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The classical perceptron algorithm is an elementary row-action/relaxation algorithm for solving a homogeneous
linear inequality system Ax > 0. A natural condition measure associated with this algorithm is the Euclidean
width τ of the cone of feasible solutions, and the iteration complexity of the perceptron algorithm is bounded by
1/τ2, see Rosenblatt 1962 [14]. Dunagan and Vempala [4] have developed a re-scaled version of the perceptron
algorithm with an improved complexity of O(n ln(1/τ)) iterations (with high probability), which is theoretically
efficient in τ , and in particular is polynomial-time in the bit-length model. We explore extensions of the concepts
of these perceptron methods to the general homogeneous conic system Ax ∈ int K where K is a regular convex
cone. We provide a conic extension of the re-scaled perceptron algorithm based on the notion of a deep-separation
oracle of a cone, which essentially computes a certificate of strong separation. We give a general condition under
which the re-scaled perceptron algorithm is itself theoretically efficient; this includes the cases when K is the
cross-product of half-spaces, second-order cones, and the positive semi-definite cone.
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1. Introduction. We consider the problem of computing a solution of the following conic system

{
Ax ∈ int K

x ∈ X
(1)

where X and Y are n- and m-dimensional Euclidean subspaces, respectively, A : X → Y is a linear
operator and K ⊂ Y is a regular closed convex cone. We refer to this problem as the “conic inclusion”
problem, we call K the inclusion cone and we call F := {x ∈ X : Ax ∈ K} the feasibility cone. The goal
is to compute an interior element of the feasibility cone F . Important special cases of this format include
feasibility problem instances for linear programming (LP), second-order cone programming (SOCP) and
positive semi-definite programming (SDP).

The ellipsoid method ([9]), the random walk method ([2]), and interior-point methods (IPMs) ([8],
[10]) are examples of methods which solve (1) in polynomial-time. Nonetheless, these methods differ
substantially in their representation requirement as well as in their practical performance. For example,
a membership oracle suffices for the ellipsoid method and the random walk method, while a special barrier
function for K is required to implement an IPM. The latter is by far the most successful algorithm for
conic programming in practice: for example, applications of SDP range over several fields including
optimal control, eigenvalue optimization, combinatorial optimization and many others, see [15].

In the case when X = IRn and K = IRm
+ , we recover the original setting of a homogeneous system of

linear inequalities. Within this context, another alternative method is the perceptron algorithm [14]. It is
well-known that this simple method terminates after a finite number of iterations which can be bounded
by the square of the inverse of the width τ of the feasibility cone F . Although occasionally attractive from
a practical point of view due to its simplicity, the perceptron algorithm is not considered theoretically
efficient since the width τ can be exponentially small in the size of the instance in the bit-length model.
Dunagan and Vempala ([4]) combined the perceptron algorithm with a sequence of re-scalings constructed
from near-feasible solutions. These re-scalings gradually increase τ on average and the resulting re-scaled
perceptron algorithm has complexity O(n ln(1/τ)) iterations (with high probability), which is theoretically
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efficient.

Herein we extend the re-scaled perceptron algorithm proposed in [4] to the conic setting of (1). Al-
though the probabilistic analysis is similar, this is not the case for the remainder of the analysis. In
particular, we show that the improvement obtained in [4] arises from a clever use of a deep-separation
oracle, which is stronger than the usual separation oracle used in the classical perceptron algorithm. In
the case of a system of linear inequalities studied in [4], there is no difference between the implementation
of both oracles. However, this difference is significant for more general cones.

We investigate in detail ways to construct a deep-separation oracle for several classes of cones, since
it is the driving force of the re-scaled perceptron algorithm. We establish important properties of the
deep-separation oracle and its implementation for several classes (including the case when K is the cross-
product of second-order cones). Based on these properties, we propose a scheme for general convex
cones which exploits the particular structure of the deep-separation oracle. This scheme yields a deep-
separation oracle in polynomial-time and requires only a deep-separation oracle for the dual cone of K
(which is readily available for many cones of interest such as the cone of positive semi-definite matrices),
and includes the case when K is the cross-product of positive semi-definite cones.

We start in Section 2 with properties of convex cones, oracles, and the definition of a deep-separation
oracle. Section 3 generalizes the classical perceptron algorithm to the conic setting, and Section 4 extends
the re-scaled perceptron algorithm of [4] to the conic setting. Section 5 contains the probabilistic and
complexity analysis of the re-scaled perceptron algorithm, which reviews some material from [4] for
completeness. Section 6 is devoted to methods for constructing a deep-separation oracle for both specific
and general cones. We conclude this section with an informal discussion of the main ideas and technical
difficulties encountered in obtaining our results.

The perceptron algorithm is a greedy procedure that updates the current proposed solution by using
any violated inequality. The number of iterations is finite but can be exponential. The modified percep-
tron algorithm (proposed in [3], used in [4]) is a similar updating procedure that only uses inequalities
that are violated by at least some fixed threshold. Although this procedure is not guaranteed to find
a feasible solution, it finds a near-feasible solution with the guarantee that no constraint is violated by
more than the threshold and the number of steps to convergence is proportional to the inverse square of
the threshold, independent of the conditioning of the initial system. The key idea in [4] is that such a
near-feasible solution can be used to improve the width of the original system by a multiplicative factor.
As we show in this paper, this analysis extends naturally to the full generality of conic systems.

The main difficulty is in identifying a constraint that is violated by more than a fixed threshold by
the current proposed solution, precisely what we call a deep-separation oracle. This is not an issue in the
linear setting (one simply checks each constraint). For conic systems, the deep-separation itself is a conic
feasibility problem! It has the form: find w ∈ K∗, the dual of the original inclusion cone, such that w
satisfies a single second-order conic constraint. Our idea is to apply the re-scaled percepron algorithm to
this system which is considerably simpler than F . What we can prove is that provided K∗ has a deep-
separation oracle, the method is theoretically efficient. For many interesting inclusion cones, including
the cone of positive semi-definite matrices, such a deep-separation oracle is readily available.

2. Preliminaries

2.1 Notation For simplicity we confine our analysis to finite dimensional Euclidean spaces. Let X
and Y denote Euclidean spaces with finite dimension n and m, respectively. Denote by ‖·‖ their Euclidean
norms, and 〈·, ·〉 their Euclidean inner products. For x̄ ∈ X, B(x̄, r) will denote the ball centered at x̄
with radius r, and analogously for Y . Let A : X → Y denote a linear operator, and A∗ : Y → X denote
the adjoint operator associated with A.

