
A MATHEMATICAL PROGRAMMING TECHNIQUE FOR SCHEDULING COURSES
AT THE SLOAN SCHOOL

by

Richard C. Ocken

B.A., University of Pennsylvania
(1983)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE IN MANAGEMENT

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1987

) Richard C. Ocken 1987

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis document in whole or
in part.

Signature of Author:

Certified by:

Accepted by:

Alfred P. Sloan pchool of Management
May 15, 1987

C Charles H. Fine
Thesis Supervisor

V No

I v0 Jeffrey A. Barks
Associate Dean, Master's and Bachelor's Programs

A MATHEMATICAL PROGRAMMING TECHNIQUE FOR SCHEDULING COURSES
AT THE SLOAN SCHOOL

by

Richard C. Ocken

Submitted to the Alfred P. Sloan School of Management
on May 15, 1987 in partial fulfillment of the requirements

for the Degree of Master of Science in Management

ABSTRACT

Many schools and universities have been able to
schedule resources more efficiently by using formal
mathematical models. The course schedules generated by such
models may be preferred by all of the school's major
constituencies: faculty, students, and the administration.

This thesis describes the development of a mathematical
programming model used to schedule courses at the Sloan
School. The available literature on the general timetabling
problem is reviewed to determine the applicability of the
various methods to the Sloan School problem. A Decision
Support model based on linear programming techniques is
developed. That model is distinguished from many of the
others in the literature by its completeness.

Alternative schedules are generated for the actual
Fall, 1987 semester. The best model-generated alternative
is shown to be apparently superior to the one generated by
the existing manual process. Means of comparison include an
improvement in faculty satisfaction and the avoidance of
conflicts between courses likely to have a high degree of
overlap in student demand. I conclude that the model
represents a viable approach to course timetabling at the
Sloan School and I discuss recommendations for the next
steps required to implement it more formally in the future.

Thesis Supervisor: Dr. Charles H. Fine

Title: Assistant Professor of Management Science

PREFACE

I would like to acknowledge the assistance and advice
provided me by members of the Sloan School Faculty and
Administration. Professor Charlie Fine provided the
inspiration for the project, and I have benefited from his
comments on my ideas and text. Professor Rob Freund helped
me with some specific mathematical issues. Finally, I
benefited from Professor Tom Magnanti's suggestions and
political support for the survey sent to the faculty. I
would like to thank all three of them for giving me so much
of their time during my work on this project.

Two members of the Sloan School Administration, Hillary
deBaun and David Weber, were particularly helpful in
providing an understanding of the current process and
policies, as well as the data for the actual test run. I
would like to thank them, as well as Associate Dean Jeffrey
Barks, for their help and suggestions during the project.

Other people I would like to thank include: all of the
members of the Sloan Faculty and Class of 1988 who
cooperated by returning the surveys I distributed; my
friends at Consultants for Management Decisions for allowing
me to use their laser printing facilities; and, most
importantly, all of my other friends and family who have
provided personal support throughout my work on this project
and during my years at Sloan.

Graduations are called Commencements because they
represent a beginning. In that spirit, I would like to
dedicate this thesis to the members of the next generation
of students in my family, my niece, Julie Ann Ocken, and my
nephew, Adam Russell Schrage.

CONTENTS

Section Title Page

I. Introduction 6

II. The Sloan School Timetabling Problem 9

A. Overview of the Sloan Context 9

B. The Current Process 11

C. Impetus for a New System at Sloan 14

D. Model Scope 16

III. Approaches to Timetabling in the
Literature 21

A. The Formal Timetabling Problem 21

B. Graph Coloring Techniques 27

C. Heuristic Approaches 27

D. Mathematical Programming Techniques 38

IV. The Detailed Formulation of the
Sloan School Timetable 49

A. The Mathematical Programming Model 49

B. Issues Raised by the Formulation 69

V. Solution Technique for the
Sloan School Timetable 85

A. Conceptual Issues and Discussion 85

B. Implementation of the Prototype 91

C. Empirical Success 93

CONTENTS, (continued)

Title

A Test Case: The Fall, 1987 Schedule

Semester-Specific Model Parameters

Model Runs

Comparison of the Model-Generated
Schedule (Run 2) to the Manually-
Generated Schedule

Concluding Comments

Conclusions and Potential Next Steps

Model Development

The Scheduling Process

APPENDICES

A.

B.

C.

D.

E.

F.

Faculty Survey

Student Survey

Program to Compile Results of
the Student Survey

Summary of Model Formulation

Assignment of Sections to Offerings

GAMS Model and Documentation

REFERENCES

PageSection

VI.

A.

B.

C.

D.

VII.

A.

B.

95

95

102

114

118

121

122

128

131

140

146

174

184

191

212

I. Introduction.

Schools at all levels face a timetabling problem in

assigning their resources (faculty, classes, and rooms) to

weekly schedules. Recent developments in timetabling

techniques and computer technology have permitted schools to

schedule their resources more efficiently by using formal

models embodied in computer systems. (Sabin and Winter

(1983) and de Werra (1985)). Potential benefits could

include the generation of schedules that are:

- Preferred by the faculty in terms of time

assignments, smoothness of load, and so on;

- Preferred by the students in terms of less

classroom overcrowding and fewer time conflicts between

courses that may have a high degree of overlap in student

demand;

- Preferred by the administration in terms of a

more efficient use of physical resources, achieved by

matching courses to rooms close in size.

In this thesis, I describe the application of a

specific mathematical programming technique to the

timetabling problem at the Sloan School of Management at

MIT. A Decision Support model based on linear programming

techniques is developed. This model is shown to be useful

in helping a human scheduler balance preferences and

interests across and within the various constituencies.

Alternative schedules are generated for an actual problem.

These alternatives are apparently superior to the schedule

developed by the existing manual process. I conclude that a

computerized approach to timetabling is viable for the Sloan

School and I make suggestions for its formal implementation.

Finally, it should be noted that while I have focused mainly

on the specific problem at the Sloan School, my methodology

is applicable to timetabling problems at other schools or in

other scheduling contexts.

My thesis is organized as follows. Section II provides

a description of the Sloan School problem, in terms of the

political context, the current process, the impetus for the

development of a new system, and the agreed-upon model

scope. Section III discusses approaches to timetabling

problems described in the Operations Research literature and

evaluates the applicability of these approaches to the Sloan

School problem. Section IV presents a detailed formulation

of a mathematical programming model of the Sloan School

timetable and discusses some issues raised by that

formulation. Section V discusses my solution technique and

my prototype implementation of that methodology for the

Sloan School problem. Section VI describes an actual test

case of that model for the Fall, 1987 schedule. In

particular, the schedules generated by the model are shown

to be apparently superior to the one generated by the

existing manual process. Finally, Section VII presents my

conclusions and suggestions for next steps in formally

implementing the model.

There are six appendices to this thesis. They are

listed in the contents and are referred to in the text at

the appropriate times.

II. The Sloan School Timetabling Problem

II.A. Overview of the Sloan Context

The Sloan School of Management at MIT offers courses in

several programs: Masters', PhD, Bachelors', Sloan Fellows

(a one year Masters' program for managers), and Management

of Technology. Most of these courses share room and faculty

resources and some of the courses in the different programs

may have students cross-registered among them. In addition,

the School shares facilities with other departments at MIT.

MIT policy to date has been to allow the Sloan School first

priority to schedule courses in the rooms in its own

buildings. However, to the extent that other departments

may require some of the room facilities in the Sloan

buildings, MIT as a whole is better off if Sloan designs its

schedule to utilize its room facilities most efficiently.

The masters' program is the largest and most complex to

schedule since it has the most students (approximately 200

per class in each of two classes) and the most courses

(students in other programs meet some of their requirements

by taking masters' courses). In addition, students in the

masters' program spend only two years at the school, one of

which is largely dedicated to required (CORE) courses.

Thus, the students may have only one or two opportunities to

take certain elective courses during their time at Sloan.

The students' problem is complicated by the fact that they

must fulfill requirements for a concentration in a given

field (e.g., Operations Management, Finance, etc.). Most of

the concentrations require a student to take two or three

elective courses in that field. Some of those electives may

be specified; others may be selected by the student from an

approved list.

Most courses at the school meet three hours per week in

two 90 minute sessions. Sloan School policy has been,

wherever possible, to schedule courses within one of eight

standard time slots during the week (Monday and Wednesday

or Tuesday and Thursday; 9:00 to 10:30 AM, 10:30 AM to 12

Noon, 1:00 PM to 2:30 PM, and 2:30 to 4 PM). However, there

are certain exceptions to this policy. First, faculty

members may choose to schedule courses at off hours on

Fridays or in the evenings. These courses tend to be small

seminars and there has never been any problem scheduling

courses at such times in the past, if the faculty member so

desires. Second, some of the CORE courses may meet in

certain non-standard formats. Such formats may include an

additional session on Fridays and/or a course duration of

only a half semester. These complications will be discussed

in greater detail in Section IV, below. Third, faculty

members may desire certain courses to be taught in one

continuous three hour session. If such a course were to be

scheduled fully within the standard hours, it would, in

effect, consume two of the eight standard time slots, both

from the students' as well as a facilities perspective.

Sloan School policy has been to try to schedule these

courses to begin at 2:30 PM so that the second 90 minutes

would occur during off hours. In this way, the students

involved would not lose a second standard slot by taking the

course and additional room capacity would not be consumed

during the peak times.

II.B. The Current Process

II.B.1. Sloan Fellows Courses

The Sloan Fellows program is designed to fit

tightly into its one year time frame. In general, the

program is scheduled independently of the other programs at

the school, although certain faculty members may teach and

some students may take courses in the Sloan Fellows program

as well as in others. However, for most of this project, I

have taken the schedule for the Sloan Fellows program as a

given around which the other courses must be scheduled. Any

exceptions to this assumption will be stated explicitly.

All other courses in the school can be considered as

belonging to one of two groups: Masters' CORE courses; and

electives (including Masters', PhD, Bachelors' and other

courses).

II.B.2. CORE Courses

In conjunction with a subset of the faculty

responsible for the CORE, the Sloan School administration

schedules the CORE courses on a centralized basis.

Currently, the first year students are divided into 12

sections (A through L). In each of the two semesters of the

first year, the students are required to take seven courses,

some of which may meet for only a half semester. The

courses meet in various sizes, ranging from two sections

(approximately 30 students) to six sections (approximately

90 students) meeting together at one time. (Grouping of

sections will be discussed in Section IV, below). While

faculty members teaching the CORE courses have some degree

of input regarding their time preferences, the central

administration has ultimate scheduling authority since each

first year section must be guaranteed a feasible schedule,

i.e., one in which the students in each section can attend

all of their required courses without conflict. Faculty

preferences are generally known, however, and the

administration does try to accomodate them where possible.

II.B.3. Elective Courses

The current scheduling process for all other

courses (electives) is a somewhat decentralized, manual

process. The school is divided into three Areas (e.g.,

Management Science), each of which is subdivided into an

average of five Groups (e.g., Operations Management). The

current process is decentralized in the sense that decisions

regarding which courses will be taught and at what times

they will be taught are made at the group level by the

individual faculty members involved. The administration

serves mainly to collect the data and to make sure that

sufficient room resources are available. Thus far,

sufficient room capacity has been available in that the

administration always has been able to assign each course to

a room. However, many large courses have been assigned to

small rooms due to a shortage of the larger rooms at certain

popular times. The results have sometimes included

overcrowding, students dropping courses they would have

taken but for the room size constraints, and/or forced

restrictions on class size by the faculty member using

lotteries, etc. In addition, the manual nature of the

system makes the process of accomodating changes in the

schedule difficult for the administrative staff responsible

to implement such changes.

One should note that decentralization of the scheduling

function and the resulting large degree of faculty automony

is a deep-seated tradition at Sloan and at MIT as a whole.

Faculty members have an extraordinary amount of say

regarding their elective teaching schedules, in terms of

which courses they teach and when these courses will be

taught. Several studies (e.g., Sabin and Winter (1986),

McClure and Wells (1986), etc.) have documented potential

benefits of computerized scheduling systems in many academic

environments. Such benefits may include more efficient use

of resources, improved response time to changes, smoother

schedules, and so on. These and other potential

opportunities may exist at Sloan as well. However, the

school's culture implies that in order for any new

scheduling system (computer or manual) to be successfully

implemented, it must first be widely accepted by the

faculty. In turn, this requirement means that the system

will have to continue to allow the faculty members to have a

great deal of input into their scheduling assignments.

II.C. Impetus for a New System at Sloan

Students at the Sloan School are not directly involved

in the process of planning course timetables. In

particular, course schedules are presented to the students

without any formal attempt to ascertain which course pairs

are likely to have a significant degree of overlap in

student demand. While there is presumably some coordination

by faculty at the group level to avoid potential student

conflicts, there is little formal coordination across

groups. Thus, many students concentrating in Management

Information Systems (MIS), say, may wish to take a course in

Technology Strategy (offered by the Strategy Group).

However, if the Strategy and MIS groups fail to coordinate

(which may be likely since they are not even in the same

Area), their offerings may be scheduled in conflict. Again,

since Sloan Masters' students have only one year to devote

to electives, they may have only one opportunity to take

these courses. Thus, if the courses are offered

concurrently, students may be precluded from taking both

during their time at the school.

The Sloan School administration would like to be able

to improve the scheduling process so as to decrease or

eliminate time conflicts between courses that have a high

degree of potential overlap in student demand. However, the

current process for scheduling electives does not give the

faculty members the means or incentives to be flexible in

their time requests. That is, the current process asks the

groups only for the one time desired for each course. As a

result, courses tend to be scheduled largely by inertia,

that is, by scheduling them at the same time as last year.

In fact, many faculty members may be relatively flexible or

even indifferent with regard to their time preferences.

Meanwhile, the manual nature of the process ensures that by

the time the schedule is published, it is too late to make

major changes without affecting many other students and

faculty.

II.D. Model ScoRe

II.D.1. Political Realities and Boundary

Conditions.

I have begun to discuss some of the political

aspects of the scheduling process above.. In this section, I

will summarize four key political constraints on the

development of any new scheduling system, computerized or

otherwise.

i. Faculty Input.

While MIT and Sloan faculty members are presumably

comfortable with the application of quantitative methods and

computer technology to management problems, they are still

used to a scheduling process in which they have a great deal

of input and control. Hence, they are likely to reject any

new system that is perceived to be characterized by some

16

omnipotent scheduler (computer or human) that has ultimate

authority over their teaching assignments. Such a system

would be very much in conflict with the culture at Sloan and

at MIT in general. Thus, any new scheduling system will have

to include significant facilities to accomodate faculty

input and preferences. Furthermore, the soft nature of the

process implies that ideally, the system should be conceived

and implemented as an aid to a decision maker (Decision

Support System) as opposed to a single pass "black box".

ii. System Flexibility.

A fact of life at Sloan is that changes are frequently

made to expected schedules due to new course offerings,

visiting faculty, and so on. Any new system will have to be

flexible enough to allow for incremental changes and

frequent revisions and runs ("scenarios").

iii. Student Preregistration.

Another deep-seated Sloan/MIT tradition is the policy

of allowing students a great deal of flexibility in dropping

and adding courses. Students may add courses to their

schedules up to five weeks into the semester, and drop them

up to three weeks before the end of the semester. As a

result, the administration can not hold students to their

stated preregistration preferences. In turn, this policy

implies that the faculty may tend to be less willing to

rearrange their own schedules solely to minimize expected

student conflicts calculated from data based on student

preregistration requests.

iv. Skewed Demand for Courses.

Certain courses and faculty members are extremely

popular at Sloan. Some of the most popular electives may

draw nearly half of the second year class. Other faculty

members often try to avoid scheduling their courses opposite

such other courses, no matter what a scheduling system might

say.

II.D.2. Actual Model Scope.

In deciding on an appropriate scope for the

prototype model developed in this thesis, I considered all

of the factors and characteristics of the process as

discussed above. The actual model scope presented below was

agreed upon by the relevant members of the administration as

well as by certain key faculty leaders.

The model is essentially a vehicle for assigning given

course offerings to rooms and times. That is, the faculty

18

groups will continue to decide which courses will be offered

and who will be responsible for teaching those courses. The

model will not choose the courses to be offered nor will it

make endogenous assignments of faculty to course offerings.

Within this general framework, the model will consider

courses and time as follows:

i. Time Slots.

The model will consider only those courses that will be

offered during one of the eight standard time slots as

described above. It will assume that sufficient capacity

and flexibility are available for courses scheduled during

off hours. The model will schedule those courses offered

within the standard week but in non-standard formats. A

detailed discussion describing how such courses will be

handled is given in Section IV.

ii. Courses.

