
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-028 May 30, 2007

TIARA: Trust Management,
Intrusion-tolerance, Accountability, and
Reconstitution Architecture
Howard Shrobe, Thomas Knight, and Andre de Hon

TIARA:

Trust-Management, Intrusion-tolerance,

Accountability, and Reconstitution Architecture

An Introduction to the TIARA Project

A High Integrity Architecture for

Secure, Accountable and Robust Computing

Howard Shrobe, Thomas Knight, Andre deHon

Contents

1 Design Overview 1

2 Technical Approach 4
2.1 The Problem . 4
2.2 Overview of The TIARA Architecture . 4
2.3 TIARA System Layers . 5
2.4 TIARA Hardware . 8

2.4.1 Ensuring Secure Information Flow . 8
2.4.2 The HEX Unit . 9
2.4.3 Hardware Support for Garbage Collection 10

2.5 The Object Abstraction . 11
2.6 The System Software Layer . 11
2.7 The Wrapper and Meta Control Layer . 11
2.8 The Access Control Layer . 12
2.9 The Plan Layer . 13
2.10 The Data Provenance Layer . 13
2.11 The Application Substrate Level . 13

3 Application Context 14

4 Design Summary 14

2

1 Design Overview

We propose to design and evaluate a computer system architecture, called TIARA, combining novel
hardware features, a new form of operating system, and unique application middleware.

The TIARA Architecture is motivated by the needs of the National Intelligence Community; the
TIARA hardware will provide for fine-grained tracking of the security context (e.g. classification
level and compartment) of data, non-bypassable enforcement of a broad range of security policies,
while simultaneously building a dependency network tracking the provenance of all application data,
showing how each application object is influenced by the values of raw sensor data, human inputs,
and computational processes.

The TIARA hardware, operating system and middleware will cooperatively build a network of
dependency relationships that explains:

• What is the security context of each datum.
• How every application datum was derived.
• What raw data was involved in the computation (whether derived from sensor systems or “human

intelligence”) .
• What computations were performed.
• Which human users contributed to the interpretation of the data.
• What data has been exposed to which human users

This will allow TIARA applications to:

• Explain any conclusion they have drawn.
• Estimate the reliability of any conclusion based on estimates of the trustworthiness of the sensor

data, computational processes and humans that contributed it.
• Update these estimates as estimates of the trustworthiness of the inputs change.
• Present alternative views of an application document that are suitable to audiences with varying

clearance levels.
• Identify insiders who may have compromised system resources.

In the rest of this section we summarize the key novel ideas in the TIARA architecture:

Tagged Memory: TIARA’s power originates in its novel hardware structure which we call
a Security Tagged Architecture (STA). In TIARA, all words in memory or registers consist of a
data field and a tag field ; the tag encodes both the type of the data and its security context. The
TIARA hardware will include a Tag Processing Unit (TPU) that operates in parallel with its main
data-paths as shown in figure 1. While the main data-paths combine the data fields of two registers
in order to compute a result, the tag processing unit checks the tag fields of the same registers,
checking that the operation is legitimate (trapping if the operation isn’t permitted) and computes
a new tag reflecting the type and security context of the result. The TIARA hardware will be
very flexible in its encoding of data types and security context, supporting a broad range of access
control and information flow models.

Process Credentials: Each TIARA process has an associated Principal representing the cur-
rent privileges of the user; this is held in the Principal Register of the processor. The tags processing
unit checks not only the tags of the operands, but also the contents of the principal register. If
the process does not have the appropriate privilege to perform the selected operation on the input
operands, then the process is trapped into a security violation handler. This allows TIARA to
enforce standard security properties (e.g. the *-property[2]) at the granularity of the individual
word in memory.

1

Security Context Tracking with Word Level Granularity: The security context part
of the tag may be used to encode any of a variety of “information flow” formalisms [14], (e.g.
one involving multiple levels and compartments) that can be viewed as forming a lattice [20, 5].
Whenever the processor combines the contents of two registers, the result is assigned a tag that is
the least upper bound of the tags of the operands. The resultant data and tag are combined to form
a new word. Tags of existing data may only be explicitly modified by a special set of instructions
and these are accessible only to specific components of the operating system (e.g. the Domain
Manager, the component that assigns credentials to a process).

Object-Structured Memory: The TIARA hardware establishes a structured view of mem-
ory in which all data consists of objects with definite location, bounds and type. The data-type
component of the tag encodes all of the primitive data-types supported by the hardware. Thus,
immediate data (e.g. small integers), instructions and references to compound objects in memory
are all distinguishable from one another.

Object references include both base and bounds and mediate all memory accesses. The TIARA
hardware bounds-checks all accesses to memory, trapping any attempt to access outside the range
of the referenced object. Thus, buffer overflows and other violations of memory structuring conven-
tions are impossible (and even if they could occur, the payload would carry the wrong tags to be
interpreted as instructions) and as a result it is extremely difficult to hijack a Tiara system using
standard types of attacks.

Zero-sized Kernel: The object-oriented abstraction established by the TIARA hardware al-
lows the TIARA operating system to be structured in a totally novel fashion. Rather than having
a kernel possessing all privileges, as is done in all COTS systems, or “rings” of protection with in-
creasing levels of privilege as was done in Multics [24, 21], TIARA instead wholeheartedly embraces
modularity and the principle of least privilege [22, 6].

