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Abstract

This thesis presents a body of initial work on a class of routing problems that
resemble classical vehicle routing problems (VRP’s), but differin a few key aspects.
A particular subset of this class arises in the regional-level operation of an LTL (Less
than TruckLoad) truck line using twin-trailer combinations. Other problems in the
class, covered in much less detail, may be useful in planning regional or overall
operations of shipping lines, railroads, barge companies, or air freight carriers.
Generally, the orientation of the problem model is towards freight carriers who
consolidate shipments into large quanta or containers. This practice is currently
widespread as it reduces handling costs.

The thesis describes a class of regional LTL twin-trailer truck problems, called the
“central 2-CFP”, contained in a broader class named k-CFP. It presents an aggre-
gate commodity flow formulation of the k-CFP, and analyzes the formulation’s LP
relaxation via Lagrangean duality. The next topicis a Lagrangean branch and
bound method for the central 2-CFP, including computational tests. The thesis
closes by suggesting improvements and alternatives to the tested method.

Thesis Supervisor: Yosef Sheffi

Title: Associate Professor of Civil Engineering
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Notation

Scalars are in italics.

Yectors and matrices are in boldface. A subscripted boldface letter (x,) indicates a
vector or matrix from an indexed collection. Elements of vectors and matrices are

- in subscripted italics (x;;).

Boldfaced relationships ( =, >, <, =, =) hold for each element of the vectors on
either side.

= means “defined to be” (= for vectors).
:= means "gets” or computational assignment (:= for vectors).

r1stands for integer round up. ristands for this operation applied to every
element of a vector.

L1 means integer round down.

Transpose is writtenasa ™. A "prime” mark (’) has no fixed significance.
(i,j) denotes the arc from node i to node j in a directed network.

<i,j> denotes the edge connecting nodes i and j a graph.

A long hyphen (=) is a minus sign. Short hyphens (-) are used to denote paths and
cycles in a network. For instance 0-6-3-0 does not mean the integer —9, but rather
the directed cycle composed of arcs (0, 6), (6, 3), and (3, 0).



1. Introduction

Over the past few years, regulatory changes have allowed twin-trailer trucks to be
used much more widely on United States highways. In such “combinations”, a
single tractor may haul two 28-foot trailers ("doubles” or "pups”), instead of one
45- or 48-foot trailer (a “van” or "semi”). A tractor may also travel alone
(“bobtail”) or pull just one short trailer. Doubles have proved extremely popular
with less-than-truckload (LTL) motor carriers. We begin by reviewing how an LTL
carrier operates, and describing how doubles can fit into this scheme.

1.1 Background

Typically, an LTL truck line has a three-tiered shipping network, which operates as
follows:

(i) Shipments are picked up from individual customers and taken a
short distance to a local “end-of-line” or "city” terminal.

(ii) Theshipments are then consolidated and transferred to a regional
or "breakbulk” terminal up to a few hundred miles away. The word
breakbulk is used because the contents of trailers are "broken
down” (sorted) at such facilities.

(iii) Each shipment then travels over a network of "main line” routes
(generally interconnecting breakbulk terminals) until it reaches the
breakbulk terminal nearest its destination.

(iv) Inthe reverse of step (ii), each shipment travels to an end-of-line
(EOL) terminal near its final destination.

(v) Reversing step (i), shipments are delivered to their final destinations.

Generally, twin-trailer combinations are inappropriate for local pickup and
delivery; therefore doubles have had little impact on the local layer of the
operation. On the other hand, doubles have a very positive and well-known effect
on "main line"” activities (see [SP]): they decrease the amount of manual freight
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handling needed to maintain a given level of service, and they provide extra
carrying capacity per driver on heavily-used routes.

Doubles can also be used, however, to reduce costs in the intermediate or "group”
tier of the operation, between the end-of-line and breakbulk terminals. The means
of achieving such savings are poorly understood due to their complex combinator-
ial nature. This problem provided the inspiration for the research presented here.

The remainder of this chapter, describes a simple version of the regional twin-
trailer routing prcblem, and then defines a large collection of related combinator-
ial problems which we shall call the k-CFP. We then examine the complexity of this
class, both from an NP-hardness and an intuitive point of view. The chapter closes
with a short review of the relevant literature, and we then proceed to the issue of

problem solution.

1.2 Problem Statement

We now concentrate on the operation of a single breakbulk terminal by an LTL
carrier using 28-foot trailers exclusively. We will not consider the main line side of
the operation, but only the task of transferring freight to and from the nearby end-
of-line terminals. Typically, there will be twenty to fifty such satellite terminals, but
in some cases there may be more. Let these terminals be numbered 1,...,n.

Suppose that on a given day the truck line riust deliver some whole number d; of
trailers from the breakbulk terminal (henceforth also known as “the break”) to
end-of-line terminal i (i = 1,...,n). Conversely, it must pick an integer number p; of
trailers from each EOL terminal i and transport them to the break. The total trailer
pool at each terminal, including the break, must remain the same at the end of the
day: the total number of trailers at each facility cannot change. This requires that
empty trailers be removed from any terminals where deliveries exceed pickups
(di>pi), and must be supplied to any terminals where pickups exceed deliveries
(di<pi). Such daily balancing is typicai of operations in which freight movements
do not show a pronounced, predictable weekly pattern. In situations where there
is such a pattern, carriers may find it advantageous to balance weekly, allowing
limited trailer pool fluctuations from day to day. We have not attempted to mode!
this more complicated situation.

Trailer movements are accomplished by tractors that can haul up to two trailers ata
time. These tractors drive from terminal to terminal, and at each terminal they
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may stop and drop off one or two trailers, and may also pick up one or two. We
assume that the distances between terminals obey the triangle inequality (for
instance, we could use the shortest-path distances or times over a road network).
The tractor pool must also be balanced daily; one cannot let tractors accumulate at
some terminal nor constantly remove them from another.

The objective is to "cover” all the desired trailer movements with the minimum
number of overall tractor miles. We also, assume, for the purposes of most of this
thesis, that the distances are small enough and the supply of tractors large enough
that we can execute the minimum-mileage solution in one day.

In a real situation, there might be a large number of additional considerations,
including restrictions on the kinds of movements tractors may make, or on the time
they can take to do so. There might also be time windows on certain pickups and
deliveries. Other complications may arise from driver schedules, availability of the
"dollies” that are used to connect the two trailers in a combination, or from other
factors. We will defer looking at these extra constraints for the moment, and
concentrate or the “core” of the problem.

1.3 The CFP and its Classifications

We will call the minimization problem defined above, unencumbered by additional
constraints, the "central 2-CFP”, where “2-CFP" stands for the two Containerized
Freight Problem. Non-central 2-CFP problems differ from central ones in that there
is no distinguished breakbulk or central node, and the required freight movements
are given by an origin-destination table. In such problems, any terminal can
generate any integral number of trailer-loads of freight for any other; the only
restriction is that shipments for different destinations cannot be mixed on asingle

trailer.

In general, the "k-CFP" problem, central or non-central, will denote the same
situation as above, where each tractor ( or locomotive, vessel, aircraft) may
transport up to k trailers ( or boxcars, containers, barges, paiiets) at a time.

The reader should be warned that the non-central 2-CFP may not be an appropriate
model for either the overall or main line operation of an LTL carrier. The reason is
that there is no provision for additional sorts ("break bulk operations”) while
shipments are enroute. However, in other applications, namely those in which
shippers purchase capacity in container units (e.g. boxcars) the non-central k-CFP
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may be useful. Naturally, there is nothing sacred about tractors and trailers -- the
model is equally applicable to any kinds of vehicles and containers. However, we
will continue to use the trucking terminology in order to keep the discussion
concrete. The central 2-CFP is the primary focus of this thesis.

The CFP group of problems is similar "classical” vehicle routing (VRP) problems, but
differs in some key raspects. The differences may be summarized as follows:

Pickups and Deliveries: Unlike the basic VRP, loads must be both picked up
and delivered, and empty capacity must be accordingly repositioned.

Split Loads: There is no restriction that a single vehicle deliver or pick up
the entire demand at a given node; in fact, demand may exceed the
capacity of one vehicle.

Vehicle Capacity: Atany given moment a vehicle (tractor) can transport
containers (trailers) for at most k different destinations. For small & (such
as k=2) this greatly limits the kinds of tours in the optimal solution.

Essentially, the perspective taken in CFP problems is that of the freight carrier: to
control handling costs, freight is generally manipulated in relatively large contain-
ers (trailers or boxcars), and there is no reason (other than simplicity) that all
containers with the same origin and destination need take exactly the same route.
To the CFP, a containeris "full” if it contains any freight; quanta smaller than one
container are not modeled. Finally, all points are potential origins and desti-
nations, and repositioning of empty capacity is an essential, integral part of the
model.

By contrast, basic vehicle routing problem models tend to take a perspective limited
to either step (i) or (v) above, or of a "vertically-integrated” shipper or distributor
which operates its own vehicles. The modeling is generally on a smaller scale,
capturing the movements of individual shipments which are usually indivisible and
much smaller than vehicle capacities.

1.4 A First Look at Complexity

How hard a problem is the k-CFP? Even if we consider only central problems, the
k-CFP takes on more and more of the character of a traveling salesman problem as
k becomes large. This property can be exploited as follows:
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1.4.1. Proposition. If kis considered to be part of the input, the central k-CFP
problem is NP-hard.

Proof: Consider any instance of the traveling salesman problem with distances
obeying the triangle inequality. We demonstrate a polynomial transformati->n to
the k-CFP. If the TSP instance has m nodes, set the number of EOLs, n, equal to
m—1. Thensetk=n, and p;=d; =1 for all i. Use the same distances in the CFP as in
the TSP instance. Because asingle “tractor” now has the capability to servize all the
terminals, it may then be easily seen that the optimal CFP solution is essentially a
minimum cost traveling salesman tour of all the nodes. In cases where the triangle
inequality is met with equality for some triplets of nodes, it is possible that the
optimal CFP solution may break down into more than one tour einanating from the
break. But because the triangle inequality is satisfied, any such "kinks” may be
straightened out without increasing total cost. QED.

1.4.2. Corollary. The non-central k-CFP problem is NP-hard. Thisis because the
central problem is just a special case of the non-central one.

For fixed k, which is a case of greater practical interest, the complexity of the k-CFP
is an open question. We suspect that some special cases of the central 2-CFP may be
reduced to nonbipartite matching problems. We will also show shortly that the
general 1-CFP can be reduced to a “classical” (Hitchcock) transportation problem.
Thus, it seems at least possible that the general central 2-CFP may be computation-
ally tractable.

1.5 Examples of the Central 2-CFP

To give some feel for the central 2-CFP, we present two particular instances.

