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Common gastropods such as snails crawl on a solid substrate by propagating muscular waves of
shear stress on a viscoelastic mucus. Producing the mucus accounts for the largest component in the
gastropod’s energy budget, more than twenty times the amount of mechanical work used in crawling.
Using a simple mechanical model, we show that the shear-thinnning properties of the mucus favor
a decrease in the amount of mucus necessary for crawling, thereby decreasing the overall energetic
cost of locomotion.

I. INTRODUCTION

Common gastropods crawl on land by propagating
waves of shear stress, driven by alternating regions of
muscular contraction and expansion, on top of a thin
film of viscoelastic mucus released from their foot [1–4].
The only interactions between the organism and the sub-
strate are through this thin mucus layer, hence locomo-
tion is made possible solely via the fluid dynamics within
this thin film. The nonlinear rheological properties of
the mucus are responsible for the remarkable ability of
these mollusks to walk on solid ground without detach-
ing the foot from the substrate [5, 6]. Mucus production
accounts for about a third of the total energy budget of
the animal, and is an order of magnitude larger than the
mechanical work required for locomotion, making slug
crawling the most energetically expensive mode of loco-
motion known among vertebrates and invertebrates [7–
10]. In this paper, we address the relationship between
the cost of locomotion and the mechanical properties of
the mucus.

Locomotion strategies employed by gastropods have
been of interest to the scientific community for more than
a hundred years, starting with the works of Simroth [11],
Vlès [12] and Parker [13]; the reader is referred to Refs.
[1–4, 14–16] for reviews. Gastropods possess a single flex-
ible foot enhanced with arrays of cilia. In many cases, the
motion of the cilia is responsible for movement of the mu-
cus underneath the gastropod and the resulting motion
of the animal. However, many gastropods, including all
snails that crawl on hard substrates, use a second mech-
anism to crawl, namely the actuation of muscular pedal
waves. Using a series of foot muscles, gastropods are able
to stress the thin layer of mucus (which is typically on the
order of tens of microns thick) with alternating regions

∗Email: lauga@mit.edu

of muscular contraction and expansion. These regions
oscillate in time, leading to traveling waves that shear
the mucus, resulting in translation of the animal with
crawling velocities typically between 1 mm/s and 1 cm/s.
The muscular waves are said to be direct if they prop-
agate in the same direction as the direction of locomo-
tion, and retrograde otherwise. Direct waves are waves
of contraction, retrograde waves are waves of extension.
Similarly, waves are classified as monotaxic when a sin-
gle wave spans the foot of the animal and ditaxic if if
two alternating waves span the foot. In the three large
classes of gastropods, pulmonates are (mostly) terrestrial
crawlers and use direct monotaxic waves. Prosobranchs
represent the largest class of gastropods and are the most
varied in structure; most of them are marine gastropods
using ditaxic retrograde waves. Finally, opisthobranchs
do not crawl, but burrow or swim [17].

Lissman was the first to study in detail the kinemat-
ics and dynamics of gastropod motion [18, 19]. He an-
alyzed the locomotion of three pulmonates, Helix aspera
(monotaxic direct), Haliotis tuberculata and Pomatias el-

egans (both ditaxic direct). Jones and Trueman [20, 21]
were the first to study retrograde wave locomotion, on
Patella vulgata (ditaxic retrograte). However, it was
not until 1980 with the work of Denny and co-authors
that a complete mechanical picture for gastropod loco-
motion emerged. The key feature of gastropod locomo-
tion lies in the mechanical properties of the mucus layer.
This was first discovered for the Pumonate slug Arioli-

max columbianus [5, 6], but is generally valid for all gas-
tropods [22, 23] (see also [24–27]). The mucus is com-
posed of more than 95% water, some dissolved salts, and
the remaining 3-4% is a high molecular weight glycopro-
tein (mucin) which, in solution, forms a cross-linked gel
network. This network is responsible for the elastic com-
ponent of the mucus. At small shear strains, the mucus
behaves like an elastic solid, but at large shear strains (on
the order of 5), the mucus yields and behaves like a vis-
cous liquid, with the shear viscosity dropping by about
three orders of magnitude to a value of approximately
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twenty times that of water. After yielding, the mucus
locally heals back into a gel network on a time scale of
less than 0.1 s [35]. Underneath a crawling snail, shear
strains vary in time between 0, in the so-called “inter-
wave” regions in which the foot does not move relative
to the ground, and approximately 50 in the regions of
largest relative displacement. It is this combination of
yield-stress properties with judicious periodic shearing
of the mucus that allows parts of the foot to adhere to
the ground while other portions are displaced, leading to
an overall translation of the organism.