2.2 Convex Cones Let C be a convex cone. The dual cone of C is defined as
C∗ = {d : 〈x, d〉 ≥ 0, for all x ∈ C} (2)

and extC denote the set of extreme rays of C. A cone is pointed if it contains no lines. We say that C is
a regular cone if C is a pointed closed convex cone with non-empty interior. It is elementary to show that
C is regular if and only if C∗ is regular. Given a regular convex cone C, we use the following geometric
(condition) measure:
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Definition 2.1 If C is a regular cone in X, the width of C is given by

τC , max
x,r

{
r

‖x‖
: B(x, r) ⊂ C

}
.

Furthermore the center of C is any vector z̄ that attains the above maximum, normalized so that ‖z̄‖ = 1.

We will be particularly interested in the following three classes of cones: the non-negative orthant
IRm

+ := {x ∈ IRm : x ≥ 0}, the second order cone denoted by Qn := {x ∈ IRn : ‖(x1, x2, . . . , xn−1)‖ ≤ xn},
and the cone of positive semi-definite matrices Sk×k

+ := {X ∈ Sk×k : 〈v,Xv〉 ≥ 0 for all v ∈ IRk} where
Sk×k := {X ∈ IRk×k : X = XT }. These three cones are self-dual and their widths are 1/

√
m, 1/

√
2, and

1/
√

k, respectively.

The following characterization will be used in our analysis.

Lemma 2.1 Let G = {x : Mx ∈ C} and Let T = {M∗λ : λ ∈ C∗}. Then G∗ = cl (T ).

Proof. (⊆) Let λ ∈ C∗. Then for every x satisfying Mx ∈ C, 〈x, A∗λ〉 = 〈Ax, λ〉 ≥ 0, since Mx ∈ C
and λ ∈ C∗. Thus, cl (T ) ⊆ G∗ since G∗ is closed.

(⊇) Assume that there exists y ∈ G∗\cl (T ). Thus there exists h 6= 0 satisfying 〈h, y〉 < 0 and
〈h, w〉 ≥ 0 for all w ∈ cl (T ). Notice that 〈h, M∗λ〉 ≥ 0 for all λ ∈ C∗, which implies that Mh ∈ C and
so h ∈ G. On the other hand, since y ∈ G∗, it follows that 〈h, y〉 ≥ 0, contradicting 〈h, y〉 < 0. �

The question of sets of the form T being closed has been recently studied by Pataki [11]. Necessary
and sufficient conditions for T to be a closed set are given in [11] when C∗ belongs to a class called “nice
cones,” a class which includes polyhedra and self-scaled cones. Nonetheless, the set T may fail to be
closed even in simple cases, as the following example shows.

Example 2.1 Let C∗ = Q3 = {(λ1, λ2, λ3) | ‖(λ1, λ2)‖ ≤ λ3} and M =

 −1 0
0 1
1 0

. In this case,

T = {M∗λ | λ ∈ C∗} = {(−λ1 + λ3, λ2) | ‖(λ1, λ2)‖ ≤ λ3}. It is easy to verify that (0, 1) /∈ T but
(ε, 1) ∈ T for every ε > 0 (set λ1 = 1

2ε −
ε
2 , λ2 = 1, and λ3 = 1

2ε + ε
2), which shows that T is not closed.

The following property of convex cones are well-known, but is presented and proved herein both for
completeness as well as for conformity to our notation.

Lemma 2.2 B(z, r) ⊆ C if and only if 〈d, z〉 ≥ r‖d‖ for all d ∈ C∗.

Proof. Suppose B(z, r) ⊂ C. Let d ∈ C∗. Then, z− r d
‖d‖ ∈ C and since d ∈ C∗,

〈
d, z − r d

‖d‖

〉
≥ 0.

Thus, 〈d, z〉 ≥ r 〈d,d〉
‖d‖ = r‖d‖. Conversely, suppose 〈d, z〉 ≥ r‖d‖ for every d ∈ C∗. Let v satisfy ‖v‖ ≤ r.

Assume z + v /∈ C, then there exists d ∈ C∗, 〈d, z + v〉 < 0. Therefore 〈d, z〉 < −〈d, v〉 ≤ r‖d‖, which
contradicts 〈d, z〉 ≥ r‖d‖. �

2.3 Oracles In our algorithms and analysis we will distinguish two different types of oracles.

Definition 2.2 An interior separation oracle for a convex set S ⊂ IRn is a subroutine that given a point
x ∈ IRn, identifies if x ∈ int S or returns a vector d ∈ IRn, ‖d‖ = 1, such that

〈d, x〉 ≤ 〈d, y〉 for all y ∈ S .

Definition 2.3 For a fixed positive scalar t, a deep-separation oracle for a cone C ⊂ IRn is a subroutine
that given a non-zero point x ∈ IRn, either

(I) correctly identifies that
〈d, x〉
‖d‖‖x‖

≥ −t for all d ∈ extC∗

or

(II) returns a vector d ∈ C∗, ‖d‖ = 1 satisfying
〈d, x〉
‖d‖‖x‖

≤ −t.
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Definition 2.2 is standard in the literature, whereas Definition 2.3 is new as far as we know. Our
motivation for this definition arises from a relaxation of the orthogonality characterization of a convex
cone. For d, x 6= 0 let cos(d, x) denote the cosine of the angle between d and x, i.e., cos(d, x) = 〈d,x〉

‖d‖‖x‖ .
Notice that x ∈ C if and only if cos(d, x) ≥ 0 for all d ∈ C∗ if and only if cos(d, x) ≥ 0 for all d ∈ extC∗.
The latter characterization states that 〈d,x〉

‖d‖‖x‖ ≥ 0 for all d ∈ extC∗. Condition (I) of the deep-separation
oracle relaxes the cosine condition from 0 to −t. The following example illustrates that the perceptron
improvement algorithm described in [4] corresponds to a deep-separation oracle for a linear inequality
system.

Example 2.2 Let C = {x ∈ IRn : Mx ≥ 0} where M is an m × n matrix none of whose rows are zero.
Notice that C∗ = {M∗λ : λ ≥ 0} is the conic hull of the rows of M , and the extreme rays of C∗ are a
subset of the rows of M . Therefore a deep-separation oracle for C can be constructed by identifying for
a given x 6= 0 if there is an index i ∈ {1, . . . ,m} for which 〈Mi,x〉

‖Mi‖‖x‖ ≤ −t and returning Mi/‖Mi‖ in
such a case. Notice that we do not need to know which vectors Mi are extreme rays of C∗; if m is not
excessively large it is sufficient to simply check the aforementioned inequality for every row index i.