Our first example has only two end-of-line terminals, and is meant to give a feeling
for how twin-trailer trucks can expand the options available to a breakbulk
planner. Suppose we have two EOLs, each of which requires the delivery and
pickup of one trailer-load of freight (p1 =d1 =pa=d2=1). If tractors could haul
only one trailer at a time, the problem would essentially have only one reasonable
solution. One would dispatch one tractor-trailer combination from the break to
each EOL. There, each would deliver a trailer of "outbound” freight for the EOL,
and pick up one trailer of inbound cargo bound for the break. This may be
graphically depicted as follows:
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H For€EOL1 ‘
EOL 1

For Break

Breakbulk - oLz

EOL2

For Break

Figure 1a: First example; one trailer per truck

if a truck can haul two trailers, though, there is a lower-mileage solution. One
simply dispatches a single tractor, hauling a trailer of freight for one EOL and one
for the other. At the first EOL, it exchanges one of these trailers for a trailer loaded
with inbound shipments for the break, and it then proczeds to the second EOL.
There, it exchanges the second outbound trailer for an inbound one, and continues

to the break. Visually, we have

,;I EOL 1

For EOL 2 For Break

FOr€0L2 W ForEOL 1

Breakbulk

ForBreak M For Break v
EOL2

Figure 1b: First example; two traiiers per truck

By the triangle inequality, there are fewer tractor miles in the second solution than
in the first.

Naturally, this first example was chosen to be easy to understand. In our research,
we have found that problems with as few as four EOLs are sometimes too difficult
to solve by simple inspection. We now present one such example, created by means

of a random number generator:
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=3
d1=5

p3=8
P4=3 d3=5

dy=2

Figure 2a: More complex examp.lé problem

O

One of the possible minimum tractor-mileage solutions is shown below. Each
trailer is represented by a box labeled with the destination of its contents, where
“B” stands for the break. Two adjacent boxes represent a twin-trailer combination,
and empty trailers are unlabeled.

1 |x2
Break

2012 |x4
3 <2 BB
‘118l B

Figure 2b: Complex example solution
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The combinatorics of the problem can clearly get quite involved, even for an
instance with so few nodes.

1.6 Literature Review

This is certainly not the first time such problems have been studied. In 1978, Assad
[AS] proposed modeling the operations of a freight railroad almost exactly as we
have described the non-central k-CFP, where k was approximately 50. The principle
difference was a more elaborate cost structure.

However, this is, as far as we know, the first investigation to define a CFP-like class
or to concentrate on central problems with small k. Because we are taking what
appears to be a somewhat fresh point of view, there is not a great deal of directly
relevant literature. The most pertinent literature is that dealing with the larger
issues of posing and solving vehicle routing problems. The voluminous survey of
Bodin et. al. [BOD] provides a comprehensive introduction to the practice of vehicle
routing. Because the k-CFP admits an arbitrary mixture of pickups and deliveries, it
could be considered as a variant of the static muiti-vehicle dial-a-ride problem.
However, we have not yet discovered a way to exploit this connection.

While the Bodin survey is concerned in large part with heuristics and practical!
approaches to vehicle routing, Magnanti’s survey [MAG] focuses on the theoretical
issues of trying to construct mathematical programming algorithms for basic VRPs.
He describes four types of formulations upon which methods can be based:
aggregate commodity fiow, disaggregaie commodity flow, vehicle flow, and set
cevering. These categories proved very useful in thinking about how to formulate

the k-CFP.

The principie solution technique discussed in this thesis is the now common combin-
ation of Lagrangean relaxation, subgradient step, and branch and bound. The two
tutorial papers by Fisher [FISH1] and [FISH2] constitute a lucid introduction to this
integer programming technique and its relatives. The approach has been used
successfully on some vehicle routing problems, most notably as described in [BELL]
and [FISH3]. These successes provided some hope that the Lagrangeran method
might wovk for the rather different class of problems studied here. Our effort
differs in many ways, not the least of which is the use of nonnegative integer
variables, as opposed to zero-one variables.
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1.7 Organization

The rest of this thesis addresses the issue of solving the k-CFP and, in particular, the
central 2-CFP. We will begin by presenting an aggregate commedity flow formu-
lation for the k-CFP, in both central and non-central cases, and then analyze it by
means of Lagrangean duality. We then discuss the construction of a Lagrangean
branch and bound method for the central 2-CFP, adjoining some easily-enforced
constraints that significantly tighten the relaxation. We then present and discuss
the rather mixed computational results obtained with this method, and speculate
on possible improvements. We close by suggesting some promising heuristic
approachss to the central 2-CFP, and by making some general observations abcut
Lagrangean branch and bound methcds.
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2. Aggregate Flow Formulation

So far, we have intentionally not introduced an explicit mathematical program-
ming formulation of the k-CFP. Aswith the VRP class of problems, many different
formulations are possible, and we did not wish to unduly prejudice the reader. It is
well known that the choice of formulation, in particular the "tightness” of its LP
relaxation, can greatly influence the performance of certain common integer
programming solution approaches, namely Benders' and Lagrangean decom-
position methods (see {MAG]).

We will now introduce one possible formulation of the central k-CFP, one which is
highly aggregated and resembles the aggregate commodity flow formulation of
the VRP discussed in [GG].

2.1 Formuilation for Central Problems

Let us consider central problems first. Define a system of n+1 terminals, the
breakbulk being terminal number 0, and the n end of line terminals being 1,...,n,
with pickup and delivery demands p; and d;. Define

m m
, . (M
do'_‘_zdi p0=—zpi '
i=1 1=1
and
=[p,..,p "
p=[py...p, 2)
d=[d,.. ,dan

Further, let

A be the node-arcincidence matrix of the complete network
connecting the n+1 terminals.

c be the vector of corresponding distances or costs c;j incurred by
driving a tractor between nodes i and ;.

We now define four different flow vectors t, x, y, and e over the network given by
A. These vectors are all conformal to c:

t is the vector of scalars ¢;j, each giving the number of tractors
traveling on the arc from terminal i to terminal j.
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X is the vector of scalars xj, each giving the number of “outbound”
trailers on each arc (i, j). An outbound trailer is one loaded with
freight to be delivered at some EOL. Naturally, they all originate at
the break.

y is, similarly, the vector of "inbound” flows yj;. An inbound traileris
one loaded with freight destined for the breakbuik terminal, and
originating at some EOL.

e is the vector of flows e;j of empty trailers.

To have a stationary pool of tractors at each terminal we must have
At=0 . (3)
To make the required deliveries at the EOLs, we need
Ax = -d . (4)
Considering x to be a network flow, this equation means that we have a demand of
d; at each end of line terminal i, and a supply of —d,=2Xd;, thatis, all the out-
bound trailers, at the break. Similarly, we need
Ay=p (5)
to ensure that all the inbound loads are picked up and delivered to the breakbulk
terminal. Finally, note that for all i, including i =0, the number of empty trailers
that must be removed from terminal i is p; - d;. If this quantity is negative, it
indicates that Ip; - d; | empty trailers must be supplied, rather than removed. Thus,
stationary trailer inventories require
Ae = p-d . (6)
There is one thing missing from the formulation: a connection between the
"motive power"” network of tractor flows and the networks of trailer movements.
These "binding” or "linking"” constraints simply express that a tractor can haul at
most k trailers:
ko2 x ty te, V6D (7)
which may also be written
kt — x - y—e 20 . (8)

The complete aggregate flow formulation of the central k-CFP may thus be
expressed as follows
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Minimize c't

Such That At = 0
Ax

Ay

I
|
® o

(9)
Ae =

kt —x —~y —e 2 (/]
t, X, y, e 2 0

)
=%
|
-]

t, x, y, e integer .

Note that even though there are n+1 possible freight destinations in the problem,
its central nature allows loaded trailers to be represented by only two commaodities,
x and y. This device will not work in the non-central case. There, one must label all
trailers either by their origins or destinations, and there will be at least as many
commodities as there are terminals. We will return to the non-central case shortly.
For now, we comment on certain features of the formulation as it stands.

Suppose that the optimum solution of the integer program could be found by some
direct procedure, such as an "off-the-shelf” IP code. The resulting optimum value
of t would be a flow vector and not an explicit set of driver instructions. To extract
such instructions, one must subsequently decompose t into tours for the tractors to
follow, typically all beginning and ending at the same terminal. One must then
assign trailers to each leg of all such tours. Such an extraction is clearly possibie: as t
is a balanced flow with no exogenous sources or sinks, it can be decomposed into
tours by a process very similar to finding an Euler tour of an even-degree graph. In
areal situation, there may well be meaningful restrictions, in terms of time, dis-
tance, or number of stops, on the kinds of driver/tractor tours allowable. We call
such additional requirements side constraints.

One is faced, then, with two “post-processing” problems: first, to determine if the
given optimal value of t can be decomposed into feasible tours (in terms of the side
constraints), and second, to perform such a decomposition. The aggregate nature
of the formulation may make it difficult to express side constraints mathematically
and incorporate them into the model -- if such considerations are paramount, then
adifferent type of formulation may be required.
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2.2 The Lagrangean Dual

The integer program constructed above has a familiar and important structure: it
consists of a number of separate network problems linked together by some
supplementary non-network constraints. A very common technique for dealing
with problems with such recognizable embedded structure is forming the
Lagrangean dual, whereby multipliers are attached to some constraints, and they
are moved to the objective function. in this case, we choose to dualize the linking
constraints, yielding, for each nonnegative u¢R(®+ 1" (there are (n +1)n linking
constraints), the Lagrangean relaxation

L(u) = Min ¢t — ultet — x — y —e)

S.T. At = 0
Ax = -d (10)
Ay = p
Ae = d-p
t, X, y, e =2 0
t, X, y, e integer.

If zis the optimum objective value for the original problem, a simple analysis (see,
for example, [SHAP], p. 145) gives that L(u) is a lower bound on z for all u=0.
Furthermore, by rearranging the cost row, the optimization needed to com; ute
L(u) can be seen to consist of four independent network problems. Since network
problems automatically have integer optima if their right-hand sides are integer,
we cari drop the explicit integrality constraints and write

L) = Min (c—&w)"t + u™x + uTy + uTe
S.T. At = 0
& = (11)
Ay = p
Ae =d-p
t, X, v, e = 0.

Now, L(u) is an easy quantity to compute, as it consists of four decoupled networks.
It is also a lower bound on the original problem objective. Naturally, one would
like to compute the best lower bound
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D= Maxuzo L(uw) (12)

This maximization problem is the Lagrangean Dual. At this point, consider the LP
relaxation of the original formulation, (9). The strong duality theory of linear
programming can now be employed to show that D =z;p, where z.p is the optimum
of the LP relaxation. In summary, the Lagrangean relaxation cannot be any tighter
than the LP relaxation, and is exactly as tight for the correct choice of u.

2.3 Solving the LP Relaxation

In the case of the k-CFP, it is actually possible to pick a priori the values of the multi-
pliers u that yield the largest possible value of L(u). The appropriate choice is

u‘é(-l-)c (13)
2 e

To see how this choice yields the maximum L(u), consider the problem of
computing the t*, x*, y*, e* that are minimal in L(u*). To compute x* ,we must
solve

Min (1/k)cTx
ST. Ax = —-d

x = 0.

(14)

The costs { (1/k)c;;j} in this problem obey the triangle inequality because the {c;;}
do. Recalling that the "outbound” trailers represented by x all originate at the
break and go to the EOLs, we conclude that every such trailer may take a direct
path from the break to its final destination. Similarly, we can conciude that all the
“inbound” y;j trailers can proceed directly from their originating EOLs to the break.
This gives us x* and y*. The empty trailers require a little more work, since supply
and demand for them is spread out all over the network. However, they can still
take direct paths from their origins to their destinations. This means that e* may be
computed via a simple transportation simplex procedure in which the sources are
those terminals with an excess of empties, and the sinks are those with a deficit.

