP) optimization problems onboard a UAV. To accomplish

this task, an embedded computer will be installed into the payload of the UAV that

has enough computational power to run real-time task assignment and planning al-

gorithms.

lhttp://www.cloudcaptech.com/



1.1.3 Payload Communication Protocol

A task may require the cooperation of multiple UAVs, so the software and hard-

ware infrastructure should scale to allow a large number of vehicles to participate

simultaneously. A key component in achieving this goal is a communication protocol

that enables onboard planning and control algorithms to coordinate both with other

nearby UAVs and with the Mission Manager GUI on the ground.

1.1.4 Distributed Task Assignment Scenarios

To test the system, a single UAV task assignment scenario will be developed and

uploaded onto the embedded system. This scenario will have a single UAV receive a

list of potential target locations and select the minimum distance target based on the

UAV's current position and velocity. The system will communicate with the UAV's

Piccolo autopilot to set a new waypoint at the chosen target. This scenario will test

the integration of onboard MILP computation with the onboard planning protocol.

The result will be an autonomous UAV that continuously listens for target locations

sent from the Mission Manager GUI and approaches the one it selects as optimal.

Next, a distributed multi-UAV scenario will be developed. This scenario will

require a number of UAVs to cooperatively assign each UAV to a target. The task of

picking the optimal UAV/target matches will be distributed across the UAVs. Each

UAV will calculate a list of its best targets and send the list to the other UAVs to

determine the globally optimal assignment of tasks. Inter-UAV communication will

be tested in this scenario. Section 4.4 describes the distributed scenario and target

selection algorithm in more detail.

1.1.5 Mission Manager GUI

A Graphical User Interface (GUI) will be developed to control the task assignment

scenarios by coordinating the start of a task and monitoring each UAV's progress in

completing that task.



Figure 1-1: Monocoupe 90A UAVs

1.2 Past Work

Much of the research conducted in the past has focused on developing UAV architec-

ture that supports a limited number of UAVs. Recently, research has been done to

investigate and test various structures for multi-vehicle coordination [8].

Coordination of a fleet of UAVs is often a complicated optimization problem.

Past research has focused primarily on breaking the large problem of controlling a

UAV into two parts, task assignment and trajectory calculation. However, despite

this simplification, these algorithms still perform too slowly to be used real-time

in a dynamically changing battlefield environment. Recent work by M. Alighanbari

demonstrates a novel approach called the Receding Horizon Task Assignment (RHTA)

algorithm [9]. This algorithm produces near-optimal results, yet is computationally

less expensive than past approaches. While it has only been tested in a lab, the

algorithm may be light enough to run in real-time onboard a UAV.

1.3 Monocoupe Aircraft

The Onboard Planning Module is designed to be installed into the payload of the

Kangke 1/4 scale Monocoupe 90A-based UAV. Past lab experiments used the Tower-

Hobbies Trainer 60 aircraft, but more payload space was needed for bulkier equipment



Figure 1-2: Cloud Cap Technology's Piccolo Plus Autopilot [5]

such as the PC/104 embedded computer and future camera.

The PC/104 with power supply has a mass of 1.0 kg and consumes under 10W of

power under normal operation. To run for two hours, the embedded computer will

require 0.8 kg of Lithium Polymer batteries. Power requirements are described more

fully in Section 4.5.

Table 1.1: Monocoupe specs (Figure 1-1)

Weight
Wingspan
Length
Payload Cap
Endurance
Airspeed

18 pounds
96 inches
65 inches
5 pounds (internal)
2 hours
15 m/s - 30 m/s

1.4 Piccolo Autopilot

Cloud Cap Technology's Piccolo2 autopilot will be used to autonomously provide

low-level guidance to the UAVs. Each Piccolo consists of a single-board MPC555

2http://www.cloudcaptech.com/



microcontroller that runs stabilization and waypoint guidance code.

The Piccolo autopilot works in an integrated way with a number of other hardware

and software components. To communicate with the ground, the Piccolo autopilot

uses a 900 MHz wireless link to send and receive information from the Piccolo ground

station. The Piccolo ground station converts information from the 900 MHz link to

an attached ground station computer running the Piccolo Operator Interface (Section

1.4.2) and Mission Manager GUI (Section 3). In the laboratory, the Piccolo autopilot

can be attached to a simulation computer via the CAN bus to enable hardware-in-

the-loop testing, as described in Section 4.1.

The Piccolo autopilot can operate in a variety of different modes, but only the

multi-homed mode meets the requirements of this project. In this mode all commu-

nication sent from the Piccolo onboard the UAV to the ground station is also sent

to the Piccolo's external RS-232 serial port, also called the program port. The on-

board Linux PC/104 computer will listen and communicate over this serial connection

operating at 57.6k baud to:

* Retrieve information from the Piccolo autopilot such as aircraft telemetry

* Send updated waypoints and plans to change the aircraft's trajectory

Multi-homed operation allows the Linux PC/104 computer to update the UAV's flight

plan while still permitting a user on the ground to track and monitor the status of

the aircraft. Additionally, to ensure safety an operator on the ground can relinquish

control from the Onboard Planning Module at any time by using the Piccolo Operator

Interface.

1.4.1 Waypoints and Plans

The Piccolo autopilot controls an aircraft along a trajectory determined by a series

of waypoints. A unique index number between 0 and 99 references each waypoint,

consisting of latitude, longitude, and altitude. A flight plan consists of a closed,

ordered listing of waypoints.
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Figure 1-3: Cloud Cap Technology's Operator Interface

While the UAV is in flight, the Piccolo autopilot tracks a single waypoint and

attempts to approach it. When the waypoint is reached, the tracking waypoint will

change to the next waypoint in the flight plan, and the process repeats.

The Onboard Planning Module developed in this project will dynamically change

waypoint locations and entire flight plans based on the results of task planning and

assignment algorithms run onboard the UAV.

1.4.2 Operator Interface

The Piccolo Operator Interface software program (Figure 1-3) monitors the status of a

number of UAVs by listening to data sent from each aircraft's Piccolo autopilot. State

information for the UAVs is displayed to the user on the ground station computer.