The use of a viscoelastic mucus for locomotion has a
second interesting consequence. Measurements of the net
increase in oxygen consumption due to locomotion for
Ariolimax columbianus showed that adhesive crawling is
the most expensive mode of locomotion known [7], twelve
times as costly as running for example. Perhaps surpris-
ingly, the largest component of this energy budget does
not arise from the mechanical work of the muscles, but
is due to the chemical cost of mucus production (that is,
the chemical cost of creating the glycoprotein based on
its sequence of amino-acids). For Ariolimax columbianus,
mucus production is about twenty times more costly than
the mechanical work of locomotion [7]. Since Denny’s
seminal work, the cost of locomotion has been analyzed
for other gastropods, including Patella vulgata [8], Buc-
cimum undatum [9] and Haliotis kamtschatkana [28] and
similar results have been obtained (see also [10]) .

In this paper, using a simple model for the nonlinear
rheology of the mucus, we show that its shear-thinning
properties allow the gastropod to decrease the aforemen-
tioned energetic cost of locomotion by minimizing the
amount of fluid dispensed. The paper is organized as
follows. We introduce our model for the nonlinear rheo-
logical properties of the mucus in §II, set up the geometry
and notation for the particular mathematical problem to
be solved in §II A and present its asymptotic solution in
§II B. We apply it to the typical stress distribution un-
derneath a crawling slug in §III and show that choosing
the mucus to be shear-thinning allows to decrease the
amount of required fluid.

II. MODEL

Adhesive locomotion, the crawling strategy employed
by gastropods, has therefore two distinctive features: (1)
The nonlinear rheology of the mucus, solid-like at low
stresses and liquid-like for larger stresses, and (2) the
high cost of locomotion due to the internal chemical pro-
duction of the proteins which compose the mucus. In
this paper, we address the possible link between these
two features. Generically, a gastropod should be able
to crawl on any kind of non-Newtonian mucus, whether
it is shear-thinning (as a dilute polymer solution), shear-
thickening (as cornstarch in water), or any other rheology
characterized by a nonlinear relationship between stress
and shear rates.

FIG. 1: Schematic representation of the model used to rep-
resent a slightly non-Newtonian mucus in this paper. The
straight line represent a Newtonian mucus; when the stress-
shear rate curve is above the Newtonian one (ǫ > 0) the mucus
is shear-thickening, and when it is below (ǫ < 0) the mucus is
shear-thinning.

The mucus of real snails possesses a yield stress, as
demonstrated by the experimental work of Denny [5, 6],
and is therefore abruptly shear-thinning with shear vis-
cosities dropping by more than three orders of magnitude
around the yield point [? ]. Here we address the question:
Could it be that this particular rheology has been tuned
to allow locomotion at the lowest energetic cost to the an-
imal? To understand the evolutionary process that could
lead to such a mucus, consider an organism mechanically
similar to a snail that secretes a simple lubricating fluid
(e.g. water). This mucus becomes more complex as its
chemical composition evolves. Hence, as its rheology is
perturbed away from Newtonian, it is necessary to eluci-
date which changes to the rheology are beneficial to the
organism. This is the problem we propose to address,
perhaps shedding some light on the importance of mate-
rial properties in an evolutionary context.

Guided by this evolutionary picture, we make the fol-
lowing modeling assumption: Let us consider the mu-
cus of this primitive snail-like organism as slightly non-
Newtonian, as illustrated in Fig. 1, with a quadratic re-
lationship between shear rate, γ̇ (= ∂u/∂y), and shear
stress, σ, given by

γ̇ =
σ

µ

(

1 − ǫ
|σ|

σ∗

)

· (1)

As a first approach to the problem, we model therefore
the mucus as purely viscous (generalized Newtonian) and
neglect its elastic properties. Our empirical quadratic
model (Eq. 1), a Cross model of order one, is equiva-
lent to a Taylor expansion at small stress of the inverse
of the shear viscosity, η (= σ/γ̇), as a function of the
absolute value of the shear stress, and is arguably the
simplest model that captures the effects of the nonlinear
rheology [36]. Here σ∗ > 0 is a typical shear stress, µ
the viscosity in the limit of small stress and ǫ a small
parameter, |ǫ| ≪ 1, whose absolute value quantifies the
departure from Newtonian behavior and whose sign de-
termines the rheological properties (ǫ < 0 corresponds to
shear-thinning and ǫ > 0 to shear-thickening) and will be
chosen to minimize the cost of locomotion.