Finally, what is the form of t*? Note that the costs on the t network are

c—ku*=c-k(/k)c =0, (15)

so any feasible t will be optimal. However, select the particular value
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s ;l;(x‘+y*+e*)ao (16)

We first remark that

1 1 (17)
At* = ;(Ax*+Ay‘+Ae*) = (-d+p+d-pN=0.
So, t* is feasible and hence optimal. What is more, (t*, x*, y*, e*) and u* jointly
satisfy the global optimality conditions (see [SHAP], pp. 142-144) which guarantee
that (t*, x*, y*, e*) are optimal for the LP relaxation, and u* optimal in the Lagran-
gean dual. In our formulation, the conditions reduce to

(i) (t*, x*, y*, e*) minimal in L(u*)
(i) u*(kt*-x*-y*-e*) =0
(iii)  (t*, x*, y* e*)globa!lvfeasible, in particular kt*-x*-y*-e*=0 .

Condition (i) is fulfilled by construction, and (ii) and (iii) are true because we have
chosen t* such that

(18)

kt*—x*—y*—e*=0 .

Therefore, (t*, x*, y*, e*) and u* are optimal in the LP relaxation. If t* happened
to be integer, then these same conditions would guarantee optimality for the
integer program as well; if t* is not integer, then t* is not feasible for the IP, and
the global optimality condition break down. However, if k=1, then t* must be
integer. This means that the central 1-CFP can be essentially solved by the trans-
portation simplex procedure needed to compute e*. We conclude that the
unrestricted central 1-CFP is a very easy problem.

If k>1, then t* will, in general, not be integer. Simple rounding up will not work
because one may lose the property At=0 and/or the complementary slackness
conditions (ii). However, the LP relaxation is very easy to solve. Furthermore, the
only variables that need be non-integer in the LP optimum are the ¢;;. At this point,
one might consider using a branch and bound method to find the integer opti-
mum. However, such a method could not take advantage of a construction like
(16). The reason is that there is no explicit way of forcing t* to obey branching
constraints of the form ¢jjsm or t;j=m+1 (where m is integer).
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Note that if the network represented by A is not complete, our results still essen-
tially apply: simply substitute “shortest path” for each occurrence of "direct arc” in
the above development. In this case, computing e* involves a transhipment prob-
lem rather that a transportation problem.

2.4 The Non-Central Case

The preceding development was done in the context of the central k-CFP.
However, it still carries through in the non-central case. There, we have a system of
n terminals (orsimply "nodes”) numbered 1,...,n, with no distinguished central
-.node. We define a network N of directed arcs (i, j) connecting these terminals. Let

A -be the node-arc incidence matrix of N.

c be a conformal vector of distances or costs c;j obeying the triangle
inequality.

B be an nxn matrix of elements bij, giving the number of trailer-loads
of freight originating at node i for delivery at node j.

We define, forj=1,...,n,

bi==2 b, (19)

i®j
that s, bj; is minus the total number of trailers to be delivered at node .

The decision variables are similar to those in the central case, except that loaded
trailers are distinguished by their destinations, rather than merely categorized as
"inbound” or "outbound”. We define, all conformally to ¢,

t to be the vector of tractor flows ¢;; on each arc (i, ).

Xq tobethe vector of flows xg;; of trailers loaded with freight for final
destination g on arc(i,j). Here, g=1,...,n.

e to be, again, the flow of empties.

The formulation for the non-central probiem is then
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Min 't
S.T. At = 0
qu = bq q=1,...,n
Ae = -Bl1
" 20)
kt - z X - e =2 0 (
q=1
t, xq, e =2 0 g=1,..,n
t, X, e integer ¢g=1,...,n,

where bgis column g of B, and 1 is the vector of ail ones in R* (hence B1 is the sum
of the columns of B).

From here, the analysis can proceed virtually unchanged. By setting u* =c/k, one
can construct an optimal LP solution in which loaded trailers proceed to their
destinations via shortest-path routes, and empties are redistributed by solving a
simple transportation or transhipment problem. Again, the difficulty isthatif k>1,
the constructed tractor flows may not by integral.

By appropriate renumbering of terminals, any central k-CFP problem instance can
be recast as a special case of the non-central k-CFP. The non-central formulation
would then be a kind of "disaggregation” of the central one, in which outbound
trailers are labeled according to their destinations, even though this is not strictly
necessary. The construction above demonstrates that these two formulations yield
LP relaxations with identical objective values. Thus, passing from the aggregate
formulation (9) to the more disaggregated form (20) does not strengthen the LP
relaxation for this particular problem and formulation approach. For a variety of
recently studied integer programming problems, decreased model aggregation has
resulted in tighter LP relaxations and, consequently, better convergence of solution
methods (see [MAG] or [MW]). However, we have just seen that the particular type
of disaggregation entailed by moving from formulation (9) to (20) is not helpful for
the central k-CFP.

2.5 Physical Interpretation and Comments

Setting the multipliers u to ¢/k has a useful physical interpretation. In the
computation of L(u), it gives each arc (i, j) an imputed tractor costs of 0 and an
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imputed trailer cost of c;j/k. Essentially, one can think of this as allowing fractions
of tractors and permanently attaching one kth of a tractor to each trailer. The
constraint kt—x —y —e=0 (or similarly for the non-central case) is then automat-
ically satisfied with zero slack, and trailers circulate in a shortest-path manner,
subject to a lowest-cost repositioning of empties. This highlights a rather bother-
some feature of our formulation: the linking constraints kt —x —y —e=0 do not

" really have any effect without the additional restriction of integrality.
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3. Constructing a Lagrangean Branch and Bound
Method

We now describe a further exploitation of the Lagrangean relaxation of the
aggregate flow formulation, this time to construct a branch and bound method for
the central 2-CFP. Most of the development in this chapter is applicable to both the
central and non-central k-CFP, but the incumbent generation strategies covered in
the next chapter are not.

3.1 Background

Lagrangean branch and bound methods resemble conventional branch and bound
methods for integer programs, except that they use lower bounds arising from a
Lagrangean relaxation rather than from a pure LP relaxation. In cases such as ours,
where the Lagrangean bound cannot be tighter than the LP relaxation, the main
advantage to this approach is that the Lagrangean bound may be much easier to
compute. The price paid for this advantage is that some time has to be spent
adjusting the multipliers u in order to obtain adequate bounds. Lagrangean
branch and bound (LBB) methods usually also include specialized heuristics to
generate good incumbent solutions, but it should be noted that there is no reasen
why such routines could not be incorporated into LP-based methods. Figure 3
depicts the general form of LBB methods. For more information, readers should
consult the well-known papers [FiSH1] or [FISH2].

All the steps in the flowchart in figure 3 are to varying degrees problem-dependent
and arbitrary. Depending on exactly how each step is done (and on the particular
problem instance input data) a method so constructed may converge quickly or
slowly, or may never converge at all.

3.2 Strengthening the Relaxation: Node Activities

As we have seen, the lower bound given by L(u) is at best as strong as that provided
by the LP relaxation of our formulation. We now explore a method for strength-
ening the relaxation.

Recall the original formulation,
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Pick a Subproblem |4

T

Pick u

!

4

Compute L(u)

Above,
at, or near
incumbent?

Pick new u

Generate feasible
solution from
L(u) solution

&~

l

Yes (“fathom”)

Replace incumbent
if newly generated
feasible solution
is better

Separate
Subproblem

No

]!

L(u) optimal
for subproblem or

&H

slow progress?

Yes

Figure 3: General Lagrangean Branch-and-Bound
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Minimize ¢t
Such That At = 0
Ax = -d
Ay = | 21)
Ae = d-p
kt —x -y —e = 0
t, x, y, e =2 0
t, x, y, e integer .

Note that if d; trailers must be delivered at EOL terminal ¢, at least I'd; /k1 tractor
trips must visit that terminal ("I 1" denotes the ceiling or upwards integer
raunding function). Similarly, at least [ —dg /k1 tractor trips must be dispatched
from the break in order to ship out the required number —dg of outbound trailers.
A analogous argument applies to pickups, and so we can conclude that at least

v, = Max {rlpiI/kT, fldillk'l} (22)

tractors must pass through terminal i, for i =0,...,n. One way of expressing this
restriction is

Z ti=v, i=0..n. (23)

Such “node activity” constraints are redundant and may be added to the basic
aggregate flow formulation without altering it. However, when the linking
constraints are dualized, they are no longer redundant: they alter the tractor part
of the computation of L(u) considerably. Instead of having

Min (c —ku)Tt
S.T. At
t

(24)

]
(=]

v
=

with the restriction that t be integer left implicit, we have
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Min (c~ku)Tt
S.T. At = 0
Z. t‘.,. = i=0,...,n (26)
j®i
t = 0
t integer

Actually, a simple transformation of the ne*work topology allows one to enforce
these the extra constraints while staying within a network framework and thus
preserving the automatic integrality of the solution (see [GM]). Take each node i

Total inflow (=total outlow) = v;

Figure 4a: Before node splitting

and split it into two with a single intervening link of minimum flow v; and cost 0:

Minimum flow v;

Figure 4b: After node splitting

As the v; are integral, the optimum solution in the altered tractor network remains
integral. '

The additional constraints (23) are cutting planes that disallow the previous LP
optimum

-u’. -
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_x*+y*+e* (27)
k

t*

as constructed in the previous section, unless it is all integer (and hence optimal).
The LP relaxation of the formulation is thus greatly strengthened, in general, by the
addition of these superficially redundant constraints. At this pointin our research,
however, we do not completely understand how the altered LP relaxation behaves.

In practice, we have found that addition of these node activity constraints improves
the median run times of the Lagrangean branch and bound method by roughly a
factor of 5.

3.3 implementation Details

We now describe in detail how each step in our Lagrangean branch and bound
method is performed. Below, the word subproblem denotes a point on the enum-
eration tree: thatis, the original integer program, together with some added
separation constraints. An active subproblem is one which has not been further
separated, and is thus an endpoint of the tree.

At this point s is helpful to keep in mind another picture of how the LBB method
works. At any given time, each subproblem p has some best lower bound p, on its
LP-relaxed objective value. This lower bound is the highest value of L(u) found for
the subproblem, or any of its ancestors, for all the u’s tried so far. The lowest value
the global integer optimum could possibly have is

p = Min {Bpl p anactive subproblem}. (28)
The goal of the method is to squeeze this worst lower bound 8 and the upper
bound zix¢ (the objective value for the incumbent) together until they are near
enough to conclude that z;yc is optimal or acceptably close to optimality.

3.3.1 Comnuting L(u)

Given a fixed u and subproblem p, L(u) breaks down into four separate network
optimizations. Therefore, we compute L(u) by using primal network simplex four
times. When doing the t part of this problem, the network is modified to enforce
the node activity constraints discussed above. It should be noted that separation
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constraints -- in our case, upper and lower bounds on arc fiows -- can be added
without disturbing network structure.

3.3.2 Fathoming

A subproblem is "fathomed” -- removed from further consideration -- if a lower

- bound for its objective value provided by an L(u) computation is above, equal to, or
sufficiently close to the upper bound on the global optimum that is provided by the
incumbent.