The model will schedule all of the courses in the

following programs: Masters' (CORE and elective); PhD; and

Bachelors'. The model will take the Sloan Fellows courses

as given. The reader may note that although the model is

formally responsible for scheduling the PhD courses, in

general such courses can be scheduled whenever the faculty

19

member desires. This result stems from the fact that such

courses tend to be smaller and thus pose fewer problems with

regard to student conflicts and room availability. (Sloan

generally has plenty of seminar rooms available.) With

regard to three hour seminar courses, as a first pass the

model will schedule such courses at 2:30 PM. Manual changes

can be made afterward.

A detailed formulation of the Sloan School model will

be given in Section IV. However, before delving into the

details of that model, I will first describe approaches to

the timetabling problem that have been proposed and reported

on in the Operations Research literature.

20

III. Approaches to Timetabling in the Literature

Several different approaches to the timetabling problem

have been proposed and reported on in the Operations

Research literature. This section is not meant to be a

comprehensive discussion of the literature; it serves only

to give the reader a broad understanding of the range of

past work. However, since I have borrowed ideas from some

of these works in developing a prototype system for the

Sloan School, it is important for me to describe the

relevant aspects of these approaches, albeit briefly. If

the reader desires a more comprehensive survey of

timetabling, he is referred to the bibliographies of

de Werra (1985) and Schmidt and Strohlein (1979).

III.A. The Formal Timetabling Problem

In order to facilitate the discussion of the literature

and potential applications to the situation at the Sloan

School described in Section II, I will, for future

reference, first specify the general form of the

timetabling problem. The problem can be formulated in the

following way.

Suppose there are i = 1,..,I courses to be scheduled in

j = 1,..,J different time periods. (For simplicity assume

that the time periods are defined so that each course is

assigned to only one slot.) Then we can define variables x

such that:

xij = (1 if course i is assigned to time j;

{ 0 otherwise;

Let Ir = set of courses that are compatible with room

type r (e.g., sufficient capacity);

If = set of courses taught by faculty member f;

Is = set of courses to be taken by class

(i.e., section) s;

cii = a measure of the desirability of assigning

course i to time j (e.g. faculty "utility");

N{r)j = the number of rooms of type r available at

time j;

22

Then the formal problem is:

max . cijxij (1)

such that xij = 1 all i, (2)

Sxij <= N(r)j all j,r (3)

xij <= 1 all j,f (4)

C xij <= 1 all j,s (4)

It is instructive to discuss the formulation and its

underlying assumptions in some detail. The objective term

(1) is a measure of the total satisfaction derived from the

schedule, defined as the sum of individual utility

contributions cij. Now, the Arrow Impossibility Theorem

demonstrates that no group (social) utility function can be

designed so as to meet several basic (and reasonable)

criteria: nondictatorship, Pareto criterion, etc. (See,

e.g., Graham (1980) or any other welfare economics text.)

The problems lay in the comparisons of individuals' utility

functions: should every individual receive an equal

weighting; how can one individual's rating be compared to

another's, etc. Utility theory assumes that utility

functions are ordinal only and that cardinal values can not

be assigned to bundles of goods. Thus, it is impossible to

compare or add different individuals' utility functions.

Still, for lack of a better method, developers of most

timetabling models do tend to use an additive choice

utility function. That is, the total satisfaction produced

by a timetable is defined to be the (unweighted) sum of the

individual utilities of the relevant players.

Constraints (2) guarantee that all courses are assigned

to one slot j during the week. I assume for purposes of

this discussion that the j's have been defined as slots so

that each class need only be assigned one slot during the

week. (e.g., Monday and Wednesday, 9:00 to 10:30.) If

courses were to be assigned a variable number of hours, the

constraints would be the same except that the right hand

sides would be the appropriate number of hours required by

each course.

Constraints (3) ensure that room capacity constraints

are met. I have assumed that the rooms are grouped by size

(or available equipment) into R groups (Mulvey, 1982). This

assumption is appropriate if the rooms can be grouped into

like categories. An alternative approach would be to

maximize the number of filled seats such that all classes

can fit in the rooms they are assigned. As we shall see in

Section IV, rooms at the Sloan School can be roughly grouped

into four size categories so that the grouping method is

appropriate. For a discussion of the alternative treatment,

the reader may consult Glassey and Mizrach (1986) or

Mulvey (1982).

It is significant to note that equations (2) and (3)

define a unimodular matrix. Thus, by the integrality

property of networks, (Bradley, Hax, and Magnanti (1977)),

the application of the traditional simplex method to those

equations will yield an integer solution. In particular,

equations (2) enforce the upper bound of 1 on each variable

xij so that the simplex method will yield an appropriate

binary solution. However, in reality most timetabling

problems have additional resource constraints such as (4)

and (5) which complicate the network. Thus, the simplex

method cannot be guaranteed to yield an integer solution and

specific integer programming techniques must be used. (A

more detailed discussion of these issues will be given in

Section III.D.)

Constraints (4) and (5) ensure other typical facets of

25

schedule feasibility. Constraints (4) guarantee that no

faculty member will be scheduled to teach more than one

course at any given time. Similarly, constraints (5)

guarantee that no group of students (a section) will be

required to take more than one course at one time. Such

constraints may not exist for an undergraduate program, say,

where students are not grouped into specific sections.

However, most graduate programs (e.g., law, business, etc.)

do use some kind of a section system with various required

courses. As discussed in Section II, the Sloan CORE program

does divide students into sections which take required

courses together.

Finally, we should recognize that the formulation

presented above represents only the minimum requirements for

schedule feasibility. Other constraints could exist. For

instance, we might wish to include constraints to ensure

that no faculty member teach back to back, that two courses

i and i' must (not) be taught on the same day, etc. Section

IV will present the detailed formulation for the Sloan

School timetable, which will include these and other

constraints.

For purposes of the following discussion, I have

grouped the past work on timetabling into three broad

26

categories: Graph Coloring Techniques; Heuristic

Approaches; and Mathematical Programming Techniques. The

following sections discuss each of these categories of

approaches in turn.

III.B. Graph Coloring Techniaues.

de Werra (1985) discusses the application of graph

coloring techniques to the timetabling problem and provides

a fairly comprehensive bibliography. He also reports

examples of some successful experimental results. However,

while these techniques may be promising, the method is

beyond the scope of this paper and will not be discussed

further. The interested reader is referred to de Werra's

article and the bibliography contained therein.

III.C. Heuristic Approaches.

Many different heuristics have been designed to solve

specific timetabling problems. The approaches vary greatly

in terms of complexity, generally as a function of the

specific problem addressed. I will discuss three actual

examples of heuristics that have been reported and then make

some concluding comments regarding their use. However, to

anticipate that discussion, I will state my three chief

conclusions up front:

27

1. Heuristics are generally designed for specific

problems. Hence, it may be difficult to generalize a given

heuristic approach to other situations.

2. Heuristics are usually implemented on a stand-

alone basis and thus may not benefit from advances in other

theories, codes, etc. (Mulvey, 1982).

3. Heuristics may yield solutions that are inferior to

those obtained through a more direct optimization approach.

For example, Tripathy (1980) applied mathematical

programming techniques to a problem reported by Barham and

Westwood (1978). Tripathy's results represented a

significant improvement over those obtained by the original

authors who used a heuristic.

The three examples of reported heuristics I will

discuss are: Glassey and Mizrach (1986) at the University

of California at Berkeley; Barham and Westwood (1978) at

Manchester Business School; and Romero (1982) at the

Polytechnical University in Madrid. For each example, I

will briefly outline the authors' approach and discuss the

applicability of that approach to the Sloan School problem.

III.C.1. Glassev and Mizrach (1986)

Glassey and Mizrach (G&M) were faced with a huge

28

timetabling problem at the University of California at

Berkeley. They were attempting to assign some 4000 classes

to 250 rooms, given meeting times for the classes provided

by 80 departments. G&M assumed that half of the rooms could

be feasible for each course. Thus, a direct formuation as

an integer program would have required approximately (4000 *

250 * 1/2) or a half million binary variables. (Each

variable xij equals one if course i is assigned to room j;

it equals zero otherwise.) G&M further estimated that the

problem would have approximately 25,000 constraints.

Apparently, decomposition by department or day/time was not

possible due to the existence of "non-standard" time

requests, restrictions on the number of courses each

department was allowed to have in "prime time", and other

policy considerations.

This problem is clearly too large to be solved directly

as an integer program using, say, branch and bound.

Moreover, since departments submit their time requests

independently, a feasible solution may not even exist to the

problem in any given semester. Thus, G&M aimed to develop a

heuristic approach which would allow the Berkeley

administration to:

1. Quickly determine which time slots would be

infeasible due to insufficient room capacity (so that the

affected departments could modify their requests); and

2. Get a rough first pass at a schedule for rooms that

would account for most (if not all) of the courses. (If

necessary, any "left-over" courses could be dealt with

afterward on a manual basis.)

G&M developed a function to assign a "cost" to each of

the binary variables. The function included three types of

costs: the professor's walking distance from the

department's home office to the classroom; a penalty for

underutilized facilities (such as assigning a class to a

room with video capabilities when that class does not need

such facilities); and, a penalty for empty seats. These

costs were standardized according to the policymakers'

utility functions. (E.g., "y" empty seats were determined to

cost the same as a walking distance of "z" yards, etc.)

G&M acknowledge the problem of trading off these

multiple objectives but, for lack of any better approach,

have designed their heuristic to minimize the total cost of

the schedule. The heuristic's strategy is to "solve the

hardest remaining problem next". First, the model

determines the time slot with the highest (remaining)

demand/supply ratio. Within that time period, it iterates

around a "greedy algorithm" which assigns classes to the

30

lowest cost room available. The iterations allow for three-

way interchanges which would decrease total cost. Finally,

after completing the current time period, the heuristic

starts over with the next period, etc.

Apparently, G&M's model has performed very

successfully. Run time is reported to be approximately one

minute of CPU on an IBM 4341 and the Berkeley administration

confirms that its solutions are superior to those previously

provided by the manual system. Furthermore, the fast

turnaround enables the administration to use the system as a

Decision Support System which allows for different scenarios

as opposed to a "Black Box" which provides one optimal

solution. These scenario runs enable the administration to

get comfortable with the solutions by determining the key

parameters, understanding the sensitivities, etc. Rapid

turnaround also helps the administration to modify schedules

more easily when various inputs such as course offerings

change.

While G&M's heuristic has performed successfully at

Berkeley, the key problem in applying their approach to

Sloan relates to the issue of resource constraints. As

discussed in Section II, at Sloan such constraints include

not only rooms, but also requirements that certain courses

not be given concurrently (due to faculty, CORE section, or

31

concentration overlaps), etc. At Berkeley, such constraints

have presumably been accounted for by delegating the

class/time decisions to the departments. (G&M's model only

assigns classes to rooms given requested times). Certainly

at Sloan these constraints could be accounted for by

including them in an extended cost function. However,

figuring the appropriate weights for the cost function is

likely to be just as difficult as including them more

directly as constraints to the schedule. (In fact,

calculating the optimal weights is equivalent to using the

Lagrangian Relaxation technique discussed later.) Now,

given Sloan's size and physical layout relative to

Berkeley's, once class times are determined by accounting

for these extra constraints, the pure assignment aspect of

the problem (i.e., courses to rooms) is fairly simple.

Thus, one major goal of a new model at Sloan is to account

for these additional issues (as discussed in Section II)

more formally.

In summary, Berkeley's decentralized process is very

comparable to the current Sloan process. In a four year

undergraduate program, students are likely to have

sufficient time to take the courses they want even if there

are conflicts in any one semester. Thus, there is little

need for coordination across departments except with regard

to room availability constraints. Hence, G&M's cost function

approach is appropriate for Berkeley's problem. At Sloan

however, students spend only two years at the school, one of

which is dedicated mainly to required courses. Therefore,

coordination across departments to prevent potential student

conflicts is far more important. In addition, Sloan's

smaller size should enable the school to perform such

coordination more directly. (The entire Sloan School is

probably equal in size to one of Berkeley's larger

departments). Thus, as will be discussed in Section IV, I

have chosen to model the cross-departmental considerations

more directly by way of formal constraints in developing the

Sloan School prototype. However, the inclusion of these

constraints requires me to use a more complex solution

procedure than G&M's heuristic.

III.C.2. Barham and Westwood (19781

If G&M had the luxury of ignoring some of the

cross-departmental issues that we face at Sloan, Barham and

Westwood (B&W) faced a problem at the other extreme end of

the spectrum. Their problem was to schedule the ten week

management program at the Manchester Business School so that

participants could take as many of the courses ("options")

offered as desired. Of course, this goal could be reached

by scheduling every course at a different time. However,

the 10 week time constraint on the total length of the

program required B&W to formulate the problem as that of

finding the minimum number of time periods per week required

so that each student could take his top four ("primary")

options without any conflicts.

B&W developed a heuristic to group courses together

based on the students' preferences. In particular, the

groups would be formed such that no student would have

included more than one course per group in his four primary

selections. In this way, all of the courses within each

group could be scheduled at the same time. The heuristic's

strategy is to find the most difficult remaining course

(i.e., the one with the most conflicts) and then group as

many others with it as possible. B&W experimented with

various computational techniques to implement that strategy.

The applicability of B&W's approach to Sloan is limited

for two reasons. First, the Manchester program has only 36

students and 25 courses. Hence, it is conceivable that many

of the course pairs would have no student conflicts at all.

At Sloan, there are approximately 200 students and 60-75

electives offered per semester; the probability that there

would be no students desiring to take both of any pair of

courses is far less likely. My prototype will analyze

projected student overlap for specific course pairs and

34

attempt to schedule courses so as to avoid major conflicts.

However, this feature is not the only factor used to

determine course schedules. In particular, the second

shortcoming of B&W's model relative to Sloan is that it does

not seem to account for faculty preferences at all.

Presumably, the time constraints inherent in a ten week

program require the faculty to accept any schedule assigned

to them. However, such a process at Sloan is virtually

inconceivable since, as discussed in Section II, faculty

preferences are required to be a major input into any new

scheduling system.

III.C.3. Romero (1982)

Romero reports on a computer support system

developed to aid the group decision-making process used to

schedule exams at the Polytechnical University in Madrid.

(The problem of designing a timetable for examination

scheduling is in many ways comparable to the course

scheduling problem.) The decision-making group consists of

representatives from three constituencies that may have

conflicting objectives: the administration, who wants no

conflicts in exams; the departments, who want to schedule

the exams so as to coincide with the teaching of the

subjects; and the students, who prefer that their exams be

spread out and who may be concerned with the particular

order of exams.

I have included this example to show that a heuristic

does not have to be complex in order to be useful. In

particular, Romero's model serves mainly as an information

system. Exams for particular courses are introduced in

sequence and the representatives of the various groups

negotiate for an appropriate schedule. The computer helps

the negotiators keep track of their objectives and also

ensures that the schedules are feasible in terms of room

availability, etc. However, the algorithms presented by

Romero apparently do not schedule the exams. That task is

the responsibility of the negotiators.

Romero claims that the system has helped the decision

makers reach adequate agreements more easily. Certainly, any

system that can improve the group decision making process is

worthy of interest. However, at Sloan (or any other

school), the problem of appointing representatives could be

difficult given the very different preferences of

individuals within the various groups. Moreover, even if

such representatives could be appointed, it seems unlikely

that they could come to full agreement. In the event of

conflict, there would have to be some means of prioritizing

their conflicting desires. Romero does not specifically

36

discuss how such potential conflicts would be handled at the

Polytechnical University.

Summary of Discussion of Heuristic Approaches

Silver, Vidal, and de Werra (1980) provide a general

discussion on the use of heuristics. In the case of

timetabling applications, the discussion above presents

three examples of very different heuristics that were

reportedly successful in addressing specific problems. The

advantages of using heuristics are that they can be tailored

to specific problems and that they are usually based on

intuitive and hence easily understandable techniques.

However, as I pointed out at the beginning of this

discussion, there may also be disadvantages in using

heuristics. To reiterate, such disadvantages may include:

1. Heuristics are problem specific. We have seen how

each of the examples I presented might be difficult to apply

to the Sloan problem.

2. Heuristics are often implemented on a stand-alone

basis and hence may not benefit from new theories,

techniques, etc. This would likely be the case for all of

the examples I presented.

3. Heuristics may provide solutions that are inferior

to more direct optimization techniques. As we will see,

Tripathy (1980) was able to apply optimization techniques to

improve on B&W's heuristic. In addition, neither G&M nor

Romero have benchmarked their solutions against some

(perhaps theoretical) optimum. Thus, it may be possible

that their systems are missing some potentially superior

solutions without their knowledge.

III.D. Mathematical Programming Techniques

A variety of mathematical programming techniques have

been proposed for solving timetabling problems. The "brute

force" approach would be to formulate the problem presented

at the beginning of this Section as a binary integer program

and solve it directly using branch and bound techniques.