Remark 2.1 It might seem odd that condition (I) involves “only” the extreme rays of C∗. However,
in many particular conic structures arising in practice, a super-set of the extreme rays of the dual cone
C∗ is at least partially accessible, as is the case when C = {x : Mx ≥ 0} where this super-set is
comprised of the row vectors of M . Indeed, suppose we replace condition (I) by the seemingly more
convenient condition “ 〈d,x〉

‖d‖‖x‖ ≥ −t for all d ∈ C∗.” Utilizing Lemma 2.1, this condition is met by checking
−t ≤ minλ{〈M∗λ, x/‖x‖〉 : ‖M∗λ‖ ≤ 1, λ ≥ 0}, and taking a dual yields −t ≤ maxw{−‖w − x/‖x‖‖ :
Mw ≥ 0}. We see that this latter optimization problem simply tests if x/‖x‖ is at most distance t from
the cone C, which itself is at least as hard as computing a non-trivial point in C.

Remark 2.2 It turns out that conditions (I) and (II) might each be strictly satisfiable. Let C = {x :

Mx ≥ 0} where M =

 −2 3
3 −2
0 1

. Then C has an interior solution, and let t = 3/4. It is straight-

forward to check that x = (−1,−1) satisfies 〈Mi,x〉
‖Mi‖‖x‖ > −t for every i, whereby condition (I) is satisfied

strictly. Furthermore, d̄ = (1, 1) ∈ C∗ and satisfies 〈d̄,x〉
‖d̄‖‖x‖ < −t, thus showing that condition (II) is also

satisfied strictly. Of course d̄ /∈ extC∗, thus highlighting the importance of the role of extreme rays.

3. Perceptron Algorithm for a Conic System The classical perception algorithm was proposed
to solve a homogeneous system of linear inequalities (1) with K = IRm

+ . It is well-known that the algorithm
has finite termination in at most

⌊
1/τ2

F
⌋

iterations, see Rosenblatt 1962 [14]. This complexity bound can
be exponential in the bit-model.

Our starting point herein is to show that the classical perceptron algorithm can be easily extended to
the case of a conic system of the form (1).

Perceptron Algorithm for a Conic System
(a) Let x be the origin in X. Repeat:

(b) If Ax ∈ int K, Stop. Otherwise, call interior separation oracle for F at x, returning
d ∈ F∗, ‖d‖ = 1, such that 〈d, x〉 ≤ 0, and set x← x + d.

This algorithm presupposes the availability of a separation oracle for the feasibility cone F . In the
typical case when the inclusion cone K has an interior separation oracle, this oracle can be used to
construct an interior separation oracle for F : if x /∈ int F , then Ax /∈ int K and there exists λ ∈ K∗

satisfying 〈λ, Ax〉 ≤ 0, whereby d = A∗λ/‖A∗λ‖ satisfies 〈d, x〉 ≤ 0, d ∈ F∗, and ‖d‖ = 1.

Exactly as in the case of linear inequalities, we have

Lemma 3.1 The perceptron algorithm for a conic system will compute a solution of (1) in at most
⌊
1/τ2

F
⌋

iterations.
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Proof. Consider the potential function π(x) = 〈x, z̄〉 /‖x‖, and note that π(x) ≤ 1 for all x 6= 0,
where τF is the width of the feasibility cone F and z̄ is the center of F . If the algorithm does not stop
at (b), we update x to x + d, whereby

〈x + d, z̄〉 = 〈x, z̄〉+ 〈d, z̄〉 ≥ 〈x, z̄〉+ τF ,

and
‖x + d‖2 = 〈x, x〉+ 2 〈x, d〉+ 〈d, d〉 ≤ 〈x, x〉+ 1,

since 〈x, d〉 ≤ 0, 〈d, d〉 = 1, and 〈d, z̄〉 ≥ τF from Lemma 2.2.

After k iterations, the potential function is at least kτF/
√

k. After more than
⌊
1/τ2

F
⌋

iterations, the
potential function would be greater than one, a contradiction. Thus, the algorithm must terminate after
at most

⌊
1/τ2

F
⌋

iterations, having computed a solution of (1). �

Example 3.1 Consider the semidefinite cone K = Sk×k
+ and the linear operator A : IRn → Sk×k.

Suppose that Ax /∈ int K. In order to compute a direction d ∈ F∗, we start by computing any eigenvector
v of the symmetric matrix Ax associated with a non-positive eigenvalue. Then the vector d = A∗(vvT )
will satisfy

〈d, x〉 =
〈
A∗(vvT ), x

〉
=
〈
vvT , Ax

〉
= tr(vvT Ax) = vT (Ax)v ≤ 0,

and for all y ∈ F we have:
〈d, y〉 =

〈
vvT , Ay

〉
= vT (Ay)v ≥ 0,

i.e., d ∈ F∗, and 〈d, x〉 ≤ 0. If (1) has a solution it easily follows that d 6= 0 whereby d/‖d‖ can be used
in (b) of the perceptron algorithm for a conic system.

4. Re-scaled Conic Perceptron Algorithm In this section we construct a version of the per-
ceptron algorithm whose complexity depends only logarithmically on 1/τF . To accomplish this we will
systematically re-scale the system (1) using a linear transformation related to a suitably constructed
random vector that approximates the center z̄ of F . The linear transformation we use was first proposed
in [4] for the case of linear inequality systems (i.e., K = IRm

+ ). Herein we extend these ideas to the conic
setting. Table 1 contains a description of our algorithm, which is a structural extension of the algorithm
in [4].

Note that the perceptron improvement phase requires a deep-separation oracle for F instead of the
interior separation oracle for F as required by the perceptron algorithm. For the remainder of this section
we presuppose that a deep-separation for F is indeed available. In Section 6 we will show that for most
standard cones K a deep-separation oracle for F can be efficiently constructed.

We now present our analysis of the re-scaled perceptron algorithm. The following lemma quantifies
the impact of the re-scaling (Step 6) on the width of the feasibility cone F .

Lemma 4.1 Let z̄ denote the center of the feasibility cone F , normalized so that ‖z̄‖ = 1. Let A, Â
denote the linear operators and τF , τF̂ denote the widths of the feasibility cones F , F̂ of two consecutive
iterations of the re-scaled perception algorithm. Then

τF̂ ≥
(1− σ)√

1 + 3σ2‖ẑ‖
τF

where ẑ = z̄ + 1
2

(
τF −

〈
x
‖x‖ , z̄

〉)
x
‖x‖ , and x is the output of the perceptron improvement phase.