Suppose the elements of the cost vector ¢ have some common divisor A (for exam-
ple, A=1if cisinteger). For any feasible solution, tis integer, and its cost c™t is
divisible by A. Hence, we may strengthen any lcwer bound L(u) by rounding it up
to the next multiple of A, that s, taking ATL(u)A1. Equivalently, one can easily see
that if

Zine— Lw) <4, (29)

where zinc is the objective value of the incumbent, necessarily divisible by A, that

the optimal objective value z, for the subproblem must be greater than or equal to
zinc, and one cannot possibly improve upon the incumbent by pursuing this branch
of the enumeration tree. Therefore, we fathom the subproblem if condition (29) is

met.

We may also wish to fathom when the subproblem being considered offers at best
a small gain over the incumbent, say by some small percentage P. Such a strategy
does not guarantee that the final solution will be optimal, but only that it is within
P percent of being so. The appropriate fathoming condition is

L(u) P
Ar—z—'l p- (l—m)leC . (30)

By using this criterion and increasing the value of the user-specified parameter P,
one can prune the enumeration tree more quickly, trading accuracy for speed of
solution.

3.3.3 Generating Candidate Incumbents

A critical part of any LBB method is the heuristic that takes L(u)-based solutions and
creates feasibie integer solutions from them. This is the only way an incumbent
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solution, and hence the algorithm’s eventual final output, can be generated. Itis
naturally very desirable to come up with a good solution near the beginning of the
run, thus increasing the chance that branches of the enumeration tree may be
pruned close to the root, and mitigating the exponential growth of the number of
subproblems.

In the k-CFP, one fairly obvious strategy presents itself. Given the (t, x, y, e) optimal
in L(u), we can imagine replacing t with the minimum-cost integer tractor flow
vector tz required to support the trailer flows x, y, and 2. On each link (i, j), this
flow must be at least (x;; + yij +e;)/k, but also integer, hence at least
M(xij+yij+eij)/k1. However, we must also have ba/ariced flow, hence t; should be
the optimal solution to the problem

Min ¢t
S.T. At = 0 (31)

1
t = l';(x+y+e)'| ,

where “r1" denotes the integer round-up oneration applied to each element of 2
vector. Then (tz, x, y, e) will be a feasibie solution to the k-CFP. The optimization
{(31) is a network circulation problem, and may be solved by network simplex.

This round-up heuristic has, at least, the appealing quality that if the integer
optimum x, y, and e are fed to it as input data, an integer optimum value of tz will
result. Aswe shall see, however, such inputs are not likely in practice, and we will
need a smarter incumbent generation procedure in order to have much hope of
creating a practical method. The next chapter is devoted to the incumbent
generation issue.

3.3.4 Detecting Slow Improvement

If, for a given subproblem, L(u) shows little or no increase over several trial values
of u, one assumes that the LP lower bound for the subproblem is too weak, and the
subproblem must be split, that is, further separation constraints must be added.

The method decides that this slow improvement condition exists if at iteration
m>K we have
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L) -2z
—INC s, (32)
Ly -z

where ug is the first multiplier vector used for the subproblem, and K and § are
adjustable parameters. In other words, we must have tried at least K iterations and
achieved an average improvement of no more that a fraction § of the way to the
incumbent value per step.

The reason that a minimum of K iterations must be performed before separation is
that one cannot rely upon L(u) being increased at every step, even if it is far from
its maximum value for the subproblem at hand. Without the m> K restriction, a
single "bad” step at the outset of subproblem analysis -- not an uncommon
occurrence -- would cause an immediate, unnecessary separation. Every such
mishap would double the work the method must do to fathom a particular branch
of the enumeration tree. Separations are thus costly, and should be avoided unless
they are absolutely necessary.

On small test problems, we have had the best practical success with K=3 and
§=0.02.

3.3.5 Updating the Multipliers

If slow improvement is not detected, the algorithm alters u in an effort to increase
L(u). So far, we have found no procedure that is guaranteed to increase L(u), so
we have settled on the familiar subgradient method. The customary analysis gives
that a valid subgradient is

g=x+y+te—kt, (33)
and so we compute the new value of the multipliers via
u::= u+sg, (34)
where the step s is given by
z2,~—L(u)
= g INC : (35)
hgl

This is the basic subgradient method, where we have taken the "target” value of
L(u) to be zinc . Thisis the highest possible target value one might choose, butitis
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justified because, using the methods of the next chapter, high quality incumbents
can be generated.

In practice, we have found thata=1.0 ora=1.1 seem to to give the best results.
Note that if, as the result of a subgradient step, we have for some (i, j),

u>4 (36)
Vo ok

then the imputed cost cjj— ku;j of (i, j) in the Lagrangean tractor network will be
negative. We have found that this entails a high risk of creating a negative cycle in
the imputed tractor costs. If such a cycle exists, then L(u)= -, and it is a useless
lower bound on the subproblem LP optimum. Ideally, one would want to restrict u
to the dual feasible region

U = {uz90I|c—ku hasnonegativecycles} . (37)
This region is a polytope, but it has an exponentially growing number of
constraints. We have found it easier to make the approximate restriction
0susc/k , (38)

which assures, more strongly, that ¢ — ku has no negative cost arcs. After each
subgradient step, the resulting new value of u is projected onto this subset of the
feasible region. Because this region is box-shaped, the projection computation is
trivial: it is simply
C..

= Max{O,Min{uij, f }povapy . (39)
We have found that strategies other than projection for enforcing that 0su=c/k,
such as truncating the step, do not allow L(u) to grow as quickly.

3.3.6 Choosing the First Value of u

When the algorithm is first started, there is only one subproblem: the original, full
integer program without any separation constraints. The question is: what value
of u should initially be used for this problem?

In the absence of node activity constraints, the obvious choice is the known optimal
value, ¢/k. When node activities are enforced, c/k is often not the best choice
because it ensures that the “tractor contribution” (¢ — ku)"t to the value of L(u) is
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zero, and the initial value of L(u) will simply be the same value,

1
Py cTix*+y* +e%) (40)
asitis when u is chosen optimally without node activity constraints.
To shed some more light on this matter, redefine t* to be the optimum of
Min ¢t
ST. At =0
_ (41)
z t..2v i=0,.,n
s i i
J®i
t =0 ,
and x*, y*, and e* to be the respective optima in the LP relaxation of the
formulation (2), namely
Min ;t-ch
ST Ax = -d (42)
x =2 0
Min i-cTy
ST. Ay =p (43)
y 20
Min ll:cTe
ST. Ae =d-p (44)
e =2 ¢

Scaling all the cost vectors by some positive constant will not change the optimality
of any of t*, x*, y*, and e*, and will appropriately scale the corresponding
objective values. Recalling that in this initial, unseparated problem, we have
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L) = Min (c—ku)Tt + u'x + uTy + uTe
S.T. At = 0
Ax = ~d
Ay = p
Ae =d-p (45)
Dt > v i=0,..,n
b Y i
j®i
t’ x' y; e 2 0 ’
we can conclude that if we set u=(A/k)c, where A¢(0,1), we will get
A A A
L) = (e =Ae)Ttr+ —cTx* + —cTy* + =cTe*
k A" (46)

A
(1=NeTt* + ;cT(x‘+y‘+e‘)

Letting A»0 or A»1, we can conclude that a valid lower bound on z;p, the integer
program global optimum, is

Max {cTt‘, icT(x* +y*+e®)} . (47)
If cTt* > (c/k)(x* + y* + e*), it seems better to choose A near zero, hence u near0,
rather than A near 1 and u near ¢/k. Computational experiments have shown that
the value of A strongly effects solution time, but we do not currently see a clear
pattern in the results. Our best average times for the central 2-CFP have been with
u initially set to c/4, thatis, A\=4% and u at the exact center of the box {u | 0<su=c/2}
approximating the dual feasible region.

Also, one should note that the above analysis, in particular equation (46), does not
work when u is not proportional to ¢. Thus, the above observations only apply in
the very beginning of the method, before the starting multiplier vector u=(A/k)c,
which is proportional to ¢, is altered by a subgradient step.

For newly-separated subproblems, the first value tried for u is the one that yielded
the highest L(u) in the immediate parent subproblem.
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3.3.7 Separation

If slow improvement is detected, the current problem is splitin two. Our model has

unbounded nonnegative integer variables, as opposed to 0-1 variables, so we

cannot eliminate variables from consideration. We can only split the problem in

_ two and require that some primal decision variable v be less than or equal to some
integer m in one child, and greater than or equal to m+1 in the other.

In practice, we have so far found that it seems most efficient to split on the tractor
variables t;j, rather than the trailer variables x;;, yij, or e;j. However, this experience
was gained from experiments preceding our introduction of node activity
constraints, and so is somewhat suspect.

One way of understanding this result, at least in the absence of node activity or
separation constraints on t, is that we know that the optimum, x, y, and e values
are always integer. Hence, imposing a restriction that some element of one of
these vectors be at most m or at least m + 1 will not “cut away” the LP optimum
from consideration. This argument suggests that well-chosen splits on the t;;, will
be much stronger that splits on the x;j, y;j, and e;;. Certainly, trailer splits alone,
without node activity forcing or tractor splits, would be totally ineffectual.

Itis less clear what strategy is best in the presence of node activity constraints. We
have had good experience with the following simple heuristic: split on the ¢; for
the longest arc (i, j) for which the number of trailers in the current L(u) solution is
odd. We thus add the constraint

t;Sm (48)

to one child subproblem, and
tii 2m+1i (49)

to the other. The value of m is chosen to be Lx;j+yij+e;jjl, unless t;; has been
otherwise constrained (the "L-1” denotes the floor or integer round-down

function).

The separation scheme used for our actual computer runs was a little more comp-
licated than that described above. We used a “scoring” method for choosing the
spiitting arc. Essentially, each arc with odd trailer flow was assigned a “score”
based on its length, whether it emanated from or terminated in the break, and
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whether it had been separated on before. The algorithm then split on the arc with
the highest score. After much adjustment of parameters, this method provided
about a ten percent run time improvement over the simpler “longest odd arc”
strategy. In view of these rather modest gains, we will not burden the reader with
further details.

For the "lower” (t;j=m) child, where we have at most m tractors allowed on some
arc (i, j), we can deduce with certainty that there can be at most km trailers of each
kind on (i, j). We can therefore add the following redundant constraints:

x‘.j skm
Y, skm (50)
e‘.j skm

These simple upper bounds strengthen the Lagrangean relaxation, and can be
enforced without breaking network structure.

3.3.8 Subproblem Selection

After the algorithm has fathomed or separated a subproblem, it is faced with the
decision of which subproblem to try next (unless there are none left unfathomed,
in which case it terminates). We have found that the best strategy is to first process
one of the problems with the lowest B,. Not surprisingly, this yields the fastest
convergence between the overall lower bound f and the incumbent value z;xc.

We also have a feature that allows the method to switch to high-p, subproblems in
the event that there are so many active subproblems that the program is close to
exhausting its virtual memory allocation. The intent is that these subproblems may
be fathomed relatively quickly, freeing up memory for the more important ones.
This feature aliows the algorithm to handle larger problems with a given amount
of memory, albeit with some speed penalty for larger instances. If we had been
working on a much larger computer, or if memory resources had been very cheap,
we would perhaps not have needed this high-f, feature.

3.3.9 Basis Preservation

In our computer implementation, we used a number of tricks to improve run times.
These tricks involve using information from earlier network simplex bases to speed
up calls to the network simplex code.
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When L(u) is computed, four network simplex optimizations must be performed.
At each subgradient iteration, we use the previous four optimal bases for the
subproblem as the four starting bases in the recomputation of L(u). The hopa is
that the optimal bases for two consecutive values of u should resemble one
another, and so fewer pivots will be needed than if we were to construct all initial
bases “from scratch”.