However, for any timetabling problem of reasonable size, the

integer programming method is likely to be computationally

impractical. One could solve the linear relaxation of the

integer program using the simplex method. Since the simplex

method finds corner solutions, one may hope that the linear

solution will be integer or that the linear solution may be

(more or less) easily rounded. Unfortunately, there is no

guarantee that this rounding procedure can be accomplished,

without seriously compromising optimality, in a manner any

more efficient than that of using formal branch and bound

techniques.

38

In this section, I will describe three different

mathematical programming techniques that have been proposed

and implemented (to various extents) to solve timetabling

problems. These techniques are: (1) A modified linear

programming algorithm described by Akkoyunlu (1973); (2) The

partial formulation of the timetabling problem as an

assignment network with a flexible man-machine interface

employed to help the user account for potential non-network

constraints (Dyer and Mulvey (1976) and Mulvey (1982));

and (3) Lagrangian Relaxation (Tripathy (1980, 1984)).

III.D.1. Modified Linear Programming.

Akkoyunlu (1973) proposes and implements a

modified simplex approach to solving the timetabling problem

for one department at SUNY at Stony Brook. He fully

specifies the binary integer program as described in Section

II, above, including constraints on course conflicts, back-

to-back teaching, other administrative policies, and so on.

He then applies a modified simplex approach where the key

modification is that whenever the potential pivot element is

not equal to one, that column is rejected as a candidate for

pivoting. In an unpublished paper (Akkoyunlu, 1971), that

author shows that this modified procedure is equivalent to

applying the simplex method to a feasible region which

includes only the (0,1) vertices. The method has apparently

been successful; Akkoyunlu reports that a problem with 200

variables was solved in approximately 130 pivots, 50 to get

to a feasible solution, and 80 more to obtain the optimal

binary solution.

By his own admission, Akkoyunlu's model is realistic

with one key exception: he ignores room constraints,

claiming that "at least for American universities, this

causes no real problem since the classrooms are generally

allocated from a campus-wide pool." (Akkoyunlu (1973), p.

347). Thus, while he was able to achieve satisfactory

results, it is not clear how much this assumption helped his

method obtain a feasible solution for that specific problem.

In particular, room availability constraints do exist at the

Sloan School.

In addition, Akkoyunlu does not use standard time

slots: his model only seeks to find the appropriate number

of hours for each class, even if those hours are not the

same across days of the week. Clearly, the addition of room

availability constraints and the requirement that courses

meet at the same time on different days (standard time

slots) decrease the degrees of freedom. available to a

scheduler at the Sloan School relative to one at Akkoyunlu's

department. Thus, while his procedure was able to obtain a

feasible solution to his problem, it is not obvious that the

method would perform equally as well in the Sloan School

situation.

III.D.2. Partially Formulate the Timetabling

Problem as an Assignment Problem.

Dyer and Mulvey (1976) and Mulvey (1982) developed

a timetabling system for the UCLA Graduate School of

Management. (Henceforth, these works will be referred to as

"Dyer and Mulvey" except where noted.) Their approach had

two key aspects. First, they partially formulated the

problem as an assignment network. Second, they developed a

sophisticated man-machine interface to allow the user to

account for the non-network resource constraints in the

problem. In terms of the model formulation presented in

Section III.A, Dyer and Mulvey explicitly formulated only

the network constraints (2) and (3).

The user can develop a schedule iteratively in the

following way. The network is solved and the scheduler

determines certain critical arcs and nodes whose

relationship must be specified to meet certain of the non-

network constraints. Such a specification determines a

partial schedule which serves as the starting point for the

next iteration. The user continues until he is satisfied

41

that all of the non-network constraints are satisfied or

that any violations of these constraints are acceptable.

We may note several important points about Dyer and

Mulvey's approach. First of all, I have shown at the start

of Section III how the timetabling problem can be viewed as

an assignment problem with additional complicating resource

constraints. Dyer and Mulvey's insight enabled them to

design a solution technique based on the integrality

property of network problems. This property states that a

linear programming solution to a network problem is

guaranteed to be integer if all of the coefficients in the

problem are integer. (e.g., Bradley, Hax, and Magnanti

(1977), p. 344). In particular, in the general formulation

of the timetabling problem above, equations (2) and (3)

define a unimodular matrix which, if feasible, will yield an

integer solution from the application of the simplex method.

Since Dyer and Mulvey's formulation does not explicitly

include the complicating side constraints, their solution

technique will always yield an integer solution. However,

it becomes the user's responsibility to ensure feasibility

of the schedule with respect to those saide constraints.

Second, very large network problems can be generated,

stored, and solved very easily, more so even than arbitrary

linear programs. In particular, each iteration in Dyer and

Mulvey's system can be solved quickly and easily. In

addition, networks can be represented in an intuitive manner

using a graphics interface. Dyer and Mulvey claim that such

a representation can help the user to understand and work

with his problem more easily. This feature is particularly

important in their approach since, as stated above, the user

is responsible for ensuring feasibility of all of the non-

network constraints (such as faculty and student section

conflicts, etc.)

Finally, the system is designed to help the scheduler

find a satisfactory solution to his problem, not necessarily

an optimum. The user can game with various scenarios to

explore alternatives, but he can end the process when he is

satisfied with the results. The system includes a flexible

report writer for outputting the solution in a convenient

format.

Dyer and Mulvey's work represents a major contribution

to the solution of the timetabling problem. In my work, I

have borrowed some of their general concepts as well as

specific ideas. As I will discuss in Section V, the

prototype method I adopted is also based on an iterative

concept. In addition, I have followed their lead with

respect to certain specific issues, such as the grouping

rooms of like size and the use of an additive choice rule

for summing faculty satisfaction ratings. However, in my

view the chief potential problem with their approach is that

it may be overly reliant on the user to enforce schedule

feasibility, particularly as the timetable grows in size and

complexity. In Section V, I will discuss how and why I

believe my approach is more appropriate for the specific

problem at the Sloan School.

III.D.3. Lagrangian Relaxation Techniques

Lagrangian relaxation techniques have recently

been applied to a variety of integer programming

applications. Fisher (1981, 1985) provide a general survey

of Lagrangian Relaxation theory and applications. In

particular, Fisher (1985) is a readily understandable

treatment of the subject. Somewhat more advanced treatments

of the technique and the underlying theory can be found in

Fisher, Northrup, and Shapiro (1975), Geoffrion (1974),

Shapiro (1971), Brooks and Geoffrion (1966), and the

bibliographies contained therein.

Lagrangian relaxation is based on the premise that many

difficult integer programming problems can be modeled as a

fairly simple problem complicated by side constraints. The

goal of the technique is to find optimal penalties

44

(Lagrangian multipliers) for the complicating side

constraints and then "dualize" them by putting them in the

objective function. By assumption, the remaining relaxed

problem is easier to solve than the original. Typically,

the technique involves an iteration scheme where the

multipliers are adjusted by a subgradient method (Held,

Wolfe, and Crowder (1974)). Unfortunately, while Held,

Wolfe, and Crowder do state conditions sufficient for

convergence of the subgradient method, such convergence may

be very slow, and the objective values may not converge

monotonically to the optimal Lagrangian solution.

The chief advantage of the technique is that the

tightest upper (lower) bound on the objective obtained by

Lagrangian Relaxation for a max (min) problem is guaranteed

to be at least as tight as that obtained by a linear

programming (LP) relaxation. (Geoffrion, 1974). In fact,

the bound obtained by Lagrangian Relaxation will be better

than the LP bound in all cases except one. That is the case

in which the optimal linear solution to the original problem

is exactly integer so that the integrality constraints are

not binding anyway. In practice, the iterations of

Lagrangian Relaxation often fail to produce an optimal (or

even feasible) solution to the original problem. However,

Geoffrion's result means that Lagrangian Relaxation can

provide a tight bound for an eventual switch to traditional

45

branch and bound techniques. Alternatively, the Lagrangian

solution may be nearly feasible and made completely feasible

with certain minor modifications. (Fisher, 1985).

Computational experience with Lagrangian Relaxation is

reported by Fisher (1973, 1985), and Fisher, Northrup, and

Shapiro (1975). Fisher (1972, 1973) deal with the

application of Lagrangian Relaxation to scheduling problems.

However, Tripathy (1980, 1984) report on the successful

application of Lagrangian relaxation to a timetabling

problem based on the data from Barham and Westwood (1978).

This problem is similar to the one at the Sloan School.

Tripathy's approach is based on the same insight used

by Dyer and Mulvey as discussed above. That is, the

timetabling problem can be viewed as a pure assignment

problem which is complicated by additional side resource

constraints. In Tripathy's papers, these side constraints

were restrictions on courses that could not be offered at

the same time due to student conflicts. Tripathy saw that

the problem could be viewed as a classic application of

Lagrangian Relaxation by dualizing the complicating

constraints. On each iteration the resulting assignment

problem was solved and the multipliers adjusted for the next

one. Tripathy used the subgradient method presented by

Held, Wolfe, and Crowder (1974) for a maximum of ten

iterations and then switched to branch and bound. The

branch and bound iterations started with the tightest

objective bound obtained by the Lagrangian Relaxation and

used the best feasible solution found thus far (if any) as

the starting incumbent.

Detailed computational results are presented in

Tripathy (1984). To summarize that presentation, Tripathy

was able to solve to optimality a fairly large problem (3384

total variables, 1188 dualized constraints, and 275 nodes

and 3658 arcs in the underlying network problem) in less

than 8 minutes of CPU time on a CDC 7600, Cyber 72, under

scope 2.1.4. It should also be noted that Tripathy's

original work (1980) was based on the actual problem

reported by Barham and Westwood (1978) in which those

authors used a heuristic approach. Tripathy's results using

Lagrangian Relaxation on the same problem represented a

significant improvement over those obtained by the original

authors' heuristic.

Summary of Mathematical Programming Techniques

The results obtained in the studies discussed above

suggest that there is significant potential for the

application of mathematical programming techniques to the

timetabling problem. In particular, Tripathy's papers show

how Lagrangian Relaxation could be used as a "black box"

system while Dyer and Mulvey show how optimization

techniques could be applied in a more interactive decision

support environment.

In the next section (IV), I will lay out a detailed

formulation of the Sloan School timetabling problem. In

Section V, I will discuss my own approach for using

mathematical programming techniques for the Sloan School

timetabling problem, borrowing ideas and approaches from

these authors' works.

48

IV. The Detailed Formulation of the Sloan School Timetable

This section presents the detailed formulation of the

Sloan School Timetabling problem as a mathematical

programming model. Section IV.A presents the mathematical

programming details. Section IV.B discusses some issues

raised by the formulation.

IV.A. The Mathematical Programming Model.

As discussed in Section II, the Sloan School defines

eight standard time slots during the week. In a typical

semester, the school offers approximately 25 CORE courses

(including multiple offerings for the different sections)

and 60-75 electives during the standard slots. (As

discussed in Section II.D, the model's scope excludes

courses offered at off hours.) I define variables xij such

that:

xij = { 1 if course i is offered at time j;

{ 0 otherwise.

Since there are approximately 100 courses and 8 time slots,

there will be about 800 binary variables in the formulation.

The following is a discussion of the objective function

and all of the constraints in the model. Each equation will

be discussed in detail. A summary of the full formulation

appears in Appendix D.

IV.A.1. Objective Function.

The objective function is defined in terms of

total faculty satisfaction with the schedule. The objective

is to maximize total faculty satisfaction according to an

additive choice method for aggregating preferences. (See

Section III for a discussion of the problems inherent in

additive utility functions.)

Each faculty member was surveyed to obtain his/her

input regarding teaching preferences. (See Appendix A for

the actual survey.) The faculty were asked, among other

things, to rate each of the standard time slots in terms of

their preference to teach at that time. The ratings were on

a scale of 1 to 5, where 1 is the least desirable rating and

5 is the most desirable rating for a slot. As a first

pass, I assumed that the faculty's preferences would be

independent of the courses they were teaching. That is, I

assumed that if a faculty member liked a given time slot,

she would be fairly indifferent as to which specific course

she would teach at that time. Analysis of comments returned

with the survey data shows that this assumption is not

50

always valid; certain faculty members may have different

preferences as to when they might teach a CORE course, say,

as opposed to an elective. Strong feelings on this matter

are rare, however, and I have decided to stay with the

original assumption for now.

The objective is defined as the sum of the utility

"contributions" of the course assignments over all i and j:

max ci xij

IV.A.2. Constraints.

I have consulted with the Sloan School

administration to determine the scheduling policies they

would like to see enforced as constraints in the model.

Nine types of constraints have been agreed upon. The

following is a discussion of each type.

i. Course Assignment.

This constraint merely ensures that each course is

assigned to one time slot. To enforce this requirement, we

specify that for each course i, the sum of the xij over all

times j equals 1.

Sxi = 1 all i

51

Since there are approximately 100 courses in the model,

there will be approximately 100 of these constraints in the

model.

ii. Room Capacity.

Each course has an expected enrollment based on past

experience. The expected enrollment determines each

course's room size group. Courses at Sloan have been

grouped into four room size groups as follows:

Group Capacity Number of Available Rooms

R1 capacity >= 90 1

R2 55 <= capacity <= 89 3

R3 25 <= capacity <= 54 6

R4 capacity <= 24 9

While the size cuts for these groupings may seem somewhat

arbitrary, the bounds are tighter than they appear. For

instance, the three rooms in the second group have an actual

capacity of 67-83 students. Thus, the size cuts were made

conceding the fact that there may sometimes be a small

amount of overcrowding in certain classes in R2. In

practice, however, since there is only one room in R1, only

the eight largest courses can be offered in that room.

Others must be in a room in R2, regardless of their size.

In addition, all of the rooms in the third group have an

actual capacity of 40 to 54 students. Thus, there may be

some underutilization of certain rooms in R3. However, the

reader should note that empirically, room availability

constraints tend to be a problem only for the two largest

room size groups.

The actual constraint requires that there be enough

rooms of each type r available for the courses scheduled at

each time j. Thus, if Ir is the set of courses of size

group r (r = R1,..,R4) and N{r)j is the number of rooms of

type r available at time j, we require that

xij <= N{r)j for all r and j.

Since Irl = 4 and 1jI = 8, there are 32 of these constraints

in the model. (Irl is the "order of r", i.e., the number of

possible values of r.)

iii. CORE Section Feasibility

Each of the twelve CORE sections (A-L) has a set of

required courses it must be able to attend without any

conflict. In fact, since some of the CORE courses are

taught in half-semester format, there are actually two sets

of constraints for each section, one for each half-semester.

(See the section on formulation issues, IV.B, below, for a

more complete discussion of the issues raised by half-

semester courses.)

The constraint must ensure that each section receives a

feasible schedule. Let Ish be the set of courses required

for section s in half semester h. Then the constraint is

xij <= 1 for all j, s, and h

Since JjJ = 8, IsJ = 12, and Ihi - 2, there are 192 of these

constraints in the model.

iv. Faculty Feasibility

Many of the faculty members teach more than one course

during the eight standard periods. Faculty feasibility

requires that each such faculty member teach only one course

at one time. Thus, let If be the set of courses taught by

faculty member f. Then the constraint is

Sxij <= 1 for all f, j.

54

In practice, approximately twenty faculty members teach more

than one course during peak hours. Thus, there will be

approximately 160 of these constraints in the model.

At this time, the reader may recall the discussion at

the beginning of Section III. At that time, I pointed out

that these four constraints specify the general minimum

requirements for a feasible schedule. However, the Sloan

School has other policies that the administration would like

the model to enforce. These policies result in the addition

of the following five groups of constraints.

v. Concentrations.

Sloan School masters' students must fulfill

requirements in at least one of approximately fifteen

concentrations. The requirements for the concentrations are

electives that the students generally take during their

second year. This means that the students may only have one

or two opportunities to take courses required for their

concentrations. Thus, the administration would like to

ensure that courses within a concentration be scheduled at

different times. This policy aims to give the students a

high probability of being able to take those courses

required for their concentrations.

55

Let Ic be the set of courses belonging to concentration

c. Then the constraint is

: x <= 1 for all j,c.

Since IjI = 8 and Icl = 15, there are 120 of these

constraints in the model.

vi. High Conflict Course Pairs.

As discussed in Section II, one chief impetus for the

development of a new system was the desire to avoid

scheduling courses with a high degree of potential overlap

in student demand at the same time. The constraints (v)

above will ensure that courses within concentrations not be

scheduled concurrently. However, the problem of high-

overlap courses across concentrations still remains.

I have addressed the problem as follows. Midway

through the current semester, the students were issued a

list of the following semester's expected offerings. The

students were asked to select their top five elective

choices from that list. (See Appendix B for the student

survey.) I have written a PASCAL program to compile the

survey data and identify pairs of courses with a high degree

of potential student overlap. (See Appendix C for the

56

listing and documentation of that program.) Overlap was

defined in both absolute as well as relative terms.

