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Abstract
A simple, portable and useful collection of

software tools has been developed for the analysis
of airport surface traffic.  The tools are based on a
flexible and robust traffic-flow model, and include
calibration, validation and simulation functionality
for this model.  Several different interfaces have
been developed to help promote usage of these
tools, including a portable Matlab implementation
of the basic algorithms; a web-based interface
which provides online access to automated analyses
of airport traffic based on a database of real-world
operations data which covers over 250 U.S. airports
over a 5-year period; and an interactive simulation-
based tool currently in use as part of a college-level
educational module.  More advanced applications
for airport departure traffic include taxi-time
prediction and evaluation of “windowing”
congestion control.

Introduction
Congestion and delays on the airport surface

are a significant source of financial and uncertainty
costs for both airlines and the flying public.  These
mounting costs have fueled research into methods
for improving the airport departure process, either
via the elimination of existing inefficiencies or the
creation of decision-aiding tools.  Lacking any
means to field-test new hypothesized models and
proposed improvements, this research has
necessitated the use of software tools for modeling,
analyzing and simulating airport surface traffic.

A variety of software tools with generally
similar goals are commercially available and widely
used for airport planning [1].  However, as often the
case, commercial software tools lack several

characteristics which are required in academic
research:

• Easy to modify the traffic-flow model
used by the software.

• Traffic-flow model and software are both
well-adapted to limitations of available
real-world operations data.

• Software is low-cost, both in terms of
licensing fees and the manpower needed
to use it, with a fast learning curve.

These required characteristics have led to the
development of several in-house software tools.
This paper gives an overview of these software
tools, including their basic functionality and the
underlying algorithms.

In addition, two interfaces to the software tools
have been developed to help promote usage of these
tools.  One interface is web-based and allows online
users to access a large database of real-world
operations data and then download airport traffic
analyses generated by our server.  Through
continuing improvements to this interface, new
applications such as taxi-time predictors and
proposed congestion-control algorithms are being
made available in a useful public forum, allowing
these research results to move more easily out of
the laboratory and into the hands of users in the
field.  The second interface is part of an interactive
educational module currently in use at MIT.  This
interface consists of a set of Excel spreadsheets
which contain airport operations data; students can
modify this data and then feed their proposed
schedules and traffic restrictions into a software
tool which simulates the expected airport surface
traffic resulting from their changes.
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Software Tools

Description Of Input And Output
The traffic-flow model underlying the software

treats the airport surface as a “black-box” queueing
system with observed inputs and outputs, and a
simple set of internal dynamics which are not
observed directly but are assumed to have a known
structure1.  Hence, to be useful, real-world
operations data must provide a description of
airport surface traffic which appeals to the model.
For each aircraft, the following information is
required:

1) source: a “classifier” variable, describing
the origin of the aircraft on the airport
surface.  It is assumed that different sources
of aircraft (e.g. airlines, terminals, or gates,
depending on the level of detail provided
by the real-world operations data) will have
different characteristic taxi-times.  All of
the software tools account for this effect.

2) Ti (Time-in): epoch when the aircraft enters
the system (i.e. pushback for departure
traffic, or wheels-on for arrival traffic).

3) To (Time-out): epoch when the aircraft exits
the system (i.e. wheels-off for departure
traffic, or gate-arrival for arrival traffic).

A variety of real-world operations data can be used
to obtain these measurements.  Airline operations
centers often maintain records of gate-arrival and
pushback times.  Multilateration and terminal-area
radar systems can estimate wheels-off and wheels-
on times.  In our research, we have used operations
data taken from either the Airline Service Quality
Performance (ASQP) database or directly from
FAA tower flight-strips.

The description of airport surface traffic
provided by ASQP is relatively coarse.  The source
of each aircraft is only partially approximated by
the airline.  Taxi-paths, runway assignments, and
gate assignments are not recorded.  A fraction of the
total airport surface traffic goes unmonitored, since
ASQP only records domestic jet operations by the
major U.S. passenger carriers, ignoring all
international flights, all prop and regional-jet traffic,

                                                       
1 See [6, 7] for information on the structure of the traffic-flow
model.

and all traffic by regional airlines and freight
carriers.  However, the ASQP data does have
several advantages: ASQP records the out-off-on-in
(OOOI) epochs with reasonable 1min accuracy and
precision, and is available for hundreds of U.S.
airports over a period of several years.