As we have seen before, this cost is related to the cost
of producing the mucus which differs from the traditional
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FIG. 2: Notation for the model snail. Details are given in
§II A.

measure of energy expenditure associated with mechan-
ical work. In real gastropods, the mucus is dispensed
from membrane-bound vesicles at various location along
foot [29]. Let us denote by e the cost of fabricating the
mucus per unit mass, ρ the mucus density and Qs the
flow rate of the mucus flowing underneath the snail and
measured in a frame moving with the snail. Then the
cost of locomotion, W , over a time interval ∆t, is given
by

W = eρ∆tQs, (2)

and minimizing this cost is therefore equivalent to mini-
mizing the required amount of mucus (per time), Qs.

In the reminder of this paper, we solve the equation of
motion for the crawling snail perturbatively in ǫ and find
which material properties minimize the flow rate of the
mucus, thereby minimizing the overall cost of locomotion.

A. Equations of Motion

Consider a snail that crawls in the x-direction on top
of a thin liquid film of mucus of constant thickness h (see
Fig. 2). At y = h, the gastropod exerts on the mucus, in
a frame moving with the snail, a known traveling wave of
shear stress, σxy(x, h, t) = σ̄(x− ct), where c is the wave
velocity as dictated by the muscular contractions. At
y = 0, the mucus adheres to the substrate and satisfies
a no-slip boundary condition. We denote the unknown
instantaneous crawling speed of the center of mass of the
gastropod by Vsex, where ex is the unit vector in the x-
direction. In the reference frame moving with the shear
wave, the mechanical problem is time-independent. In
this frame, equilibrium for the incompressible mucus at
low Reynolds numbers can be written as

∇p = ∇ · σ, ∇ · u = 0 (3)

where p denotes the pressure field, u the velocity field and
σ the deviatoric stress tensor, subject to the boundary
conditions

σxy(x, h) = σ̄(x) and u(x, 0) = −c − Vs, (4)

where u denotes the velocity field. The equations above
are to be solved subject to three constraints: (1) The
organism is force-free; (2) by periodicity, there is no net
build-up of pressure over one wavelength of muscular ac-
tion within the mucus layer; (3) in the frame moving at

speed Vsex, the instantaneous velocity of the center of
mass of the gastropod is zero (by definition of Vs) i.e.

∫ λ

0

σ̄(x) dx = 0,

∫ λ

0

∂p

∂x
(x, y) dx = 0, (5)

and

∫ λ

0

[u(x, h) + c] dx = 0

where λ is the wavelength of the periodic muscular shear-
ing of the mucus. We further simplify the problem by
noting that h ≪ λ, and therefore we can apply a lubri-
cation approximation. Consequently, the only relevant
shear stress is σxy, which we denote as σ for simplicity,
and the only relevant velocity component is u = u · ex.
The equations for steady state crawling then become

∂p

∂x
=

∂σ

∂y
,

∂p

∂y
= 0. (6)

Using the stress boundary condition, these equations can
be integrated once to obtain

σ(x, y) =
dp

dx
(y − h) + σ̄(x)· (7)

The shear stress in the mucus, given by Eq. (7), is there-
fore a linear function of y. We will denote the coordinate
where the shear stress changes sign by y∗(x), that is

σ(x, y) =
dp

dx
(y − y∗). (8)

Note that above y∗, the stress has the same sign as σ̄,
and below the opposite sign. As will be seen below, the
leading-order term for y∗ is constant and equal to h/3, so
that the stress does indeed change sign within the mucus.
Finally, the first two constraints given in Eq. (5) lead to

∫ λ

0

dp

dx
y∗dx = 0. (9)

B. Asymptotic Solution

It is now possible to solve for the dynamics of the crawl-
ing motion. From Eq. (1) and (8), the equilibrium equa-
tions to be solved become

∂u

∂y
=

1

µ

dp

dx
(y−y∗)+ǫ

sgn (y∗ − y)

µσ∗

(

dp

dx

)2
|σ̄(x)|

σ̄(x)
(y−y∗)2.