Actually, we go further than the above trick: when we first compute L{u) for a
subproblem, we essentially start with the four bases that were optimal in the last
iteration of its parent. The difficulty responsible for the "essentially” is that the
added separation constraint may make one or more of the old optimal bases
infeasible for the child. There is, however, a "fix": suppose, for example, we have
added a constraint ¢;;=m, and that the parent problem currently has tij=r>m,
rendering the parent basis infeasible in the offspring. Now, all our network
representations contain a “super transhipment” node connected to all other nodes
by “artificial” arcs of very high ("big M") cost. To maintain feasibility in the child,
we perturb the flows as follows:

O—=—0
t -

l Apply tijsm<r
. Flow m @
l

..............................

: Artificial arcs:
- ‘Flow r—m,
“Super” £ \ : Cost "big M".
hode By 00 LRl

Figure 5: Basis modification for a violated upper bound

By also setting the maximum flow capacity of the two artificial arcs to r—m, we can
avoid having to add them to the basis (although either of them could already be in
the basis in a degenerate manner), and the original spanning tree of the parent
basis remains valid in subproblem’s perturbed network. Of course, when the
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network simplex routine is called, the artificial arcs will immediately have flow
removed from them, because they have such high costs.

Analogous techniques can be used for the addition of constraints of the form
tijzm+1, and also for the x, y, and e bases.

We could have retained old basis information without perturbations by using a
dual method to reoptimize the offspring of a subproblem, as in reqular branch and
bound methods for integer programming, but this would have required the imple-
mentation of both primal and dual network simplex algorithms.

The drawback to using basis-preservation tricks is that basis information must be
stored for all active subproblems, increasing program memory requirements. In
retrospect, it might have been wiser to make this feature optional, allowing more
active subproblems to exist simultaneous'y. Though there would be a slight
additional overhead of a few extra pivots per subproblem evaluation, one could
use memory more efficiently and thereby stave off the switch to the high-p, mode
of subproblem selection. This mightin turn result in faster overall convergence.

However, there are other possible ways to save memory. In a more sophisticated
programming environment, one could envision dynamically trading off basis
storage space for additional subproblems as memory becomes tight. Also, one
could make some use of old basis information without any storage penalty by
switching to a depth-first tree exploration strategy: one could use the parent basis
for one of the children of a subproblem without having to allocate any more
memory, as long as that one child is analyzed immediately after separation.
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4. Incumbent Generation

This chapter is devoted to the most complicated part of the Lagrangean branch and
bound algorithm, the incumbent generator. This is a heuristic that must take
solutions to the computation of L(u) and alter them so that they are globally
feasible, and hence possible candidate to replace the current incumbent. We first
explain the deficiencies of the simple round-up heuristic proposed in the previous
chapter, and then outline two more intelligent strategies.

4.1 Why Round-Up is not Enough

Earlier, we mentioned that a simple round-up incumbent generation strategy is
inadequate. To demonstrate this, consider the simple example problem

e Em R S @R D G D G S WA G IR GG GRSl W e Ll i N ]

p1=3
di=3

p2=3
dy=3

————————————————————— -— e ww o e el

Figure 6a: Round up fails -- problem data

[Fm——————————-

One of the two optimal solutions is

Figure 6b: Round up fails -- integer optimum

In the other optimum, the roles of EOLs 1 and 2 are interchanged.
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Suppose our algorithm separates only on the ¢;; (tractor) variables. Then, as we
compute L(u), all trailers will still always be free to take the shortest path to their
final destinations. Forinstance, all cutbound traffic for terminal 2 could take the
route

Figure 6¢: Round up fails -- one possible routing from break to 2 in L(u)

or, with a different u,

Figure 6d: Round up fails -- another possible routing from break to 2 in L(u)

However, in the IP optimum we have routings in which two different paths are
used, such as

Figure 6e: Round up fails -- a routing that cannot occur in L(u)
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The simple round-up heuristic descrioed in the previous chapter never changes any
trailer routes, so it can never discover the optimum.

In order to detect the optimum, we must do one (or both) of two things: separate
on trailer variables, or create an incumbent finder that intelligently alters trailer
routes. The former strategy puts most of the burden of finding a solution on the
‘enumeration component of the algorithm -- a very dangerous course. We have
therefore concentrated on the second option.

- The techniques we will now discuss have been developed solely for the central
2-CFP, and take advantage of that problem’s special structure. Some of them may
possibly be generalized, with difficulty, to more complicated CFP problems.

4.2 A Simple Local improvement Scheme

The incumbent generation heuristic should take the current L(u) solution as input.
Its output should be sensitive to that input, for otherwise the subgradient compo-
nent of the method will be doing only half the work thatis should. That is, it will
be helping to supply lower bounds so that subproblems may be fathomed, but it
will leave the detection of the actual optimum to the combined efforts of the
separation and incumbent-finding rules. Ideally, the multiplier updating scheme
should, so to speak, be "pointing the incumbent finder in the right direction”, and
thus contributing not only to raising the lower bound on the objective, but also to
the lowering of the upper (incumbent) bound.

Consequently, we first developed a simple local improvement heuristic that takes
the basic form of the L(u) solution, and makes some local modifications to it. Qur
idea was to make slight perturbations to the trailer routings, so that the minimum
integer tractor movements needed to “cover” them would be reduced. The t part
of the L(u) solution isignored. We stuck to very simple perturbations, because we
wished to produce a heuristic that would run quickly. In the combined x,y, and e
solution to L(u), the method detects all patterns of the following form, where solid
arrows represent arcs with an odd total number of trailers:
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Figure 7: Patterns recognized by the simple local improvement heuristic

The following local improvements are applied, respectively, to each of the three
patterns above (dotted lines represent arcs whose trailer flows have been increased
from odd to even vaiues, and boxes represent particular trailers):

(i) /

greak Ts ) T | T3

Figure 8a: Local improvement for pattern (i)
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(ii)

I,

Brea Ty ) T1 || T
X

Figure 8b: Local improvement for pattern (ii)

i) T /*f) 7
Break Eo— TZ. T3

b

Figure 8¢c: Local improvement for pattern (iii)

The heuristic ranks these modifications by their total savings, that is, cgp in the first
case, cq0 in the second, and

Coat %0t %08 50— Coa T S0 St = Cao o =S = 0 (51)

in the third. It then applies these improvements in a greedy manner, highest
savings first, unti! no more can be implemented. Note that because some of the
detected patterns might overlap, performing one might preclude applying some
others. We have not yet experimented with more sophisticated schemes for
deciding which combinations to apply. After these modifications are made, the
flow-based round up procedure (31) is performed to compute the t part of the
candidate incumbent, this time using the modified trailer flows as input. The
candidate so constructed replaces the current incumbent if it has lower total cost.
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4.3 Slacks and Bobtailing

The simple local improvement scheme just described has some weaknesses.
Consider the problem

p2=2
. do=1

&3
i
[ L=

Flgure 9a: Case not respondmg to local nmprovement heuristic

Its LP solution {in the absence of node activity constraints) looks like this:

el

Break §- 1 |l 1

Figure 9b: LP solution to figure 9a

None of the simple patterns (i)-(iii) defined above are present in this solution.
However, the two elements
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"

Break E 1

Figure 9¢: Local improvement pattern "hidden” in figure 9b

and

3

Figure 9¢: Second local improvement pattern "hidden” in figure 9b

which both fit pattern (i), are present, but they have been collapsed together so
that the number of trailers on arc (0, 1) is even, not odd, and therefore both pat-
terns would go unrecognized in the simple local improvement scheme outlined
above. There is still something unusual about node 1, however: if we were just to
put enough tractors on each link to handle the flow present, without worrying
about balance, we wouid have one tractor entering node 1, and two leaving it. To
get a balanced tractor movement vector t, we will have to bring another tractor
into node 1.

This example introduces another idea: why not compute the minimum tractor
covering first and then look for patterns in the slack, or excess trailer capacity,
along each arc? That s, after computing the minimum integer t needed to support
the trailer movements x, y, and e, compute the slack (recall that we now assume
k=2)

(52)

§=2t—-x-y—e .

Then, sjjis the room available for extra trailer movements on arc (i, j). We can then
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look for local improvement patterns resembling (i)-(iii) above in this vector of
slacks.

For instance, we might now expect that the minimum cost integer tractor flow t
needed to support the LP relaxation trailer flows for the current example might
look like:

Figure 10a: "Intuitive” tractor flows needed to cover trailer flows in figure 9b

The reader may confirm that this would imply a slack vector of

Figure 10b: Slacks corresponding to figures 9b and 10a
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One could now detect, among other things, that we have the slack patterns

Figure 10c: Pattern detectable in figure 10b

and

Figure 10d: Second pattern detectable in figure 10b

added together. One could then realize that because we have excess capacity on
the paths 0-1-2 and 0-1-3, we can eliminate the direct 0-2 and 0-3 tractor trips by
sending the corresponding deliveries via node 1. This yields the solution
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Figure 11: Optimum integer solution to problem 9a data

which is the IP optimum.

However, there is a slight problem. The actual minimum cost tractor flow to cover
the LP trailer movements is in fact the following:

Figure 12a: Actual minimum cost tractor flows to cover figure 9b trailers

That is, the cheapest way to bring the required extra tractor into node 1is not to
send it from the break, but to "bobtail” it -- run it with no trailers -- from node 2.
(Actually, if the system is as symmetric as it appears, the minimum tractor round-up
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is not unique: we can also bobtail from node 3 instead of node 2.) The correspon-
ding slack vector is ’

Figure 12b: Actual slacks for figures 9b and 12a

which does not display such simple local improvement patterns of the figure 10b
slack vector that we would have preferred.

A solution to this difficulty is to perform the tractor round up additionally
specifying that tractors can only be added to arcs that already have some trailers.
That s, given x, y, and e from the solution of L(u), let ts be the solution of

Min 't

S.T. At = 0
(53)

1
t =2 l‘;(x+y+e)1 ’

‘ij = o . A X () withx‘.j+yu+eb.=0 .

This problem again has network structure, and can be solved by network simplex.
The "constrained” round up tractor flow ts seems in practice to be a much better
basis for local improvements than the simple minimum cost round-up tractor flow
t;. Although we do not have a rigorous theoretical argument to back up this
observation, an intuitive justification is that the bobtailing movements that often
occur in tz are opposite to the prevailing flow of trailers, and the slack capacity they
create therefore points in "useless” directions.
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4.4 Cycle Splicing

Given tg, x, y, and e, how can one make local improvements? We have adopted
what we call a cycle splicing heuristic. Since Ats=0, one can conclude that if we
define, much as before,

(54)

s 2t —x-y-e ,
we then have s=0 and

As = 2AtS—Ax-Ay—Ae
(55)
= 0+d-p-(d-p)

=0

Thus, the vector of slack capacities s may also be considered to be a balanced
“flow” in the inter-terminal network. Furthermore, by the construction of tg, any
link (i, j) for which sj;>0 necessarily has some trailers on it.