Each Piccolo autopilot broadcasts telemetry data to the Operator Interface at 1 Hz

or 20 Hz, and the same data is received by the Onboard Planning Module via the

program port. The Operator Interface can monitor multiple aircraft simultaneously
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and display their positions on a map.

In addition to the Operator Interface GUI allowing a user to monitor the aircraft,

it also exports all information it receives from the Piccolos to a TCP/IP server port

on the local machine. Thus, a custom GUI such as the Mission Manager described in

Section 3 can connect to the Operator Interface TCP/IP port and receive the same

state information.

1.4.3 Program Port

Two RS-232 serial ports are required to connect the PC/104 to the Piccolo. The

first is the "program" serial port. This serial port mirrors all data that is transferred

between the Piccolo and the ground station's Operator Interface. It is used to retrieve

state information such as GPS latitude, longitude, and altitude from the Piccolo.

Additionally, waypoints can be sent to the Piccolo to update the UAV's intended

flight plan.

1.4.4 Payload Port

The Piccolo autopilot's second serial port allows the transfer of user-defined data. In

the course of building a virtual ground station onboard the aircraft, information must

be communicated between a GUI on the ground and the PC/104 onboard. Section

2.9 describes the design and implementation of the onboard planning protocol used

to control the Onboard Planning Module, set up simulations, and provide inter-UAV

and UAV-ground communication.

1.4.5 Piccolo Streams

The Cloud Cap Piccolo sends and receives data using multiple bidirectional streams

that are multiplexed onto the 900 MHz wireless channel. The communication protocol

defines a number of stream types in Table 1 of Piccolo Communications [6], though

the Onboard Planning Module will only need knowledge of the autopilot stream

and payload stream. Data is sent between endpoints, which can be either Piccolo
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autopilots or the Operator Interface. Two levels of packets exist to provide different

functionality.

Lower-level packets serve as the transport layer. This layer simply moves data

from one endpoint to another in small blocks. As it is only a transport mechanism

for stream data, multiple lower-level packets may need to be combined to form a

complete higher-level packet, as shown in Figure 1-4.

Higher-level packets transfer data for streams such as the autopilot stream and

payload stream. For example, autopilot stream packets carry system commands from

the Operator Interface to the autopilot and sensor telemetry information from the au-

topilot to the Operator Interface. Although a single higher-level packet is well-formed

and can be used directly, it can also be used to encapsulate additional communica-

tion protocols. Section 2.9 demonstrates using payload stream packets to support an

additional protocol used by the Onboard Planning Module.

Error Handling

Error checking on stream data is handled using both exclusive or (XOR) checksums

and Cyclic Redundancy Checks (CRCs). On the lower layer of communication, the

transport layer, each stream packet header contains an 8-bit XOR checksum on bytes

0-12 (See Table 2 in Piccolo Communications [6]). This early check allows a receiv-

ing machine to determine if the header is valid and enables rapid detection of bad

synchronization (SYNC) characters.

In addition to XOR checksums, CRCs are also used to check for errors in data

transmission. Both levels of packets contain a 16-bit CRC. The CRC16 algorithm

used produces a 2 byte value for validation. At the lower level, the CRC applies to all



the data. The higher level, autopilot or payload stream, also uses a CRC that covers

the entire packet length. This second CRC is necessary because data in one autopilot

packet may be transported using multiple lower-level transport packets. Thus, this

higher-level CRC ensures that the Piccolo Communications implementation correctly

receives and reassembles the data.

If a packet's XOR checksum or CRC is invalid, the receiving machine discards the

packet.

1.5 PC/104 Architecture

The PC/104 form factor allows boards of size 3.6" x 3.8" to be stacked vertically

to form a compact and powerful computing solution onboard an unmanned aerial

vehicle. PC/104 gets its name from the number of pins used to connect different

boards together, which electrically uses the standard PC ISA (Industry Standard

Architecture) bus. Different types of boards such as CPU, serial interface, graphics,

and coprocessor boards can be stacked together to allow great flexibility in size and

functionality.

1.5.1 Tiny886ULP

The Onboard Planning Module uses the Tiny886ULP PC/104 CPU board from Ad-

vanced Micro Peripherals shown in Figure 1-5. The CPU board has a 1.0 GHz Cru-

soe processor with 512 MB of RAM. A secondary board contains a CompactFlash

connection, which allows a CompactFlash card to act as an IDE hard drive due to

DiskOnChip technology. To aid in debugging, the Tiny886ULP has connectors for

VGA, ethernet, keyboard, and mouse, though these peripherals will be disconnected

when the Onboard Planning Module is deployed onboard the UAV.



Figure 1-5: PC/104 Embedded Computer System

1.6 Mixed-Integer Linear Programming

Mixed-Integer Linear Programming (MILP) is an optimization technique that allows

for minimizing a piecewise-linear objective function subject to linear and logical con-

straints. Such a formulation has recently been applied to path planning, where its

piecewise linear nature enables fast convergence for real-time application, and its

integer nature allows for expressing logical constraints useful for obstacle avoidance.

One example of a MILP problem used onboard an aircraft is target location se-

lection. For example, an aircraft may have a number of target locations from which

to pick and would like to select the optimal one based on some objective. A MILP

optimization problem could be formulated to take the targets along with the aircraft's

position and velocity and return a result indicating the best target to approach first.

In this application, the aircraft's Onboard Planning Module will use telemetry

data read from the Piccolo's program port as input to an optimization problem.

ILOG CPLEX 9.0 will be used to solve MILP problems onboard the UAV. A user on

the ground will be able to monitor and control MILP optimizations via the Mission

Manager GUI.



Chapter 2

Onboard Planning Module

In order to enable intelligent computation on a UAV, an Onboard Planning Mod-

ule was designed and developed. This Onboard Planning Module serves as a virtual

ground station to control the flight path of the UAV based on the results of running

task planning and assignment algorithms. However, unlike previous implementations

that involve running computationally expensive algorithms on the ground and com-

municating the results to the UAV, all computation is performed onboard the aircraft.

Thus, the Onboard Planning Module must communicate the UAV's plan and status

to the user on the ground.