Each conceptual component (e.g. scheduler, device driver) of the TIARA operating system is
implemented as an individual object; privileges are extended to principals on an object-by-object
and operation by operation basis. The scheduler might, for example, have the privilege of loading
the “principal register” in the hardware (obviously, a very privileged operation) but have no other
unusual privilege such as the ability to change the principal of a process or the ability to examine or
change data in an application object. Similarly, a debugger might have enough privileges to examine
the stack of a faulting process, but be unable to see or modify application objects referenced from
that stack. Since there is no collection of code in TIARA that possesses unlimited privilege, we
refer to it as having a “zero-sized kernel”.

In this regard, TIARA is similar to capability architectures [19, 15, 9, 25]. However, TIARA’s
object references do not encode privileges; these are represented separately in the Principal Register
associated with each process.

Unified Computational Model: The object oriented abstraction facilitates a novel and ele-
gant computational model. All data, whether persistent or volatile, are regarded as objects; There
is only a single conceptual operation: the application of a function to a set of objects (i.e. a function
call). All functions are fully polymorphic and follow the “generic function” model of CLOS [10]:
A function call is implemented by dispatching on the data-types of all the arguments to select an
appropriate method. TIARA provides hardware to accelerate method dispatch.

Pervasive Access Control: The “principal” of the running process is regarded as an implicit
argument in all function calls, allowing access control to be directly implemented by the function
calling mechanism: The call is processed if the “principal” possesses the privilege to execute the

2

function on the operands; otherwise the call is aborted. In this regard, TIARA can be seen as a
natural vehicle for implementing Role-Based Access Controls (RBAC) [8, 23] and particularly for
object-oriented views of RBAC [1].

Certain functions map directly to hardware capabilities (e.g. +); in these cases TIARA trans-
forms the function call into a hardware instruction and enforces the access control checks using its
tags processing unit.

Dependency Tracking: The TIARA hardware tracks the security context of the result of
all function calls, allowing the upper levels of the software systems to build dependency records
tracking how all persistent data was computed, what users contributed and what raw data (sensor
or human) were involved.

3

2 Technical Approach

2.1 The Problem

The last 20 years have led to unprecedented improvements in chip density and system performance,
fueled mainly by Moore’s Law. During the same time, system and application software have bloated,
leading to unmanageable complexity, vulnerability to attack, rigidity and lack of robustness and
accountability. These problems arise from the fact that all key elements of the computational
environment, from hardware through system software and middleware to application code regard
the world as consisting of unconstrained “raw seething bits”. No element of the entire stack is
responsible for enforcing over-arching conventions of memory structuring or access control; nothing
enforces the procedure call (and general stack use) abstraction/encapsulation. Outsiders may easily
penetrate the system by exploiting vulnerabilities (e.g. buffer overflows) arising from this lack of
basic constraints. Attacks are not easily contained, whether they originate from the clever outsider
who penetrates the defenses or from the insider who exploits existing privileges. Because there are
no facilities for tracing the provenance of data, even when an attack is detected, it is difficult if
not impossible to tell which data are traceable to the attack and what data may still be trusted.
Because there is no tracing of accountability, insider attackers have limited reason to fear discovery.
Similarly, the lack of data provenance makes it difficult to tell what information must be removed
in order to downgrade the classification of a document.

Because there is so little inherent structure, the core of the operating system must be protected
from other parts of the OS and especially from application layer code. This is typically done by
creating a barrier between the kernel and the rest of the software, in which the kernel operates in a
separate address space as does each user process. However, the cost of the context switch between
kernel space and user space is normally quite expensive, as is the cost of interactions between
separate user processes. As a result the system winds up as a large monolithic kernel possessing
many disparate facilities all of them sharing unlimited privileges. In addition, this results in a
complex computational model with many mechanisms for interactions between user processes and
the OS.

All of this is traceable to the unchallenged assumption that computational resources are scarce,
particularly processor chip area. In the context of scarce resources, attempts to optimize the
performance at all costs eclipsed the quest for a simple elegant architecture that delivers safety and
trustworthiness. With today’s abundant resources, we should now return to the task of optimizing
for these qualities.

2.2 Overview of The TIARA Architecture

TIARA starts with the premise that we can use some of today’s abundant computational resources
to fix these critical problems using a combination of hardware, system software, middleware and
programming language technology. TIARA will be less vulnerable, more tolerant of intrusions,
capable of recovery from attacks, and accountable for its actions. TIARA’s design imposes minimal
impact on overall system performance.

The TIARA architecture achieves these goals through the judicious use of a modest amount of
extra, but general purpose, hardware (the Tag Processing Unit or TPU shown in figure 1) that is
dedicated to tracking the security context of data at a very fine grained level, to enforcing access
control policies, and to constructing a coherent object-oriented model of memory. TIARA’s TPU
runs in parallel with the main data-paths of the system and operates on a set of extra bits tagging

4

each word with data-type, bounds, and security context information. Operations that violate the
intended invariants of the system are trapped, while normal results are tagged with information
derived from the tags of the input operands. Because of the critical role of tags in enforcing security
properties, we call TIARA a Security Tagged Architecture (STA).