Since ts and s are balanced flows, they can be expressed as a sum of flows around
directed cycles. We define a simple cycle to be one that repeats no arcs or nodes. It
is clear that any set of cycles may be further decomposed into simple cycles. For
now, assume that some decomposition of s into simple, directed cycles has been
given. (We will show later that if u obeys the strict triangle inequality and there are
no separation constraints on x, y, or e, such a decomposition is essentially unique,
so there is no issue of choosing the best one.)

To be precise, we give the following definition:

4.4.1 Definition. A decomposition of some balanced flow w (w20, Aw =0) into
simple cycles is a sequence Rjy,...,Ry of (not necessarily distinct) simple directed
cycles such that
J
DER)=w (56)
=1
where f(R;) denotes a flow vector that has a 1" in each position (i, j) correspon-
ding to an arc of R;, and zeroes in all other positions.

One should also note that, disallowing the unlikely case that ¢ has zero-cost cycles,
the vector s will always decompose into a sequence of distinct simple cycles: if
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there were a slack of two or more around some cycle R, which would occur if that
cycle were to be repeated in the decomposition, then ts would not be a minimum-
cost solution to (53): the solution ts—f(R;) would be a cheaper alternative. We
conclude that on any cycle R; in a decomposition of s, there is at least one arc (i, j)
for which s;;=1.

Now consider two simple cycles R and S in the decompaosition of s having the
property that they cross only at the break. We now describe a procedure for
“splicing” R and S together. Let (i,j) be any arcof R. Leta be the node in S
directly after the break, and b the node directly before the break. To splice S into
arc(i,j) of R, we

(a) Remove one tractor from arc (0, a) in S. This may leave one trailer
"uncovered” -- that is, with no possible tractor to haul it. If so, call

this trailer T';.

(b) If necessary, reroute T'; from the break to i, via the arcs of R. This
step will require no extra tractor movements, as there is positive
slack all the way around R. Note that if there is no uncovered trailer
T, orif i=0, this step requires no actual operations.

(c) Remove one tractor from (i, j). This may uncover another trailer,
which we shall denote by T's.

(d) Place atractoron (i, a), and use it, if needed, to carry T'1 and/or T's.

(e) Reroute Tg from a to b, using the excess capacity along S. If no
trailer T2 has been uncovered, this step is null.

(f) Remove a tractor from (b, 0). This could uncover a third trailer, T3.
(g) Place atractor on (b, j) and use it, as necessary, to carry T'9 and/or T's.

(h)  Route T3 (if it exists) through the remainder of R (if any; we might
have j =0) to the break, using the available slack capacity.

The reader may confirm that the trailer flows remain balanced, and that each of
the trailers T'1, T'9, and T'3 whose routes may have been altered are still delivered to
their final destinations. Also, R and S are no longer valid slack cycles in the modi-
fied solution (recall that R and S must each have an arc with a slack of exactly one,
and the amount of slack has been reduced all the way around both cycles). The
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decrease in tractor cost is
— 57
Az = co°+c‘.,.+cbo—cia-cw ’ (57)
which may be positive, negative, or zero.

As an example, consider

Break

J
Figure 13a: Two cycles ready for splicing

In this case, T is an outbound trailer to be delivered at a, Tz is the empty exchan-
ged by i and j, and T'3 is a pickup emanating from b. The splicing operation yields

Figure 13b: Outcome of the splicing operation

for a substantial improvement in cost, if the distances are roughly as pictured.
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The above splicing methodology can be extended to the case in which R and S
share some arcs, but there is a slack of at least 2 on all shared arcs (this must be the
case if R and S are members of a set of cycles that sum to s). Essentially, each non-
shared part of one cycle must spliced into some non-shared arc of the other, and
the number of tractors on all shared arcs is reduced by one. For example, consider

the problem

S S 08 0O NS SR RS0 ENTINNEENNEPENPEEAPECE NI PN ER PR RNUSER S RS

&
i
— DD

ot Flgure 14a; Splicing with shared arcs - problem data

The LP solution (ignoring node activity constraints) is

Figure 14b: Shared-arc splicing -- LP optimum trailer flows

and the corresponding slacks s lock like
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Figure 14c: Slacks for shared-arc splicing example

which can be broken down into the cycles S=0-1-0 and R =0-2-1-0. By splicing the
non-shared part of R, 0-2-1, into the non-shared arc(0, 1) of S, we get the IP

optimum,
—
\@

1

Figure 14d: Outcome of shared-arc splice (also IP optimum)

The exact details of the modifications to steps (a)-(h) necessary to accommodate
cases of this type are left to the reader.

In summary, our cycle splicing heuristic works as follows:

(A) Givenx,y,and eoptimal in L(u), it solves the constrained round up
problem (53), and computes the resulting slacks s.

(B) Itdecomposes s into a sum of simple cycles.

(C) Foreach pair of such cycles, it examines all the possible ways of
splicing them together. There are a variety of different splicing
opportunities because the roles of R and S may be interchanged,
and the insertion arc (i, j) may be varied. However, if the cycles are
both short, there will only be a handful of possibilities. For each
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pair, the heuristic identifies the most attractive splicing opportunity
and recordsiitin a list.

(D) It performs the recorded splicing operations in a greedy manner,
starting with the one with the greatest savings, and proceeding to
the next most profitable one which is still allowable, until the list is
exhausted.

One could also imagine using some type of optimization to determine which cycle
pairs are best to splice. We will show in a subsequent section that, under certain
conditions, the best combination may be chosen by solving a nonbipartite match-
ing problem.

Even without a more intelligent strategy for choosing which cycle pairs to combine,
the cycle splicing heuristic is remarkably powerfui. Even ifitis run just once, with
the x, y, and e inputs those arising from the computation of L(u), where u is
proportional to ¢ (hence x, y, and e are the same as in the LP relaxation optimum
without node activity forcing), the results are quite often optimal. Table 1
summarizes its performance on a series of randomly-generated probiems. For
these problems, EOL terminals were uniformly distributed over the interstices of a
40 by 40 grid centered on the break, with all p;'s and di's drawn from the
probability mass function

04, =x=1

0.4, x=2 (58)
p(")z{o.l, x=3} '

0.1, x=4

This PMF was chosen to resemble the values that might arise in a “metro” oper-
ation of United Parcel Service, which makes extensive use of "doubles” [MYE].
Distarices were Euclidean, rounded up to integer values, with small adjustments
and "stop-off” costs added to insure that the triangle inequality was always strictly
met. Each row in the table is based on runs of 20 distinct, randomly-generated
problem instances.

Note that the apparently poor performance on the 16-node problems may be a
reflection of our inability to compute tight lower bounds on the optima of larger
problems. It is not necessarily an indication of deteriorating heuristic performance.
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Percent of
Number of | time heuristic

EOLs (n) finds 25th 50th 75th
optimum percentile | percentile | percentile

Upper bound on difference from optimality

Maximum |}

35% 0% 3% 7.5%
(nkown 10.% , 18.5% 25%

Table 1: Performance of the cycle splicing heuristic

4.5 Relation of the Heuristics to the Lagrangean

We have now seen two heuristics -- a simple local improvement heuristic and the
cycle splicing heuristic. Both of these methods take as input the x, y, and e arising
from a computation of L(u). They then attempt to “juggle” some of the routingsin
such a manner as to reduce the cost of covering these trailer movements with
tractors of capacity two. Neither heuristic ever really changes some fundamental
aspects of the incoming solution, in particular the assignment of empty trailers. If
some EOL terminal a receives a given number of empties from EOL b in the solution
to L(u), it will stili do so in the perturbed solution output from either heuristic. The
only difference will be that certain detours may be inserted in paths taken by these
trailers. Both heuristics are essentially letting the L(u) computation route the

empties.

4.6 Combining the two Heuristics

in practice, the cycle splicing heuristic works very well, but so slowly that it actually
slows down the overall run time of the Lagrangean branch and bound method if it
is run for every subproblem. We have found that a more efficient approach is to
use the cycle splicing heuristic just once, at the very beginning of the run, with x, y,
and e inputs as in the LP relaxation (without the node activity constraints). This

. tactic provides a good initial.incumbent. Also, the cycles that arise in the decom-
position of s in these circumstances are always short (see section 6.4 for a proof),
allowing for efficientimplementation. Subsequently, we use the much faster
simple local improvement heuristic at every iteration of every subproblem pro-
cessed. In this way, we get the advantage of a good initial incumbent, without the
computational burden of running the cycle splicing heuristic repetitively.
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5. Computational Performance

To test the branch and bound algorithm outlined in the above chapters, we
implemented itin VAX FORTRAN. This chapter describes the results.

We decided to run the debugged code on four sets of 20 randomly generated
problems, one set with 4 EOLs per instance, one with 8, one with 16, and the last
with 32. This last set represents instances of realistic size. The procedure used to
generate the random test problems was the same as that described in section 4.4.
Runs were performed on a Digital Equipment VAX 11/780 "supermini” computer.
The computational power of this machine, at least for compute-bound numerical
tasks, is now roughly matched by some of the recently released workstations and
"high-end” personal computers.

Atvarying levels of the percentage fathoming parameter P, we ran each of the
four-, eight-, and sixteen-node problem sets. For budgetary reasons, each individ-
ual problem run was limited to roughly 5 megabytes of virtual memory and 15
minutes of CPU time. In short, results were excellent for the 4-node problems,
acceptable for 8 nodes, and disappointing for the 16-node examples. Because of
the poor performance on the 16-node problem set, we did not attempt to run the
32-node data.

Table 2 summarizes the results for selected combinations of numbers of EOLs and
levels of P. It should be noted that runs were simply cut off if the available time or
memory limits had to be exceeded. Our present method is quite memaory-intensive,
as basis information is retained from subproblem to subproblem. On the 8- and 16-
node problems, the algorithm would often have to switch,upon reaching about
300 active subproblems, to the high-f, mode in which it attempted to fathom
unpromising subproblems first in an effort to free up space. This procedure tended
to slow down convergence, and was sometimes unsuccessful in holding down
memory requirements (when high-B, subproblems could not be fathomed), in
which case the program simpiy halted upon reaching its 5 megabyte storage limit.

These results are not altogether encouraging. Note that with P=>5%, run time

- increases by a,factor of 30 from the 4- to the 8-node problems, an increase of only a
factorof 2in ﬁroblem size. Naively extrapolating, this grcfwth rate would timply ‘
that a 32-node "real life” problem would have an expected run time of over 40
hours, with a median of about 8. Speaking very roughly, the method is about one
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, Run Time (sec) Duality Gap
Numberof | Fathoming _ ,
§  EOLS Percentage P

Mean Median Mean Median |
| 0% | 167 | 43 0.1% | 0.0%
N
B ' 0% | 4390 | 3489 | 16% 0.0% |

Table 2: Performance of Lagrangean branch and bound method

K

|

or two orders of magnitude short, either in terms of speed or size of problem
solvable, of being practical.

In particular, the 16-node runs produce a duality gap only marginally smaller than
that one would get by simply running the cycle splicing heuristic and the LP
relaxation, and then comparing the two. None of the twenty 16-node cases run
showed any improvement in the incumbent after the first iteration of the first
subproblem, and the improvement in the lower bound attributable to enumer-
ation was not very great. This suggests that the best course at present is to use the
cycle splicing heuristic as a stand-alone procedure, and optionally employ the rest
of the algorithm as a means of assessing nearness to optimality.