During normal operation, the following programs run on the onboard embedded

computer:

* ILOG CPLEX and License Manager Daemon(ilmd) (Section 2.4)

* Piccolo Serial Communication Program (Section 2.7)

Based either on messages from the user-controlled GUI (Section 3) on the ground or

on the state of the UAV in the air, the serial communication program may begin a

CPLEX optimization. Once computation completes, the results are used by the on-

board planning algorithm to change Piccolo waypoints, thus modifying the flight path

of the UAV. The Onboard Planning Module continuously sends status information

back to the GUI on the ground.



2.1 System Architecture

Figure 2-1 shows the architecture of both the UAV and ground systems necessary

to enable onboard computation. Although the figure displays only a single UAV

communicating with the ground station (over the 900 MHz wireless Piccolo link), this

architecture scales to support multiple UAVs communicating with the same ground

station.

2.1.1 UAV Architecture

The UAV system consists of a PC/104 embedded computer running Red Hat Linux

9.0. Key system software includes ILOG CPLEX 9.0, the serial communication pro-

gram, and a user-defined task assignment algorithm. This embedded computer com-

municates with the Piccolo UAV autopilot using the payload and program RS-232

serial ports described in Section 1.4.3. Figure 2-1 also illustrates the optional connec-

tion to the simulator laptop which enables hardware-in-the-loop testing of the system

on the ground. This method of testing is further described in Section 4.1.

2.1.2 Ground Architecture

The ground system consists of a Piccolo ground station connected to a laptop running

Cloud Cap Technology's Operator Interface (Section 1.4.2) and Mission Manager GUI

(Section 3). The Mission Manager connects to the Operator Interface in order to

communicate with the Piccolos, as described in Section 3.2.1.

2.2 PC/104 Hardware

The Onboard Planning Module is built using a PC/104 embedded computer system

with two serial ports to communicate with the Piccolo autopilot, as shown in Figure

2-2. An Advanced Micro Peripherals Tiny886ULP running Red Hat Linux 9.0 com-

prises the base for the Onboard Planning Module. This embedded computer has a

1.0 GHz Crusoe processor, which is comparable in performance to an AMD Athlon
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Figure 2-2: PC/104 Connected to the Piccolo Autopilot

or Intel Pentium-III, and 512MB of RAM. A Serial I/O board is installed in the

PC/104 stack to provide the two RS-232 serial ports needed to communicate with

the Piccolo's program and payload ports. A 1.0 GB CompactFlash disk serves as

non-volatile storage and suffices to store Red Hat Linux 9.0, ILOG CPLEX 9.0, the

serial communication program, and task assignment algorithm.

2.3 Linux on the PC/104

Although the PC/104 is compatible with all major operating systems including Win-

dows, Red Hat Linux 9.0 was chosen due to its performance, reliability, flexibility,

and relatively small size. The standard distribution of Red Hat Linux 9.0 contains

the two system libraries required by ILOG CPLEX 9.0, glibc 2.3 and gccc 3.2.

The PC/104 development kit includes an IDE bus, so a CD-ROM drive was at-



tached to the PC/104 and a bootable Red Hat Linux 9.0 CD was used to install Linux.

The PC/104's non-standard CompactFlash/IDE drive required manually specifying

parameters for the IDE device's cylinders, heads, and sectors (C/H/S). The "Mini-

mum" installation set of packages was chosen, consuming approximately 750 MB of

the 1.0 GB CompactFlash disk.

2.4 CPLEX on the PC/104

ILOG CPLEX 9.0, Concert Technologies, and the ILOG License Manager were in-

stalled in:

/usr/ilog/

Because the Onboard Planning Module is designed to continue operation even in the

event of a network outage, a stand-alone, single-user ILOG license was installed. The

PC/104 was registered with ILOG and the license file was placed in:

/usr/ilog/ilm/

The ILOG license manager daemon

ilmd

runs on bootup and grants access to CPLEX requests from the local machine.

2.5 Remote PC/104 Access via SSH and FTP

To aid in development and debugging, the PC/104 was configured to allow remote

SSH and SFTP sessions. The Tiny886ULP's built-in ethernet port was configured to

obtain an IP address dynamically via DHCP. Additionally, the firewall that comes

preinstalled with Red Hat 9.0 was modified to allow incoming SSH and SFTP con-

nections.



2.6 Serial104 Board

The PC/104 must communicate with both the program and payload serial ports on

the Piccolo autopilot. Although the PC/104 development kit provides two serial

ports, the Seriall04 communication controller from Advanced Micro Peripherals was

added to the PC/104 stack to provide eight RS-232/RS-422 serial ports to support

future peripherals such as an onboard camera.

One of the challenges of getting the Seriall04 card to work in Linux was compiling

and installing a kernel-level device driver. Because the PC/104 had limited hard drive

space, a separate computer running Red Hat Linux 9.0 provided a more comprehensive

development environment. In addition to having the same libraries installed on the

PC/104, this computer had all the kernel development libraries to allow the Seriall04

driver to build and link. Once compiled, the driver file (s104.o) was copied to the

PC/104 via SFTP.

The following command installs the Seriall04 device driver as a kernel module:

insmod s104.o IntO=15 Base0=0x100

Jumpers on the Seriall04 configure its interrupt and base I/O address. Next, the

following commands install special character devices in the /dev directory:

mknod /dev/ttyAMPO c 204 32

mknod /dev/ttyAMP1 c 204 33

204 is the major device ID and the numbers 32 and 33 are the minor device ID, which

range from 32 to 39 for the eight port Seriall04 card.

The following command removes the device driver from memory:

rmmod s104

2.7 Piccolo Communication Implementation

Cloud Cap Piccolo Communication [6] specifies the protocol between the Piccolo

avionics and and Piccolo ground station. Cloud Cap provides binary libraries for



Windows only. Although Cloud Cap makes the source code available for compiling

under Linux, ITAR restrictions precluded its use and required a reimplementation.

2.7.1 Serial Program Overview

The PC/104's serial communication program is written in C++ and runs on both

Linux and Windows. On the Linux-based PC/104 the program begins after bootup

and loops continuously, listening for new data and responding to requests. Upon each

iteration of the loop, the serial program services both the program and payload port

serial connections.