(10)
Using the boundary condition u(x, 0) = −c−Vs, and the
fact that the velocity profile must be continuous at y∗,
Eq. (10) can be integrated to give

u(x, y) =
g

2µ
y(y − 2y∗) + ǫ

g2S

3µσ∗
[(y − y∗)3 + y∗3]

− c − Vs, y ≤ y∗ (11a)

u(x, y) =
g

2µ
y(y − 2y∗) − ǫ

g2S

3µσ∗
[(y − y∗)3 − y∗3]

− c − Vs, y ≥ y∗ (11b)
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where we have defined dp
dx

≡ g(x) and |σ̄(x)|
σ̄(x) ≡ S(x) in

order to simplify the notation. The mucus velocity at
y = h relative to the moving gastropod is therefore given
by

us(x) ≡ u(x, h)+c =
hg

2µ
(h−2y∗)−ǫ

g2S

3µσ∗
[(h−y∗)3−y∗3]−Vs,

(12)
and the flow rate in the frame moving with the gastropod
is given by

Qs =

∫ h

0

[u(x, y) + c] dy

=
gh2

2µ

(

h

3
− y∗

)

− Vsh

−
ǫg2S

12µσ∗
[y∗4 + (h − y∗)4 − 4y∗3h]. (13)

Finally the average rate of energy dissipated through vis-
cosity (which is approximately equal to the rate of me-
chanical work done by the gastropod to crawl) is given
by

E =

∫ λ

0

∫ h

0

σγ̇ dy dx. (14)

The solution can now be expanded in powers of ǫ and
solved order-by-order. For details see Appendix A. Re-
call that our goal is to find the influence of the sign of ǫ
on (1) the chemical work required to produce the mucus,
which is proportinal to Qs as defined in Eq. (13), and
(2) the mechanical rate work of crawling, as defined in
Eq. (14).

At lowest order, the flow is Newtonian. The constraints
are written at this order as
∫ λ

0

g0 dx = 0,

∫ λ

0

g0y0 dx = 0,

∫ λ

0

u0(x, h) dx = 0.

(15)
Averaging the zeroth order velocity field (Eq. A2a) over
one wavelength and applying the constraints leads to a
lowest order crawling velocity V0 = 0. Thus, as ex-
pected, the organism cannot propel itself on a Newtonian
fluid. Averaging the volume flux (Eq. A2d) over one wave
length, gives Q0 = 0, and therefore y0 = h/3. Using this
result in Eq. (8) we find the pressure gradient and the
energy associated with mechanical work are given by

g0(x) =
3σ̄(x)

2h
and E0 =

hλ

4µ
〈σ̄2〉 > 0, (16)

respectively, where we have denoted 〈f〉 ≡
1
λ

∫ λ

0
f(x)dx =

∫ 1

0
f(λu)du.

At order ǫ we have to enforce the constraints
∫ λ

0

g1dx = 0,

∫ λ

0

[g0y1 + g1y0]dx = 0, (17)

∫ λ

0

u1(x, h)dx = 0.

Averaging the velocity at this order (Eq. A2b) leads to a
non-zero first order velocity

V1 = −
7

36

h

µσ∗
〈σ̄|σ̄|〉. (18)

So in general, the organism can crawl at order ǫ. The
motion is retrograde if ǫ〈σ̄|σ̄|〉 > 0, and direct otherwise.
Averaging Q at order ǫ (Eq. A2e) then gives the first
order mucus flow rate

Q1 =
79

432

h2

µσ∗
〈σ̄|σ̄|〉. (19)

Note that V1Q1 < 0 as is expected. Substituting this
result back into the first order flux equation (Eq. A2e)
(recall Qs is a constant independent of x) and using both
the lowest order solution for y0 and Eq (18) leads to
g0y1 = 5(〈σ̄|σ̄|〉 − σ̄|σ̄|)/(216σ∗). Expanding Eq. (8) at
order ǫ gives g1 = 3g0y1/2h, leading to the first order
term in the pressure gradient

g1 =
5

144

1

hσ∗
(〈σ̄|σ̄|〉 − σ̄|σ̄|). (20)

Finally, we find the first order correction to the mechan-
ical energy

E1 = −
17

96

hλ

µσ∗
〈σ̄2|σ̄|〉 < 0. (21)

Consequently, for a known traveling wave of shear stress
applied by the gastropod on the mucus, the least amount
of mechanical work is done when ǫ > 0, that is when the
mucus is shear-thickening.

Since we find that Q0 = 0, we have to calculate the
second order correction to the flux in order to quantify
the influence of the sign of ǫ on the chemical cost of loco-
motion. At this order we have to enforce the constraints

∫ λ

0

g2dx = 0,

∫ λ

0

[g0y2 + g2y0 + g1y1]dx = 0, (22)

∫ λ

0

u2(x, h)dx = 0.