Proof. At the end of the perception improvement phase, we have a vector x satisfying

〈d, x〉
‖d‖‖x‖

≥ −σ for all d ∈ extF∗.

Let x̄ = x/‖x‖. Then 〈d, x̄〉 ≥ −σ‖d‖ for all d ∈ extF∗. From Lemma 2.2, it holds that

〈d, z̄〉
‖d‖‖z̄‖

=
〈d, z̄〉
‖d‖

≥ τF for all d ∈ F∗,

i.e. 〈d, z̄〉 ≥ τF‖d‖ for all d ∈ F∗.
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Re-scaled Perceptron Algorithm for a Conic System

Step 1 Initialization. Set B = I and σ = 1/(32n).

Step 2 Perceptron Algorithm for a Conic System.
(a) Let x be the origin in X. Repeat at most

⌊
(1/σ2)

⌋
times:

(b) If Ax ∈ int K, Stop. Otherwise, call interior separation oracle for F at x,
returning d ∈ F∗, ‖d‖ = 1, such that 〈d, x〉 ≤ 0, and set x← x + d.

Step 3 Stopping Criteria. If Ax ∈ int K then output Bx and Stop.

Step 4 Perceptron Improvement Phase.
(a) Let x be a random unit vector in X. Repeat at most

⌊
(1/σ2) ln(n)

⌋
times:

(b) Call deep-separation oracle for F at x with t = σ.
If 〈d, x〉 ≥ −σ‖d‖‖x‖ for all d ∈ extF∗ (condition I), End Step 4. Otherwise, oracle returns
d ∈ F∗, ‖d‖ = 1, such that 〈d, x〉 ≤ −σ‖d‖‖x‖ (condition II), and set x← x− 〈d, x〉 d.
If x = 0 restart at (a).

(c) Call deep-separation oracle for F at x with t = σ. If oracle returns condition (II), restart at (a).

Step 5 Stopping Criteria. If Ax ∈ int K then output Bx and Stop.

Step 6 Re-scaling. A← A ◦
(

I +
xxT

〈x, x〉

)
, B ← B ◦

(
I +

xxT

〈x, x〉

)
, and Goto Step 2.

Table 1: One iteration of the re-scaled perceptron algorithm is one pass of Steps 2-6.

From Lemma 2.1 it therefore holds that

〈λ, Az̄〉 = 〈A∗λ, z̄〉 ≥ τF‖A∗λ‖ for all λ ∈ K∗.

Note that ẑ = z̄ + 1
2 (τF − 〈x̄, z̄〉)x̄, and let τ̂ := (1−σ)√

1+3σ2 τF . We want to show that

〈v, ẑ〉 ≥ τ̂‖v‖ for all v ∈ extF∗. (3)

If (3) is true, then by convexity of the function f(v) = τ̂‖v‖− 〈v, ẑ〉 it will also be true that 〈v, ẑ〉 ≥ τ̂‖v‖
for any v ∈ F∗. Then from Lemma 2.2 it would follow that B(ẑ, τ̂) ⊂ F , whereby τF̂ ≥

τ̂
‖ẑ‖ as desired.

Let v be an extreme ray of F∗. Using Lemma 2.1, there exist a sequence {λi}i≥1, λi ∈ K∗, A∗λi → v
as i→∞. Since (3) is trivially true for v = 0, we can assume that v 6= 0 and hence A∗λi 6= 0 for i large
enough. Next note that

‖Â∗λi‖2 = ‖A∗λi‖2 + 2
〈
A∗λi, x̄

〉2
+ 〈x̄, x̄〉

〈
A∗λi, x̄

〉2
= ‖A∗λi‖2

1 + 3

(〈
A∗λi, x̄

〉
‖A∗λi‖

)2


and 〈
Â∗λi, ẑ

〉
=

〈
A∗λi, ẑ

〉
+ 〈x̄, ẑ〉

〈
A∗λi, x̄

〉
=

〈
A∗λi, z̄

〉
+ (τF − 〈x̄, z̄〉)

〈
A∗λi, x̄

〉
+ 〈x̄, z̄〉

〈
A∗λi, x̄

〉
≥ τF‖A∗λi‖+ τF

〈
A∗λi, x̄

〉
= τF

(
1 +

〈
A∗λi, x̄

〉
‖A∗λi‖

)
‖A∗λi‖.

(4)
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Therefore

〈
Â∗λi, ẑ

〉
‖Â∗λi‖

≥ τF
1 + ti√
1 + 3t2i

where ti = 〈A
∗λi,x̄〉

‖A∗λi‖ . Note that ti ≤ 1 and 〈v, x̄〉 ≥ −σ‖v‖ since

v ∈ extF∗, and so
〈v, x̄〉
‖v‖

≥ −σ. By continuity, for any ε > 0 it holds that ti ≥ −σ − ε for i sufficiently

large. Thus, ti ∈ [−σ − ε, 1] for i large enough.

For t ∈ [0, 1], we have 1+t√
1+3t2

≥ 1+t√
1+2t+t2

= 1, and for t ∈ [−σ − ε, 0], the function g(t) = 1+t√
1+3t2

≥
1−σ−ε√

1+3(σ+ε)2
since

dg(t)
dt

=
1− 3t

(1 + 3t2)3/2
≥ 0

for t ∈ [−σ − ε, 0], that is, g(t) is increasing on [−σ − ε, 0]. Therefore, for i large enough we have〈
Âλi, ẑ

〉
‖Â∗λi‖

≥ τF
(1− σ − ε)√
1 + 3(σ + ε)2

.

Passing to the limit as λi → v obtain

〈v, ẑ〉
‖v‖

≥ τF
(1− σ − ε)√
1 + 3(σ + ε)2

whereby
〈v, ẑ〉
‖v‖

≥ τF
(1− σ)√
1 + 3σ2

= τ̂ .

�

5. Probabilistic Analysis. As mentioned before, the probabilistic analysis of our conic framework
is similar to the analysis with linear inequalities in [4]. Although a few changes are required, all the
main ideas are still valid. For the sake of completeness, we go over some results of [4]. Our exposition
intentionally separates the probabilistic analysis from the remaining sections.

The first lemma of this section was established in [3] for the case of linear inequalities, and here is
generalized to the conic framework. Roughly speaking, it shows that the perceptron improvement phase
generates near-feasible solutions if started at a good initial point, which happens with at least a fixed
probability p = 1/8.