Absolute overlap within a pair of courses refers to the

actual number of students selecting both courses in the

pair. Relative overlap is defined as the students who

selected both courses in the pair as a percentage of the

total number of students who selected either or both

courses. The maximum relative overlap for a pair of courses

is thus 0.5, in the case where every student selecting

either of the two courses selected the other as well.

Relative overlap is important because it adjusts for

course size. That is, any two large courses may well have a

high degree of absolute overlap purely by virtue of their

size. However, the overlap between two smaller courses may

be more significant in relative terms to the students in

those courses. In my view, both absolute and relative

overlap should be considered by the scheduler since both are

important measures of potential student conflict between

courses. Depending on the results of the survey, the

scheduler can decide which course pairs should be scheduled

so as to avoid conflict. Section VI discusses an actual

test case of the model and describes how the overlap issue

was actually handled.

57

Once the overlap pairs have been identified,

constraints can be defined as follows. Suppose there are P

such pairs of courses. Let Ip be the two courses in pair p

(p = 1,..,P). Then the appropriate constraint is:

xij <= 1 for all j, p.

The number of high conflict pairs p will vary in different

years. I expect that there would be no more than 20 such

pairs since pairs within concentrations have been accounted

for separately. Alternatively, in the interest of obtaining

any feasible schedule we might explicitly limit the number

of such pairs to, say, twenty. Thus, there will be

approximately 160 of these constraints in the model.

vii. Three Hour Seminars

A faculty member may desire to teach a certain course

in one continuous three hour session, rather than in two

ninety minute slots. If such a course were scheduled wholly

within the standard time slots, it would, in effect, consume

two time slots (e.-, 9:00 to noon). This would cause two

problems. First, students taking the course would have to

allocate two of their eight standard periods to it. Second,

the course would waste room resources. The latter problem

occurs since the use of standard time slots implies that the

58

course's room must be reserved for it on both of a slot's

pair of days, even though the course only uses the room once

per week. (E.g., if the course met Mondays from 9 to 12,

use of standard time slots implies that the room would have

to be reserved on Wednesdays from 9 to 12 as well.)

I will discuss this issue in greater detail in the

section on formulation issues (IV.B.1) below. For now, it

is sufficient to note that, as a first pass, the

administration has decided on a policy of scheduling such

three hour seminars so as to begin at 2:30 PM. In this way,

the second ninety minutes of the session occur after the

standard day is over. Since room constraints are not a

problem at off times, this approach seems to be a workable

solution to the problem. Moreover, if the faculty member

and students desire to shift the class to another time, they

may be able to do so manually afterwards. In practice, such

changes could occur fairly often since these courses tend to

be small PhD seminars. As a result, room constraints tend

not to be a major problem. In addition, PhD students may

have more flexible schedules than masters' students.

The constraint is fairly easy to formulate. Let TSEM

be the set of all time slots that do not begin at 2:30,

i.e., all slots but Monday/Wednesday and Tuesday/Thursday

59

from 2:30 to 4. Also, let Isem be the set of all such

three-hour seminar courses. Then the constraint is

Notice that I have formulated the constraint so that one

equation accounts for all of the relevant courses and times.

viii. Each Faculty Member Teaches on a Single Set of

Days.

Most faculty members who teach more than one course

prefer to teach their courses on only one of the two sets of

days. That is, they would prefer to teach all of their

courses on either Monday/Wednesday or Tuesday/Thursday. The

administration decided to allow the faculty to specify on

which of these pairs of days they would prefer to teach.

The question was included in the faculty survey (See

Appendix A).

As a first pass, the model will attempt to enforce

these preferences with constraints. Let FMW and FTT be the

sets of faculty members desiring to teach only on

Monday/Wednesday and Tuesday/Thursday, respectively. Also,

60

let JMW and JTT be the sets of time slots corresponding to

Monday/Wednesday and Tuesday/Thursday respectively. Again,

letting If be the set of courses taught by faculty member f,

we have the following constraints:

xij = 0 for all f E FMW, j - JTT;

and xij = 0 for all f 6 FTT, je JMW;

The first set of constraints ensures that the faculty

members desiring to teach on Monday/Wednesday have no

courses on Tuesday/Thursday. The second set of constraints

is analogous to the first, but for the faculty members

desiring to teach only on Tuesday/Thursday.

I expect that most faculty members teaching more than

one course will fall into one of these two groups. Since

there are approximately twenty such faculty, and since there

are four time slots on each of Monday/Wednesday and

Tuesday/Thursday, there will be aproximately 80 of these

constraints in the model.

ix. Back to Back Teachinq.*

Many faculty members teaching more than one course may,

in addition to desiring to teach on only one set of days,

also desire to teach (or not teach) back to back. As a

first pass, the administration has decided to allow the

faculty members to specify this request. Thus, a relevant

question was included in the survey in Appendix A. The

model will attempt to meet these requests as constraints.

There are four time slots per day: two in the morning

and two in the afternoon. The morning and afternoon slots

are separated by a one hour lunch period. Thus, for our

purposes, back to back has been defined as teaching in both

of the AM or PM slots on one set of days. If a faculty

member has a lunch break between courses, he is not

considered to be teaching back to back.

Now, let

j = 1 be the time slot Mon/Wed 9 to 10:30;

j = 2 be the time slot Mon/Wed 10:30 to 12;

j = 3 be the time slot Mon/Wed 1 to 2:30;

j = 4 be the time slot Mon/Wed 2:30 to 4;

*I would like to acknowledge the assistance provided by
Professor Robert Freund in helping me to formulate the
constraints described in this section.

j = 5 be the time slot Tue/Thur 9 to 10:30;

j = 6 be the time slot Tue/Thur 10:30 to 12;

j = 7 be the time slot Tue/Thur 1 to 2:30;

j = 8 be the time slot Tue/Thur 2:30 to 4;

Again, suppose If is the set of courses taught by faculty

member f. There are two cases: (1) f does not want to

teach back to back; and (2) f does want to teach back to

back. I will consider each of these in turn.

Case (1): Faculty Member does not want to teach back-

to-back.

Suppose FMWNBB is the set of faculty members who teach

on Mondays and Wednesdays but who do not want to teach back

to back. Similarly, let FTTNBB be the analogous set for

faculty members teaching on Tuesdays and Thursdays. To

ensure that the faculty member does not teach back to back,

we merely need to define a constraint which makes sure

he/she teaches no more than one course in the morning and no

more than one course in the afternoon. (I assume that the

maximum load is two courses; very few faculty members teach

three or more courses and obviously, if they want to teach

all three courses on one day, they will have to teach back

to back.)

The constraints for the set FMWNBB are thus:

<X (Xil + xi 2) <= 1

. (xi 3 + xi 4) <= 1

4"C~

f Ct FMWNBB

f d FMWNBB

The first constraint applies to the morning (time periods 1

and 2) and the second to the afternoon (periods 3 and 4).

Analogous constraints for FTTNBB are:

~' (xi5 + xi 6) <= 1

*. (xi 7 + xis) <= 1

f E FTTNBB

f E FTTNBB

Case 12): Faculty Member wants to teach Back to Back.

Now suppose that FMWYBB is the set of faculty members

teach on Mondays and Wednesdays that do wish to teach

to back. Similarly, let FTTYBB be the analogous set

faculty members teaching on Tuesdays and Thursdays.

since each faculty member teaches on only one set of

that

back

for

Now,

days, there are only four possible slots for his two

courses. (Again, I exclude the case of faculty members

teaching three or more courses.)

To enforce a preference for teaching back to back,

we need to include constraints to govern the manner in which

the two courses will be allocated to the four slots. In

particular, we require that if a morning slot is chosen for

one course, then no afternoon slots are chosen for the other

and vice-versa. There will thus be four constraints for

each set of faculty members (FMWYBB and FTTYBB). Let us

consider FMWYBB first. The constraints are:

(xil + xi 3) <= 1

(Xil + xi 4) <= 1

(xi 2 + xi 3) <= 1

S(xi 2 + xi 4) <= 1

f & FMWYBB

f 6 FMWYBB

f & FMWYBB

f E- FMWYBB

65

The first two constraints ensure that if a course is

assigned to time period 1 (morning), then no course can be

assigned to time periods 3 or 4 (afternoon). The second two

constraints are analogous but account for time period 2 in

the morning. Similarly, the first and third constraints can

be thought of as accounting for period 3 in the afternoon,

and the second and fourth account for period 4. The reader

may work through the constraints to convince himself that

they ensure that the faculty member f will only teach in

either the morning or the afternoon.

The constraints for the set FTTYBB are entirely

analogous. I state them without explanation except to note

that time period 5 replaces time period 1, period 6 replaces

period 7, and so on.

(xi5 + xi 7) <= 1 f 6 FTTYBB

S(xi5 + xi8) <= 1 f 6 FTTYBB

S(xi6 + xi 7) <= 1 f E FTTYBB

(xi6 + xia) <= 1 f FTTYBB

It is difficult to estimate precisely how many of these

constraints there will be since the exact number will depend

on faculty preferences (which may vary). If we assume that

half of the faculty desire to teach back to back, and half

do not, then if there are 20 faculty members teaching more

than one course, there will be approximately 60 of these

constraints.

Summary of Detailed Formulation.

Rather than reiterating the formulation here in the

text, I have presented a summary of the formulation in

Appendix D. That summary includes all of the relevant data

sets, parameters, variables, and equations.

The next section discusses some of the issues raised by

the formulation. However, before beginning that discussion,

I think it is appropriate at this point to stop and take

stock. In particular, the reader should note that this

formulation is about as complete and realistic as is

possible within a mathematical programming framework. All

significant constraints have been included. In this way, I

believe the model is more complete (or the problem more

complex) than many of the examples cited in Section III.

For instance, Akkoyunlu (1973) excludes room availability

constraints, Mulvey (1982) excludes non-network constraints,

Tripathy (1980) and (1984) excludes many of the additional

policy constraints (v through ix), and so on.

Of course, the price we pay for reality is increased

model complexity. The total number of variables is

approximately 800 and the total number of estimated

constraints may be approximately 900. Now, many of the

constraints can be shown to be interdependent. (For

instance, some of the courses within a concentration may be

taught by the same faculty member. In such a case, the

corresponding faculty feasibility constraints are

redundant.) However, the model is large by any measure and

is likely to be too large to be solved by "brute force"

integer programming techniques.

With this discussion in mind, we can proceed. The next

section (IV.B) discusses some issues that should be raised

with respect to the formulation. Section V then discusses

my solution technique.

IV.B. Issues Raised by the Formulation.

I have stated above that I believe that the model

presented in Section IV.A is a very realistic formulation of

the actual Sloan School problem. However, I also believe

that it is necessary for me to point out six

assumptions/simplifications I have made in this formulation

and discuss the issues raised by these assumptions. I will

discuss each of these in turn.

IV.B.1. Non-Standard Course Formats.

In this section, I refer to "non-standard" courses

as those that meet during the standard eight periods but in

a "non-standard" format, that is, for a half-semester or in

one three hour session. (Non-standard courses that meet on

Fridays or on the weekends will be scheduled manually after

the model runs are completed.)

The problem with these courses is that they represent a

potential waste of resources. Since the vast majority of

courses are scheduled in the standard format, a course that

meets for a half semester or for only one day will, from the

model's perspective, still occupy its full slot. Thus, a

course meeting for a half semester will still be allocated

its room for the other half, and a course meeting on Mondays

(say) will still be allocated its room on Wednesdays.

69

Furthermore, rooms are only one example of the

resources that are wasted in this way. Others include

faculty time, student time, etc., all of which must be

reserved for the (other) half-semester or day that the

course does not actually use. Now, we could correct the

problem by scheduling all courses on a half-semester basis,

and by individual times (i.e., schedule Monday and Wednesday

independently). However, such a solution would greatly

complicate the scheduling problem and the resulting model.

First of all, splitting the semesters and slots into two

parts each implies that the model would require four times

as many variables and constraints. Second, we would need to

add a whole host of constraints that would serve to try to

recreate the standard slots where possible. That is, we

would need additional constraints to ensure that if a

standard course were scheduled for one session at 9 AM on

Mondays (say), then it would be scheduled for its other

meeting at 9 on Wednesdays if possible, etc.

Due to the relatively small number of non-standard

courses, the added utility of the more complex formulation

is likely to be very marginal. Thus, the actual approach I

have taken has two aspects:

i. Since most of the half-semester courses are a

part of the Masters' CORE, I have added constraints for each

70

half semester to the group of constraints dealing with CORE

sections. Thus, the model will "know" that the CORE

sections have different required courses in each of the half

semesters. The model may thereby schedule courses offered

in the different half semesters during the same time slots,

if so desired and as long as any other relevant constraints

are satisfied.

ii. For all other courses, I will try to manually

preprocess the course list to pair up courses across half-

semesters or on different days. Thus, if one seminar meets

on Tuesdays only and another on Thursdays only, the two

seminars in effect can be treated as one course (perhaps

with two faculty members). In this way, the courses can use

the same room and not waste resources. Of course, in order

to be a legitimate pair, the courses need to be roughly the

same size (so that they can use the same room) and must have

faculty members with compatible teaching preferences. In

the case study in Section VI, I will show how this method

was effective with one such pair of courses.

IV.B.2. Assignment of Professors to Specific

Sections of the Same Course.

All of the CORE courses have multiple offerings.

At the present time, some courses have two offerings (each

71

to six of the sections), others have three, four, or six

offerings. Since there are twelve CORE sections, the number

of sections per offering is, respectively, six, four, three,

and two.

The size of the CORE courses is a policy decision made

by the faculty and administration prior to the scheduling

process. Thus, the model will be given, as input, the

number of offerings of each course. However, since the

number of sections per offering varies by course, different

sections attend different courses together. For example,

Microeconomics has two offerings (for Sections A thru F and

G thru L respectively) while Accounting has three offerings

(Sections A thru D, E thru H, and I thru L) and Strategy has

four (Sections A thru C, D thru F, G thru I, and J thru L).

Consider section D. For Microeconomics, that section meets

with A thru F. For Accounting, it meets with A thru D, and

for Strategy it meets with D thru F. The section system at

Sloan is thus combinatorially more complicated than if, say,

there were twelve sections that attended all of the CORE

courses separately from each other.

In Appendix E, I show that the current method of

allocating Sections to offerings is in fact combinatorially

optimal in terms of minimizing the number of section

conflicts between courses. However, an issue still remains

72

as to how to allocate faculty to specific offerings. Since

the model assumes that faculty assignments are given, it

needs to be provided the faculty member assigned to each of

the offerings. For example, it needs to know, say, that

Professor Smith is assigned to Strategy A thru C and

Professor Jones to Accounting A thru D.

The model takes such assignments as given. However, in

the example above, a problem could exist if Smith and Jones

have similar time preferences. Since they are both teaching

required courses to some of the same sections, they can not

teach at the same time. Hence, a better solution could be

to assign Professor Brown (say) to teach Strategy to

Sections A thru C and let Smith teach Strategy to Sections J

thru L (previously assigned to Brown).

In spite of this potential problem, I have continued to

preassign the faculty to specific sections for several

reasons. First, I could let the model assign the sections

to specific professors' offerings endogenously, subject to

added constraints that the appropriate number of sections be

assigned. While these constraints could be modelled in an

integer programming framework, they would add a significant

degree of complication and greatly increase the size of the

model. For example, since there are twelve sections, I

73

would need twelve additional variables for every CORE

course/time combination. I would also need many additional

"If/then" constraints. ("If Smith teaches Strategy at time

j, then three sections must be assigned to Strategy at that

time," etc.)

While the goal of keeping the model less complex is

reasonable, we can not afford to sacrifice a significant

degree of performance and reality solely for the sake of

maintaining simplicity. However, the second reason why I

did not add the extra complexity results from an empirical

reality: most of the faculty teaching CORE courses teach

more than one offering anyway. In some cases, one faculty

member may teach the same CORE course to all of the sections

(e.g., Microeconomics, Statistics); in others one faculty

member may teach two of the three (or four) offerings.

(e.g., Accounting, Strategy). Since the faculty member is

presumably indifferent as to when he teaches a given course

to Sections A thru C versus Sections J thru L, the model is

far less restrictive than it may seem at first blush.

Finally, if a faculty member is still very much

dissatisfied with his schedule, there is always the

possibility of manually exchanging sections with other

professors teaching the same course.

IV.B.3. Policies: Constraints vs. Objectives.

As discussed in Section IV.A, above, my model

includes as constraints many administrative policies that

are beyond the requirements for basic feasibility. (e.a.,

back-to-back teaching, etc.) There are two problems with

this methodology. The first is that by modelling policies

as constraints, I have limited the feasible region for the

problem and have thereby decreased the probability of

finding any feasible solution at all. The second, and

perhaps more serious problem, is that the formulation is

somewhat inconsistent in that certain preferences are

enforced as constraints (back to back) while others (time

preferences) are included as objectives. I will consider

each of these problems in turn.

i. Limiting the Feasible Region.