Again, averaging the velocity at order ǫ2 (Eq. A2c) we
find the second order correction to the crawling velocity

V2 =
5

486

h

µσ2
∗

[〈|σ̄|〉〈σ̄|σ̄|〉 − 〈σ̄3〉], (23)

and averaging Q at order ǫ2 (Eq. A2f) gives the second
order correction to the flux

Q2 =
185

46656

h2

µσ2
∗

[〈σ̄3〉 − 〈|σ̄|〉〈σ̄|σ̄|〉]. (24)
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III. RELEVANCE TO GASTROPOD

CRAWLING: IMPACT OF RHEOLOGY ON

LOCOMOTION COST

We are now equipped to address the main question
raised in this paper, as presented in §II namely, have the
material properties of pedal mucus been tuned to opti-
mized crawling efficiencies. In the frame moving with the
gastropod, the flow rate is given by Qs = ǫQ1 + ǫ2Q2,
with errors of order ǫ3. This flow rate is, as discussed
above, directly related to the cost of locomotion asso-
ciated with the chemical production of the mucus. A
change of sign for ǫ modifies the sign of the first order
term, but does not change the second order term, and
therefore the absolute value of the flow rate is minimized
for a particular choice of the sign of ǫ. Note that we con-
sider the absolute value of the flow rate to allow for both
direct and retrograde waves; i.e. the direction of motion
relative to the direction of the traveling wave is irrele-
vant. The absolute value of the flow rate normalized by
the first order term is given by

|Qs|

|ǫQ1|
= 1 +

∆Q

Q
, (25)

with

∆Q

Q
= ǫ

Q2

Q1
=

185ǫ

8532σ∗

(

〈σ̄3〉 − 〈|σ̄|〉〈σ̄|σ̄|〉

〈σ̄|σ̄|〉

)

, (26)

which we estimate below.
Let us consider the distribution of shear stress under-

neath a crawling gastropod, σ̄(x), and let us zoom in on
the details of one wavelength λ of the foot, as illustrated
on the left in Fig. 2. We know that the stress, which
averages to zero, will be negative in some region of the
shear wave and positive in the rest. We can safely as-
sume that it is a smooth function of space, and we write
for convenience

σ̄(x) = −σ−g(x), for x ∈ [0, αλ], (27a)

σ̄(x) = σ+f(x), for x ∈ [αλ, λ], (27b)

where f and g are positive functions with maximum value
1, α ∈ [0, 1] represents the fraction of the wavelength
which has negative stress, and σ− and σ+ are the maxi-
mum absolute values of the regions of negative and posi-
tive stresses respectively. As indicated in Fig. 2, we have
defined the wavelength such that σ̄(0) = σ̄(λ) = 0 and,
given Eq. (27), the stress is also equal to zero at x = αλ.
Physically, the stress curve in Fig. 2 can be thought of
as the profile of the muscular strains in the foot, and
therefore the area where the stress σ̄ goes from negative
to positive (around x = αλ) is a region of muscular ex-
tension and that where σ̄ goes from positive to negative
(around x = 0 and λ) is an area of muscular contraction.

The profile of shear stress exerted by the gastropod on
the mucus is a result of the action of its foot muscles.

The most detailed studies of foot muscles in real snails
are due to Jones and coauthors, for Patella vulgata [20]
and Agriolimax reticulatus [30]. They showed that the
distribution of muscle fibers in gastropod varies widely
between species, as confirmed by subsequent studies of
Neritina reclivata and Thais rustica [31], Helix aspersa

[32], and Melampus bidentatus [33]. However, they also
showed that (1) the distribution of muscles responsible
for the wave motion are front-back symmetric in each
of the the organisms considered (dorso-ventral muscles
for Patella vulgata leading to retrogade waves, and lon-
gitudinal, transverse and oblique muscles for Agriolimax

reticulatus and direct waves), and (2) that the same sets
of muscles were responsible for both extension and con-
traction of the foot. Based on these observations, we
will assume in the remainder of this paper that the ac-
tion of the muscles result in wave profiles in which the
regions of muscular extension and those of muscular con-
traction have similar profiles. In other words, up to scal-
ing factors in both the x and y directions, regions of
positive and negative stress as sketched in Fig. 2 will be
assumed to have similar shapes. We expect this assump-
tion - the simplest assumption that can be made about
the stress profile in Fig. 2 - although it is restricted to or-
ganisms with similar characteristics to Agriolimax retic-

ulatus and Patella vulgata, to remain true is other types
of gastropods.