Each word in TIARA’s memory as

© 2006, Dehon, Knight, Mallery, Shrobe 8/18/061

Tagged Data PathTagged Data Path

Data

Register File

Result Data

Tags
Unit

Operand 1

Operand 2

Instruction

Tag 1
Tag 2

PC

Result Tag

Trap Signal

Trap Dispatch AddressTag

A
L
U

Principal Identifier

Figure 1: The TIARA Tagged Data Path

well as the contents of each processor
register is tagged with a set of extra bits
that encode its data-type and its secu-
rity context. Even the Program Counter
(PC) is tagged, allowing the PC to en-
code the security context of any data
that was used in conditional branch in-
structions. Each process has associated
with it a “Principal” representing the
current privileges of that process; a pro-
cessor register holds this value while the
process is active.

While TIARA’s main data path ex-
ecutes an instruction, the TPU examines the principal register, the tags of both operands, the tag
of the PC and the instruction. If executing the instruction would violate any access control policy,
then the tag unit causes the process to branch to a “security violation” trap handler; otherwise, the
tag unit computes the tag of the result.

Because all words are tagged with their data type, differences between instructions, immediate
data (e.g. numbers), and object references are manifest at run-time. TIARA regards all data as
objects; in particular, all non-immediate data is accessed through object references that encode
both the location and size of the object. All accesses to memory are mediated by object references
and all accesses perform bounds-checks in parallel with the load or store, trapping out of bounds
references before they take effect.

2.3 TIARA System Layers

The TIARA hardware supports a series of software layers that provide for the enforcement of
structuring constraints, access controls and data accountability. The structure of the overall system
is shown in figure 2.

The role of the TIARA hardware is to guarantee integrity of the basic memory structuring
conventions: All accesses to memory are mediated by object references and are bounds-checked (so
there is no ability to overwrite arbitrary areas of memory); no object to which there are existing
references can be deallocated (i.e. there are no dangling pointers). In addition, the hardware is
responsible for implementing “secure information flow” policies and these policies are enforced at
the granularity of the individual word. Each word has both a data-type tag and a security context
tag. These later tags form a lattice [5] and the hardware enforces flow policies with respect to this
lattice, tagging every result with its appropriate security context.

This establishes a firm and non-bypassable base upon which several layers of software are con-
structed; each layer provides increasing guarantees and greater accountability. The first of the
software layers establishes a consistent object-oriented level of computing while higher layers es-
tablish non-bypassable wrappers, access controls, and data provenance tracking. TIARA includes

5

a novel “plan level” of computing in which code is executed in parallel with an abstract model (or
executable specification) of the system that checks whether the code behaves as intended.

The first of the software layers is the Objection Abstraction

TIARA Layers

Hardware:
Tags Processing

Object Abstraction:
Structured Memory,

Method Dispatch

Operating System:
Hardware Management,
Hardware Level Policy

Meta-Object Level:
Wrapper Management

Access Control:
Policy Enforcement S

ystem
 S

oftw
are

Plan Level:
Self Monitoring and Recovery

Data Accountability:
Provenance Tracking

Application Substrate:
Application Data Management

A
pplication

M
iddlew

are

Figure 2: TIARA Layers

Layer in which memory is structured into distinct objects, each
characterized by identity, type and extent. This layer erects a
computational model that consists solely of the application of
a function to a set of objects. TIARA functions are generic
functions[10], fully polymorphic functions whose implementation
is provided by one or more methods. Function invocation in-
volves dispatching to a specific method based on the types of the
operands. The fields of an object may be accessed only by invok-
ing a method on that object and these are subject to hardware
enforced access controls. This layer also erects a class system in
which every object is a member of some class; classes themselves,
being objects, are members of a meta-class. The main operations
of the object system are described by methods on meta-classes
and these are the only means for manipulating the internals of
classes.

The Operating System Layer controls the hardware and man-
ages the core resources of the TIARA architecture. In spite of the
name, TIARA does not have an operating system in the classical
sense of a distinguished component, executing in a separate context and possessing unlimited priv-
ileges. Rather the various functions of a traditional operating system (e.g. the scheduler, memory
manager, etc.) are implemented by distinct objects with limited scope of capability and privilege.
All objects live within a single flat address space; there is no need to separate kernel space from
user space since all objects are inherently protected from one another. Each critical component of
the operating system layer (e.g. the scheduler, the virtual memory manager, device drivers) has a
limited set of responsibilities and an equally limited set of privileges. These components interact
according to a set of system-wide global invariants. Thus, TIARA protects its critical resources
by adhering to strict enforcement of the object abstraction and to the principle of least privilege.
Objects interact using a single mechanism: the function call and all function calls are checked for
compliance with access control policies.

The Meta-Object Layer is concerned with the imposition of non-bypassable wrappers that are
used to provision redundant copies of data, to monitor execution, to track dependencies and to
impose access controls. Wrappers are an inherent part of our object model, which is derived from
the Meta-Object Protocol (MOP) of CLOS [10]. A wrapper is simply a distinguished type of method
that is combined with other methods in such a way that the wrapper gets control before other
methods, allowing it to control whether the other methods are invoked and with what arguments.
In addition, the wrapper method gains control after the other methods execute, allowing it to
capture and/or modify the returned results.

The Access Control Layer is capable of supporting a variety of role-based (and other) access
control models using capabilities provided by the lower layers. As mentioned earlier, TIARA’s
hardware guarantees that every datum is tagged with both its data-type and its security context;
the processor checks every instruction to make sure that the executing process has the privileges
necessary to execute that instruction on data from the security contexts of the operands.

6

The access control layer supplements these hardware checks using access control wrappers that
check whether it is legitimate for the executing process to invoke the indicated function on the
operands. It does this by checking the security context and data-type parts of the operands tags.
Access control wrappers are imposed using functions provided within the MOP. Since these MOP
entry points are themselves just normal functions, access control wrappers may also be imposed on
them, allowing us to use the normal access control mechanisms to control who is allowed to impose
a wrapper.