In the smaller problems that we were able to analyze in detail, there seemed to be
astrong dependence of run time on the initial value of u. On average, the best
results were obtained with u=c/4. However, for individual problems, different
values of the form u=(A/2)c, where 0 <A<1, would often work much better. The
dependency of A seems to be present even in problems in which much enumeration
is needed to verify the solution. If we could understand this phenomenon, we feel
that we might be able to take considerable advantage of it.

In summary, the method is quite a long way from being useful, even for the
comparatively simple 2-CFP case. Certainly, the current results do not merit an
attempt to extend the methodology to problems more complicated than the
central 2-CFP. ‘

Perhaps the poor performance may be partially attributed to our model’s use of
general nonnegative integer variables, as opposed to simpler 0-1 variables. As far
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as we know, successful applications of Lagrangean branch and bound methods
have all used binary variables. When all one’s integer variables are binary, the
general features of the solution are in some sense much more firmly “locked in” by
each separation operation in the enumeration tree. In principle, our current model
could be converted to an equivalent problem using 0-1 variables only, given a
reasonable upper bound on each original variable, but we suspect this would

. significantly "destructure” the formulation.

As for the problem of trying to construct a practical method for 2-CFP’s of realistic
size, there are two possible avenues for future work. On the one hand, one can
turn, as vehicle routing practitioners usually have, to promising heuristics. Alter-
nately, one could try to further refine an exact method like that presented here,
hoping for another one or two orders of magnitude improvement in performance.
Here, the outlook is a little doubtful, but considering that over our one year project
we achieved something like two orders of magnitude improvement over our initial
working algorithm, not entirely bleak.

In the remainder of this thesis, we first discuss the refinement option, and then turn
to heuristics and other fresh approaches.
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6. Potential Improvements to the Current Method

The rest of this thesis discusses approaches to the central 2-CFP that might prove
practically viable. This chapter concerns itself with possible improvements to the
method just described. We discuss four separate topics: different ways to update
u, tightening the formulation, selective arc removal, and using matching in the
incumbent finders.

6.1 Improving the Dual Step

One possible improvement to the LBB method would involve inserting new kinds of
dual update procedures, in addition to the current subgradient steps. In particular,
we envision steps in which all the dual variables are simultaneously scaled by some
real number A. We have already mentioned that for some small problems, altering
the initial value of u in this manner could produce dramatically better results. If
one understood more fully the mechanism behind this phenomenon, one might be
able to create a much faster algorithm. One could either scale only the initial u,
which is proportional to ¢ in our present approach, or one might also be able to
scale at later times, when u is not proportional to ¢ and/or there are branching

constraintson t.

This idea relates to a curious property of the subgradient method: if one is not
careful, the search for the right value of u may be artificially restrictive. For
example, the canonical subgradient

g=x+y+e—kt (59)
that we have been using can easily be seen to have the property Ag =0 at all times.
If our steps are always exactly in the direction given by g, then u will always be in
the affine space uy+ N(A), where uy is the initial choice of u, and N{A) denotes the
null space of A. Of course, our steps are not always precisely in the g-direction,
because we always project u back onto the region {u 1 0su=c/2}. Still, using only
one kind of subgradient step could be artificially depressing our lower bonds. A
related topic worth investigating is whether or not restricting to{ul0<susc/2},
rather than the more complex region (37), might also be hurting the lower bounds.

Perhaps our uncertainty in this area reflect the deeper problem that we do not as
yet have a good feeling for how the LP relaxation for our model behaves in the
presence of the node activity forcing constraints described in section 3.2. While we



-61-

have an excellent understanding of the LP relaxation without these constraints, we
do not have a good idea how the optimal LP multipliers change when they are
included. This is probably worth some further study, possibly by solving some
instances using a “commercial” LP package. A better understanding of the
augmented LP relaxation might help one find a way to choose better initial
multiplier values, or even to construct a superior dual update procedure. It might
also reveal additional cutting planes that could serve to tighten the relaxation even

further.

6.2 Tightening the Formulation

The mention of cutting planes brings to mind another approach, which would be to
try to tighten the LP relaxation, and thus the Lagrangean lower bounds, by using a
different problem formulation. Here it is useful to refer to Magnanti’s vehicle
routing survey [MAG], dividing VRP formulation into aggregate and disaggregate
commodity flow, vehicle flow, and set covering categories. We will discuss set
covering in a later section. Among the other formulations, ours resembles the most
"aggregated”, aggregate commodity flow. For many combinatorial problems,
researchers have recently observed that decomposition methods seem to generally
perform better when they are based on more "disaggregate” formulations, largely
because the LP relaxations of such formulations produce bounds that are closer to
the IP solution. Thus, one might expect that we could benefit by disaggregating
our current formulation.

Moving to the disaggregate commodity flow category of formulations would
essentially be the same as treating central k-CFP problems as if they were non-
central, that is, labeling each loaded trailer by its destination, even though it is not
strictly necessary to distinguish between outbound trailers. Unfortunately, as we
saw in section 2.4, this operation does not tighten the LP relaxation at all. Thus, to
make any progress in this direction, one would have to go immediately to an even
more disaggregated description, perhaps analogous to a vehicle flow formulation
of the VRP. It remains unclear, at this stage, whether or not such a change would

be beneficial.

6.3 Selective Arc Removal

There is a common trick that we have not yet tried: solving the problem on a
restricted network containing only arcs selected by some heuristic as likely to be in
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the solution, and then checking to see if any previously excluded arcs should
subsequently be included. We do not know how this type of approach would best
be applied for CFP-class problems, and it would doubtless require clever data
structures. Still, it is definitely worth some study.

6.4 Matching in the incumbent Finders

Another fruitful avenue might be to use a nonbipartite matching algorithm, rather
than the greedy heuristic, to choose which improvements to apply in either the
simple local improvement or cycle splicing incumbent generators. This holds the
potential of providing better incumbents, but at some price in speed, depending on
how often matching is attempted. In the small problems whose runs we have been
able to analyze fully, our experience indicates that slow run times are mostly
attributable to a slow climb in the lower bounds, rather than poor incumbents;
however, this may not be the case in larger instances, and matching may prove very
worthwhile.

Let us now turn our attention to the cycle splicing heuristic. Suppose we have
decomposed s into a sum of simple cycles. Construct a derived graph based on this
decomposition, with a node corresponding to each cycle, and a compleie set of
edges. Because each individual cycle splice “consumes” the slack on the two cycles
it processes, and removes siack only from those two cycles, one can conclude that
any choice of a set of possible pairs of cycles to splice corresponds to a matching in
the derived graph, and vice versa. Assign to every edge <R, S> in the graph a
weight w(R, S) equal to the savings from the most profitable way of splicing cycles
R and S. Then a maximum weight matching will yield the best possible set of
splicings, given the original decomposition of s into cycles.

At this point one natur.ailly asks whether there is more than one way to decompose
s into simple cycles, and, if so, whether the choice of decomposition would have
any bearing on the outcome of the combined matching and splicing heuristic.
These are both to some extent open questions, but we can give some conditions
assuring a unique decomposition. To do this, we must make a short theoretical

digression.

6.4.1. Definition. Given a network with node-arc incidence matrix A, having some
distinguished central node numbered 0 ("the break”), and a balanced flow vector
w (with Aw =0, w=20), we say w has the fanning property if for every node i =0,
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either all outflow from i is to the break (w;; =0 ¥j=9) or all inflow to i is from the
break (w;i=0Vj=0).

The fanning property seems very restrictive, but in fact it is met in a very important
case by the solution to L(u):

6.4.2. Lemma. If u obeys the strict triangle inequality, A is complete,and there are
no additional branching constraints on x, y, or e, then r=x+y+e has the fanning
property, where x, y, and e are optimal in L(u).

Proof: All trailers take direct arcs from origin to destination. The only kinds of
trailers that travel on arcs not touching the break are empties, and they must
necessarily take direct arcs from terminals that are sources of empties (p; <d;) to
ones that are sinks for empties (p; >d;).

To prove fanning, we need to show that for all nodes i, j, l = 0, either r;;=0 or
rj1=0. Suppose that r;j>0. Then j must be a sink for empties, and consequently

rit=0. QED.

6.4.3. Corollary. When u obeys the strict triangle inequality, the tgand s vectors
constructed by the cycle splicing heuristic have the fanning property.

Proof: By construction, ts may be nonzero only on arcs where r is nonzero.
Therefore, it inherits the fanning property. Finally s =2tg—ris also zero on all arcs
where tg and r are zero, so it too is a fanning flow. QED.

Provided c is strictly triangular, as it was in our test problems, the hypotheses of the
lemma are met in the one situation where we now use the cycle splicing heuristic:
at the very beginning of the run, when there are no branching constraints and
u=(A2)c. Ifuistriangular, but not strictly so, we can only conclude that there is an
optimal solution to L(u) that yields r, ts,and s having the fanning property.

Now comes our main result.

6.4.4. Proposition. Any flow w having the fanning property has a unique decom-
position into simple cycles, and these cycles all have length 2 or 3 and include the

break.

Proof: Consider anyi,j = 0 for which w;;>0. In any decomposition of w into
simple cycles, there must be some cycle R with positive flow on (i, j). The fanning
property gives that the arcin R following (i, j) must by (j, 0), and the arc before (i, j)
must be (0, {). To be simple, R must be equal to 0-i-j-0 (hence it has length 3 and
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includes the break). Subtract one unit of flow from w for every arcin R. The
resulting flow w’still has Aw’=0, w'=0, and is still fanning, and the remaining
cycles in the decomposition of w form a decomposition of w’.

We can repeatedly use operations like that above to deduce an entire sequence of
cycles that must be in any decomposition of w, and finally reduce to the case that w
only has flow on arcs touching the break. A similar argument shows that such a
flow is a unique sum of 2-cycles that include the break. QED.

This proposition implies that if u is strictly triangular, then there is only one way to
decompose s into simple cycles, and thus that a nonbipartite matching will give the
best possible collection of cycle splices that can be performed on s.

Note that we are not saying that one should not use matching to choose the best
splices when u is not strictly triangular, but only that we have not ruled out the
possibility that the choice of how to decompose s into simple ¢ycles could affect the

outcome.

We have not studied the simple local improvement heuristic in similar depth, but
we suspect that a similar result may be obtained for it.
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7. Alternate Solution Strategies

We now describe some alternate solution approaches to the central 2-CFP that
cannot be viewed as enhancements to the algorithm developed and tested in

chapters 3 through 5.

The first of these is a trip matching heuristic inspired by the idea of combined

" matching and cycle splicing that we have just examined, but conceptually
simplified. This alternate approach has the advantage of being relatively accom-
modating to side constraints. We will also briefly examine a few other fresh
approaches, namely resource-directed decomposition, set covering, and LP-based

branch and bound.

7.1 The Trip Matching Heuristic

The trip matching heuristic is an approach to solving the central 2-CFP that draws
on the ideas first encountered in the context of cycle splicing. We have not been
able to test it computationally, but believe that it is nevertheless worth describing.