The mathematical formulation of this assumption is
given by a relationship between f and g as

g(x) = f

(

α − 1

α
x + λ

)

· (28)

For simplicity we introduce a new positive function, w(u),
defined for u ∈ [0, 1] as w(u) = g[αλ(1 − u)] = f [λ(α +
(1 − α)u)]. Since the organism as a whole is force free,

∫ λ

0

σ̄(x) dx = λα

(

1 − α

α
σ+ − σ−

)

I1 = 0, (29)

where we denote

In ≡

∫ 1

0

wn(u) du > 0. (30)

Since In is strictly positive, we require

σ− =
1 − α

α
σ+· (31)

We can now proceed with the calculation of the various
averaged quantities along one wavelength of the foot. To
calculate the effect of the second order correction to the
flux from Eq. (26), we require expressions for 〈σ̄|σ̄|〉, 〈σ̄3〉
and 〈|σ̄|〉. Rewriting these quantities in terms of σ+, α
and In, we obtain
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〈σ̄|σ̄|〉 = −σ2
−

∫ αλ

0

g2(u) du + σ2
+

∫ λ

αλ

f2(u) du =
(2α − 1)(1 − α)

α
σ2

+I2, (32)

〈σ̄3〉 = −σ3
−

∫ αλ

0

g3(u) du + σ3
+

∫ λ

αλ

f3(u) du =
(2α − 1)(1 − α)

α2
σ3

+I3, (33)

〈|σ̄|〉 = σ−

∫ αλ

0

g(u) du + σ+

∫ λ

αλ

f(u) du = 2(1 − α)σ+I1. (34)

Thus the excess flow rate, as calculated form Eq. (26), is
given by

∆Q

Q
= ǫ

185

4266

(

σ+

σ∗

) (

α2 − α + β

α

)

I1 (35)

where we have defined β ≡ I3/2I1I2. Recall that we are
interested in the sign of this term to determine which

sign of ǫ is beneficial to the cost of locomotion. Hence
we need to determine the sign of α2 − α + β, as all of
the other terms on the right hand side of Eq. (35) are
strictly positive. It is straightforward to show that this
term is positive if 4β > 1 or equivalently, if 2I3 > I1I2.
This inequality can be demonstrated as follows:

2I3 − I1I2 =

∫ 1

0

w2(x)

[

2w(x) −

∫ 1

0

w(u)du

]

dx

=

∫

2w≤
∫

1

0
w

w2(x)

[

2w(x) −

∫ 1

0

w(u)du

]

dx +

∫

2w≥
∫

1

0
w

w2(x)

[

2w(x) −

∫ 1

0

w(u)du

]

dx

≥

(

1

2

∫ 1

0

w(u)du

)2
{

∫

2w≤
∫

1

0
w

[

2w(x) −

∫ 1

0

w(u)du

]

dx +

∫

2w≥
∫

1

0
w

[

2w(x) −

∫ 1

0

w(u)du

]

dx

}

≥
1

4

(
∫ 1

0

w(u)du

)3

> 0.

We have therefore shown that α2 − α + β > 0, which
implies that the sign of ∆Q/Q is the same as the sign
of ǫ, for all possible functions w. Given Eq. (25), this
means that the absolute value of the flow rate will be
minimized if we choose ǫ < 0, i.e. a shear-thinning fluid.
As chemical production represents the largest energy cost
associated with locomotion, this criteria trumps the me-
chanical work result given above, and a shear-thinning
fluid will decrease the overall cost of locomotion for the
gastropod.

IV. DISCUSSION

In this study, we have investigated the possible link be-
tween rheological properties of gastropod mucus and the
large cost of locomotion experienced by these animals. In
theory, any type of nonlinear relationship between shear

stress and shear rate should allow the animal to move,
hence there are a number of open questions regarding
the possible mechanisms and criteria used in selecting
particular types of mucus. The approach we take is to
use a generalized Newtonian model (Fig. 1 and Eq. 1)
to quantify how to best perturb the mucus away from a
Newtonian fluid. Using a series of assumptions which are
justified from an experimental standpoint, we have been
able to show that a mucus which is shear-thinning allows
the gastropod to crawl while using the least amount of
fluid. As the energetic cost of locomotion for these ani-
mals is largely dominated by that of mucus production,
a shear-thinning material allows locomotion at the least
expense. This is consistent with experimental observa-
tions as all studies which have quantified the rheology of
real gastropod mucus have found the fluid to be strongly
shear-thinning.