For applications requiring finer detail than
ASQP provides, good results have been obtained
using data from FAA tower flight-strips [2].  When
combined with tower and TRACON logs, flight-
strip data provides a very thorough and complete
description of traffic at a given airport.  There can
be some difficulty obtaining flight-strip data,
although for research purposes it is perfectly
reasonable to use flight-strip data which is several
months old.  Flight-strip data can also be time-
consuming to transcribe from paper to the
computer, although ongoing efforts to increase
automation in the tower and TRACON may
mitigate this problem.

Once input data has been obtained, it is fed to
the software tools, which produce several types of
outputs.  The calibration algorithms produce a set of
descriptive statistics for the airport surface traffic
described by the real-world operations data.  Such
statistics are then used together with software tools
for Monte Carlo simulation to estimate statistics for
taxi-times, congestion and delays.  Customized
visualization tools are available for most of these
results.

Algorithms
The software tools are based on a small set of

basic algorithms.  The calibration algorithms take
raw input data and produce calibrated model
parameters; these parameters include the estimated
mean, variance and distribution of unimpeded taxi-
time, and the maximum rate at which the traffic
bottleneck can service aircraft.  The simulation
algorithms take a calibrated model together with a
set of system inputs (e.g. pushbacks in the case of
departure traffic) and estimate the expected system
outputs (e.g. wheels-off times).  Finally, the
validation algorithms combine calibration and
simulation to determine whether a calibrated model
actually reproduces the traffic behaviors observed at
a particular real-world airport.
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Calibration Of Unimpeded Taxi-Time
Let S denote the set of sources of aircraft, as

specified in the input data.  One quantity of interest
is the traffic statistics for aircraft originating at a
given source s∈S, for example the mean and
standard deviation of taxi-time for departures from
a given airport terminal.  While the mean and
standard deviation are useful statistics, they do not
completely characterize the variability of taxi-times.
Instead, the following algorithm is used to directly
estimate probability density functions (p.d.f.’s) of
unimpeded taxi-time:

1) From the input data, reconstruct a time-
history of the number of aircraft on the
airport surface.

2) For each source s , consider the set of
aircraft originating from that source.  Filter
these aircraft, selecting a subset which
entered the system under conditions which
imply little to no interaction with
congestion at the bottleneck queue.

3) Using standard statistical techniques,
estimate a p.d.f. for unimpeded taxi-out
time using this subset, under the
assumption that each aircraft in the subset
represents an independent and identically
distributed sample from the p.d.f.

This basic formulation is used by most software
tools currently used to predict or estimate taxi-
times.  Different software tools use different
methods in assigning sources to aircraft, and in
selecting the subset which interacts least with the
bottleneck queue.  For example, the basic algorithm
used in the Surface Movement Advisor (SMA) tool
at ATL to predict departure taxi-times assumes a
single source (all aircraft are treated identically); a
subset consisting of the last twelve aircraft to push2;
and a simple interaction filter which removes the
highest and lowest taxi-times from each 12-aircraft
subset [3].  Another algorithm is described in the
documentation for the Consolidated Operations and
Delay Analysis System (CODAS) [4].  CODAS
estimates unimpeded taxi-times by assigning
sources according to season of the year and airline
carrier; computing a linear regression between taxi-

                                                       
2 Note that this lumps together unimpeded taxi-time with
queueing effects, a significant difference from the traffic-flow
model assumed in this paper.

time and queue-lengths at time of pushback using
both arrival and departure queues; and selecting a
“virtual” subset by extrapolating the linear
regression to zero queue-lengths.

Our software tools leave the method of
assigning sources entirely to the input data: the
classification variables specified in the input
records are used in the calculations.  The web-based
interface (described below) uses airlines as sources,
since airlines typically cluster their gates, and
because no better indication for an aircraft’s source
is available in ASQP.  The Excel-based interface
(also described below) comes pre-packaged with a
set of EWR operations data, and maps different
airlines and flight-numbers to the 4 airport
terminals at EWR.