Access control wrappers typically are generated from a more abstract description of an access
control policy written in an Access Control Language. It is not a major part of our agenda to
develop such a language, however we will create a simple one to drive our early work and then hope
to test our approach on formalisms developed by other projects within NICECAP. We anticipate
that TIARA can support a broad range of access control policies.

The Plan Layer uses system-wide models of the intended behavior to enforce constraints on
control and data flows, and to check intended invariant conditions. If the behavior of the system
does not correspond to the intended behavior predicted by the system model, then execution is
aborted and the dependency records are used to diagnose the cause of misbehavior, to identify data
that should not be trusted and to identify what individuals might have been responsible for the
failure.

The Data Accountability layer is responsible for tracking the provenance of data as directed
by the plan layer. Part of this is accomplished by the TIARA hardware which tags all data with
its security context. Data Accountability wrappers are used to capture the inputs and outputs of
all functions of interest and to build dependency records linking the outputs to the inputs and
to the invoked function. In addition, data accountability wrappers are interposed around all HCI
input and output operations. Output functions track what data has been exposed to which users
while wrappers around input routines track which users have contributed data to the computational
process.

The Application Substrate uses the features of all the lower layers to provide a platform for
applications that rely on accountable information flow. It provides a “truth-maintenance” capability
that allows conclusions in application documents to be removed if the raw data or computations
that led to them are no longer trusted; it also provides a Bayesian reasoning substrate that assesses
the trust that should be placed in conclusions given the trustworthiness of the inputs (e.g. sensor
data, human judgment, computational tools) to the intelligence analysis process. This substrate
also provides tools that hide sections of a document whose security context requires more privileges
than are possessed by the audience.

The end result is that application systems are continually checked at runtime to see if they behave
as intended, violations of intended invariants are detected and prevented and the provenance of all
data is made manifest. Thus, even when attacks succeed, the system knows what data is trustable
and what data is suspect. In addition, all data can be traced back to the computational processes,
raw data and individuals from which the data was derived. Bayesian inference techniques are used to
rate the reliability of conclusions given the trust accorded to the contributing inputs, computational
processes and human analysts. Finally since every datum is tagged with its security context, it is
easy to identify sensitive data that must be shielded from users without adequate privileges. Thus,
an Active Briefing Book can dynamically adjust itself for viewing by users of different privilege levels
and can rapidly reassess the reliability of its conclusions and recommendations if the reliability of
any of its inputs is called into question.

7

These techniques derive from research over the last decade in the MIT ARIES and AWDRAT
projects [4, 3, 26]. In the rest of this proposal we present more of the details of each of these
proposed software layers as well as a description of the proposed core TIARA hardware.

2.4 TIARA Hardware

At a high level, our goal is to track information flows in order to understand the provenance of
significant data, to provide confinement [13] and to guarantee that all information flow and access
control policies are adhered to. The TIARA hardware contributes to this goal by systematically
tracking the security context of all data in the machine, guaranteeing that no process can gain
access to data for which it lacks adequate privileges.

The key TIARA hardware structure is shown conceptually in figure 1. The upper half of the
picture might be virtually any conventional processor design; it fetches operands from a register
file, combines them through an ALU in accordance with the current instruction and then writes the
results back into the register file. The lower half is the Tag Processing Unit (TPU); this fetches the
tags of the operands from the register file, the identifier of the processes’s current principal from
the principal register, the tag of the Program Counter and the current instruction and produces a
new tag that that is written back into the tag section of the register file as well as a new tag for
the Program Counter. The role of this TPU is to enforce basic structuring conventions, data type
consistency and compliance with access control policies while imposing minimal delays.

In addition to the TPU, TIARA provides a few other novel pieces of hardware: A Bounds
Checking Unit (essentially an adder) to guarantee that accesses to objects are within range; the
Garbage Collection Support Unit which consists of a few specialized registers and some trap logic;
and a specialized hardware stack that help in managing the security context of the program counter.
We will next describe these, starting with the implementation of the TPU.

2.4.1 Ensuring Secure Information Flow

In TIARA, the machine word is the unit of information: each slot of memory and each register
contains one word. A word consists of a tag and a value where the tag encodes the data-type and
security context. Words are read and written atomically. The program counter associated with a
process is tagged with a security class just like any other word. The “Principal Register” of the
processor holds a word representing the privileges of the currently running process.

The security context part the tag is used to encode some aggregation of data that is to be treated
uniformly from the point of view of security and information flow policy. Security contexts form a
lattice; we denote by lub(A,B) the least upper bound in this lattice of the tags A and B.

An information flow policy is simply a set of rules such as A → B stating that information is
allowed to flow from A to B; these rules are transitive. Flows not included in the transitive closure
of the stated rules are disallowed. One goal of the TIARA hardware is to guarantee that these rules
are followed. A more detailed treatment of this is provided in [4]; we provide an overview of the
approach here.

As each instruction is executed, the TIARA hardware first checks that the operation is consistent
with its policies; if so, it then computes a new security tag for both the program counter and the
new result. The rules for the new tags are as follows:

• On a non-branching instruction I, acting on operands A and B:
– The tag of the result is lub(tag(A), tag(B), tag(PC), tag(I)).
– The tag of the PC is lub(tag(PC), tag(I))
• On a non-conditional branch instruction I: The new tag of the PC is lub(tag(PC), tag(I)).