Autopilot stream data travels between the PC/104 and Piccolo autopilot via the

program serial port. When the serial communication program is launched, it opens

the program communication port

/dev/ttyAMPO

The data on the autopilot stream is identical to that received by the Operator Inter-

face on the ground as the Piccolo operates in multi-homed mode. On each iteration,

the program listens for telemetry updates and system diagnostic updates from the

Piccolo and records this state in memory.

The payload port transfers the user-defined payload stream governed by the on-

board planning protocol between the PC/104 and Piccolo. The serial communication

program handles this stream in the same way as the autopilot stream but responds to

onboard planning protocol packets to configure the Onboard Planning Module, start

a MILP computation, and deliver inter-UAV and UAV-ground messages. Section 2.9

describes the design and implementation of the onboard planning protocol.

2.7.2 Cross-Platform Development

The Linux Piccolo Communication implementation was first developed on Windows

using Microsoft Visual Studio. Debugging on embedded Linux systems can be chal-

lenging, but using the visual debugging environment of Visual Studio greatly short-

ened development time.



The C++ source code was written to be cross-platform compatible on both Win-

dows and Linux. Both implementations differ in the initial step of reading data from

the two serial ports. Platform-dependent code initializes the serial port and polls for

data periodically, placing new data in global buffers. After this point, implementa-

tions on both operating systems operate identically. The code base diverges again

only when writing to the serial ports.

2.7.3 Endian

The Cloud Cap Piccolo autopilot runs on an MPC555 microcontroller which differs

from the PC/104's x86 architecture in handling data as the endian is reversed. Thus,

the serial communication program must translate the Piccolo's big-endian data to

x86 little-endian format. The serial program handles this transformation using the

macros ENDIAN8(), ENDIAN16(), and ENDIAN32(), which reverse the order of

multibyte data types. Functions such as EncodeWaypointPacket() and DecodeWay-

pointPacket() hide the transformation of the Piccolo data structures from the user.

2.7.4 Communication Buffers

The serial communication program running on the PC/104 has three data buffers:

one for the serial input, one for the autopilot stream, and one for the payload stream.

Each buffer has a capacity of 4096 bytes.

Cloud Cap recommends checking for data on the serial port every 10-20ms. How-

ever, because the Red Hat Linux kernel internally caches serial input and output,

even if the serial communication program does not service the serial port within that

interval, it is very unlikely for the system to lose data.

2.7.5 CRC Calculation

A cyclic-redundancy-check (CRC) is performed over both the stream packet data

and individual packet data such as autopilot packets and payload packets. This

implementation uses the CRC16 algorithm to generate a 16-bit CRC which is stored



as two consecutive bytes in the trailer of both the stream packet header as well as the

autopilot stream packet header. The Cloud Cap specification indicates that packets

with invalid CRCs must be discarded.

2.8 CPLEX Integration

MILP optimizations must be set up and run from the serial communication program

without blocking the system. Thus, a multithreaded module was developed to run

CPLEX from within the serial communication program. This module consists of

a single class called "MILPHandler" which handles setting up the MILP problem

using ILOG Concert Technologies, running CPLEX, and returning the results of the

calculation. The Linux pthreads library provides multithreading capabilities.

The MILPHandler module has an interface defined by:

* bool RunMILP(void);

* time_t GetElapsedTime(void);

* bool IsMILPRunning(void);

To run a CPLEX optimization from the serial communication program, the first

step involves setting input global variables. As described in Section 4.3, the Onboard

Planning Module test scenarios consist of sending a series of potential target locations

to the UAV and having CPLEX determine an optimal target by selecting the target

with the minimum time required to reach it. Inputs into the optimization problem

include the UAV's current position and velocity as well as the list of targets.

After the input has been set, the serial communication program calls RunMILP()

to create a thread to run the CPLEX optimization concurrently. The serial com-

munication loop continues communicating with the Piccolo autopilot and processing

payload input, checking the value of IsMILPRunning() at every iteration. When this

method returns false, the serial communication program retrieves the output from

global variables, updates the aircraft's flight path by modifying Piccolo autopilot
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Figure 2-3: Payload Packet Header

waypoints, and sends a status message back to the Mission Manager GUI via the

payload port.

2.8.1 Mercator Projection

The Piccolo autopilot represents position using latitude, longitude (both in degrees),

and altitude (in meters). When creating MILP optimization problems, it is often con-

venient to measure relative positions using meters, and thus a conversion routine [7]

was implemented to handle transforming data in both directions.

2.9 Onboard Planning Protocol

The PC/104 communicates to the ground station computer via the Piccolo payload

port which allows the transmission of arbitrarily formatted data. Thus, one of the

challenges to enabling onboard computation is designing and implementing an efficient

and flexible payload protocol.

The onboard planning protocol functions similarly to Cloud Cap's autopilot pro-

tocol. Because all payload data is encapsulated and transferred by lower-level Piccolo

packets that perform error checking, the system can safely assume that if a packet

arrives at either end, no data corruption has occurred. Therefore, the protocol must

be designed knowing that packets will either be delivered perfectly or dropped com-

pletely.

An onboard planning protocol packet begins with an eight byte header as shown

in Figure 2-3. A sync byte is used to ensure the packet is properly aligned. Next, the

one-byte size field indicates the number of payload bytes in the packet, excluding the

eight, bytes in the header. For example, a PAYLOAD_STATUS message carrying the

string "OK" would have a length of two. Next, the type field specifies the function of



the packet as either a system-defined message such as PAYLOADSTATUS or as an

application-specific message carried in PAYLOAD_UAV. Table 2.1 shows the possible

values. A user byte allows application-specific messages to be exchanged. Source and

destination fields specify the packet's endpoints.

The header contains a source and destination address to allow a UAV to send data

to any UAV or the Mission Manager GUI. Similar to the Cloud Cap Communication

address specification, this addressing scheme uses a two-byte value to specify the end

points of the packet in the range of 0 to OxFFFF. A packet sent with a destination

address of OxFFFF, the broadcast address, will arrive at all the UAVs. The address

OxFFFE is reserved for the Mission Manager GUI.