An accurate heuristic for determining the
interaction between an aircraft and the congested
queue near the airport’s primary bottleneck has
been developed in [5,6,7].  For each aircraft, a
traffic-interaction index3 is computed.  This index
counts the number of system-exits (takeoffs for
departure traffic, or gate-arrivals for arrival traffic)
which occur while that aircraft is on the airport
surface.  For a given aircraft F, a low index
indicates that F could not have waited in a long
queue, else a large number of other aircraft would
have left the system while F was taxiing.  Similarly,
F could not have experienced long delays unrelated
to traffic, else a large number of undelayed aircraft
would have passed F on the tarmac and left the
system while F was taxiing.  This index is
computed for each aircraft in the input dataset, and
a subset of aircraft with “small” indices is used to
estimate the taxi-time p.d.f.’s.  The web-based
interface uses a threshold of _ the median index to
determine which aircraft have “small” indices.

Calibration Of Bottleneck Service Rate
Methods to estimate the service-rate of the

runway have been the subject of intensive
investigation [5,8,9,10].  The central problem of
these analyses is to observe or compute the
maximum throughput of the runway system.  Many
of these analyses are based on the same idea:
estimate the probability that the runway queue is

                                                       
3 This index of an aircraft’s interaction with other traffic is
denoted NH or Q in the given references.
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empty, and then focus on intervals when that
probability is low.  Note that this idea generalizes to
traffic bottlenecks other than the runway.  A
number of airport improvement programs are
underway to automate real-time surveillance of
surface movements, typically focusing on
multilateration systems.  As improved operations
data from these surveillance systems become
available, it will become useful to consider
additional surface bottlenecks such as crossing-
points and merges along the taxiways.  Hence the
calibration algorithm has a flexible design which
only assumes a simple FIFO structure for the
bottleneck queue, rather than the specific structure
observed at the runway queue.

The calibration algorithm is based directly on
the idea of estimating the probability that the
bottleneck queue is empty.  Let Pt be the probability
that the bottleneck queue is empty at time t.
Assume that an estimate has already been obtained
for the unimpeded taxi-time p.d.f.’s. for aircraft
originating from each source.  Initially, before any
aircraft are considered, the queue is presumed to be
empty (Pt ≡1).  For each aircraft F, for all
t∈[Ti, To], perform the following update:

Pt := Pt × Pr(taxi-time ≥ t - Ti)

This update relies on the assumption that
unimpeded taxi-times are independent to justify the
multiplication.  The probability Pr is calculated as
the complementary distribution function of
unimpeded taxi-time, except for t=To when the
probability is set to zero, since the queue cannot be
empty immediately preceding an aircraft’s exit from
the system.  After iterating through the set of all
aircraft, Pt contains an estimate of the probability
that the queue is empty at time t.  This estimate then
yields a set of data consisting of pairs (Pt, Nt

O)
where Nt

O is the number of aircraft exiting the
system at time t.  The statistic of interest is the
distribution of Nt

O as Pt→0, which can be estimated
via standard regression techniques.

Simulation
Once the calibration algorithms have been run

on a representative sample of input data, the
resulting calibrated model dynamics form a well-
specified stochastic system which is amenable to
Monte Carlo simulation.  Two types of Monte Carlo
simulation are useful.  The calibrated model

dynamics can be simulated “as-is” without
modification.  Actual flight records are used to
provide realistic inputs to the system, and the
Monte Carlo simulation approximates the expected
system outputs.  This type of simulation is useful to
determine whether the assumed model dynamics in
fact reproduce (in an aggregate statistical sense) the
actual system dynamics.  Another type of
simulation involves modifying the model dynamics
and then simulating the modified system.  This type
of simulation is useful to test the effect of
incorporating more complex and detailed dynamics4

or to test the imposition of control schemes
designed to optimize some performance metric of
surface traffic5.

Validation
The validation technique is quite simple:

1) Compute a calibrated model using input
data from odd-numbered weeks.

2) Using the calibrated model dynamics,
driven by input data from the even-
numbered weeks, compute several Monte
Carlo simulations.

3) Compute a calibrated model using the
simulated flight-data produced by the
Monte Carlo simulations.