In Section II, I described how the current elective

scheduling process gives an extraordinary amount of

flexibility to the faculty groups and even to individual

faculty members. Under this decentralized system, individual

faculty members or groups choose the times in which the

courses will be offered. Therefore, in many cases back-to-

back teaching preferences (e.g.) would be enforced as

implicit constraints anyway. Now, while this feature of the

75

current system might have a negative impact on scheduling

flexibility, it is a fact of life at the Sloan School. Thus,

in order to maximize the probability of the faculty's

accepting a new model, I have chosen to "err" on the side of

conservatism. That is, I have modelled many of the

faculty's preferences as actual constraints. As a result,

while it may be more difficult to find a feasible solution

to my formulation, any feasible solution that is found is

likely to be considered a reasonable first cut by most of

the faculty.

ii. Potential Inconsistencies.

In any scheduling system (manual or computer),

preferences must be categorized into one of two groups:

those that must be enforced versus those that the scheduler

would like to enforce. In the Sloan School environment,

preferences such as back-to-back, one-day teaching, and so

on tend to be more like constraints than are the specific

time requests. That is, most (but not all) of the faculty

seem to care less about which specific times they teach so

long as they teach on one set of days, teach (or not teach)

back-to-back, etc. Thus, a model which meets these

preferences as constraints but may schedule a course at 9 AM

instead of 10:30 is more likely to be accepted than is one

in which these other preferences are ignored entirely, in

order to keep the model simpler.

It is for these reasons that I view the model as an

iterative tool for Decision Support. As I have discussed,

the objective function is extremely soft. Since many of the

constraints are preferences as opposed to actual

requirements for feasibility, the scheduler will need to run

various scenarios. Such scenarios could relax certain of

the constraints that are enforcing preferences only. These

scenarios could thereby test out and compare potential

alternatives with respect to the multiple criteria objective

that the model is trying to "optimize".

For instance, some of the faculty may want to teach on

one set of days, but may be indifferent as to which set they

are assigned. Currently, the model requires them (or the

scheduler) to choose a set of days anyway. This choice may

arbitrarily restrict the range of feasible alternatives. In

such a case, I expect that the scheduler would choose the

appropriate set of days "cleverly", e.g., by considering

preferences of other faculty members teaching courses in the

same concentration areas, etc. However, different scenarios

certainly should be considered if the first pass solution

was perceived to be inequitable or unsatisfactory.

77

IV.B.4. Faculty Preferences May Differ by Course

My original faculty preference survey (Appendix A)

asked the faculty to state their time preferences

independent of courses. I assumed that the faculty would be

indifferent as to which of their courses they taught at a

specific time, as long as the time was acceptable. This

assumption, and the fact that many teaching assignments were

uncertain at the time of the survey, led me to ask for

preferences in the manner described.

In fact, some (but not many) of the faculty do seem to

have strong preferences as to which of their courses are

taught at what times. (e.g., CORE in the morning, Electives

in the afternoon.) The model does have the capability to

adjust preferences by specific course. In the future, I

would modify the survey to allow the faculty to state their

preferences by course, if they so desire.

A more common occurence is for a faculty member's

preferences regarding back-to-back teaching to depend on the

courses involved. For example, while a faculty member might

prefer to teach two offerings of the same CORE course back

to back, she might not prefer to teach two different courses

back to back. Since in any given semester we know which

courses each faculty member will actually teach, such

preferences can be properly and directly incorporated into

the model.

IV.B.5. Aggregated Preferences.

In Section III, I discussed the Arrow

Impossibility Theorem and its implication for group utility

functions. At this time, I merely wish to reiterate the

fact that the Sloan School model uses an additive choice

utility rule, and is thus susceptible to all of the problems

inherent in such a rule. I would add, however, that the

preference ratings were entirely "free form". Thus, any

faculty member could rate only one time slot a 5 and all the

'others a 1, hoping to get that slot. Other authors have

normalized the preference data to prevent such an occurence.

For example, I could have asked for a ranking instead of a

rating or I could have given each faculty member a fixed

number of points which she could allocate in any way she

desired.

I decided that such a system would be impractical and

unacceptable to the Sloan faculty. In particular, members

of the administration and certain key faculty leaders

believed that if a faculty member felt strong enough about

her preferences to skew them that much, then we would assume

that her schedule really was inflexible and try to

79

accomodate her as much as possible. My method obviously

opens up the possibility for certain faculty members to game

the system, but given the strong sense of community at the

school, we did not see this as a problem.

IV.B.6. Room Assignments.

I have made two important simplifications with

respect to room assignments. The first is that the model

will not assign courses to specific rooms. It will ensure

that enough rooms of a given size are available to

accomodate the schedule. However, the largely arbitrary

task of assigning courses to rooms within the groups will be

handled manually after the schedule is set.

Rooms at the Sloan School do not differ much on any

dimension other than size. Nearly all rooms have facilities

for an overhead projector and most of the larger classrooms

have an amphitheatre shape with elevated desks in concentric

semicircles. Certain rooms have a single seminar table, but

almost all of these are the smaller rooms (capacity less

than 25) that the model will allocate to seminar courses

anyway. Finally, inasmuch as all of the rooms are

physically located within three interconnected buildings,

distance between rooms is not an issue.

80

While some faculty members do have specific room

preferences within the size groups, such preferences are

generally known to the administration (or can be obtained

through a questionaire). Thus, as a first pass, the model

will assign courses only to room groups. Assignment of

courses to specific rooms within groups will be handled

manually after the times are set.

The second simplification I have made is to allocate

each course to only one room size group. In particular,

larger rooms could accomodate smaller classes if such rooms

were available at a given time when all of the smaller rooms

were occupied. Thus, the room group constraints could be

modelled on a cumulative basis. For instance, courses in

room group R3 could fit in any of room groups R1, R2, or R3

as long as there are leftover rooms after scheduling the

courses in groups R1 and R2. (Appendix D.2 describes how

these cumulative room size constraints could be formulated.)

As a first pass, I have decided to stay with the

original formulation for three main reasons. I will discuss

each of these in turn.

i. Faculty Preferences.

Most faculty members do not like to teach small

courses in large rooms; they would generally prefer to be in

81

as small a room as possible, as long as the students can

fit. Inasmuch as this desire is a preference, it is subject

to all of the same issues discussed in the section on

objectives versus constraints (IV.B.3) above. However,

there are two other more compelling factors which justify my

original formulation.

ii. Efficient Use of Resources.

Although Sloan is given the first opportunity to

choose the rooms in its buildings, other departments at MIT

(Economics, Political Science, and others) may schedule

courses in rooms left open by Sloan's schedule. To the

extent that larger rooms are relatively scarce, the rest of

MIT is better off if Sloan schedules its courses to utilize

room resources most efficiently. Moreover, if the larger

rooms are not used by other departments and are thus kept

free, the Sloan administration thereby retains additional

flexibility to reschedule courses if actual enrollments

exceed expectations. Certainly, if actual enrollment for a

given course falls short of expectations, excess room

resources may be allocated to it. However, while a small

class can always fit in a large room, the converse is

obviously not true.

82

iii. Empirical Realities.

Finally, the empirical facts at Sloan are that the

highest demand is generally for the largest rooms. Thus, it

is rare that any larger rooms will be free at times when all

of the smaller rooms are taken. In particular, there is

only one room that can hold more than 83 students and there

are plenty of small rooms available for seminars at almost

all times.

I do recognize that the alternative cumulative

formulation could have merit in suggesting alternative

schedules. Thus, I would recommend that the scheduler check

every scenario's output to see if there are any time slots

in which all of the smaller rooms are occupied but in which

larger rooms are available. In such a case, the cumulative

formulation can be run as a sensitivity to examine potential

alternatives. In fact, in the test case described in

Section VI, I do explore the possibilities presented by this

sensitivity.

This concludes my discussion of the assumptions and

simplifications underlying the formulation as well as their

implications for the model's utility. It should be clear

that while I acknowledge some of the shortcomings of the

model, I feel that it embodies most of the important

considerations facing the Sloan School.

The next Section, Section V, discusses my solution

technique. Section VI then presents the results of a test

run performed for the actual Fall, 1987 semester's schedule.

V. Solution Technique for the Sloan School Timetable.

This section discusses the solution strategy and

technique I used to solve the model formulated in Section

IV. Section V.A discusses the technique from a conceptual

point of view. Section V.B outlines the implementation of a

prototype version in GAMS/MINOS on the Sloan School PR1ME

850 computer. Finally, Section V.C provides a very brief

discussion of the model's empirical success thus far.

Further details are given in Section VI, which describes the

actual test runs performed for the Fall, 1987 schedule.

V.A. Conceptual Issues and Discussion.

As I discussed above, the model formulated in Section

IV is a fairly realistic but complex depiction of the Sloan

School problem. A "brute force" method of branch and bound,

say, is likely to be computationally impractical. In

addition, no branch and bound code was available to me. I

also considered some of the heuristics described in Section

III. However, as I discussed at that time, none of those

heuristics seemed to be directly applicable to my problem.

My first approach was to apply Lagrangian Relaxation in

a manner similar to Tripathy (1980, 1984). That is, I

dualized all of the non-network constraints in the

85

formulation. However, I did not find that method to be

successful. In particular, runs of up to ten iterations

were not successful in yielding a feasible solution to the

original problem, or a bound tighter than that obtained by

an LP relaxation.

The actual technique I adopted is an iterative approach

to Linear Programming. That is, I formulated the full

problem as a linear program and relied on a user (me) to

perform a "manual but intelligent" branch and bound. I

actually adopted this method a bit by accident; when testing

Lagrangian Relaxation on an old problem, I found that I

could fairly easily modify the results of the first (LP)

iteration to obtain an integer solution, generally within

90% or better of the optimum, in less than three iterations.

Since the Lagrangian Relaxation technique was failing to

yield even a feasible solution within ten iterations, I

decided that the LP approach was superior. Conceptually, my

technique is similar to Dyer and Mulvey's in that it

requires a user to be actively involved in the iterations of

the model. However, it is different from theirs in that I

have specified the full model and have thereby relieved the

user of the responsibility of ensuring feasibility by

memory.

While I do not have fixed rules for this manual branch

86

and bound, I can state the two general principles that I

found to work well:

1. Use last year's schedule. Last year's

schedule is always available for the scheduler to use if the

model is having trouble finding a good or feasible schedule.

In particular, problems often revolve around the CORE

schedule. Last year's CORE provides a very good starting

point for this year's problem.

2. Indifferent or Equal Preferences. In some

cases where the faculty member had either expressed

indifference or had not returned a survey, the model had

trouble scheduling the relevant courses. Often it would

"split the course in half" between two time slots for which

the faculty member was indifferent. In this case, the

scheduler can generally help by choosing one or the other.

Optimality is not likely to be seriously compromised since

if there were other courses requiring that slot, the split

course would not have even gotten the fraction of the slot

that it did receive.

The next two subsections discuss, respectively, some

of the advantages and disadvantages of my technique relative

to some of the approaches discussed in Section III.

V.A. 1. Advantages.

I believe that the main advantage of my technique

lies in the full specification of the model. Again,

relative to Dyer and Mulvey, there is far less

responsibility placed on the user merely to ensure

feasibility of the solution.

Perhaps more significant is the fact that since so many

of the preferences have been coded as constraints, any

feasible (i.e., binary) solution is likely to be reasonable

regardless of optimality as defined by the very soft data

incorporated in the objective function. Thus, a formal

branch and bound technique to solve the integer program to

optimality is probably not necessary for an adequate

solution to this problem. We will see in Section VI that

analysis of the output schedules must be performed on

several dimensions, not just on the basis of one objective

value versus another. An iterative approach enables the

user to compare various schedules in terms of multiple

criteria and objectives.

Second, the model is large, but my personal experience

in working with it suggests that it is still sufficiently

reasonable in size so that a user can be directly involved

in the solution process. The iterative nature of the

technique forces the user to know his problem well:

understand tradeoffs, sensitivities, key bottlenecks, etc.

In turn, this knowledge permits the user to play a valuable

role in providing intelligent help to the model by

specifying the times for certain courses at various

iterations. In particular, since last year's schedule is

always known, the user is in a position to help,

particularly with respect to the CORE. Moreover, when the

schedule is finally published, the user's detailed knowledge

of the problem will enable him or her to explain to the

faculty why certain decisions were made, which faculty

should be asked for alternative preferences, and so on.

Finally, the model will be able to provide relatively

rapid feedback to the user as to whether any feasible

solution exists at all. In particular, if the linear

program is not feasible, then the schedule is not feasible.

However, one drawback of the model is that existence of a

linear (non-integer) solution does not guarantee the

existence of a binary integer solution.

V.A.2. Disadvantages of the Technique.

The primary disadvantage of my technique is that

is not quaranteed to find the optimal integer solution.

Although upper and lower bounds may be known from previous

iterations, we can never be sure that we have an optimum

unless the integer value of the objective exactly equals the

LP maximum. Thus, the technique requires the user to play

an active and intelligent role in the solution process by

specifying the times for certain courses during the

iterations. In effect, this is the manual aspect of the

branch and bound procedure. Now, the user's role can be

ambiguous at times. The user cannot specify the times for

too many courses all at once lest he use up too many of the

model's degrees of freedom and thereby greatly compromise

optimality. However, he cannot be overly careful to the

point of specifying only one course at a time during the

iterations since this would be no better than a "black box"

implementation of branch and bound.

The soft nature of the objective function data suggests

that strong notions of optimality should not be used.

However, a more serious problem may be that even though a

feasible linear (non-integer) solution exists, a feasible

integer solution may not exist. Thus, the user may continue

to iterate along a hopeless path. However, these

circumstances could also occur in a traditional

implementation of branch and bound. Here, we must rely on

the user to provide insight into the problem to end the

iterations if he feels they will not lead to a feasible or

satisfactory solution.

90

More generally, the use of any decision support system

(DSS) requires the user to first, understand his problem,

and second, to understand the capabilities and limitations

of the DSS. My prototype shares these characteristics. If

used inappropriately, it may well produce poor results.

However, if used appropriately, it can provide a significant

degree of support to the user in improving the scheduling

process and output. Such a case example with actual data

will be described in Section VI.

V.B. Implementation of the Prototype.

The linear program was formulated and solved using the

GAMS/MINOS system available on the Sloan School's PRIME 850

computer. GAMS stands for General Algebraic Modelling

System. It was developed by David Kendrick and Alexander

Meeraus at the World Bank to aid in the development and

solution of the mathematical programming models. (Kendrick

and Meeraus, (1985)). GAMS is probably among the best of

the LP formulation and matrix generation packages available.

I consider it to be very "user-friendly", although I would

concede that others may find it "user-tolerable". Kendrick

and Meeraus (1985) provide a very readable user's guide to

the language.

My technique does not in any way depend on a specific

software package. However, I chose to use GAMS both because

it was readily available and because it was fairly easy and

convenient for me to employ. Appendix F provides a listing

and documentation of the GAMS formulation actually used in

Section VI. Although the documentation is fairly clear, a

reading knowledge of GAMS would greatly help to further the

reader's understanding of the code. That reading knowledge

could be easily obtained by skimming the GAMS manual

(Kendrick and Meeraus, 1985). However, a reader experienced

with matrix generators and mathematical programming can

probably skip that step and read the formulation directly.

It should not be particularly difficult for a user to

understand the model, if he is familiar with the discussions

presented in this thesis document.

GAMS serves only to formulate and generate the model

and to write output reports. The actual solution is

performed by MINOS, a mathematical programming package.

However, MINOS is directly linked to GAMS so that the

interface is totally transparent to the user. We need only

specify "Solve using LP" in the GAMS formulation and GAMS

automatically handles all of the transfer of inputs to and

outputs from MINOS. Thus, once the problem is formulated in

GAMS, each additional run is trivial to execute.

I would add that no traditional code (PASCAL, FORTRAN,

etc.) was required to implement the actual model. This even

includes the first few test runs of Lagrangian Relaxation I

performed. While GAMS does not have an automatic Lagrangian

Relaxation "option", the language is sufficiently flexible

so that I was able to model the "dualization" of the

constraints and the iterations of the subgradient method

wholly within GAMS. (I did write one PASCAL program but its

sole purpose was to compile the student survey data.) GAMS

includes report-writer capabilites so that reports of the

schedule by time, course, concentration, faculty, etc. can

be easily implemented.

However, I must emphasize that the implementation is

currently at a prototype stage. In particular, I have not

yet implemented a complete set of reports, mainly because

they were unnecessary for the purposes of this thesis.

Output reports have actually been kept to a minimum to save

run time and to facilitate my analysis of the outputs.

However, more complete reports could be easily designed and

implemented in a matter of days.

V.C. Empirical Success.