Real mucus is abruptly shear-thinning, so is tempting
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to suggest that our simple model can provide some ratio-
nale for the biological series of events that transformed a
simple lubricating fluid into an extremely nonlinear ma-
terial through the amplification of its beneficial nonlinear
characteristics. Certainly the lowered cost of locomotion
is an added benefit for the animal regardless of whether
or not the energetics played a significant role in the evo-
lutionary process. However, our calculations were made
under several simplifying assumptions, the most severe
of which is the focus on viscous features while ignoring
elastic stresses. Consequently, at best, we can conclude
that our calculations suggest an interesting relation be-
tween locomotion cost and the mechanical properties of
the fluid.

The second point of interest is that if, instead of using
what we know to be the real measure of locomotion cost
for snails – the chemical cost associated with mucus pro-
duction – we use a more traditional measure of locomo-
tion cost – the mechanical work of the crawling organism
– we find the opposite result. That is, we find that it
is beneficial to use a shear-thickening fluid to decrease
the amount of work necessary to move. This erreonous
conculsion emphasizes the importance of biologically rel-
evant measures when addressing optimization and tun-
ing of biological systems, and it suggests that the results
of our calculations have some biological relevance. Note
that it also implies that for synthetic crawlers, for which
mucus production is not an issue, shear-thickening fluids
are energetically advantageous [34].

Our third conclusion concerns the speed of the mus-
cular waves. We have found that crawling speeds and
flow rates are independent of the speed c of the muscu-
lar waves, which might at first appear counterintuitive
as it allows for locomotion when c = 0. However, we
have assumed implicitly in our calculations that the size
of the snail foot (and therefore its wavelength) remains
constant. Thus we have assumed that the muscular ex-
tensional strains in the foot remain small, as is observed
experimentally [6, 18, 19]. In the frame moving with
the snail, the typical stress σ̄ is sustained by the same
sets of muscles during a time t ∼ λ/c, and the typical
local velocity of the foot relative to the ground is such
that σ̄ ∼ µv/h so that v ∼ hσ̄/µ. The maximum lon-
gitudinal displacement of elements on the foot is there-
fore ℓ ∼ vt ∼ hσ̄λ/µc, and therefore the typical muscu-
lar strain is of order ℓ/λ ∼ hσ̄/µc. Requiring an upper
bound on muscular strains offers therefore a lower bound
for the wave speed, removing the specious c = 0 paradox.

Finally, we discuss the difference between direct and
retrograde wave crawling. As we have seen, the
crawling speed is given at leading order, by Vs =
−7ǫh〈σ̄|σ̄|〉/36µσ∗ and, in theory, both direct (Vs > 0)
and retrograde (Vs < 0) motion is possible. On the other
hand, if the foot of the snail lifts from the substrate as
the wave passes – even slightly, as in most snails – the
contribution of this lifting motion to locomotion always
results in a retrograde force due to peristaltic effects [34].
The consequence of this result is that, if the snail uses di-
rect crawling yet lifts its foot, the contribution due to the
non-Newtonian rheology of the mucus needs to be large
enough to overcome the retrograde contribution due to
foot lifting. More precisely, if the foot shape is written
as h(x) = h0[1 + δv(x)], where δ ≪ 1 is its amplitude
and v(x) its dimensionless profile, using the results in
Ref. [34], we find that the crawling velocity is given, at
leading order in both ǫ and δ, by

Vs = 6cδ2

[

∫

v2 −

(
∫

v

)2
]

−
7

36

ǫh

µσ∗
〈σ̄|σ̄〉, (36)

and direct wave motion (Vs > 0) is possible only if the
mucus is sufficiently non-Newtonian, namely

ǫ〈σ̄|σ̄|〉 < 0, |ǫ| >
216

7

cδ2µσ∗

h|〈σ̄|σ̄|〉|

[

∫

v2 −

(
∫

v

)2
]

·

(37)
In the case where direct motion is preferable from a mus-
cular standpoint, the result of Eq. (37) suggest an addi-
tional incentive for the mucus to depart from Newtonian.