4) Compare the two calibrations.
Simulation of the unmodified dynamics can be
vectorized for efficient implementation in Matlab.
For each source in S, a vector of unimpeded taxi-
times is generated using standard Monte Carlo
techniques from the calibrated p.d.f.’s.  Similarly, a
vector of bottleneck queueing service-times is
generated.  For each aircraft, the unimpeded taxi-
time is added to the Ti epoch to obtain a simulated
qE (queue-Entry) epoch.  Aircraft from all sources
are then sorted according to the qE epochs.  For a
set containing N aircraft, assume the qE epochs are
ordered such that:

qE(1) ≤ qE(2) ≤ … ≤ qE(N)

Then only a single pass through the input data
is required to simulate the standard FIFO queueing
dynamics [11]:

                                                       
4 See [2] for a study on the effect of downstream restrictions.
5 See [6,14,15] and the section below on “windowing”
congestion control for studies of the effect of using gate-holds
to mitigate runway queueing.
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To(0) ≡ -∞

To(n) = max{qE(n), To(n-1)} + service-time(n)

After simulating the To epochs, the aircraft are
returned to their original order.  A straightforward
coding of this algorithm in Matlab requires 40
lines of code and can simulate a month’s worth of
traffic data from a major U.S. hub in <1s on an
average desktop computer.

Matlab-Based Interface:
Basic Tools

The basic software tools are coded in Matlab
using standard toolboxes.  Real-world operations
data is input as a single matrix, with columns
containing (source, Ti, To) data, and a row for each
aircraft.  A well-documented set of functions
operate on this singe input matrix to perform tasks
including data preprocessing; estimation of model
parameters; simulation of the basic model
dynamics; validation; simulation-based
optimization; and visualization.  Matlab was
chosen as the basic language for implementing the
software tools because it is widely available and
portable, and it hides irrelevant details of
programming to focus on the actual algorithms.
Thus the current implementation allows the
software tools to be easily adopted and improved by
users outside our research group, and encourages
rapid prototyping and visualization of new ideas
and results.

Web-Based Interface:
Calibration Tools

A subset of the Matlab-based tools are
accessible through a web-based interface, available
at http://icat-server.mit.edu/~fcarr/online_model/.
The web-based interface has access to a database of
ASQP records covering more than 250 U.S. airports
over the period Jan-1995 through Dec-2001.  Users
are prompted to select an airport and a month-long
period of interest.  This input starts a Matlab
computational engine located on our server.  The
Matlab engine pipes in relevant flight-records

from the database; runs the calibration functions;
and creates both visual and text-based versions of
the results (see Figures 1 through 3).  In addition, a
taxi-time predictor (described in the “Applications”
section) is also provided.  Planned upgrades to the
web-based interface include automated model
validation, improved taxi-time predictors, and an
evaluation tool for testing a proposed congestion-
control algorithm for departure traffic.

Figure 1: Sample of Visual Output From Web-
Based Interface (Calibrated Taxi-Time P.D.F)

Figure 2: Sample of Visual Output From Web-
Based Interface (Bottleneck Rate As Pt → 0)
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Figure 3: Sample of Textual Output From Web-
Based Interface

Between the time they select an airport and
period of interest, and the time they receive their
results over the web, online users see a delay of
approximately one minute.  Once a user has
requested calibration data for a particular airport
and time-period, the results are archived and
immediately available for later downloads, thus
removing the one-minute delay.

In practice, the capability to rapidly and
automatically baseline the traffic at almost any U.S.
airport has proven useful several times in our
research.  The description of surface traffic as
provided by ASQP is relatively coarse, but does
adequately describe many of the hub and spoke
airports which are of greatest concern to the major
U.S. passenger carriers.

Excel-Based Interface:
Simulation-Based Optimization

Another subset of the Matlab-based tools has
been packaged as part of an educational teaching
module through the Sloan Foundation Systems
Studies at MIT [12].  The educational goals of the
module are to give students insight into issues
which affect airline and air traffic control
operations at highly congested airports.  To support
these goals, the Matlab-based simulation
functions have been re-implemented in Python, a
portable, widely-used and cost-free scripting
language [13].  Users are provided with a detailed
set of Excel spreadsheets describing one day of
weather and traffic at EWR.  Relevant papers and
study problems then encourage users to test the
effects of different airline schedules and FAA
traffic restrictions on departure congestion and
delays.  Using Excel, the base EWR data are
modified to create different schedules and traffic

restrictions.  These modified operations data are fed
directly to the simulation scripts, which output
statistics for each aircraft’s taxi-time and queueing
delay, as well as statistics on surface congestion for
the airport as a whole.  These results can then be
analyzed and visualized directly in Excel.  A
single CD contains the Python installer; the base
EWR data; and the simulation scripts.