First, imagine solving the LP relaxation of the aggregate commodity flow formu-
lation (9), without node activity constraints. Aswe already know, this amounts to
solving a transportation problem among the empty trailers. Making sure we
choose the optimal solution in which all trailers take direct arcs from origin to
destination (there could be some non-uniqueness if the triangle inequality is met
with equality for some node triplets), we form the sum of trailer flows,

r=x+y+e (60)

Note that r has the fanning property described in the previous chapter. It can
therefore be uniquely decomposed into a sum of two and three cycles, all including
the break. We are now decomposing r, not s, and so there is a possibility that some
cycles may be repeated in the decompaosition; the Ry,...,R constituting the
decomposition may not all be distinct, but, up to their order, they wili still be
unique. We start by hypothetically assigning one tractor to each of these cycles, or
"trips”. This step yields a solution that would be optimal were there only one

trailer allowed per tractor.

Now consider any pair of such cycles (possibly equal if there are repetitions in
Rj,....Ry). Asin our cycle splicing heuristic, there will be one or more possible ways
of combining them into a trip executed by a single tractor, hauling two trailers at a

-
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time, that effects the same end-result trailer movements. For example, one might
make a transformation such as

2
A9
-.,'.pllce

Break 3

| «."Splice

Figure 15: Splicing two trips
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For every pair of trips, there are a number of ways to perform such a splice,
depending on which cycle is inserted into the other, and where the insertion takes
place. As both trips have length at most 3, the number of possible combinations is
limited, the one with the highest savings can easily be found by "brute force”. Our
proposed heuristic works as follows:

Trip Matching Heuristic (TMH)

(i) Solve the transportation problem for the empty trailers, thus solving
the LP relaxation of the aggregate flow formulation (9).

(ii)  Construct the sequence of trips of length 2 and 3 that constitutes
the unique decomposition of the resulting total trailer flow r.

(iii) Examine each pair (R, S) of such trips and find the maximum savings
way of splicing them together. Denote the maximum savings by
w(R, S).

(iv)  Construct a complete graph with a node corresponding to each trip,
and find its maximum nonbipartite matching using weights w(R, S).

(v)  Construct the integer solution corresponding to the splicing
operations indicated by this matching.

This method is conceptually simpler than the slack cycle splicing method we have
tested, and should give much the same results. Itis elegant enough that one might
be tempted to think it might actually be an exact method. Unfortunately, this is
false.

7.1.1 Trip Matching is not an Exact Procedure

Trip matching is an inexact method for the general case of the 2-CFP for the reason
that it, like the simple local improvement or cycle splicing heuristics as applied to LP
relaxation input data, essentially allows the LP to decide the disposition of empty
trailers, and never really changes it except to add a detour of a node or two in some
routes. Itis quite easy to construct examples for which the assignment of empties is
differentin the IP and LP optima, and which therefore cannot be optimized by the
trip matching heuristic as we have stated it. One example is



-68 -

® O

Flgure 16a: Example in which IP and Lp empty trailer allocations differ

p1=2
di=1

---------

The LP relaxation solution, without node activity constraints, is

3]s

‘_—,

Figure 16b: LP relaxation optimum for figure 16a data

while the integer optimum is
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Figure 16¢: Integer optimum for figure 16a data

In fact, even if the specified empty movements are correct, there are cases in which
trip matching may not produce the best possible answer. We call this phenomenon
“trip hopping”. Consider the problem instance

4

+

&
T
N N

Figure 17a: Problem data for “trip hopping” example

This example has the integer optimum
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Figure 17b: Integer optimum for "trip hopping” example

In this curious example, an inbound trailer must be switched from one tractor to
another at node 2, "hopping” between tractor trips. Such a solution cannot be
generated by the trip matching heuristic. On the other hand, such solutions may be
impractical, and one might be able to argue that they should be prohibited.

The run time of the trip matching heuristic, after the execution of the transpor-
tation simplex method, depends not on the number of EOL terminals n, but on the
number of single-trailer trips implied by the LP solution, which we shall denote by
N. This is equal to the total number of trailers to be dispatched from the break in
one day, Max(Ipol, ldol). Computing the maximum savings from all pairs of trips
requires O(N?) time, and the matching O(N?®) time, so total run time is O(N?®), plus
the time to solve the empty allocation transportation problem. In real problems, N
will be on the order of hundreds, so run time may be substantial, but notan
insurmountable obstacle. Atworst, one might have to resort to a heuristic
matching procedure for very large instances.

7.1.2 Handling Side Constraints

Despite the drawbacks just outlined, the trip matching heuristic has some very
attractive properties. For one thing, routes of individual tractors are explicitly
constructed by the algorithm. It needs no “post-processing” to decompaose the
overall tractor flow into individual trips. More importantly, the heuristic could
easily be extended to handle a wide range of side constraints. For example, when
examining all the possible ways of merging a particular pair of trips, the heuristic
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could rule out those that would produce tours that would be too long, would take
too much time, would have too many stops, or might violate some other secondary
restriction. If there turned out to be no feasible way of combining a given pair, the
corresponding edge would be assigned a weight of zero in the derived graph.

In the trip matching context, there may also turn out to be ways to enforce certain

_ kinds of timing corstraints without making the costly switch to a time-space
network model. These might also involve placing upper bounds on some arcs in the
empty allocation network. Finally, there is a potential to handle more complicated
cost structures that are not simple linear functions of the tractor flows.

7.1.3 Further Investigation

The potential capabilities outlined above make the trip matching heuristic appear
quite promising for practical application. We suggest that the following represent
a good agenda for future research in this area:

(i) Examine the method’s performance empirically.

(i) Determine the conditions and restrictions (e.g. absence of trip
hopping, correct empty disposition) under which the matching
approach will' give optimal answers. ‘

(iii) Armed with this knowledge, attempt to augment the heuristic to
better handle situations in which it is not optimal. Perhaps one
could construct a master-subproblem scheme in which the master
problem would try different routings for the empties, while the
subproblem would use matching to try and best “cover” the implied
movements.

. (M N Tr)'(”a~ "real-life” pilot application with an actual carrier, incorpor-
ating that carrier’s particular side constraints.

An additional topic might be to study generalizations to the non-central or k>2
cases. The latter may prove very difficult, because 3-matching and higher order
partitioning problems are themselves NP-complete.
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7.2 Resource-Directed Decomposition

In his treatment of the reiated railroad blocking problem, Assad [AS] suggests a
resource-directed approach in which the master problem fixes the number of
locomotives (in our setting, tractors) on each arc, and the subproblem must
optimally route all freight, given this aliocation. At first glance, this seems a very
difficult approach, as the resulting subproblem, integer capacitated multicom-
modity flow, is itself extremely hard. In a price-directed scheme, one at least gets
integrality in the subproblems "for free”.

We are not sure if there is any way to make the resource directed approach attrac-
tive. We mention it here mainly for completeness.

7.3 Set Covering -

A more promising area that we have not yet explored is to use an approach
modeled after the "set covering” methods for the VRP (see [BQ]). In such a line of
attack, one would enumerate a very large number J of possible tours that a tractor
could possible make. By a tour we mean notonly the path taken by the tractor, but
also the particular swapping operations it performs at each terminal stop.

The k-CFP could then be formulated as the integer program:

J
Min ZCJZJ
J=1
J
ST. Sa.z = d i=1,..,n
— i
Jj=1
' LI Y J (61)
?bz = P l"—'l’ 1
—_— Ty i
Jj=1
zj = 0 Jj=1,..,J
z. integer j=1,...,J

Here a;jis the number of outbound trailers route j drops at terminal i, and b;j the
number of inbound trailers it picks up. The decision variable z; gives the number of
“type " tours in the solution. We suspect that one can prove that any optimal
solution may be constructed exclusively out of locally balanced tours, that is, tours
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that preserve the number of trailers at each terminal stop, always picking up as
many trailers as they drop off. If the set of tours is so restricted, one need not add
any explicit empty balancing constraints to (61).

Furthermore, it should also be possible to prove that only few of the z;'s, namely
those representing simple “out and back” tours involving the break and just one
EOL, need ever take a value greater than one. Thus, one can constrain most of the
decision variables in (61) to be binary. However, because there are still variables,
constraint matrix elements, and right-hand side entries that can be greater than 1,
the remaining integer program is different from the set covering problems that
arise from the “traditional” VRP, and its properties must be investigated.

The LP relaxation of (61) could be solved by column generation procedure in which
the column generator could be a dynamic program with a manageably sized state
space. However, success rests on solving the integer program by exploiting special
structure. Here, one might be able to draw on earlier work done for the VRP.
Though an exact method may prove out of reach, the set covering reformulation
may prove useful in constructing a good heuristic amenable tc side constraints, and
possibly form the basis for a method based on interactive optimization similar to

thatin.[CTR] or [SP].. R o

7.4 LP-Based Methods

Another plan of attack we have not yet tried is an approach based on an LP
relaxation, rather than a Lagrangean one. In particular, we have not yet attempted
to solve CFP problems using a “commercial” quality integer programming code. If
one used a restricted network rather than a complete one, and augmented such a
code with some special routines, such as incumbent generators, similar to those
already developed for our Lagrangean method, one might conceivably be able to
construct a practical method for realistic-sized problems. This type of approach
certainly merits some investigation, even though the prospects are unclear. Its
chances for success rest on exact LP lower bounds on the objective being signif-
icantly sharper than their approximations via the Lagrangean. If one could show
this will not be the case, then the method would warrant no further investigation.
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8. Conclusion

Although we have identified some possible improvements and alternative
approaches to the Lagrangean branch and bound method, our computational
results remain somewhat disappointing. This may reflect the unfortunate reality
that Lagrangean methods are not a panacea for integer programming problems.
For a Lagrangean method to succeed, a happy synchrony must exit between all its
components. That is, the multiplier updating procedure, the incumbent generator,
and the enumeration scheme must all work together to both raise the overall lower
bound on the optimum solution, and bring down the upper bound represented by
the incumbent. In our case, the computational burden seems to fall excessively on
the enumeration and incumbent-finding components; the subgradient step seems
unable to provide rapid gains in the lower bound or to quickly point the the
incumbent finder in the right direction.

At present, it is not well understood what conditions are conducive to establishing
the subtle and fortunate state of affairs in which all the parts of a Lagrangean
relaxation method cooperate smoothly. All we know is that the convexified
problem (in our case, the LP relaxation) solved by the Lagrangean should provide a
‘good lower bound on the integer objective. Thisis in itself no guarantee of success,
so unless one can demonstrate that these bounds will not be good and hence that
the method is unlikely to work, one must simply test empirically. It may happen, as
in the research described here, that a great deal of “custom” programming effort
may be expended to arrive an unspectacular result. In the future, new analytical
tools may perhaps make it easier to assess the chances for success, or there may be
programming environments that will make it much cheaper to test prospective

methods.

- Fortunately, we have a little more to show for.our pains than a mixed computa-
tional experience. We have developed what is apparently a quite effective heur-
istic method (cycle splicing), identified possible improvements to it, and proposed
another, similar approach more receptive to side constraints (trip matching). Also,
we should notdisregard the possibility of refining the current approach into a
workable state, or of constructing a successful set covering or LP-based method
armed with the experience gained here.

Last but not least, we have acquired the beginnings of an understanding of the CFP
class of problems that we have defined. When one takes the viewpoint of a carrier
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both picking up and delivering freight containers, as well as balancing empties,
rather than that of a “vertically integrated” concern that moves freight primarily in
onedirection, vehicle routing problems take on a decidedly different flavor. The
concepts of slack flow, the fanning property, simple cycle decomposition, and local
improvement via splicing may prove useful in further analyzing CFP problems.
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