While the model's empirical success will be discussed

in more detail in Section VI, I will briefly summarize some

of those results here. Results are based on the test case

performed for the actual Fall, 1987 schedule as well as on

developmental test runs performed ex post on the Fall, 1986

schedule.

In all cases, I found that, for a given problem, if a

feasible LP solution exists, then an integer solution could

be found in at most two more iterations. In all such cases,

the integer solution had an objective value within 90% or

better of the LP optimum. Each run takes approximately 20

minutes on the Sloan School PR1ME 850 computer. This time

may vary, generally depending on model size and on how many

of the courses are preset for that run. It should be noted

that the twenty minutes includes time for model generation

as well as the time required to transfer data between GAMS

and MINOS. Actual LP solution time is approximately 15

minutes. Finally, certain software experts at Sloan believe

that MINOS may not have a particularly efficient

implementation of the Simplex method. (It is mainly used

for non-linear programming.)

This concludes my conceptual discussion of the model

and its prototype implementation. The next section, Section

VI, discusses the detailed results of the Fall, 1987 test

case. Finally, Section VII provides my conclusions and

suggestions for next steps.

VI. A Test Case: The Fall, 1987 Schedule.

The model was originally developed in the early Spring

of 1987 using ex post data from the Fall, 1986 semester's

schedule. Since the model proved to be successful with that

data, it was tested more rigorously by being run parallel

to the standard scheduling process for the Fall, 1987

schedule. That process began in March of the preceding

Spring with a goal of having a tentative schedule sent to

the central administration for all of MIT by April.

This section presents and analyzes the model's

performance in that actual test case. Section VI.A

describes the semester-specific model parameters: courses,

faculty, etc. Section VI.B describes the model runs that

were performed and the process and criteria I used to choose

the best model-generated schedule. Finally, Section VI.C

compares that model-generated schedule to the one generated

by the existing manual process.

VI.A. Semester-Specific Model Parameters.

VI.A.l. Courses.

A total of 99 courses were planned to be offered

for the Fall of 1987. Of these, 12 were scheduled to be

95

offered in the evenings or on Fridays and were thus

eliminated from the relevant sample.

Of the 87 remaining courses, two were manually

preprocessed so as to be combined into one for scheduling

purposes. These courses were two three-hour seminars within

the Human Resource Management (HRM) concentration area. In

fact, the courses were not actually equivalent in size: one

was in room size group R2 while the other was in R4.

However, since seminar rooms are always available, the

"combined" course was assumed to require only one room (in

group R2). The reader may note that in fact, the HRM

concentration area had planned to offer three three-hour

seminar courses. Thus, unless at least two of those courses

were to be paired up, there would have to have been a

conflict within the concentration. In addition, the reader

may note that since seminar rooms are generally available at

all times, the smaller course could be moved by the faculty

member and students afterwards.

The 86 net remaining courses consisted of 23 CORE

offerings (including multiple offerings of the same courses

to different sections) and 63 electives. Fifteen

concentrations were represented by the electives with a

range of one to seven courses per concentration and an

average of three to four courses per concentration. There

were ten courses planned to be offered as three hour

seminars, four of which were in the CORE.

Room size groupings were a function of expected

enrollments based on data from the prior semester. The

following table presents a summary of relevant room size

grouping data:

Size Group Number Number Number Demand/
of rooms of slots of Supply

available courses Ratio

R1 1 8 8 1.00

R2 3 26a 18b 0.69

R3 6 48 35 0.73

R4 9 72 23 0.32

Notes:

(a) Includes two extra slots from the Sloan Fellows room;

(b) Net of two joint Sloan Fellows/Masters' courses.

The table can be explained as follows. First, since

there are 8 standard time slots per week, in general the

number of slots per group is 8 times the number of rooms.

Group R2 is the only exception to this rule. There is one

additional room in R2 that generally is reserved for the

Sloan Fellows. However, that room is available to the other

programs for two of the eight periods in the standard week.

Thus, the total number of available slots for rooms of type

R2 is (3 * 8) + 2 = 26.

Second, two courses in group R2 are joint offerings for

the Sloan Fellows as well as the Masters' programs. Those

courses are in the same concentration (Operations

Management) and the faculty members involved teach only

those courses. Since the courses are held in the Sloan

Fellows' room, they consume no net resources from the

perspective of the Masters' program. Hence, their times

have been preset according to the Sloan Fellows' program.

In particular, the net number of courses that the model must

schedule is thereby decreased by 2 to 84 (8 + 18 + 35 + 23).

Finally, the demand/supply ratios for the groups

indicate that R1 is likely be the most difficult room group

to schedule since there is no slack in the room resource

available to that group. R2 and R3 have roughly comparable

demand/supply ratios and, as expected, R4 has the lowest.

Thus, R4 (the smallest courses) should be the easiest group

to schedule or, if necessary, to move to accomodate

conflicts with courses in the other groups.

98

VI. A.2. Faculty.

The projected offerings for the Fall, 1987

schedule included 55 known faculty members teaching at least

one course during the standard hours. Certain courses were

known to be taught by new or visiting faculty, but the

individual had not yet been determined. The survey return

status of the known 55 was as follows:

Status Number of Per cent of Total
Faculty

Survey Returned 35 63.6 %

MIT faculty but 3 5.5
outside Sloan
(not surveyed)

Survey Not Returned but 9 16.4
Preferences implicitly
known and assumed

Survey Not Returned; 8 14.5
Preferences Unknown
(on leave, out of
country, etc.)

Total 55 100.0

MIT faculty members outside of Sloan were not directly

involved in the Sloan process. In general, their courses

were joint offerings between Sloan and their respective

departments and were considered fixed by Sloan. A followup

99

memo and survey (See Appendix A) was sent to those Sloan

Faculty members who had not returned surveys. While many

did respond to this second memo, we decided not to pursue

the remaining non-respondents any further. Nine of these

individuals had preferences that were roughly known, and in

many (but not all) cases, they were teaching only one small

course which could be moved ex post anyway. Finally, there

were eight faculty members for whom no preference was known

or assumed.

The response rate can also be expressed in terms of

courses. The 86 courses can be characterized as follows:

Status Number of Per cent of Total
Courses

Survey Returned; 48 55.8 %
Preferences known

Surveys Returned; 5 5.8
Faculty members
completely indifferent

Survey Not Returned but 16 18.6
Preferences implicitly
known and assumed

Survey Not Returned; 17 19.8
Preferences Unknown
(new or unknown faculty
or no survey)

Total 86 100.0

100

Thus, preferences were known or assumed for the great

majority (approximately 80%) of the courses.

Finally, other characteristics of the faculty

preferences may be summarized as follows. Twenty-two

faculty members were teaching more than one course within

the standard week. Of these, 11 desired to teach on

Monday/Wednesday, 6 desired Tuesday/Thursday, 3 were

teaching Communication to the CORE (spread out), 1 was

teaching three courses spread over the week, and 1 was from

outside the department but was believed to prefer teaching

his courses spread over the week. Four faculty members

desired to teach back-to-back (all on Monday/Wednesday) and

five desired not to teach back-to-back (two on

Monday/Wednesday and three on Tuesday/Thursday). The

remaining faculty were indifferent or had not returned

surveys.

With one exception, these numbers do not have specific

importance beyond determining the overall model size. The

original model had 688 (8 * 86) variables and approximately

700 constraints, some of which were interdependent. The one

qualitative point that should be noted is the apparent skew

in preferences toward Monday/Wednesday slots. The skewed

preferences indicate that the schedules will be tighter on

those days and that indifferent faculty should probably be

101

assigned to Tuesday/Thursday slots.

This concludes my discussion of the semester-specific

model parameters. Section VI.B now discusses and analyzes

the actual model runs performed.

VI.B. Model Runs.

Three different scenarios were run for the Fall, 1987

schedule. It turned out that all three scenarios had binary

integer solutions to the original linear program so that the

manual branch and bound technique discussed in Section V was

not needed. However, the reader may recall the empirical

discussion of Section V.C. In particular, I continue to

believe that the methodology is viable since in other

developmental runs, integer solutions were not obtained on

the first iteration but were obtained in no more than two

additional iterations.

Before proceeding to a detailed discussion of each run,

I will present some summary statistics for the three runs.

102

Run Description Number PR1ME Number Optimal
of preset 850 CPU of Objective
courses minutes pivots Value

1 First Pass 7 20.5 1680 369

2 With Student 10 27.0 2176 369
Survey Data

3 Cumulative 10 27.0 2008 369
Room Size
Groups

All of the runs had 688 variables. Run (1) had

approximately 700 constraints. Runs (2) and (3) had 136

additional constraints on seventeen high conflict course

pairs (17 pairs * 8 time periods). The run time is

moderately long (20+ minutes), but still workable for an

iterative approach. Runs were executed in PRIME's "phantom"

mode so the CPU time is approximately equal to run time.

While multiple runs may be executed simultaneously, such a

practice may not be appropriate, particularly if subsequent

runs depend on the output from prior ones. Finally, the

reader should note that the optimal objective value obtained

from each run was 369. Thus, total faculty satisfaction

with each of the scenarios was equal, although there may be

different distributions of the same total utility.

The following subsections discuss each of the runs in

greater detail.

103

VI.B.1. The First Run.

Inputs.

The first run was the basic implementation of

the model outlined in Section IV with the exception that

student overlap data obtained from the surveys was not yet

incorporated. All back-to-back, concentration, and other

constraints were included. The seven fixed courses

consisted of the following:

i. Two joint Sloan Fellows/Masters' courses were

fixed, as discussed above.

ii. One elective that was jointly taught by two

faculty was strongly desired to be fixed at a given time.

The course was in size group R3 so I felt that presetting it

would not unduly decrease the degrees of freedom available

to the model.

iii. The four offerings of one CORE course

(Managerial Behavior) were all required to be assigned to

the same time slot. Since those offerings were three-hour

seminars, there were only two possible times available. The

Sloan School administration previously had agreed with the

faculty involved to schedule the four offerings all on

Monday (/Wednesday) at 2:30 PM.

104

Results.

The LP solution of the first iteration of

this run (and all the others) was (binary) integer with an

overall objective value of 369. In the tables shown above,

there were a total of 22 courses for which the faculty

member either was completely indifferent (5 courses) or had

not returned a survey (17 courses). Since those courses

must, by definition, be assigned to a slot for which the

preference was indifferent (i.e., rated a 3), the mean

satisfaction rating for the remaining 64 courses was

(369 - 3(22)) / (86 - 22) or 4.73 out of a maximum of 5. At

first blush, this would seem to indicate that the model is

performing excellently.

Further analysis confirms this conclusion. In

particular, of the 64 courses that had preference data, 61

(95%) were scheduled at times which the faculty member had

rated as either a 4 or 5. It is interesting to examine the

other three courses individually.

(1). The first course was assigned to a slot

that was rated 3. The reason was that the faculty member

desired to teach on Mondays and Wednesdays, but there were

two other courses within that concentration also scheduled

for Mondays and Wednesdays which were assigned to specific

slots rated as 5's. The best the model could do was find a

105

slot rated 3 for the remaining course. Note that this

course was small (R4). Thus, this faculty member or group

could reschedule the course, if desired, by accepting a

conflict within the concentration. In fact, one of the two

other courses was the one jointly taught course that was

fixed as discussed above. Thus, a second option could be to

relax the constraint fixing that course. I did not actually

test this option, but it is an obvious candidate for a

future sensitivity.

(2). The second course was also assigned to

a slot rated 3 for similar reasons as #1. The course was in

the HRM/IR concentration area which had many course

offerings. Again, the course in question was small and

could be rescheduled if desired by the faculty member and

groups involved.

(3). The third course was actually assigned

to a slot rated 1, the lowest rating. However, the reasons

were as follows. The faculty member was teaching two

courses and desired to teach on Mondays and Wednesdays. He

further desired not to teach back-to-back. Thus, he would

have to teach one course in the morning and one in the

afternoon. However, one of the two afternoon slots was

reserved for a seminar course within that concentration.

There was thus only one feasible slot in which the afternoon

106

course could be scheduled and the faculty member had rated

that slot a 1. The reader may note that I had the

opportunity to personally discuss this case with the faculty

member involved. When the problem was explained, he agreed

that there seemed to be no other solution unless he were to

move to Tuesdays and Thursdays, a change which he preferred

not to make at this time.

The model was thus able to generate what appeared to be

an excellent candidate schedule in one run. However, I had

not yet considered the pairs of courses that were high in

student conflicts. These pairs were considered in Run 2.

VI.B.2. Student Overlap Considered.

As described in Section IV, the students were

surveyed midway through the Spring semester to determine

course pairs that were likely to have a high degree of

conflict. I received 70 responses from the 185 students in

the first year class. (I surveyed only those students that

would actually be at the school in the Fall.)

The conflicts were ranked on both absolute and relative

terms. The 70 student surveys generated a total of 214

course pairs that had at least one student conflict. In

terms of absolute overlap (number of students), these course

pairs were distributed as follows:

107

Number of Reported
Student Conflicts

Number of Pairs

106

56

19

14

Per Cent of Pairs

49.5 %

26.2

8.9

6.5

4.7

6 or more

Total

4.2

214 100.0 %

In terms of relative overlap (students selecting both

courses in the pair as a per cent of total students

selecting either or both courses), the distribution was:

Relative Overlap
Percentage

Number of Pairs Per Cent of Pairs

0 - 5% 41 19.1%

5 - 7.5% 40 18.7

7.5 - 10% 49 22.9

10 - 15% 53 24.8

15% + 31 14.5

Total 214 100.0 %

108

4.2

My first problem was to decide what constitutes a "high

overlap" course pair. My first pass decision rule, based on

the distributions, was to choose course pairs that had 5 or

more overlaps in absolute terms, or 15% in relative terms.

Now, many of these conflict pairs consist of courses within

the same concentration. Such pairs are already accounted

for by the concentration conflict constraints. In addition,

there was one popular Finance elective that was to be

offered in two sections at different times. I decided not

to use any of the pairs including that course since students

would have two chances to schedule around it. (It is

conceivable that this could leave some students with three-

way conflicts around which they could not schedule.

However, I have chosen to ignore this possibility.)

Finally, many of the top relative overlap courses are also

top absolute overlap courses and are thus double-counted in

the distributions.

It turned out that after these eliminations, I had 9

course pairs generated from the absolute overlap list and 8

(additional) pairs from the relative overlap list. Thus,

there was a total of 17 course pairs for which overlap was

to be avoided. Admittedly, my methodology is somewhat

arbitrary but it should succeed in catching the most blatant

overlap pairs, particularly those which consist of courses

in different concentrations.

109

The schedule generated by the first run had two of the

seventeen high overlap course pairs scheduled in conflict.

Constraints for the 17 course pairs were thus added to the

formulation in the manner described in Section IV.

I would point out that one potential future change in

the model could be to eliminate the concentration

constraints and deal with all student conflicts in the above

manner. For example, if many students concentrating in

Finance plan to take more than one Finance elective, that

fact would automatically show up in the student surveys. At

this point I have chosen to stay with my original

formulation, due mainly to the relatively low student

response rate. In particular, I believe that there may be

more students with conflicts within the concentrations than

may appear from my survey data. In addition, students

returning their surveys may not yet be aware of the

requirements in their concentrations.

Two additional modifications were made to Run 2.

First, three additional courses were fixed. Two of these

courses were CORE offerings of Statistics. These courses

were fixed at the times asssigned to them in the first run.

The third course was a Statistics elective which can

substitute for the CORE requirement. Nearly all of the

students taking that course are first year students

110

substituting it for the CORE course. For this reason, I

decided to schedule it at the same time as one of the CORE

offerings. In this way, I hoped to minimize the number of

students who would have to change sections so as to fit the

course into their schedule. The actual slot chosen (of the

two) was easily determined since the professor teaching the

elective would be new and thus had no known preferences. In

addition, the elective course was assigned to the one room

in group Rl, and the other potential slot was not available

since another professor teaching a course in R1 had a very

strong preference to teach his course at that time.

The second modification made to this scenario was the

movement of one professor from Monday/Wednesday to

Tuesday/Thursday. This professor had not returned a survey

but was originally thought to prefer Monday/Wednesday slots.

However, he was teaching a course that was probably the most

difficult to schedule: it was extremely popular, it was one

of the courses most often cited in the conflict pairs, and

it was taught in R1. A "quick and dirty" analysis of

potential changes to the schedule indicated that it would be

difficult, if not impossible, to schedule around all of the

conflicts unless that course were moved to Tuesday/Thursday.

Since the professor had not returned a survey, I assumed

that he would not have a strong preference either way and

111

thus would be amenable to the change (although I did not

discuss it with him).

Results.

Here again, a binary integer optimum satisfying

all of the additional constraints was found in one

iteration. The objective value was 369,- equal to the value

obtained in the first run.