Lemma 5.1 Let z be a feasible solution of (1) of unit norm. With probability at least 1
8 , the perception

improvement phase returns a vector x satisfying:

(i) 〈d, x〉 ≥ −σ‖x‖ for every d ∈ extF∗, ‖d‖ = 1, and

(ii) 〈z, x/‖x‖〉 ≥ 1√
n
.

Proof. Let x0 be the random unit vector in IRn that is the starting value of the perceptron im-
provement phase. Then with probability at least 1/8 we have

〈
z, x0

〉
≥ 1/

√
n, see [4]. Notice that in the

perceptron improvement phase we have

〈x− 〈d, x〉 d, z〉 = 〈x, z〉 − 〈d, x〉 〈d, z〉 ≥ 〈x, z〉

since 〈d, x〉 ≤ 0 and 〈d, z〉 ≥ 0 (since d ∈ F∗ and z ∈ F). Thus, the inner product in 〈z, x〉 does
not decrease at each inner iteration of the perceptron improvement phase (Step 4). Also, in each inner
iteration of the perceptron improvement phase the norm of x decreases by at least a constant factor:

〈x− 〈x, d〉 d, x− 〈x, d〉 d〉 = 〈x, x〉 − 2 〈d, x〉2 + 〈d, x〉2 〈d, d〉
= 〈x, x〉 − 〈d, x〉2 = 〈x, x〉 − 〈d, x/‖x‖〉2 〈x, x〉
≤ 〈x, x〉 (1− σ2),

since 〈d, x/‖x‖〉 ≤ −σ < 0 and ‖d‖ = 1.
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Thus, after more than
⌊
(1/σ2) ln(n)

⌋
iterations, we would have 〈x,z〉

‖x‖ > 1, which is a contradiction
since z is a unit vector. Therefore we terminate with a vector x satisfying (i) and (ii) with probability
at least 1/8. �

Lemma 5.1 establishes that points obtained after the perceptron improvement phase are near-feasible
for the current conic system. The next lemma clarifies the implications of using these near-feasible points
to re-scale the conic system.

Lemma 5.2 Suppose that n ≥ 2, τF , σ ≤ 1/32n and A is the linear operator of the current iteration. Let
Â be the linear operator obtained after one iteration of the perceptron improvement phase. Let τF̂ denote
the width of the cone of feasible solutions F̂ of the updated conic system associated with Â. Then

(i) τF̂ ≥
(

1− 1
32n
− 1

512n2

)
τF ;

(ii) With probability at least 1
8 , τF̂ ≥

(
1 +

1
3.02n

)
τF .

Proof. Let x be the output of the perceptron improvement phase. For simplicity, let τ := τF ,
τ̂ := τF̂ , and x̄ = x/‖x‖. Using Lemma 4.1, we have

τ̂ ≥ (1− σ)√
1 + 3σ2‖ẑ‖

τ

where ẑ = z̄ + 1
2 (τ − 〈x̄, z̄〉)x̄. Next note that

‖ẑ‖2 = 1 + (τ − 〈x̄, z̄〉) +
1
4
(τ − 〈x̄, z̄〉)2 = 1 +

τ2

4
+ 〈z̄, x̄〉

(
τ

2
− 3

4
〈z̄, x̄〉

)
.

Following [4], consider two cases. First assume that | 〈z̄, x̄〉 | < 1/
√

n which happens with probability at
most 7/8. Then viewing the above as a quadratic function in 〈z̄, x̄〉 which is maximized when 〈z̄, x̄〉 = τ/3,
we obtain

‖ẑ‖2 ≤ 1 +
τ2

4
+

τ2

12
= 1 +

τ2

3
.

Thus, we have

τ̂ ≥ τ(1− σ)
(

1− 3σ2

2

)(
1− τ2

6

)
≥ τ

(
1− 1

32n
− 1

512n2

)
,

since τ and σ are less or equal to 1
32n , and 1√

1+t
≥ 1− t

2 .

The second case assumes that | 〈z̄, x̄〉 | ≥ 1/
√

n, which happens with probability at least 1/8. In this
case, the quadratic function in 〈z̄, x̄〉 will be maximized at 〈z̄, x̄〉 = 1√

n
which yields

‖ẑ‖2 ≤ 1− 3
4n

+
τ

2
√

n
+

τ2

4
.

Again using 1√
1+t
≥ 1− t

2 , we obtain

τ̂ ≥ τ (1− σ)
(

1− 3σ2

2

)(
1 +

3
8n
− τ

4
√

n
− τ2

8

)
≥ τ

(
1 +

1
3.02n

)
.

�

The following theorem bounds the number of overall iterations and the number of oracle calls made
by the algorithm.

Theorem 5.1 Suppose that n ≥ 2. If (1) has a solution, the re-scaled perceptron algorithm will compute
a solution in at most

T = max
{

4096 ln
(

1
δ

)
, 139n ln

(
1

32nτF

)}
= O

(
n ln

(
1
τF

)
+ ln

(
1
δ

))
iterations, with probability at least 1− δ. Moreover, the algorithm makes at most O(T n2 ln(n)) calls of
a deep-separation oracle for F and at most O(T n2) calls of a separation oracle for F with probability at
least 1− δ.
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Proof. Our proof is slightly different than that of Theorem 3.4 in [4]. Let T denote the number
of times that the re-scaled perceptron algorithm calls Step 4(a), and let i index these calls. After each
visit to Step 4(a) exactly one of three cases can occur: (i) the algorithm ends Step 4 in Step 4(b) with
the resulting update in Step 6 satisfying conclusion (ii) of Lemma 5.2, (ii) the algorithm ends Step 4
with the resulting update in Step 6 not satisfying the conclusion (ii) of Lemma 5.2, or (iii) the algorithm
does not end Step 4 and therefore restarts Step 4(a). Let Vi be the binary random variable whose value
is 1 if the perceptron improvement phase ends as in case (i) and is 0 otherwise, and let V =

∑T
i=1 Vi.

Letting τi denote the width of the feasibility cone after i calls to Step 4(a), we see from Lemma 5.2 that
Vi = 1 implies τi+1 ≥ τi(1 + 1/(3.02n)). Furthermore, Lemma 5.2 implies that P (Vi = 1) ≥ 1/8 whereby
E[V ] ≥ T/8. The Chernoff bound yields

P (V < (1− ε)E[V ]) ≤ e−ε2E[V ]/2 ≤ e−ε2V/16.

In order to bound this probability by δ and setting ε = 1/16, we need T ≥ 4096 ln(1/δ).