Differing from Piccolo autopilot stream packets, onboard planning protocol pack-

ets use little-endian format to keep the implementation simple. The Mission Manager

and Onboard Planning Module both run on x86 hardware which natively supports

little-endian, so transmitting data in the same format eliminates extra processing in

the encode and decode parts of the payload protocol implementation.

2.9.1 System-Defined Packets

A number of onboard planning protocol packet types are defined to provide basic

functionality such as modifying the state of the Onboard Planning Module, commu-

nicating status messages to the Mission Manager GUI, and supporting user-defined

inter-UAV and UAV-ground data exchange. Table 2.1 summarizes the types.

* PAYLOAD_OPM This packet allows a user on the ground to control the opera-

tion of the Onboard Planning Module. From the ground, the Onboard Planning

Module can be turned on or off. Additionally, settings such as the frequency of

status messages sent to the ground can be changed.

* PAYLOAD_STATUS This packet sends a text status message from the Onboard

Planning Module to the Mission Manager GUI. This packet begins with the

header shown above and follows with a number of bytes, with the header size

field indicating the number of characters in the status string. It should be noted



that this string is not null-terminated and the string length must be determined

from the header.

* PAYLOADUAV This packet enables inter-UAV and UAV-ground communica-

tion of arbitrary user-defined data. The header contains a single byte called

"user" to allow application-specific message types. The flexibility of the PAY-

LOAD_UAV packet allows it to serve as a transport layer to enable higher-level

protocols to operate.

Currently the system requires all inter-UAV communication to travel through

the ground station and Mission Manager, limiting scalability as the Cloud Cap

ground station can only handle 115,200 baud, or around 11kb/sec. However,

the lower-level Piccolo protocol is only used as a transport mechanism for the

higher level PAYLOAD_UAV packets and thus can easily be switched to use

a future technology to handle the transmission of PAYLOAD_UAV messages

among UAVs in the air.

Table 2.1: Onboard Planning Protocol Packet Types

Packet Type ID Description Direction
PAYLOAD_OPM 0 Configure Onboard Planning Module Up
PAYLOADSTATUS 1 Send text status message to Mission Manager Down
PAYLOAD_UAV 2 Inter-UAV Communication Both

2.9.2 User-Defined Packets

Combining the system-defined PAYLOAD_UAV packet with the header's user-defined

byte allows great flexibility in customizing the types of messages sent between vehicles

and the ground. The packets described in Section 4.2 demonstrate the simplicity of

adding user-defined, application-specific types to support both single (Section 4.3)

and distributed multi-UAV (Section 4.4) algorithms.



Chapter 3

Mission Manager

One of the challenges involved in designing an architecture for multi-UAV scenarios is

developing a way to control and monitor the status of each UAV in a team. The ideal

solution allows the operator on the ground much flexibility in managing missions and

monitoring the status of the team.

The Mission Manager Graphical User Interface (GUI) described in Section 3.1

and shown in Figure 3-1 allows a user on the ground to control and monitor single or

distributed multi-UAV scenarios involving a task assignment algorithm. The scenario

consists of one or more UAVs having the goal of arriving at a number of target

locations. The Mission Manager GUI enables the user to graphically select target

locations and broadcast them to the Onboard Planning Module onboard each UAV.

Each UAV determines a list of optimal target locations and communicates these to

the other UAVs with the help and coordination of the Mission Manager GUI. The

user monitors and tracks the status of the UAVs from the ground.

The GUI was implemented using Microsoft Visual Studio .NET with C++ and

MFC. The user interface is described next in Section 3.1 and the design and imple-

mentation details are covered in Section 3.2.
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Figure 3-1: Mission Manager GUI

3.1 User Interface

The GUI allows a user to configure Cloud Cap Piccolo communication, load and save

target locations, designate a team of UAVs, begin the task assignment scenario, and

monitor onboard status.

3.1.1 Communication Configuration

The GUI must establish communication with the Piccolo Ground Station in order

to communicate with the team of UAVs. The user enters the hostname and port

of the Operator Interface running on the computer connected to the ground station.

When the Operator Interface runs on the same computer as the Mission Manager,

the hostname of "localhost" is used. Pressing the "Connect" button contacts the

Operator Interface and populates the list box of available UAVs.

F"m



3.1.2 UAV Team Designation

To support multi-UAV scenarios, the Mission Manager GUI allows a user to designate

a team of UAVs to complete a task. The GUI displays a list of available UAVs, iden-

tifying each one by its unique Piccolo autopilot number. Clicking the UAV number

in the UAV list toggles its association with the current team. Team designation goes

into effect at the start of the next mission.

3.1.3 Target Specification

The GUI displays an overview map of locations that are potential targets for a UAV

team. Each target is indicated by a red X mark with an associated target identification

number. Clicking a position on the map adds a new target location at that point.

To make testing easier and reproducible, the GUI can load and save target loca-

tions from a file. When a user clicks the "Save Targets" button the GUI writes all

checked waypoints to disk by saving the latitude, longitude, and altitude to a binary

file with each element stored as a double. Clicking the "Load Targets" button reads

the targets from disk and displays their positions on the map.

3.1.4 Mission Management

The Mission Manager GUI allows the user to begin and abort missions as well as

monitor the status of the Onboard Planning Module during the mission.

To begin a mission the user presses the "Send Targets" button. This action reads

the latitude, longitude, and altitude of all targets checked, inserts the data into a

user-defined payload packet as defined in Section 4.2, and broadcasts this packet to

each UAV in the team for processing by the Onboard Planning Module. Because the

Mission Manager performs all communication periodically using a Windows timer as

described in Section 3.2.2, clicking the "Send Targets" button simply sets a flag in

the GUI's class to instruct the next invocation of the timer to read the data, form

the payload target packet, and broadcast the packet to all UAVs selected as part of

this mission.



During the mission, each UAV periodically reports its progress by sending status

payload messages to the Mission Manager. The frequency of updates is controlled by

one of the onboard planning protocol's system-defined messages described in Section

2.9. The GUI shows each message and associated UAV number in a status box. In

addition to displaying information such as MILP computation times, the status box

also shows errors and warnings from the onboard algorithms.