8

• On a conditional branch instruction I, branching on data A: the tag of the PC is lub(tag(A),
tag(PC), tag(I))

Whenever the processor takes a conditional branch, the tag of the current PC is pushed on an
internal stack. When execution rejoins after the branch, this stack is popped and the tag of the PC
is restore to its earlier value. This guarantees that the security context of the PC strictly represents
the contexts of the precise set of data that has influenced the flow of control.

The basic information flow constraint is that no process can read a data value unless the flow
policy allows information to flow from the security context of the datum being read to the security
context of the the Principal.

Information flow policy also deal with I/O channels. Both input and output channels are
assigned security context labels. Data coming in through an input channel is tagged with the
channel’s security context and may only be loaded into the processor if the information flow policy
allows flows from the security context of the channel to the security context of the Principal of the
current process. No data may be written to an output channel unless the information flow policy
allows data to flow from the security context indicated by the datum’s tag to that indicated by the
I/O channel’s tag.

A principal may be authorized to temporarily replace itself with another principal as the principal
upon whose behalf the current process is running. We implement this with a hardware-supported
“role” stack. Using this mechanism, we can implement Role-Based Access Control [8, 23], – a
principal may take on any of a variety of “roles” (i.e. other principals), without ever having the
access-rights of more than one of those roles at a time. The role stack is also quite useful for logging
exactly which principals performed what actions in what roles.

2.4.2 The HEX Unit

The key to implementing all of this is to quickly compute the new tags of the PC and of the result
while checking that the current operation is consistent with information flow and access control
policies. We do this using a lookup table scheme that is supported by the TIARA hardware.

There have been several previous tagged computer systems that used tag bits to make the types
of data manifest at runtime. Going far back, the Burroughs 5500 and its successors, used 3 tag bits
(and a 48-bit address field) to encode a range of primitive data types; the Lisp machine [18, 7] used
a full 8-bit tag. (The Intel-432 and the IBM series 38 machines also employ tagging systems).

However, TIARA uses a completely novel approach that is considerably more flexible and that
deals with both data typing and security issues simultaneously. This is the the Hash Execution
(HEX) unit shown in figure 3. The HEX is a similar to a data cache or a TLB that operates on
tags (i.e. on the type and security context of the data). Under program control, certain fields of
the operands, the PC, and the instruction are identified as “tag bits” that encode data types, and
security context. The HEX extracts these bit-fields and hashes them into an address used to retrieve
data from a set of RAMs that act like an n-way set-associative cache. The data retrieved from the
cache contains a “trap flag” indicating whether the operation being attempted is prohibited; if so
the operation is aborted and the processor is dispatched to an appropriate error handling routine.
Otherwise, the information retrieved by the HEX includes the data type and security context of the
result; these are combined with the result produced by the ALU and stored back into the register
file. Similarly the updated tag of the PC is calculated and written back.

Like a cache, the HEX unit may miss; i.e. it might encounter a set of principal, tags and
instructions that it hasn’t yet seen. In this case it consults the Policy Table in main memory (just

9

as a TLB would consult the page table) loads the entry into its memory and then resumes. As
with other caches, the overhead of misses can be relatively large, but if the cache is of appropriate
size, then misses will happen infrequently. Part of the design effort will be to study the temporal
locality of the information managed by the HEX and determine appropriate sizes for its memories.

As an example, it is easy to see how

RAM

The HASHEX Unit

Hash

Program Counter

Result
Tag

Result Register

New PC
Tag

Trap Flag

Trap Vector
Index

OP1 Tag

OP 2 Tag

PC Tag

Op
Code

ALU

OP 1 OP 2

Register File

Address

Current Instruction
OP R1 R2 R3Tag

Instruction
Tag

= Hit?

Principal

Principal Register

Figure 3: Implementation of Tagged Data Path Using
HASH EXECUTION Units

multi-level security would be implemented
within this framework: The tag of each
operand includes a field that encodes the
security level of the data, while the HEX
lookup finds the maximum of the two
input tags and inserts that into the re-
sult. Thus, each data word automati-
cally takes on the highest security level
of all the input data. On a load oper-
ation the HEX would hash the security
tags of the object reference as well as the
principal register; if the principal regis-
ter contains a value lower than that of
the object reference, then a trap signal
is emitted, otherwise the operation pro-
ceeds.

The contents of the memories addressed by the HEX may be reloaded dynamically to support
varying needs of the computation. In particular, instituting a change in security policy on the fly
involves little more than flushing the HEX memories and swapping the pointer to the Policy Table.
These mechanisms are describe in more detail in the technical reports presented in [4, 3].

In figure 3 we show the conceptually simplest approach, which uses a single HEX unit. However,
in practice it may be more appropriate to use several different HEX units to lookup the individual
outputs, since this may lead to a more compact implementation and a higher hit rate. Part of our
hardware design task will involve analyzing these tradeoffs in order to fix on an appropriate design.
We will do this using both software simulation and prototype implementations in high performance
Field Programmable Gate Array (FPGA) technology.

2.4.3 Hardware Support for Garbage Collection

TIARA’s hardware must provide an object-oriented model of memory whose structuring conventions
may not be violated. Rather than leaving storage management up the programmer, with the
attendant risks of memory leaks and dangling pointers, TIARA instead provides for automatic, real-
time garbage collection of its memory. The idea that garbage collection is a fundamental service is
becoming widely adopted; for example, the Java Virtual Machine (JVM) and the Microsoft Common
Language Runtime (CLR) are both garbage collected environments.