Currently, parts of this teaching module are
used in several classes at MIT, which cover topics
including air traffic control, airline operations, and
airport modeling and planning.  The teaching
module is currently under evaluation for similar
classroom use at University of Cambridge.

Applications

Taxi-Time Predictors
One of the outputs provided by the web-based

interface is a taxi-time predictor originally
described in [14].  The output of the taxi-time
predictor is a simple lookup table which maps the
airline and departure congestion (measured as the
number of departing aircraft on the airport surface
at Ti) of a given flight to the expected taxi-out time,
including queueing delays.  This taxi-time estimator
can be easily obtained as a byproduct of the data
preprocessing which already occurs when the web-
based interface is accessed.

Departure taxi-time predictor #2
(quadratic fit to observed T/Q data)

Format:
One traffic source per row (leftmost column)
One value of N per column (topmost row)
Smoothed mean of departure taxi-times (minutes)

 1 2 3 4 5 6 7
Airline #1 9.4 11.3 12.8 14.8 16.4 18.2 20.3
Airline #2 13.6 14.2 14.9 16.2 17.1 18.3 20.1
Airline #3 11.2 12.4 13.5 15.0 16.2 17.7 19.5
Airline #4 12.4 13.2 14.0 15.2 16.1 17.3 18.9
Airline #5 15.2 15.3 15.6 16.5 17.1 18.0 19.5
Airline #6 16.8 16.3 16.1 16.6 16.7 17.3 18.5

Table 1: Sample Of Output From Web-Based
Interface (Taxi-Time Predictor)

Arrival statistics:
Fitted parameters for airline 0:
  Mean=6.2727
  Std. deviation=3.0238
  LogNormal \mu=1.3374
  LogNormal \sigma=0.60283
  LogNormal shift=1.7048
Fitted parameters for airline 3:
  Mean=6.7091
  Std. deviation=2.4053
  LogNormal \mu=1.6292
  LogNormal \sigma=0.41441
  LogNormal shift=1.1522
Fitted parameters for airline 4:
  Mean=5.7894
  Std. deviation=2.1529
  LogNormal \mu=1.8352
  LogNormal \sigma=0.31834
  LogNormal shift=-0.80282
Fitted parameters for airline 5:
  Mean=5.651
  Std. deviation=2.7297
  LogNormal \mu=1.3062
  LogNormal \sigma=0.57543
  LogNormal shift=1.2941
Fitted parameters for airline 6:
  Mean=6.4344
  Std. deviation=2.1325
  LogNormal \mu=2.0774
  LogNormal \sigma=0.25442
  LogNormal shift=-1.8121
Fitted parameters for airline 7:
  Mean=5.0829
  Std. deviation=2.0378
  LogNormal \mu=1.8177
  LogNormal \sigma=0.30812
  LogNormal shift=-1.3744
Fitted parameters for airline 8:
  Mean=5.5143
  Std. deviation=2.1507
  LogNormal \mu=1.4801
  LogNormal \sigma=0.42675
  LogNormal shift=0.70222
Fitted parameters for airline 9:
  Mean=6.6022
  Std. deviation=2.4754
  LogNormal \mu=1.923
  LogNormal \sigma=0.33289
  LogNormal shift=-0.62897
(Poisson) Rate of bottleneck (a/c
per minute): 0.45828

Departure statistics:
Fitted parameters for airline 0:
  Mean=12.5354
  Std. deviation=3.506
  LogNormal \mu=2.0501
  LogNormal \sigma=0.40004
  LogNormal shift=4.1195
Fitted parameters for airline 3:
  Mean=13.3796
  Std. deviation=3.4139
  LogNormal \mu=2.1168
  LogNormal \sigma=0.37068
  LogNormal shift=4.4844
Fitted parameters for airline 4:
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 Windowing Congestion Control
Windowing congestion control was first

proposed in the context of airport surface departure
traffic in [15] under the name of “N-control”.  The
basic idea is intuitively appealing.  If too many
departing aircraft are already queued up on the
airport surface waiting to take off, then any
additional departures released from the gates will
necessarily be delayed.  Delays taken at the gate are
less expensive in several respects than delays taken
while taxiing.  Hence, if departure surface
congestion is too high, it may be beneficial to
temporarily delay additional pushbacks at the gate.