APPENDIX A: ASYMPTOTIC RESULTS TO

ORDER ǫ
2

The solution to Eq. (10) is expanded in powers of ǫ as
follows:
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Grouping like orders of ǫ, we find
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u0(x) =
h

µ
g0

(

h

2
− y0

)

− V0, (A2a)

u1(x) =
h

µ

[

g1

(

h

2
− y0

)

− g0y1

]

+
g2
0S

3µσ∗

[

y3
0 + (y0 − h)3

]

− V1, (A2b)

u2(x) =
h

µ

[

g2

(

h

2
− y0

)

− g1y1 − g0y2

]

− V2 (A2c)

+
g0S

3µσ∗

[

2g1

[

y3
0 + (y0 − h)3

]

+ 3g0y1

[

y2
0 + (y0 − h)2

]]

,

Q0 =
h2

2µ
g0

(

h

3
− y0

)

− hV0, (A2d)

Q1 =
h2

2µ

[

g1

(

h

3
− y0

)

− g0y1

]

− hV1 −
g2
0S

12µσ∗

[

y4
0 + (h − y0)

4 − 4hy3
0

]

, (A2e)

Q2 =
h2

2µ

[

g2

(

h

3
− y0

)

− g1y1 − g0y2

]

− hV2, (A2f)

−
g0S

6µσ∗

[

g1

[

y4
0 + (h − y0)

4 − 4hy3
0

]

+ 2g0y1

[

y3
0 + (y0 − h)3 − 3hy2

0

]]

,

E0 =
1

3µ

∫ λ

0

g2
0 [y

3
0 + (h − y0)

3] dx, (A2g)

E1 =
1

3µ

∫ λ

0

[3y1g
2
0 [y

2
0 − (h − y0)

2] + 2g0g1[(h − y0)
3 + y3

0 ]] dx (A2h)

−
1

4µσ∗

∫ λ

0

g3
0S[y4

0 + (h − y0)
4] dx,

which can be solved order-by-order. As we have shown in
main body of the paper, it it not necessary to calculate E2

to determine the effect of the sign of ǫ on the mechanical
rate of work.

APPENDIX B: ANALYTIC EXPANSION

The model presented in the paper is quadratic in the
stress-strain rate relationship. We present here an alter-
nate model, where the relationship is cubic, the lowest-
order model where this rheological relationship is ana-
lytic, and is written as

γ̇ =
σ

µ

(

1 − ǫ
σ2

σ2
∗

)

· (B1)

We use the same notation as in the main part of the pa-
per. The constraints on the motion, as given by Eq. (5),
remain valid here. The leading order solution is the same
as in the main part of the paper, and we find

V0 = 0, (B2)

Q0 = 0, (B3)

E0 =
hλ

4µ
〈σ̄2〉, (B4)

g0 =
3σ̄

2h
. (B5)

At next order, we obtain crawling with

V1 = −
5

32

h

µσ2
∗

〈σ̄3〉, (B6)

Q1 =
23

160

h2

µσ2
∗

〈σ̄3〉, (B7)

E1 = −
11

80

λh

µσ2
∗

〈σ̄4〉, (B8)

g1 =
3

80

1

hσ2
∗

[

〈σ̄3〉 − σ̄3
]

. (B9)

The second order solution is then given by

V2 =
9

1280

h

µσ4
∗

[〈σ̄3〉〈σ̄2〉 − 〈σ̄5〉], (B10)

Q2 =
21

6400

h2

µσ4
∗

[〈σ̄5〉 − 〈σ̄3〉〈σ̄2〉], (B11)

and therefore we have

∆Q

Q
=

21ǫ

920σ2
∗

〈σ̄5〉 − 〈σ̄3〉〈σ̄2〉

〈σ̄3〉
· (B12)

Now, using the same arguments and notation as in §III,
we find
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〈σ̄2〉 = σ2
−

∫ αλ

0

g2(u) du + σ2
+

∫ λ

αλ

f2(u) du =
(1 − α)

α
σ2

+I2, (B13)

〈σ̄5〉 = −σ5
−

∫ αλ

0

g5(u) du + σ5
+

∫ λ

αλ

f5(u) du =
(2α2 − 2α + 1)(2α − 1)(1 − α)

α4
σ5

+I5, (B14)

and therefore

∆Q

Q
= ǫ

21

920

(

σ2
+

σ2
∗

)

I5

I3

(

2α2 − 2α + 1 + (α2 − α)ζ

α2

)

,

(B15)
where ζ = I2I3/I5. It is straightforward to show that the
quadratic numerator in Eq. (B15) is positive if and only
ζ < 2, that is, I2I3 < 2I5. This is always true and can
be shown in the same fashion as the demonstration that
I1I2 < 2I3 in §III.

In conclusion, we show that with this model as well,
the sign of ∆Q/Q is the same as the sign of ǫ, and there-
fore the mucus should be chosen to be shear-thinnning
(ǫ < 0) in order to minimize the amount of mucus pro-
duction, and therefore the overall cost of crawling. Note
again that since E1 < 0, this conclusion is opposite to the
one we would have obtained if mechanical work was our
measure of locomotion cost.
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