During our experience with the Lisp Machine project we developed several simple hardware
features that allow the garbage collector to operate in real-time and that avoid any significant run-
time overhead. The TIARA hardware will provide similar facilities; these involve little more than
the ability to check each load or store operation for whether a word is a pointer data type (which
is provided by the TPU) and if so whether the address points into a distinguished area of virtual
memory. These hardware checks run in parallel with the normal load/store datapath and suffice to

10

erect the read-barrier and write-barrier of the GC algorithms that are documented fully in [17].

2.5 The Object Abstraction

The hardware features outlined above are the primitive building blocks for creating a software
abstraction layer in which 1) All of memory is regarded as consisting of objects with definite type,
extent and identity and 2) All operations performed on these objects are semantically meaningful
and consistent with the object types. Thus, raw pointers to arbitrary memory locations are replaced
by “object references”. The use of arbitrary operations on raw data is replaced by bounds and type-
checked semantic operations on structured objects. In particular, raw pointer arithmetic, buffer
overflows and the storing of data in arbitrary locations are impossible. This layer is referred to as
the Object Abstraction and it represents the base upon which a variety of software object models
(e.g. those of C++, Java, C#, Python, Aspect-J, or Common Lisp) may be constructed.

We will employ an object model that is a generalization of these specific object models and that
draws heavily on the ideas in CLOS [10] and Aspect-J [11]. The model provides for a class lattice
(i.e. multiple inheritance) and for multi-argument method dispatch (as is done in CLOS). This
supports a view that combines functional and object oriented programming: A function dispatches
to a method that is consistent with the types of its operands; if there are no applicable methods
then the application of the function to its arguments is illegal and traps. The HEX unit, described
above, efficiently supports method dispatch.

2.6 The System Software Layer

The System Software Layer is responsible for implementing the functionality provided by a conven-
tional operating system such as interrupt handlers, device drivers, trap handlers, management of
the physical hardware, resource allocation and scheduling, virtual memory management, persistent
storage, authorization and authentication.

In TIARA, each of these is implemented as an individual object with internal storage that
is isolated from other components of the operating system layer and that has extremely limited
privileges. For example, the scheduler maintains internal information about processor usage and
about the priority levels of both system and user processes; this information is inaccessible to other
system software components. Conversely, the scheduler has no privileges to access the internals of
processes; it cannot for example, read or modify the internal data structures of a process. Device
drivers, in particular have extremely limited access rights; they are given a standard object reference
with base and bounds that describes the block of memory that is be read or written. They have
no other ability to access memory and cannot overwrite storage at random. A major goal of our
design efforts will be to determine precisely what module boundaries make sense and what security
contexts are needed to enforce the contexts.

2.7 The Wrapper and Meta Control Layer

In addition to these basic features, our object model provides for a “Meta Object Protocol” (MOP)
in which classes are regarded as instances of other classes whose methods implement the basic
operations of the base classes (e.g. method dispatch, object creation). This layer also provides for
method combination (as in CLOS [10] and Aspect-J [11]); in particular this allows for “wrapper
methods” to be applied to base methods to implement the concerns of a distinct aspect such as
access control or data provenance tracing. Wrapper methods execute before and after the base
method and control whether the base method is executed at all. This allows us to construct a series
of more abstract software layers that provide for access control, flow monitoring and logging and

11

for self-checking and diagnosis.

Since classes are themselves objects, their behavior is described by another set of classes, com-
monly termed “Meta-Classes”. Methods on these classes control how normal classes behave; in
particular they describe how method combination and method dispatch is implemented. This al-
lows us to distinguish different classes of wrappers, such as those used by TIARA internally to
implement access and flow controls, from normal user level wrappers. In addition, the meta-level
allows us to control who is allowed to impose such wrappers, making the imposition of security-
oriented wrappers non-bypassable.

Wrappers are available as part of the toolkit of the application programmer; however, there
are a distinguished set of meta-level wrappers that are imposed by system software to implement
access controls and to track data provenance. Such wrappers are non-bypassable and access controls
imposed at the meta-object level restrict the use of such wrappers to processes executing with special
privileges. Since these access controls are ultimately enforced by the hardware, this allows us to
create a very strong base for security and provenance management.

2.8 The Access Control Layer

Using the object abstraction as a base, we can provide for the efficient enforcement of a variety of
access control policies. The outline of this is as follows: We associate with each process a stack of
“Principals”, where a principal represents the privileges extended to the current process; the process
may dynamically (and temporarily) assume a new principal, but it must authenticate itself to do
so. All operations on data are ultimately performed by dispatching to a method based on the data
type and security contexts of the operands. TIARA extends this notion to include the principal
in the method dispatch. Thus a method is dispatched to only if the privileges of the Principal are
consistent with the data types of the operands; otherwise an illegal operation is signaled. Role-based
access control systems (and a variety of other access control schemes) are easily mapped into this
framework: The role is encoded in the Principal; The type hierarchy is encoded in the object-type
lattice; The operation type is encoded in the method-name. In our model, the MOP and its use
of meta-classes and wrapper methods allows us to simultaneously implement a variety of access
control policies. Furthermore, these are all implemented through method dispatching and this is
efficiently supported by the HEX hardware.