Next note that Vi = 0 if either case (ii) or case (iii) above occur, the former yielding τi+1 ≥
τi

(
1− 1

32n −
1

512n2

)
from Lemma 5.2, and the latter yielding τi+1 = τi (i.e., no update is performed).

Thus, with probability at least 1− δ, using Lemma 5.2, we have

τT ≥ τ0

(
1 + 1

3.02n

)V (1− 1
32n −

1
512n2

)T−V

≥ τ0

(
1 + 1

3.02n

)T (1−ε)/8 (1− 1
32n −

1
512n2

)T−T (1−ε)/8

≥ τ0

(
1 + 1

3.02n

) 15T
128
(
1− 1

32n −
1

512n2

) 113T
128

≥ τ0e
T/139n.

Setting T ≥ 139n ln(1/(32nτ0)) we obtain τT ≥ 1/(32n). Therefore it suffices for the algorithm to visit
Step 4(a) at most T = max

{
4096 ln

(
1
δ

)
, 139n ln

(
1

32nτF

)}
times to ensure that the algorithm succeeds

with probability at least 1− δ. Also, the number of iterations of the re-scaled perceptron algorithm, i.e.,
the number of calls to Step 2, is at most T , the number of calls to the separation oracle for F is at most
b1024n2T c, and the number of calls to the deep-separation oracle for F is at most b1024n2 ln(n) T c. �

Remark 5.1 It is instructive to compare the complexity bound in Theorem 5.1 with that of the ellipsoid
method (see [7]). Let Ws and Wd denote the number of operations needed for an oracle call to an interior
separation oracle and a deep-separation oracle, respectively, for the feasibility cone F . The complexity
of the ellipsoid method for computing a solution of (1) is O(n2 ln(1/τF )) iterations, with each iteration
requiring (i) one call to an interior separation oracle for F , and (ii) O(n2) additional operations, yielding
a total operation count of O((n4 +n2Ws) ln(1/τF )). The corresponding complexity bound for the re-scaled
perceptron algorithm is O(n ln(1/τF ) + ln(1/δ)) iterations, where each iteration requires (i) O(n2) calls
to an interior separation oracle, (ii) O(n2 lnn) calls to a deep-separation oracle, and O(n2) additional
operations, yielding a total operation count of O((n2Ws + n2 lnnWd + n2)(n ln(1/τF ) + ln(1/δ))). If we
make the reasonable presumption that either δ is a fixed scalar or τF << δ, and that Wd ≥ Ws, we
see that the ellipsoid method has superior complexity by a factor of at least n lnn, with this advantage
growing to the extent that Wd >> Ws (as is the case when K is either composed of second-order or
positive semi-definite cones, see Section 6). However, the re-scaled perceptron algorithm is still attractive
for at least two reasons. First, it has the possibility of acceleration beyond its worst-case bound. And
second, we believe that the method is of independent interest for its ability to re-dilate the space in a way
that improves the width of the feasibility cone. It may be possible to exploit the mechanisms underlying
this phenomenon in other algorithms yet to be developed.

In certain applications, it will useful to amend Definition 2.3 of the deep-separation oracle as follows:

Definition 5.1 For a fixed positive scalar σ, a half-deep-separation oracle for a cone C ⊂ IRn is a
subroutine that given a non-zero point x ∈ IRn, either

(I) correctly identifies that
〈d, x〉
‖d‖‖x‖

≥ −σ for all d ∈ extC∗

or

(II) returns a vector d ∈ C∗, ‖d‖ = 1 satisfying
〈d, x〉
‖d‖‖x‖

≤ −σ/2.
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Remark 5.2 Definition 5.1 only differs from Definition 2.3 in the inequality in condition (II), where now
σ/2 is used instead of σ. This minor change only affects the iteration bound in Step 4 of the re-scaled
perceptron algorithm, which needs to be changed to

⌊
(4/σ2) ln(n)

⌋
; all other analysis in this Section

remains valid.

6. Deep-separation Oracles for F , for Some Inclusion Cones K The re-scaled perceptron
algorithm presupposes the availability of a deep-separation oracle for the feasibility cone F . Herein we
show that such a deep-separation oracle is fairly easy to construct when (1) has the format:


ALx ∈ int IRm

+

Aix ∈ int Qni i = 1, . . . , q

xs ∈ int Sk×k
+ ,

(5)

where x is composed as the cartesian product x = (xs, xp). Note that (5) is an instance of (1) for
K = IRm

+ ×Qn1 ×· · ·×Qnq ×Sk×k
+ and the only special structure on A is that the semi-definite inclusion

is of the simple format “Ixs ∈ Sk×k
+ .” In Section 6.4 we show how to construct a deep-separation oracle

for problems like (5) that also include the more general semi-definite inclusion “Asx ∈ Sk×k
+ ,” but this

construction is much less straightforward to develop.

The starting point of our analysis is a simple observation about intersections of feasibility cones.
Suppose we have available deep-separation oracles for each of the feasibility cones F1 and F2 of instances:

{
A1x ∈ int K1

x ∈ X
and

{
A2x ∈ int K2

x ∈ X
(6)

and consider the problem of finding a point that simultaneously satisfies both conic inclusions:


A1x ∈ int K1

A2x ∈ int K2

x ∈ X .
(7)

Let F = {x : A1x ∈ K1, A2x ∈ K2} = {x : Ax ∈ K} where K = K1 ×K2 and A is defined analogously.
Then F = F1 ∩ F2 where Fi = {x : Aix ∈ Ki} for i = 1, 2. It follows from the calculus of convex cones
that F∗ = F∗1 + F∗2 , and therefore

extF∗ ⊂ (extF∗1 ∪ extF∗2 ) . (8)

This observation leads to an easy construction of a deep-separation oracle for F1∩F2 if one has available
deep-separation oracles for F1 and F2:

Deep-separation Oracle for F1 ∩ F2

Given: scalar t > 0 and x 6= 0, call the deep-separation oracles for F1 and F2 at x.
If both oracles report Condition I, return Condition I.
Otherwise at least one oracle reports Condition II and provides d ∈ F∗i ⊂ F∗, ‖d‖ = 1,
such that 〈d, x〉 ≤ −t‖d‖‖x‖; return d and Stop.

Remark 6.1 If deep-separation oracles for Fi are available and their efficiency is O(Ti) operations for
i = 1, 2, then the deep-separation oracle for F1 ∩ F2 given above is valid and its efficiency is O(T1 + T2)
operations.

Utilizing Remark 6.1, in order to construct a deep-separation oracle for the feasibility cone of (5) it
will suffice to construct deep-separation oracles for each of the conic inclusions therein, which is what we
now examine.