Relative to the solution to the first scenario, 17 of

the 86 courses changed slots. All of these 17 moved to

slots that had preference ratings equal to those of the

slots assigned by the first run. Of the 17, 10 were courses

for which there was no survey data, 4 were courses for which

the faculty members had claimed total indifference to time

slots, and the remaining 3 moved to slots with equal

preference (5's) as those assigned by the first scenario.

In my view, this scenario illustrates the power of the

model. In particular, it shows how certain courses for which

the faculty member has flexible preferences can be

rescheduled for the benefit of the entire school. In this

case, the improved schedule accomodates additional

constraints, based on student input data. Furthermore, it

is noteworthy that every faculty member is (apparently)

112

exactly as well off as he was in the first scenario.

VI.B.3. Sensitivity: Cumulative Room Size

Groups.

Scenario 3 was formulated exactly the same as

#2 with one exception. That exception was that the room

size groups were considered to be cumulative: a course in

group R3 could be assigned to a room in R2, etc. (The pros

and cons of such a formulation were discussed in Section

IV.B.6 above.)

The results can be summarized very briefly. A binary

integer optimum was again found on the first iteration. The

optimal objective value was 369, equal to the values

obtained by the first two runs. Seventeen courses were

moved relative to Run 2. However, all of these changes were

between time slots for which the professor either was

indifferent or had not returned a survey. Thus, the results

of Scenario 3 do not represent an improvement in total or

individual faculty satisfaction relative to those of

Scenario 2. It is interesting to note that some of these 17

courses were the same as those moved in Run 2 relative to

Run 1. Thus, it is likely that the variables for these

courses are non-basic and that the model's choice of

113

specific slots for them may be arbitrary given the lack of

strong preferences. (The actual assignment will be a

function of the specific pivots performed, which may change

when the new constraints are added.) Finally, the most

significant result was that there was only one case in which

a course was assigned to a room in the next larger group.

In Section IV.B.6 I explained that all else equal, I

believe that my original room group forumulation is

preferable to the sensitivity. Since the original

formulation matches courses to rooms closest in size, it

utilizes the room resources available to Sloan and MIT more

efficiently than does the sensitivity. For this reason, I

have concluded that the schedule produced by Scenario 2

represents the best model-generated schedule.

The next section compares my model-generated scheduled

to the schedule generated by the existing process which ran

parallel to my effort.

VI.C. Comparison of the Model-Generated Schedule

(Run 2• to the Manually Generated Schedule.

I performed a detailed analysis to compare the schedule

generated by the model in Scenario 2 to the schedule

generated by the standard manual process.

114

VI.C.l. Faculty Satisfaction.

Relative to the manually-generated schedule,

the model-generated schedule had the following results. Of

the 86 courses,

- 39 were scheduled in the same slot;

- 16 were moved, but no survey had been returned

so no assessment could be made as to which schedule would be

preferred by the faculty member;

- 17 were moved, but to slots that were equally

preferred by the faculty member according to the survey;

- 8 were moved to slots that represented

preference improvements according to the faculty member's

survey;

- 6 were moved to slots that were rated lower by

the faculty member.

It is interesting to examine each of the last six cases

in detail. First of all, four of the six represented moves

from slots that the faculty member had rated a 5 to slots

that were rated a 4. The other two were each moved from a

slot rated 5 to a slot rated 3.

115

In one case, the faculty member taught two courses and

preferred Monday/Wednesday. Due to room constraints (in

R1), he could not get his most preferred slot. However, the

model was able to assign his two courses to two slots he

rated as 4's, the second of which was actually one of the

eight improvements the model found. In addition, in the

model's schedule, that faculty member teaches all of his

courses on Mondays and Wednesdays whereas the manual process

had scheduled him to teach one each on Monday/Wednesday and

Tuesday/Thursday.

In the three other cases where the courses were moved

from slots rated 5 to slots rated 4, the reasons were

conflicts with other courses in the concentration, or room

constraints (generally R1l and R2). Finally in the two cases

where a course was moved from a slot rated 5 to one rated

3, the reasons were also conflicts within the

concentrations. However, both of those courses are small,

and could be adjusted manually ex post if required/desired

by the faculty members involved.

There were other intangible benefits found by the model

for three other professors. In one case, a faculty member

was successfully assigned to slots on Monday/Wednesday

instead of Tuesday/Thursday. Although the faculty member

had rated the slots equal on the survey scale, he did state

116

a preference for teaching on Monday/Wednesday. Two other

professors were successfully assigned slots all on one day,

as opposed to slots spread over the week. In both cases,

their surveys had stated this preference.

I did find one problem with the model's schedule. One

faculty member was teaching three courses. Two were

offerings of the same CORE course and one was an elective.

Although she was indifferent with respect to specific time

slots, she did desire to teach all on one day, with the two

CORE offerings back-to-back either in the morning or

afternoon, and with the elective in one of the other free

slots. Since she was teaching three courses, the model did

not specify back-to-back constraints for her and the

resulting schedule assigned her to teach the elective and

one of the CORE offerings back-to-back. However, as it

turned out, I was simply able to exchange the elective and

the other CORE assignment manually and still meet all CORE

section, concentration, conflict, and room constraints.

With this last change added, I am completely comfortable

with the schedule generated by the model.

Finally, the reader may recall the case of the one

faculty member assigned to a slot rated 1, discussed above.

In fact, the manual process ran into the same constraints as

117

the model. Consequently, he was assigned to that same slot

by the manual process as well as by the model.

VI.C.2. Other Means of Comparison.

The reader may note that the schedule

generated by the manual process would not be found feasible

by the model. Various constraints relating to

concentrations, room capacity (the manually generated

schedule is apparently allowing for overcrowding), and other

teaching preferences (same day, back-to-back, etc.) have

been violated.

In addition, the model-generated schedule accounts for

all of the top twenty course pair conflicts identified from

the student survey data. The manually generated schedule

has two of the twenty pairs scheduled in conflict. However,

in both of those cases, at least one of the courses in the

pair is offered in both the Spring and Fall semesters.

Thus, the students should be able to take both during their

entire second year.

VI.D. Concluding Comments.

My analysis is not meant to criticize the performance

of the current process. I was actually quite surprised to

see how well the current process performs, and how

118

relatively few opportunities for improvement actually

existed (or were found). Nevertheless, a few apparent

improvements were found, thus demonstrating the model's

potential for improving the scheduling process.

In summary, I would also reiterate the problems

inherent in dealing with relatively soft preference numbers.

We must not make the mistake of using the faculty ratings as

hard measures of satisfaction. I believe that I have been

appropriately conservative in interpreting the preference

ratings. When analyzing the results, I have not

distinguished between 4's and 5's, and I have not directly

traded off one faculty member's improvement in utility with

another's decline. Instead, I have made qualitative

statements such as "Professor X seems to have experienced an

increase in satisfaction while Professor Y is apparently

indifferent."

Of course, the reader should recognize that the whole

nature of an LP approach implies somewhat difficult

comparisons of cardinal utility values across various

faculty members. For example, the LP would be indifferent

between the following two options: (1) assign two courses

to one slot rated 5 and another rated 3; and (2) assign the

two courses to two slots rated 4. In contrast, a human

119

scheduler might have a reason (e.g., "equity") to prefer one

or the other option. However, the possibility of this type

of situation is precisely the reason why I have tried to

focus mainly on the proper ordinal characteristics of the

preference functions, as opposed to comparisons of the

cardinal values in my analyses and evaluations of the

alternative schedules. It is also the reason why I have

chosen to design a solution technique which requires a human

user to be heavily involved in the process.

The next and final section presents some brief

conclusions and my suggestions for the next steps required

to implement the model formally at Sloan.

120

VII. Conclusions and Potential Next Steps.

The test case described in Section VI demonstrates that

the model is an apparently viable tool for improving the

Sloan School scheduling process. The model successfully

generated alternative course timetables which appear to be

as good as, and generally superior to, timetables produced

by the existing manual process.

The model's execution time was 20+ minutes per run.

While this may sound like a lot, I would point out that run

time is not the only measure of turnaround time. In any

case, run time needs to be viewed from the proper

perspective. In particular, the reader may note that once

the model was developed, and the semester-dependent data

collected and input, the scenarios discussed in Section VI

were generated all in one day. The data collection, input,

and analysis were all performed within two weeks. Thus,

the school could consider hiring an undergraduate Research

Assistant to work with the model and perform the work

described in Section VI on a regular basis each semester.

I have divided my suggested next steps into two

sections. The first deals with the model itself and the

second addresses the general scheduling process.

121

VII.A. Model Development.

Two aspects of the model should be further developed.

These are its extension for use in scheduling a Spring

semester and the further extension of the user interface.

VII.A.l. Extensions Required for Use in

Scheduling the Spring Semester.

The model was originally developed for a Fall

semester. The issues in a Spring semester are conceptually

the same, with two exceptions/additions.

i. Friday Sections of CORE Courses.

Certain CORE courses have additional sessions on

Fridays. Some faculty members apparently desire to teach

such sessions at the same times on Fridays as they do during

the week. Thus, if a course is taught on Monday/Wednesday

at 9 AM, faculty preferences suggest that the Friday session

should also be at 9. In the fall, this consideration is not

an issue since only one course each half-semester meets on

Fridays. Thus, that course can be easily scheduled at the

same time on Friday as it is during the week.

However, in the Spring, a student may have three or

even four courses meeting on Fridays, depending on the

122

student's concentration (discussed below). Thus, in order to

permit each faculty member to teach at the same time on

Fridays that she does during rest of the week, the CORE

schedule must be designed so that no more than one course

with a Friday session is scheduled at the same hour across

the two sets of days. For example, Finance and Operations

both have Friday classes. In order for the professors

involved to teach at the same time on Friday as they do

during the rest of the week, we must require that if Finance

and Operations are taught on different days, they must not

be taught at the same time (e.g., 9 AM) to the same

sections.

The required constraints can be formulated as follows.

Let Isfh be the set of CORE courses requiring a Friday

meeting that are taken by section s in half-semester h.

Further, let Jt be the set of time slots that occur at the

same time, but on different days. Thus,

Jl = (Mon/Wed 9-10:30; and Tue/Thur 9-10:30 }

J2 = { Mon/Wed 10:30-12; and Tue/Thur 10:30-12)

J3 = { Mon/Wed 1-2:30; and Tue/Thur 1-2:30)

J4 = { Mon/Wed 2:30-4; and Tue/Thur 2:30-4)

123

The constraints are:

Sxij <= 1 t = 1..4;
iEs = A..L;

h = 1,2.

It should be noted that the addition of these

constrants is not a requirement for schedule feasibility.

The decision to include these constraints should be based on

faculty preferences.

ii. Mappina of Concentrations to Sections.

The second major difference in the Spring is the

fact that first-year students in different concentrations

have different requirements. Finance and Marketing (and

potentially Operations Management) have full semester CORE

requirements for students in those concentrations. Other

students take condensed half-semester versions of the same

courses.

At present, the sections are composed randomly, with no

consideration to given concentrations, etc. Now, this may

be an appropriate educational policy since one of the main

goals of the school is to encourage student camaraderie,

124

etc. However, in the Spring the policy leads to a very

difficult scheduling problem. In essence, the number of de

facto sections is multiplied by four: Section A, Finance

Concentrators; Section A, Marketing Concentrators; Section

A, Marketing and Finance Concentrators; and Section A, All

Other Concentrators; etc. This phenomena could be modelled

by increasing the number of de facto sections in order to

maintain feasibility .for all the relevant concentrations.

However, such a feasible solution may be difficult to find,

and may unduly restrict the alternatives available.

A simpler solution would be to reassign sections at the

beginning of the Spring on the basis of concentrations.

This would decrease the number of Section/Concentration

combinations required to be feasible. Meanwhile, the

students would have been given the chance to meet people

outside of their concentrations during the Fall semester so

that excessive formation of cliques, etc. need not be a

problem. It should be noted that, in effect, the manual

process is doing this already since the actual Spring, 1987

schedule is not feasible for all conceivable

Section/Concentration combinations. Some students must be

changing sections (formally or informally) in order to meet

their requirements under the present system.

125

The summary of the model formulation in Appendix D

includes a presentation of these additional constraints.

VII.A.2. Further Development of a User Interface.

The second major area of model development lies in the

user interface. As I discussed at the end of Section V, the

current interface has been designed only to facilitate my

development of the prototype and analysis of the results.

In the future, the user interface can be extended in three

possible directions:

i. Information System (MIS) Aspects.

At a minimum, additional output reports need to be

designed within the GAMS model. Such reports would serve

two functions: first, to output the results in a more

convenient format; and second, to facilitate performance of

the analyses presented in Section VI on a more regular basis

each semester. These reports could be implemented in a

matter of days by a user familiar with GAMS once the

required formats were agreed upon. Other MIS extensions

could be improved means for data input and storage, perhaps

using a relational database system such as SQL. In fact,

GAMS stores data in a relational database that could itself

be used. (Kendrick and Meeraus, 1985).

126

ii. Graphic Interface.

A second direction would be to explore the

possibility of developing a graphic interface, perhaps based

on Dyer and Mulvey's example. One very interesting

possibility would be to implement the user interface in an

"off-line" environment, such as a Macintosh. Such an

implementation could make liberal use of the Mac's graphic

capabilities. Unfortunately, the design and implementation

of such a system were far beyond the scope of this thesis.

iii. Expert Systems.

One potentially promising application of

expert systems could be their use as intelligent interfaces

between human users and large-scale mathematical programs.

In this case, an expert system could be given various

scheduling rules and means for interpreting the output of

the LP for the user. Such an expert system could

potentially improve performance of the manual branch and

bound technique, if it were necessary. It might also be

able to choose among alternatives that the LP rated as

(apparently) indifferent. Here again, I can only make the

general suggestion; a detailed implementation is beyond the

scope of my thesis.

127

VII.B. The Scheduling Process.

I conclude this thesis with some comments and

observations about the general scheduling process at Sloan.

Ultimately, successful implementation of my or any

other scheduling system will require far more than a model.

First, the faculty and administration must decide what they

really want from such a system. I have taken my best passes

at balancing the interests and preferences of the various

faculty members and of the students. However, the final

decisions must be made by the faculty and administration,

hopefully based on my analysis and suggestions.

Second, the school must decide how far it is willing to

go in enforcing the use of the system. In particular,

incentives must be given to both the faculty and students to

encourage the completion and return of their respective

surveys. The faculty response rate was very encouraging.

However, I was missing surveys from several key people.

Moreover, the faculty who did return surveys may have done

so only because the project was viewed as an academic

endeavor. The response rate may have been quite different

(in either direction) had the faculty been told that their

actual schedules would be generated by the model.

128

In addition, the students' response rate (37%) was

somewhat discouraging to me. While it is true that the

students, as always, were busy at the time of the survey

(see Appendix B), it could not have taken them more than a

half hour to complete. Furthermore, the students are the

constituency with the most to gain from the model since they

have zero input now.

One means of increasing both the student and faculty

response rates would be to simply publicize the results of

the model. In particular, when the faculty become aware of

the overwhelming percentage (95%) of courses which had

survey data assigned to slots rated as 4's or 5's, they

might be more likely to respond to preference surveys.

Similarly, if the students are shown how the system

successfully decreased their conflicts, they might also be

more inclined to return their surveys.

In conclusion, I would say that the model seems to hold

promise for improving the Sloan School scheduling process.

More work needs to be done in extending the model and in

implementing it within the Sloan culture and context.

However, I do believe that my work represents a good start

and I recommend that a more formal implementation be

undertaken in the near future.

129

APPENDICES

A. Faculty Survey p. 131

B. Student Survey p. 140

C. Program To Compile the Results of
the Student Survey p. 146

D. Summary of the Model Formulation p. 174

E. Assignment of Sections to Offerings p. 184

F. GAMS Model and Documentation p. 191

130

Appendix A: Faculty Survey.

This appendix presents the survey and accompanying

memos that were sent to the faculty to determine their

preferences. Figure A-1 presents the original cover memo

sent with the survey. Figure A-2 presents the survey

itself and Figure A-3 presents a suggested revised version

of one of the questions. Finally, Figure A-4 presents a

followup memo sent to faculty members who did not return

their surveys on time.

A.1. The Original Cover Memo.

The survey was originally sent with a cover memo

(Figure A-1) from myself and Professor Tom Magnanti, the

Area Head of the Sloan School's Management Science Area.

The memo was intentionally designed to be as non-threatening

as possible. That is, we explained to the faculty that the

model would not actually be used to schedule courses this

semester. However, the faculty were informed that if the

model showed promise, the school might consider implementing

it more formally in the future. In this way, we hoped to

obtain the maximum amount of faculty cooperation possible.

131

Figure A-i: Cover Memo sent with the Faculty Survey.