3.2 Design and Implementation

The Mission Manager GUI Dialog Box was developed using Microsoft Visual Studio

.NET's Resource Editor. To communicate with Piccolo autopilots, the GUI uses

a Windows binary release of Cloud Cap Technology's Communications library. A

Windows timer polls the Communications library at a fixed interval to check for

incoming data.

3.2.1 Connecting to the Operator Interface

The Operator Interface connects to the Piccolo ground station via RS-232 serial

to communicate with a number of Piccolo autopilots. Additionally, the Operator

Interface acts as a network server, listening for incoming TCP/IP connections on

port 2000. When a TCP/IP client establishes a connection the Operator Interface

acts as a bridge and transfers data in both directions between the Piccolo autopilots

and the Piccolo ground station.

When a user presses the Connect button on the GUI the Mission Manager uses

the Cloud Cap API to create a CCommManager object that connects to the Operator

Interface via TCP/IP at address localhost:2000.

3.2.2 Windows Timers

Cloud Cap Technology recommends polling the Piccolo ground station for data every

10-20 ms to ensure timely processing of incoming messages. Thus, upon connecting



to the Operator Interface the Dialog Box registers a timer callback function with

Windows to run every 20 ms.

3.2.3 Processing the Autopilot Stream

To service an incoming request the timer first calls the CommSDK's RunNetwork()

method to send and receive data. Next, the LookForAutopilotData() method checks

for new Piccolo autopilot information, parses the information based on packet type,

and updates global state information such as the position and velocity of a UAV.

Although over 50 Piccolo autopilot packets are specified, the Mission Manager only

needs the information in the following packets:

* TELEMETRY Provides the latitude, longitude, and altitude of the UAV

* TRACK Indicates that the UAV is tracking a different waypoint

* WAYPOINT Moves the position of a waypoint to a new location

3.2.4 Processing the Payload Stream

Next, the OnTimer method processes payload stream data. This involves reading

the packet format as defined in Section 2.9 and updating the GUI by adding status

messages to the list box or updating the positions of the UAVs on the graphical map

display.

Every invocation of the timer checks if the "send targets" flag has been set by the

GUI. If it has, the timer first reads the target locations by querying the GUI's text

fields using the GetWindowText() method of each list box. The latitude, longitude,

and altitude of a particular target is only retrieved if its corresponding checkbox is

enabled, which can be determined by calling GetCheck().

After the targets have been read from the Windows GUI controls, they are packed

into a PAYLOADTARGETS packet as defined in Section 4.2. Once formed, the timer

calls the Cloud Cap Communication API's SendBlock() method to send the packet

to the set of UAVs in the team.



3.2.5 Reentrant Timers

After the program registers a timer callback, Windows runs the OnTimer() method

every 20ms. Because calls to send and receive network data may block, in order to

ensure correctness, a thread of execution locks a CRITICALSECTION upon entering

the timer method. This locking procedure ensures that only one invocation of the

timer runs at a time and prevents data corruption of global variables. If a newly

invoked thread discovers that another thread already holds the lock, the newly invoked

thread simply returns.



Chapter 4

Experiments and Results

To test the correctness of the system, both a single and multi-UAV scenario were

developed. Both scenarios consist of UAVs selecting optimal targets from a list of

target locations sent from the Mission Manager GUI and assigning each UAV to a

target. The Hardware-in-the-Loop Simulation (Section 4.1) allowed testing of the On-

board Planning Module and Mission Manager GUI from the ground on the following

scenarios:

* Single UAV, Multiple Targets (Section 4.3)

* Multiple UAVs, Multiple Targets (Section 4.4)

Both scenarios demonstrate the ease of adding user-defined payload packet types.

Section 4.2 describes two packets that:

* Send a list of target locations from the Mission Manager to the UAVs

* Broadcast UAV results to other UAVs to reach a consensus on task assignment

To quantify characteristics of the Onboard Planning Module, power consumption for

the PC/104 embedded computer was measured under different states of operation in

Section 4.5, and PC/104 CPLEX computation times were compared to other systems

in Section 4.6.



4.1 Hardware-in-the-Loop Simulation Testbed

The Aerospace Controls Laboratory at MIT uses a hardware-in-the-loop simulation

to test cooperative control algorithms on the ground. This setup greatly shortens

development time and reduces the risk of flying untested software and hardware on

real airplanes.

The simulation testbed consists of a number of Sony Vaio laptop computers run-

ning simulation software from Cloud Cap Technology. These laptops communicate

with the Piccolo autopilots over the CAN bus and simulation real-world flight param-

eters such as aircraft position, aircraft velocity, and wind velocity. The simulation

software can load state information from files to allow a scenario to easily be run

multiple times.

During simulation, the Piccolo autopilots continuously broadcast state informa-

tion on the 900 MHz channel. The Piccolo ground station communicates with multiple

autopilots and allows the Operator Interface to connect and retrieve data. Thus, the

status of multiple aircraft can be tracked simultaneously on a single ground station

computer running Cloud Cap's Operator Interface software.

Previous work performed in the Aerospace Controls Laboratory focused on per-

forming computation on the ground and sending the resulting plans to the autopi-

lots [10]. Each Piccolo was assigned a Dell laptop where CPLEX optimizations would

be performed. A program called CommunicationSDK ran on each of these laptops to

communicate the results of MILP optimizations to MATLAB which eventually got

sent to the autopilots.

4.2 User-Defined Payload Packets

In the single UAV scenario described in Section 4.3, the Mission Manager GUI must

send a list of participating UAVs and a list of target locations to the Onboard Planning

Module. Thus, the user-defined PAYLOADTARGETS packet described below sends

this information.



In the multi-UAV scenario described in Section 4.4, in addition to receiving a list

of potential target locations, multiple UAVs must coordinate their target selection.

This process requires each UAV to broadcast the result of its onboard computation

with all other UAVs. The task assignment algorithm sends an ordered listing of

the time it would take to reach each available target to all other UAVs. Thus, an

additional user-defined packet called PAYLOAD_UAVRESULT is used to exchange

results.