6.1 Deep-separation Oracle for F when K = IRm
+ We consider F = {x : Ax ∈ IRm

+}. Example
2.2 has already described a deep-separation oracle for F when the inclusion cone is IRm

+ . It is easy to see
that this oracle can be implemented in O(mn) operations.
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6.2 Deep-separation Oracle for F when K = Qk For convenience we amend our notation so
that F = {x : ‖Mx‖ ≤ gT x} for a given real (k − 1) × n matrix M and a real n-vector g, so that

F = {x : Ax ∈ Qk} where the linear operator A is specified by Ax :=
[

Mx
gT x

]
.

We will construct an efficient half-deep-separation oracle (Definition 5.1) by considering the following
optimization problem:

t∗ := mind dT x

s.t. ‖d‖ = 1
d ∈ F∗ .

(9)

If x ∈ F , then t∗ ≥ 0 and clearly condition I of Definition 5.1 is satisfied. If x /∈ F , then t∗ < 0
and we can replace the equality constraint in (9) with an inequality constraint. We obtain the following
primal/dual pair of convex problems with common optimal objective function value t∗:

t∗ := mind xT d = maxy −‖y − x‖

s.t. ‖d‖ ≤ 1 s.t. y ∈ F
d ∈ F∗

(10)

Now consider the following half-deep-separation oracle for F when K = Qk.

Half-Deep-Separation Oracle for F when K = Qk, for x 6= 0 and relaxation parameter σ > 0
If ‖Mx‖ ≤ gT x, return Condition I, and Stop.
Solve (10) for feasible primal and dual solutions d̄, ȳ with duality gap ḡ satisfying ḡ/‖x‖ ≤ σ/2

If xT d̄/‖x‖ ≥ −σ/2, report Condition (I), and Stop.
If xT d̄/‖x‖ ≤ −σ/2, then return d = d̄, report Condition (II), and Stop.

To see the validity of this method, note that if ‖Mx‖ ≤ gT x, then x ∈ F and clearly Condition (I)
of Definition 5.1 is satisfied. Next, suppose that xT d̄/‖x‖ ≥ −σ/2, then t∗ ≥ −‖ȳ − x‖ = xT d̄ − ḡ ≥
−‖x‖σ/2 − ‖x‖σ/2 = −‖x‖σ. Therefore xT d

‖x‖‖d‖ ≥ −σ for all d ∈ F∗, and it follows that Condition (I)

of Definition 5.1 is satisfied. Finally, if xT d̄/‖x‖ ≤ −σ/2, then d̄T x
‖d̄‖‖x‖ ≤ −σ/2 and d̄ ∈ F∗, whereby

Condition (II) of Definition 5.1 is satisfied using d̄.

The computational efficiency of this deep-separation oracle depends on the ability to efficiently solve
(10) for feasible primal/dual solutions with duality gap ḡ ≤ σ‖x‖/2. For the case when K = Qk, it
is shown in [1] that (10) can be solved very efficiently to this desired duality gap, namely in O(n3 +
n ln ln(1/σ) + n ln ln(1/ min{τF , τF∗})) operations in practice, using a combination of Newton’s method
and binary search. Using σ = 1/(32n) this is O(n3+n ln ln(1/ min{τF , τF∗})) operations for the relaxation
parameter σ needed by the re-scaled perceptron algorithm.

6.3 Deep-separation Oracle for Sk×k
+ Let C = Sk×k

+ , and for convenience we alter our notation
herein so that X ∈ Sk×k is a point under consideration. A deep-separation oracle for C at X 6= 0 for the
scalar t > 0 is constructed by simply checking the condition “X + t‖X‖I � 0.” If X + t‖X‖I � 0, then
condition I of the deep-separation oracle is satisfied. This is true because the extreme rays of C are the
collection of rank-1 matrices vvT , and〈

vvT , X
〉

‖X‖‖vvT ‖
=

vT Xv

‖X‖‖vvT ‖
≥ −t‖X‖vT v

‖X‖‖vvT ‖
= −t

for any v 6= 0. On the other hand, if X + t‖X‖I 6� 0, then compute any nonzero v satisfying vT Xv +
t‖X‖vT v ≤ 0, and return D = vvT /vT v, which will satisfy

〈D,X〉
‖X‖‖D‖

=
vT Xv

‖X‖vT v
≤ −t ,
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thus satisfying condition II. Notice that the work per oracle call is simply to check the eigenvalue condition
X � −t‖X‖I and possibly to compute an appropriate vector v, which is typically O(k3) operations in
practice.

6.4 Methodology for a Deep-separation Oracle for F when K∗ has a Deep-Separation
Oracle In this subsection we present a general result on how to construct a deep-separation oracle for
any feasibility cone F = {x ∈ IRn : Ax ∈ K} whose dual inclusion cone K∗ has an efficiently-computable
deep-separation oracle. We therefore formally define our working premise for this subsection as follows:

Premise: K∗ has an efficiently-computable deep-separation oracle. Furthermore, τK and τK∗ are known.

Remark 6.2 The results herein specify to the case when K = Sk×k
+ . We know from the results in Section

6.3 and the self-duality of Sk×k
+ ((Sk×k

+ )∗ = Sk×k
+ ) that K∗ has an efficiently computable deep-separation

oracle when K = Sk×k
+ . Furthermore, we have τK = τK∗ = 1/

√
k.

The complexity analysis that we develop in this subsection uses the data-perturbation condition mea-
sure model of Renegar [12], which we now briefly review. Considering (1) as a system with fixed cone K
and fixed spaces X and Y , let M denote those operators A : X → Y for which (1) has a solution. For
A ∈M, let ρ(A) denote the “distance to infeasibility” for (1), namely:

ρ(A) := min
∆A
{‖∆A‖ : A + ∆A /∈M} .

Then ρ(A) denotes the smallest perturbation of our given operator A which would render the system (1)
infeasible. Next let C(A) denote the condition measure of (1), namely C(A) = ‖A‖/ρ(A), which is a scale-
invariant reciprocal of the distance to infeasibility. ln(C(A)) is tied to the complexity of interior-point
methods and the ellipsoid method for computing a solution of (1), see [13] and [5].