In many ways, TIARA is similar to a capability architecture [19, 15, 9, 25]. However there is an
important distinction. Capability systems mix together an object reference with the set of access
rights; thus, when a process transmits a capability from one component to another, it transmits not
only knowledge of the referenced component, but also a set of rights to access that component in
particular ways. This leads to problems with managing revocation of privileges and with controlling
the amount of privilege that is delegated. Although there are ways of dealing with these issues in
appropriately structured object oriented capability systems [16], in our view these impose unneeded
complexity.

TIARA separates knowledge of an object (which is carried in a normal object reference) from
rights to access that object (which is represented in the Principal Register of a process). One can
think of this in terms of Lampson’s notion of an access control matrix [12], which uses one dimension
to represent Principals and the other other to represent Objects. Each cell of the matrix represents
the access rights of a principal and to an object. Capability system cut this matrix up into columns
while Access-control lists cut it up into rows. TIARA, instead, operates on the matrix directly,
since it represents the principal separately from the objects that are being accessed.

12

2.9 The Plan Layer

The Plan Layer is responsible for monitoring whether a process is behaving as intended; the design
of this layer derives from our work on the AWDRAT [26] system within the DARPA SRS program.
This layer is driven by an abstract model, or Plan, of the intended computation; this consists of a
hierarchical block diagram of the computation, annotated with data- and control-flow links between
the components and Pre- and Post-conditions around each component. This abstract description
drives the synthesis of wrapper methods that are used to gather information on entry and exit
from the relevant computational components and to check that this information is consistent with
the constraints of the Plan. The previous layers check that every operation is permitted and
semantically meaningful within its local context; this layer checks that the global constraints of the
computation are respected. In addition, the plan layer is responsible for capturing and provisioning
redundant copies of data to support recovery from attacks. This backup data is used by the plan
layer, together with its model of the computational process, to facilitate the reconstitution of a
consistent state of the computation from which the computation may proceed.

2.10 The Data Provenance Layer

The Object layer guarantees that only semantically sensible operations may be performed; the
Access Control layer strengthens the guarantee to rule out operations that are inconsistent with
access policies.

The data provenance layer provides for accountability by tracking how the current state of each
object is dependent on the state of other objects. The HEX hardware performs the most basic part
of this operation since it performs fine-grained “tainting” of data (e.g. it maintains the security
context for each individual word). At a higher level, the data provenance layer builds links that
connect an object to those other objects that were used in computing its current state. These links
represent dependencies and the dependencies form a network similar to those of “Truth Maintenance
Systems” (TMS) and Bayesian networks used in Artificial Intelligence.

These capabilities, like those of the Access Control layer, are implemented by wrapper methods
that work in tandem with the hardware’s HEX units.

2.11 The Application Substrate Level

The Application substrate level provides a variety of services that are supported by the dependency
network built by the data provenance layer. As mentioned in section 2.10 this dependency network
is similar to the data structures of a Truth Maintenance System (TMS). One of the key capabilities
provided by a TMS is “assumption retraction” which invalidates all statements that depend on an
abandoned assumption. The equivalent operation for the application substrate Layer is performed
whenrp some datum is identified as having been corrupted by an attack; at this point the Data
Provenance dependencies are traced to identify all data whose current state was derived from the
corrupted datum and to mark these data as untrusted.

The dependency network is also similar to the data structures of Bayesian networks and it is
used for probabilistic reasoning. The Data Provenance layer dependency network can also be used
to support such reasoning: Each raw observation, whether it comes from sensor data or from human
sources, is accorded a degree of trust, represented as a probability. For each step in the processing
of intelligence data, the data provenance layer builds a link in its dependency network which can be
interpreted a stating how the trustworthiness of the conclusion depends on the trustworthiness of
the inputs as well as on the reliability of the interpretation step itself. Bayesian inference algorithms

13

in the application substrate layer estimate the trustworthiness of the final conclusions (including
competing conclusions) and update these estimates when the estimated reliability of any input
changes.

The final service provided by the application substrate layer is the ability to identify all elements
of an Active Briefing Book document that exceed the privileges of the current viewer of the document
and to aid in the downgrading of these elements. For example, high resolution imagery can be
“deres’d” to make it viewable at a lower classification level; other information may need to be
excised. Because the application substrate layer has the ability to examine the security-context
tags maintained by the hardware it can easily identify these elements.

3 Application Context

We will demonstrate how these facilities can be used to build a collaborative intelligence processing
substrate and we will use this demonstration to evaluate the effectiveness of the TIARA architecture
for providing non-bypassable access control and accountable information flow.

The TIARA platform enables the construction of a new form of intelligence document that we
term an Active Briefing Book; this is a document that provides for viewing at multiple levels of
abstraction, for interactive drill-down, and (most importantly) for the tracing of every conclusion of
the document to the computations, people and raw data from which it was derived. The elements
of an Active Briefing Book are not just text or images (although they can certainly be presented
as such) but rather active objects embodying the chain of reasoning that leads to the document’s
conclusions as well as to opposing interpretations. Elements of the document are constructed
collaboratively: raw data from sensors and human sources are routed to NIC analysts with relevant
areas of interest and responsibility and with levels of clearance allowing them to view the data.
The analysts invoke a variety of tools to process the data and make personal judgments about the
significance and impact of the processed data. These are captured as new document elements by the
application substrate and annotated with new dependency information linking the interpretations
to the source data, the computational processes and the analysts that contributed to the interpreted
data. This interpreted data is then routed to other analysts for further processing and interpretation.