Gate-delay is certainly less expensive than
taxi-out-delay in terms of environmental emissions;
direct operating costs for crew and fuel; and missed
opportunities to catch late passengers and baggage.
However, there are also potential disadvantages due
to increased utilization of scarce gates; missed
opportunities to catch an early position in the
runway queue; and degraded on-time departure
statistics.  The optimal balance among these costs is
not immediately apparent, which has led us to
develop software tools which enable a tradeoff
analysis between the competing factors.

The quantities computed in the tradeoff
analysis include total gate delay, total taxi-out
delay, and aggregate gate utilization.  Two control
parameters are used: the maximum number of
departing aircraft allowed on the airport surface
(denoted C), and the maximum gate-delay assigned
to any departing aircraft (denoted D).  It is assumed
that the max-delay constraint is “stronger” than the
max-congestion constraint, so that departing aircraft
are never held longer than D minutes under any
circumstances.  Other inputs to the tradeoff analysis
include the predicted pushback schedule over the
period of interest, and a set of calibrated model
parameters as produced by the calibration
algorithms.

The tradeoff analysis is computed via Monte
Carlo simulation.  In general, the simulation
algorithm is similar to the algorithm previously
described for simulation of the unmodified
dynamics, including a vectorized computation of
taxi-out and runway-service times for each flight,
followed by a single pass through the flight records.
However, the simulation dynamics must be
modified to account for the control constraints.

A priority queue TW is used to track aircraft
currently taxiing towards the runway queue.  The
following set of updates are iterated until all
pushbacks recorded in the input data have occurred
and TW is empty:

1) While some aircraft have not pushed and
fewer than H aircraft are in TW, allow an
aircraft to push at its desired pushback time
Ti.  This aircraft is placed in TW according
to the time it should reach the runway
queue (denoted qE in accord with the
notation used previously).

2) While some aircraft have not pushed and
the next aircraft to push would have to wait
too long before a takeoff, allow the next
aircraft to push at time Ti+D, thus reaching
the runway queue at qE+D.

3) If some aircraft have not pushed and
exactly H aircraft are in TW, allow the next
aircraft to push at time max{Ti, next To}

4) If TW is not empty, remove the earliest
aircraft from TW.  Among the set of aircraft
currently taxiing out, this aircraft will be
first to reach the runway queue and take
off.  Its takeoff time can be computed using
the standard FIFO queueing dynamics
discussed previously.

While complex at first glance, these modified
simulation dynamics allow both the max-congestion
and max-delay constraints to be imposed on the
basic simulation dynamics without losing the
simple single-pass computational strategy.  A
profile of the Matlab execution of this algorithm
indicates that almost 90% of the computational time
is spent modifying the priority queue data structure;
recoding this data structure into compiled C code
which is called from Matlab substantially reduces
the execution time to <1s.

The modified simulation dynamics have
several desirable characteristics.  Aircraft still push
back in their original order to preserve fairness
among competing airlines.  No aircraft is held
beyond a given threshold of delay6, and thus it is

                                                       
6 Note that only a trivial modification is required to make the
max-delay threshold H specific to each aircraft, thus allowing
much greater planning flexibility.
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easy to ensure that on-time departure performance
is not unduly impacted.  Different control levels can
be rapidly evaluated to determine the expected
performance in terms of congestion and delay, thus
allowing airline operation centers and air traffic
controllers to make realistic tactical decisions.

The main drawback to the modified simulation
dynamics is that gate utilization is not properly
accounted for.  It is easy to track the aggregate gate
utilization by tracking the cumulative count of
pushbacks and gate-arrival events as they occur,
and preliminary studies at EWR and ATL indicate
that windowing congestion control does not
typically require additional gates beyond those
which each airline already uses [16].  However,
gates are obviously not interchangeable.  To
determine whether windowing congestion control
will delay a pushback until a later gate-arrival is
impacted, detailed operations data including
planned and feasible alternate gate assignments for
each flight is required.
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