Given a regular inclusion cone K, the feasibility cone for (1) is F = {x : Ax ∈ K}. Given the relaxation
parameter t > 0 and a non-zero vector x ∈ IRn, consider the following conic feasibility system in the
variable d:

(St,x) :


〈x,d〉
‖x‖‖d‖ < −t

d ∈ F∗
(11)

It follows from Definition 2.3 that if d is feasible for (St,x), then Condition II of Definition 2.3 is satisfied;
however, if (St,x) has no solution, then Condition I is satisfied. Utilizing Lemma 2.1 and rearranging
terms yields the equivalent system in variables w:

(St,x) :


t‖x‖‖A∗w‖+ 〈w,Ax〉 < 0

w ∈ intK∗
(12)

Note that if w̃ solves (12), then d̃ = A∗w̃ solves (11) from Lemma 2.1. This leads to the following
approach to constructing a deep-separation oracle for F :

given x 6= 0 and t := σ, compute a solution w̃ of (12) or certify that no solution exists.
If (12) has no solution, report Condition I and Stop; otherwise (12) has a solution w̃,
return d := A∗w̃/‖A∗w̃‖, report Condition II, and Stop.

In order to implement this deep-separation oracle we need to be able to compute a solution w̃ of (12) if
such a solution exists, or be able to provide a certificate of infeasibility of (12) if no solution exists. Now
notice that (12) is a homogeneous conic feasibility problem of the form (5), as it is comprised of a single
second-order cone inclusion constraint ( (t‖x‖A∗w, 〈w,−Ax〉) ∈ Qn ) plus a constraint that the variable
w must lie in K∗. Therefore, using Remark 6.1 and the premise that K∗ has an efficiently-computable
deep-separation oracle, it follows that (12) itself can be efficiently solved by the re-scaled perceptron
algorithm, under the proviso that it has a solution.

However, in the case when (12) has no solution, it will be necessary to develop a means to certify this
infeasibility. To do so, we first analyze its feasibility cone, denoted as F̃(t,x) := {w : t‖x‖‖A∗w‖+〈w,Ax〉 ≤
0, w ∈ K∗}. We have:
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Proposition 6.1 For a given σ ∈ (0, 1/2) and x 6= 0, suppose that S(σ,x) has a solution and let t ∈ (0, σ).
Then

τF̃(t,x)
≥ τK∗(σ − t)

3C(A)
.

Proof. For simplicity we assume with no loss of generality that ‖x‖ = 1 and ‖A‖ = 1. Since S(σ,x)

has a solution, let ŵ satisfy σ‖A∗ŵ‖ + 〈ŵ, Ax〉 ≤ 0, ŵ ∈ K∗, and ‖ŵ‖ = 1. It follows directly from
Theorem 2 of [6] that ‖A∗ŵ‖ ≥ ρ(A). Let w◦ be the center of K∗, whereby B(w◦, τK∗) ⊂ K∗. Consider
the vector ŵ + βw◦ + αd where ‖d‖ ≤ 1 and β > 0 will be specified shortly. Then ŵ + βw◦ + αd ∈ K∗

so long as α ≤ βτK∗ . Also,

t‖A∗(ŵ + βw◦ + αd)‖+ 〈ŵ + βw◦ + αd,Ax〉 ≤ t‖A∗ŵ‖+ βt + αt + 〈ŵ, Ax〉+ β + α
≤ (t− σ)‖A∗ŵ‖+ βt + αt + β + α
≤ (t− σ)ρ(A) + βt + αt + β + α
≤ 0

so long as α ≤ α̂ := (σ−t)ρ(A)
t+1 − β. Therefore

τF̃(t,x)
≥

min
{

(σ−t)ρ(A)
t+1 − β, βτK∗

}
‖ŵ + βw◦‖

≥
min

{
(σ−t)ρ(A)

t+1 − β, βτK∗

}
1 + β

.

Let β := (σ−t)ρ(A)
2(t+1) and substituting in this last expression yields

τF̃(t,x)
≥ (σ − t)ρ(A)τK∗

2 + 2t + (σ − t)ρ(A)
≥ (σ − t)ρ(A)τK∗

3
=

(σ − t)τK∗

3C(A)

since ρ(A) ≤ ‖A‖ = 1 and 0 < t ≤ σ ≤ 1/2. �

Now consider the following half-deep-separation oracle for F (recall Definition 5.1) which takes as
input an estimate L of C(A):

Half-deep-separation Oracle for F , for x 6= 0, relaxation parameter σ, and estimate L
Set t := σ/2, and run the re-scaled perceptron algorithm to compute a solution w̃ of (12) for at most
T̂ := max

{
4096 ln

(
1
δ

)
, 139n ln

(
6L

τK∗

)}
iterations.

If a solution w̃ of (12) is computed, return d := A∗w̃/‖A∗w̃‖, report Condition II, and Stop.
If no solution is computed within T̂ iterations, report

“either Condition I is satisfied, or L < C(A),” and Stop.

We now validate that this constitutes a half-deep-separation oracle for F , with high probability. If the
oracle computes a solution w̃ of (12), then it is trivial to show that d := A∗w̃/‖A∗w̃‖ satisfies d ∈ F∗

and 〈d,x〉
‖d‖‖x‖ ≤ −t = −σ/2, thus satisfying condition II of Definition 5.1. Suppose instead that the oracle

does not compute a solution within T̂ iterations. It follows from Theorem 5.1 that with probability at
least 1− δ the re-scaled perceptron algorithm would compute a solution of (12) in at most

T := max

{
4096 ln

(
1
δ

)
, 139n ln

(
1

32nτF̃(t,x)

)}
iterations. However, if L ≥ C(A) and F̃(σ,x) 6= ∅, then it follows from Proposition 6.1 that

1
32nτF̃(t,x)

≤ 3C(A)
32nτK∗(σ/2)

≤ 6L

τK∗
,

whereby T ≤ T̂ . Therefore, it follows that with probability at least 1 − δ that either L < C(A) or
F̃(σ,x) = ∅, the latter then implying condition I of Definition 5.1.

We note that the above-outlined method for constructing a deep-separation oracle is inelegant in many
respects. Nevertheless, it is theoretically efficient, i.e., it is polynomial-time in n, ln(1/τK∗), ln(L), and
ln(1/δ). It is an interesting and open question whether, in the case of K = Sk×k

+ , a more straightforward
and more efficient deep-separation oracle for F can be constructed.
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Finally, it follows from Theorem 7 of [6] that the width of F can be lower-bounded by Renegar’s
condition measure:

τF ≥
τK

C(A)
. (13)

This can be used in combination with binary search (for bounding C(A)) and the half-deep-separation
oracle above to produce a complexity bound for computing a solution of (1) in time polynomial in n,
ln(C(A)), ln(1/δ), ln(1/τK), and ln(1/τK∗).
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