* PAYLOADTARGETS This packet sends a list of UAVs and a list of waypoints

from the Mission Manager GUI on the ground station computer to the PC/104

and begins a CPLEX optimization. The payload program sends each waypoint

by taking the latitude, longitude, and altitude and writing the values into the

data area of the payload packet. The latitude and longitude are each of type

double (8 bytes) and the altitude is a float (4 bytes).

* PAYLOAD_UAVRESULT Once a UAV completes a series of MILP optimiza-

tions, the task assignment algorithm packages the results into a new packet

called PAYLOAD_UAVRESULT and broadcasts it to all other UAVs.

New payload packet types can easily be introduced to provide further functionality.

However, for most purposes these packets provide the foundation needed to develop

onboard distributed multi-UAV algorithms.

4.3 Single UAV Scenario

A single UAV scenario was developed to test the Onboard Planning Module's ability

to receive information from the Mission Manager on the ground, perform a MILP

optimization problem onboard, and update the UAV's flight path.

4.3.1 Scenario Overview

The single UAV scenario involves a UAV selecting an optimal target from a list based

on the UAV's heading and velocity. As shown in Figure 4-1, the UAV begins at



the left side of the map heading east. After specifying three target locations using

the Mission Manager GUI, the user clicks "Send Targets" to inform the UAV of the

task. The list of target locations is sent to the Onboard Planning Module using the

PAYLOAD_TARGETS user-defined packet. CPLEX then calculates the amount of

time it would take to reach each of the targets and selects the locally-optimal taret

as its goal. Finally, the Onboard Planning Module sends an updated flight plan to

the Piccolo autopilot to approach the optimal target.

The single UAV scenario consists of the following steps:

1. The Mission Manager sends a list of target locations to the single UAV using

the PAYLOAD_TARGETS packet. The number of targets is variable, though

to keep the computation viable to perform in real-time most testing has limited

it to four or fewer.

2. The Onboard Planning Module runs a CPLEX optimization to determine flight

time to each target.

3. Once the optimization finishs, the Onboard Planning Module selects the target

that can be reached in the shortest amount of time and instructs the Onboard

Planning Module to approach that location. The Onboard Planning Module

sends a Waypoint packet over the autopilot stream to update the UAV's flight

path.

4.3.2 Results

Figure 4-1 shows the progression of the single UAV scenario over time. UAV 112

begins as shown in Figure 4-3(a), flying due east. At this time the user on the ground

selects three targets and clicks the "Send Targets" button. The Mission Manager

creates a PAYLOAD_TARGETS packet and sends it to UAV 112. The Onboard

Planning Module begins calculating the amount of time it will take to approach each

of the three targets.

Figure 4-1(b) shows the point at which the Onboard Planning Module selects

target location 2 and reorients towards it. This maneuver is the result of the Onboard
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Planning Module sending a waypoint packet to the Piccolo autopilot via the program

port. When the UAV reaches the target and achieves its goal (Figure 4-1(c)), it

resumes its original course as shown in Figure 4-1(d).

4.4 Distributed Multi-UAV Scenario

After the basic functionality of the Onboard Planning Module was tested with the sin-

gle UAV scenario, a distributed multi-UAV scenario was developed to test the ability

of the Onboard Planning Module and onboard planning protocol to support inter-

UAV communication. Two UAVs running in the Hardware-in-the-Loop simulator are

used for testing distributed multi-UAV capabilities.

4.4.1 Scenario Overview

Similar to the single-UAV scenario, the multi-UAV scenario involves each UAV se-

lecting its closest waypoint based on that UAV's heading and velocity. Two UAVs

begin their mission as shown in Figure 4-3(a) and fly straight towards each other. The

user sends targets to the UAV team and the same optimization problem as the single

UAV scenario runs for each target. However, instead of simply picking the UAV's

locally-optimal choice, each UAV communicates its results to all the UAVs on the

same team before making a selection. A distributed target selection algorithm then

assigns each UAV to a target and the autopilot is notified of the flight path change.

The distributed multi-UAV scenario consists of the following steps:

1. The Mission Manager sends a PAYLOADTARGETS packet to each UAV on

the team. This packet contains a list of participating UAVs as well as a list of

target locations.

2. The Onboard Planning Module runs a CPLEX optimization for each target to

calculate a metric that indicates its desirability based on proximity.

3. Each UAV forms a PAYLOADUAVRESULT packet from its results and sends

this packet to the Mission Manager GUI for routing.



Figure 4-2: PC/104 and Laptop Simulation Setup

4. The Mission Manager receives the PAYLOAD_UAVRESULT packet and broad-

casts it to all other UAVs on the same team.

5. After a UAV receives all of its teammates' results, a target selection algorithm

is run to assign each UAV to a target. This calculation is performed in parallel

on each UAV. Because all UAVs have the same input, the resulting UAV/target

pairings will be consistent across the entire team. The target selection algorithm

is described in further detail in Section 4.4.3.

4.4.2 Onboard Hardware Requirements

The Aerospace Controls Lab currently only has a single PC/104 to operate as the

Onboard Planning Module. To simulate a multi-UAV scenario, an identical version

of Red Hat Linux 9.0, ILOG CPLEX, and the serial communication program were

installed on a laptop. A Quatech serial interface PCMCIA card was added after com-

piling drivers for Red Hat Linux 9.0 to provide the two RS-232 serial ports required

to communicate with the Piccolo autopilot. The two Onboard Planning Modules

connected to their respective Piccolo autopilots with optional simulation laptops are

shown in Figure 4-2.



4.4.3 Target Selection Algorithm

The target selection algorithm used in the distributed, multi-UAV scenario aims to

globally assign UAV/target pairings to approach targets as quickly as possible. Each

UAV receives a unique target, thus maximizing target coverage.

Although more robust task assignment algorithms have been developed[9, 11, 12,

13], this simple algorithm successfully achieves its goal and serves as an example of

running CPLEX optimizations onboard a UAV in real-time. The algorithm assumes

that data transmission is lossless and all UAVs remain within communication range.

The distributed task assignment algorithm:

1. Receives all [approach time metrics, target ID, UAV ID] results.

2. Sorts results in increasing order of approach time to each target.

3. Selects the result with the shortest approach time metric and assigns that UAV

ID to that target ID.