Because every conclusion of such a document is linked to its underlying raw data, computations,
and human interpretations, any element of the document may be revoked if the source, reasoning
process or computational processes involved are found to be incorrect, untrustworthy or corrupted.

4 Design Summary

The TIARA architecture maintains security tags and dependency chains not just for application
data, but also for all of its own resources: Changes to system or application software are tracked
and linked to their sources as well as to the individuals and computational processes involved.
Furthermore, such changes are strictly constrained by pervasive access and flow control policies.

This has several beneficial consequences:

• A TIARA system is highly secure; the normal means of subverting computer systems (e.g. writing
beyond an object’s bounds, overwriting stack contents by violating stack abstraction...) are not
available to an attacker.
• Even if the computer system is successfully compromised, the consequences of that compromise

are traceable and revocable.
• Insider attacks are discouraged; even if an insider possesses the means and motives to subvert

the system, he will be unlikely to do so if he know that his actions are likely to be traced and

14

that he is likely to be held accountable.
• Declassification and downgrading of documents is transformed from a human-intensive process

to a semi-automatic one.
• Because every element of the document is tagged with its provenance, it becomes possible to auto-

matically prevent highly secure elements from being seen by those lacking appropriate clearances
or privileges.

References

[1] John Barkley. Implementing role-based access control using object technology. In First ACM
Workshop on Role-Based Access Control, November 30 – December 1 1995.

[2] D. E. Bell and L. J. LaPadula. Secure computer system: Unified exposition and multics
interpretations. Technical Report Tech. Report MTR-2997, MITRE Corp., July 1975.

[3] Jeremy Brown, J.P. Grossman, Andrew Huang, and Jr. Thomas F. Knight. A capability
representation with embedded address and nearly-exact object bounds. Technical Report Aries
Project Technical Report 5, MIT AI Lab, April 2000.

[4] Jeremy Brown and Jr. Thomas F. Knight. A minimal trusted computing base for dynamically
secure information flow. Technical Report Aries Project Technical Report 15, MIT AI Lab,
Novemeber 2001.

[5] D. E. Denning. A lattice model of secure information flow. Communications of the Association
of Computing Machinery, 19(5):236–243, May 1976.

[6] P. J. Denning. Fault tolerant operating systems. Computing Surveys, 8(4):359–389, December
1976.

[7] C. Baker et al. The symbolics ivory processor: a 40 bit tagged architecture lisp microprocessor.
In Proceedings of the 1987 IEEE International Conference on Computer Design, pages 512–515,
October 1987.

[8] David F. Ferraiolo and D. Richard Kuhn. Role-based access controls. In Proceedings of the
15th NIST-NSA National Computer Security Conference, October 13–16 1992.

[9] A. H. Karp, R. Gupta, G. J. Rozas, and A. Banerji. Using split capabilities for access control.
IEEE Software, 20(1):42–49, January 2003.

[10] S. Keene. Object-Oriented Programming in Common Lisp: A Programmer’s Guide to CLOS.
Number ISBN 0-201-17589-4. Addison-Wesley, 1989.

[11] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of aspectj. In Proceedings of the 15th European Conference on Object-
Oriented Programming, pages 327–353, 2001.

[12] Butler W. Lampson. Protection. In Fifth Princeton Symposium on Information Sciences and
Systems, pages 437–443, March 1971. (reprinted in Operating Systems Review, 8,1, January
1974, pp. 18 - 24).

[13] Butler W. Lampson. A note on the confinement problem. Commun. ACM, 16(10):613–615,
1973.

[14] Carl E. Landwehr. Formal models for computer security. ACM Comput. Surv., 13(3):247–278,
1981.

[15] H. Levy. Capability-Based Computer Systems. Digital Press, 1984.
[16] M. Miller, K. Yee, and J. Shapiro. Capability myths demolished, 2003.
[17] David A. Moon. Garbage collection in a large lisp system. In Proceeding of the ACM Conference

on Lisp and Functional Programming, pages 235–246, 1984.

15

[18] David A. Moon. Architecture of the symbolics 3600. In Proceedings of the 12th Annual Inter-
national Symposium on Computer Architecture, pages 76–83, 1985.

[19] A. S. Tanenbaumand S. J. Mullender and R. van Renesse. Using sparse capabilities in a
distributed operating system. In Proceedings of 6th International Conference on Distributed
Computing Systems, pages 558–563, 1986.

[20] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.

[21] E.I. Organick. The MULTICS system: An examination of its structure. The MIT Press, 1972.
[22] Jerry H. Saltzer and Mike D. Schroeder. The protection of information in computer systems.

Proceedings of the IEEE, 63(9):1278–1308, September 1975.
[23] R. S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control models.

IEEE Computer, 29(2):38–47, 1996.
[24] Michael D. Schroeder and Jerome H. Saltzer. A hardware architecture for implementing pro-

tection rings. Communications of the ACM, 15(3), March 1972.
[25] J. S. Shapiro, J. M. Smith, and D. J. Farber. Eros: A fast capability system. In Proceedings of

the 17th ACM Symposium on Operating Systems Principles, pages 170–185, December 1999.
[26] Howard Shrobe, Robert Laddaga, Robert Balzer, Neil Goldman, Dave Wile, Marcelo Tallis,

and Tim Hollebeek. AWDRAT: A Cognitive Middleware System for Information Survivability.
In Innovative Applications of Artificial Intelligence. AAAI Press, July 2006.

16