4. Removes all other results containing that UAV ID or target ID.

5. Repeats steps 3-4 until each UAV has a target, at which time the result list is

empty.

In order for the distributed target selection algorithm to produce consistent results

on different UAVs, the sorting in step 2 must perform in a systematic and determin-

istic way. Results are first sorted by approach time. If approach times are equal,

priority is given to the lowest Piccolo ID.

4.4.4 Results

Figure 4-3 shows the progression of the distributed, multi-UAV scenario over time.

Two UAVs, 74 and 112, begin as shown in Figure 4-3(a), flying straight towards each

other in steady level flight. At this time the user on the ground designates a team,

selects three targets, and clicks the "Send Targets" button. The Mission Manager

creates a PAYLOADTARGETS packet and broadcasts it to all the UAVs on the

team. The Onboard Planning Module on each UAV begins calculating the amount

of time it will take to approach the three specific targets.
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Figure 4-3(b) shows the state of both UAVs when they finish running the dis-

tributed task assignment algorithm. By this time both have independently calcu-

lated the minimum time required to reach each target from their position, sent their

results to the other UAV using the PAYLOADUAVRESULT packet, and run the

task assignment algorithm to determine the globally optimal and unique UAV/target

pairings. UAV 74 has been assigned to target 1 and UAV 112 has been assigned to

target 2.

Figure 4-3(c) shows both UAVs changing their course and turning towards their

assigned target. The UAVs continue to approach their target as shown in Figure

4-3(d). Once the UAVs arrive at their goal (Figure 4-3(e)), they turn back towards

their original flight direction as shown in Figure 4-3(f).

4.5 PC/104 Power Requirements

Calculating the battery size necessary to operate the PC/104 onboard the UAV re-

quires knowledge of the system's power consumption. The PC/104 was attached to a

lab power supply to measure power requirements during different states of operation.

Although the Tiny886ULP draws power from a standard PC 4-pin molex connector,

it only uses the 5 volt and ground lines to operate. Thus, the standard 12 volt line

is not needed. Figure 4-4 shows PC/104 power requirements for various stages of

operation.

1. Booting

When the PC/104 is booting it draws 12.4 W of power for approximately 30

seconds before dropping to the idle power consumption level.

2. Idle

The system draws 7.4 W of power while idle. This state consists of running all

operating system services including the ILOG CPLEX License server.

3. Communicating

Surprisingly, running the serial communication program developed in Section
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Figure 4-4: PC/104 Power Requirements

2.7 does not increase power usage above the idle value. Thus, the PC/104 can

fully communicate with a Piccolo autopilot using only 7.4 W of power.

4. Communicating + CPLEX

Running a CPLEX optimization requires between 11.5 and 12.1 W of power.

This is approximately the same draw as when the PC/104 is booting. Once the

CPLEX optimization is complete, the power draw quickly drops back down to

7.4 W.

The PC/104 draws 2.5 amps at 5 volts during peak system usage. Assuming the

system remains at peak power consumption and the voltage regulator operates at 95%

efficiency, a 4800 mAh battery will suffice to energize the Onboard Planning Module

for two hours.

4.6 CPLEX Performance Comparison

To measure the performance of the PC/104, the single UAV scenario as described in

Section 4.3 was timed using three waypoints. For reference a Pentium 4 1.2 GHz and a

Celeron 700 MHz processor were compared against the PC/104's 1.0 GHz Transmeta
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Crusoe processor. All computers ran Red Hat Linux 9.0. The Pentium 4 processor

had 1.0 GB of RAM, the Transmeta Crusoe has 512 MB of RAM, and the Celeron

had 64 MB of RAM. Despite variations in memory size, the scenario performance

was CPU-bounded. Scenario state information such as UAV position and velocity

was held constant across tests.

The PC/104's Transmeta Crusoe chip was 4 to 31% slower than the 700 MHz

Celeron-based system. These results suggest that algorithms running on the Onboard

Planning Module must be implemented efficiently to achieve real-time performance.

Furthermore, attaining acceptable performance with a computationally intensive al-

gorithm may prove challenging.
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Chapter 5

Contributions

This thesis takes a step towards enabling future generations of UAV applications

by developing a distributed software architecture for distributed multi-UAV scenar-

ios. Each UAV contains an Onboard Planning Module, developed from an embedded

PC/104 computer, to interface with a Piccolo autopilot to retrieve UAV telemetry

data and upload new flight waypoints. The software architecture allows for easy

integration with onboard MILP optimizations as well as support for inter-UAV com-

munication via the onboard planning protocol. The key contributions of this thesis

are:

* An implementation of a Linux serial communication program that adheres to

Cloud Cap Technology's Piccolo communications protocol

* The creation of an Onboard Planning Module by installing Red Hat Linux onto

a PC/104 embedded computer

* The addition of onboard MILP optimization capabilities by integrating the

Linux serial communication program with a multithreaded module to handle

ILOG CPLEX

* A software architecture and communication protocol to support multi-UAV

communication

* A single and multi-UAV task assignment scenario to test the implementation



5.1 Future Work

The two task assignment scenarios described in Section 4.3 and Section 4.4 have

demonstrated that real-time MILP optimization can be performed onboard a UAV.

More advanced algorithms for trajectory planning, coordinated control, and mission

management should be developed for the Onboard Planning Module to further test

the system's performance and scalability[14, 15, 16, 17, 18, 19].

All communication between UAVs in the scenarios presented has required the

messages to first pass through the Mission Manager GUI before they are routed

to the proper destination UAV. This design severely limits scalability because the

Piccolo ground station can only communicate at 115,200 baud for both program

(Piccolo status updates) and payload (user-defined messages sent between UAVs)

data. Future work should look at more reliable and scalable alternatives to this

form of communication. One solution is to create an ad-hoc wireless network in

the sky using an ad-hoc wireless technology such as 802.15.4 to bypass the ground

station for inter-UAV communication. This configuration would increase the amount

of bandwidth available to each UAV. Additionally, the system would be more robust as

the Piccolo ground station would no longer be needed for inter-UAV communication.
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