This correspondence is a part of In reply write to'
research work being Massachusetts Institute of Technology

done for a Master's thesis Alfred P. Sloan School of Management
50 Memorial Drive

Cambridge, Massachusetts, 02139

MEMORANDUM

To: Sloan Schoo~culty Members
From: Tom Magn •i and Rich Ocken
Date: March 11, 1987
Subject: Fall, 1987 Course Scheduling

In conjunction with a second-year student's (Rich Ocken's) Masters'
thesis in operations management, the Sloan School is exploring the possibility
of developing a computerized course scheduling system. The purpose of the
system would be to schedule courses more effectively by attempting to fulfill
the faculty's time and (where possible) room preferences while minimizing
potential student conflicts. The performance of the system is clearly
dependent upon the quality of inputs we receive. Hence, we are asking for
your cooperation in helping us to design a system and schedule that would be
beneficial to all of us in the Sloan community.

We would like to emphasize that the system is being developed on an
experimental basis. That is, it will run "in parallel" with the standard
existing process and will n=t actually be used to schedule courses for this
fall. If the system shows potential, the Sloan School may consider using it
on a more formal basis.

At this time we are seeking information only on your time preferences.
The brief attached questionaire asks you to rate each of the "standard" time
slots in terms of your desire to teach at that time. It also gives you the
opportunity to inform us of your preferences regarding teaching (or not) back-
to-back, other time requirements you might have, and so on. We realize that
teaching plans are subject to change between now and the fall. Thus, we are
asking for you to base your responses on your best information, such as that
prepared recently by each of your groups as a part of the standard process.

For your convenience, these questionaires can be turned in to David Weber
in the Sloan Masters' Program Office, E52-112. We ask that you respond to us
no later than Wednesday, March 18, 1987.

Thank you in advance for your time and cooperation.

132

A.2. The Survey.

The survey itself (Figure A-2) is fairly

straightforward. The faculty were given the opportunity to:

i. Specify courses offered in off-hours; (Q2)

2. Rate the time slots; (Q3)

3. Specify their preferences re:

- Single day teaching; (Q4a)

- Back-to-back teaching; (Q4b)

4. Specify other time commitments they might

have; (Q5)

5. Make other comments/suggestions as they saw

appropriate. (Q6)

There are two specific changes I would make to the

survey, in questions (3) and (4b). I will describe each of

these in turn.

First, although the survey instructions were fairly

clear, there was apparently some confusion with respect to

the rating scheme. In particular:

1. Some of the returned surveys indicated that the

faculty respondent had rated his most preferred times as l's

133

and 2's, as opposed to 5's and 4's. I determined this from

some of the comments on the surveys. For instance, one

faculty member rated slots on Monday/Wednesday as 1's and

2's, but then stated he preferred to teach on

Monday/Wednesday in responding to Question 4a.

2. Some faculty members ranked the slots on a scale

of 1 to 8, instead of rating them. As I explained in the

text (Section IV.B.5), I chose to allow the ratings to be

"free form", i.e., I did not require the faculty member to

rank the time slots.

For the test run, I adjusted the (known) incorrect

surveys by inverting the ratings where necessary and/or

normalizing the rankings on a scale of 1 to 5. However, to

avoid confusion in the future, I would redesign Question 3

in the survey as shown in Figure A-3. In particular, by

asking the faculty to circle their preference ratings, I

would expect to be certain of obtaining proper responses.

The second change pertains to the back-to-back

question, Question 4b. To avoid any possible confusion, I

would specify clearly that the time slots that are separated

by lunchtime (10:30-12 and 1-2:30) are not considered to be

back-to-back.

134

Figure A-2: The Faculty Survey (page I of 2).

Faculty Course Scheduling Form

1. Name:

2. The proposed system would schedule courses offered only during the
"standard" times on Monday thru Thursday, 9 to 4. However, if you are
planning to offer any courses at "off-hours" (evenings or Fridays) please
specify those courses and the times you will offer them (if known) so we
can know to exclude them from the system.

Course "Non-Standard" Time Desired

(CORE professors please note: where applicable, we will try to schedule
Friday sessions at the same time as the Monday thru Thursday meetings.)

3. We would like to know your time preferences for teaching during the
"standard" hours. In the table below, please rate on a scale of I to 5
each of the "standard" time slots in terms of your desire to teach at that
time. (1 - least desirable rating for a slot; 3 - indifferent; 5 = most
desirable rating).

Time Slt1 Ratina

M,W 9-10:30

M,W 10:30-12

M,W 1-2:30

M,W 2:30-4

T,Th 9-10:30

T,Th 10:30-12

T,Th 1-2:30

T,Th 2:30-4

135

Figure A-2: The Faculty Survey (page 2 of 2).

4. Please answer questions 4a and 4b if you will be teaching two or more
courses during "standard" time slots.

4a. Do you prefer to teach all of your courses on one set of days
(i.e., Monday/Wednesday or Tuesday/Thursday)?

Which set of days (Mon/Wed or Tues/Thur) do you prefer?

4b. Do you have a strong preference to teach/not teach back-to-back?

Preferred

Indifferent

Not Preferred

5. Do you have any other time commitments (Lg. Sloan Fellows, Research
Seminars, etc.) for which we should reserve free time for you? Please
specify.

6. Do you have any other comments and/or preferences you would like us to
know about?

136

Figure A-3: Redesign of Survey Question 3.

3. We would like to know your time preferences for teaching
during the "standard" hours. In the table below, please
rate on a scale of 1 to 5 each of the standard time slots in
terms of your desire to teach at that time. Please rate
each time slot by circling the number corresponding to your
preference. (1 = least desirable rating for a slot; 3 =
indifferent; 5 = most desirable rating).

RatingTime Slot

Least
Desired

Indifferent Most
Desired

M,W 9-10:30

M,W 10:30-12

M,W 1-2:30

M,W 2:30-4

T,Th 9-10:30

T,Th 10:30-12

T,Th 1-2:30

T,Th 2:30-4

137

A.3. The Followup Memo.

Figure A-4 presents the followup memo that was sent to

faculty members who did not return their surveys on time.

No explicit changes need to be made to the memo itself.

However, I would hope that in a formal implementation of the

model, more faculty members would return their surveys on

time and that this memo would be needed only as a reminder.

138

Figure A-4: Followup Memo sent to Faculty not Returning Surveys.

This correspondence is a part of In replI write to
research work being Massachusetts Institute of Technology

done for a Miaster s thesis Alfred P. Sloan School of Management
50 Memorial Drive

Cambridge, Massachusetts, 02139

MEMORANDUM

To: Sloan School Faculty Members
From: Rich Ockenacd
Date: March 19, 1987
Subject: Time Preference Questionaires

This memo is to briefly remind you of our request that
you complete and .return at your earliest convenience the
time preference questionaire we distributed last week. The
development of the prototype scheduling system has been
proceeding according to plan. We now need some more real
"data" to give it a fair test.

In the event you may have misplaced the survey, I am
attaching another copy to this memo. Once again, please
return the completed questionaire to David Weber in Room
E52-112 or drop in my (Rich Ocken's) folder in the E52
lobby. Of course, if you have already completed and
returned the survey, please disregard this memo.

Thank you again for your time and cooperation.

139

Appendix B: The Student Survey.

Figure B-1 presents the survey sent to the students to

determine their expected course preferences. The first page

is the actual memo and survey; the next three pages contain

the projected course list for the Fall, 1987 semester.

The surveys were individually distributed to each of

the first-year students' folders. (All Sloan School

students have folders centrally located in the school's

lobby.) Since this model was being developed as a

prototype, I asked the students to return their surveys to

my folder, rather to the school's Masters' Program Office.

It is conceivable that the student response rate would have

been somewhat higher if the survey had been distributed and

collected by the administration. However, this conclusion

is not entirely certain since I may have benefited from

student camaraderie and empathy.

Timing of the Survey.

There is probably some optimal time for distributing

these surveys. Such a time must balance conflicting

factors. The survey cannot be distributed very early in the

preceding semester for two reasons. First, we need to know

the courses that are planned to be offered. Second, the

140

students may not take the survey seriously, or may not know

their preferences, if it is distributed very early.

However, the survey cannot be distributed too late since we

would want to have enough time to allow for changes and

iterations after candidate schedules are presented to the

faculty.

The survey was actually distributed on the Monday

before the school's Spring Break. I felt that a week would

be enough time; any students who did not return the surveys

after that time would probably never return them. However,

in addition to the Spring Break problem, that week is also

the week of finals for the two half-semester courses offered

in the first half of the Spring semester. These factors may

have decreased my yield a bit. Thus, in the future, I would

recommend that the surveys be distributed a week earlier.

141

Figure B-1I The Student Survey (page 1 of 4).

To: First Year Masters' Students
From: Rich Ocken D.;
Date: March 16, 1987
Subject: Fall, 1987 Course Scheduling

I realize that you are all very busy with linear programs, IS/LM,
etc., and that the last thing you want to think about is next semester's
schedule. However, in conjunction with my masters' thesis in operations
management, the Sloan School is exploring the possibility of implementing
a system to improve course scheduling and decrease student conflicts. We
need your help now in estimating student demand for various courses.
While this questionaire is not binding on you, we ask you to respond "in
good faith". Next semester's schedule may be designed in part based on
your input, so it is in your best interest to respond honestly.

Attached is a list which represents a very rough cut at next fall's
expected course offerings. The list is subject to change between now and
then but we would still like to get a rough idea of course pairs that are
likely to have a significant degree of student overlap. Based on that
list, please rank your top five elective course preferences for next
semester. Please exclude any CORE courses you may still be taking since
those courses will be scheduled separately.

I must emphasize that the attached list is a preliminary one. Thus,
please hold any questions, comments, etc. you may have for the faculty
and/or the administration regarding the courses that are (or are not)
offered until the formal schedule comes out in late April.

Please place the completed questionaires in my (Rich Ocken's) folder.
(We only need this page back; you are welcome to keep or discard the
attached list.) We ask that you respond no later than Friday, March 20,
1987, the day before Spring Break.

Thank you in advance for your time and cooperation.

Rank Course Number Course Name

1.
2.

3.

4.

5.

142

Figure B-ls The Student Survey (page 2 of 4).

Expected Elective Offerings. Fall. 1987

ADmlied Economics

15.001 Managerial Economics (Undergraduate course)
15.013 Industrial Economics for Strategic Decisions
15.018 Economics of International Business
15.034 Applied Econometrics and Forecasting for Management
15.035 Pricing Strategy (new course)
15.041 Research Seminar in Applied Economics

Ooerations Research/Statistics

15.053 Introduction to Management Science (undergraduates)
15.058 Applied Mathematical Programming
15.059 Mathematical Programming Models and Applications
15.065 Decision Analysis
15.073J Introduction to Stochastic Processes
15.075 Applied Statistics
15.078J Logistical and Transportation Planning Methods
15.081J Introduction to Mathematical Programming
15.083 Combinatorial Optimization
15.089 Workshop in Operations Research
15.099 Doctoral Statistics

Health Care Manamement

15.121 Seminar in Health Management
15.141J Comparative Health Systems
15.149 Special Studies in Health Management

International ManaIement

15.221 International Business Management
15.231 Mgt. and Tech. in People's Republic of China (new)
15.232 The Firm and Business Environment in Japan (new)

Communication

15.281 Advanced Managerial Communication

143

Figure B-i: The Student Survey (page 3 of 4).

Expected Elective Offerinas. Fall. 1987 (continued)

Ornanization Studies

15.301 Managerial Psychology Laboratory (undergraduate)
15.312 Managerial Decision Making and Leadership
15.317 Comparative Study of Organizations
15.345 Doctoral Seminar in Organization Studies
15.347 Doctoral Seminar in Research Methods I

Management of Technolov a.nd Innovation

15.351 Managing Technology and Innovation
15.371 The R&D Process: Communication and Problem Solving
15.965 Special Seminar: Technology/Marketing Interface

Finance

15.412 Financial Management II
15.413 Topics in Corporate Financial Management
15.415 Finance Theory
15.435 Corporate Financing Decisions
15.436 International Managerial Finance
15.437 Options and Futures Markets
15.438 Investment Banking and Markets
15.441 Research Seminar in Finance

Accountina

15.501/516 Financial and Cost Accounting (undergraduate)
15.521 Management Accounting and Control
15.525 Corporate Financial Accounting
15.539 Special Seminar in Accounting, Planning and Control
15.951 b Introductory Managerial Accounting (undergraduate)

Manauement Information Systems

15.562 Principles of Management Information Systems
15.564 Management Information Technology I
15.565 Management Information Technology II
15.568 Management Information Systems

144

Figure B-1: The Student Survey (page 4 of 4).

Exoected Elective Offerings. Fall. 1987 (contd)

Law

15.601/611 The American Legal System
15.615 Manager's Legal Function: From Birth to Bankruptcy
15.963 Tax Law

Industrial Relations and Human Resource Manavement

15.664 Management of Human Resources
15.665 Power and Negotiation
15.671J Labor Economics I
15.674J Comparative Systems of IR and Human Res. Development
15.691J Research Seminar in Industrial Relations

Operations Management

15.763 The Practice of Operations Management
15.768 Operations Management in the Service Industry
15.769 Manufacturing Strategy (new course)

Marketina

15.812 Marketing Management
15.824 Marketing Communications
15.825 Marketing Models
15.832 Measurement for Management
15.839 Workshop in Marketing

System Dynamics

15.874 System Dynamics for Business Policy
15.878 Economic Dynamics

Cornorate Strategv and Policy

15.931 Strategic Management
15.932 Technology Strategy
15.933 Advanced Strategic Management
15.939 Advanced Topics in Policy and Strategy
15.964 Strategy Models

145

Appendix C: The Program Used to Compile the Results of the

Student Survey.

I wrote a PASCAL program, PROCESSSURVEYS, to compile

the data from the returned student surveys. The program

takes the raw data and creates a conflict "matrix". This

matrix contains, for each pair of courses (i,i'), the number

of students who listed both courses on their surveys. The

program also keeps track of the total number of students

selecting each course. The program uses this data to output

a report listing the absolute and relative overlap (defined

in the text) for each pair of courses.

The program is implemented in PASCAL on the Sloan

School's PR1ME 850 computer. Total run time is less than

one minute. The code is extensively documented with

comments which include a full data dictionary and

description of each module. Section C.1 presents a general

discussion of issues relating to the program. Section C.2

discusses some implementation specifics on the PR1ME and

Section C.3 presents the actual code. It should be pointed

out that this appendix and the program documentation

presupposes at least a minimum of programming experience on

the part of the reader.

146

C.l. General Discussion.

The program is extensively documented by comments

within the code. However, much of what the code actually

does is merely translate course numbers from integer format

(e.q., 15xxx) to and from a special PASCAL TYPE defined in

the program (e.g., C15xxx). I need to do this because there

are several arrays and variables that are defined over all

of the courses offered in any given semester. PASCAL does

allow the programmer to define a new TYPE, in this case the

set of courses offered in any given semester. However, it

does not allow that TYPE to consist of non-consecutive

integers (e.g., 15001, 15011, 15018, etc.). Thus, I have

had to define a new TYPE consisting of (C15001, C15011,

C15018, etc.).

The main problem with this method is that like most

languages, PASCAL does not have pre-defined input/output

procedures for user-defined types. Thus, the program reads

the survey data in integer form, converts it to the new

TYPE, processes it, and converts it back to integer form for

output purposes. This is not very complicated, nor is it

difficult to implement. However, it is somewhat inelegant

in that I have implemented the conversions with large CASE

statments. (CASE statements are a convenient method of

implementing a large number of nested IF statements in

147

PASCAL.)

The current implementation requrires a user to update

the following parts of the program each semester. (See the

program comments for a more detailed explanation of each of

these.)

1. CONSTANTS: FIRST and LAST; FIRSTCOURSE and

LASTCOURSE.

FIRST and LAST are global constants in the

program. They refer to the integers corresponding to the

first and last sequence numbers of the courses offered in

any semester. (e.a., 15001 and 15999). FIRSTCOURSE and

LASTCOURSE are global variables that are initialized in the

MAIN body of the program. (e.g., C15001 and C15999).

2. The COURSES Tyve.

This is the special user-defined TYPE that

contains all of the courses offered in the special format

C15xxx. The program currently contains the courses offered

for the Fall, 1987 semester. In the future, the user need

only change that list.

148

3. CASE Statements.

Two CASE statements contain the full list of

courses. They are found in Procedure READSURVEYS (which

converts integer data to C15xxx data) and in Function

CHTONUM (Character to number; converts C15xxx to integer

form). The user should note that once the COURSE type is

updated, an EMACS macro can be easily written to update the

other CASE statements all at once. (EMACS is the full-

screen editor on the PRIME; see the PRIME documentation for

details on its use.)

C.2. PR1ME Implementation Specifics.

This section assumes that the reader is somewhat

familiar with compiling and executing programs written in

third generation languages such as PASCAL and has some

experience with PRlMOS, the operating system on the PRIME.

One (but by no means the only) good PASCAL reference is

Findlay and Watt (1978). Specific information relating to

PASCAL on the PRlME and other PRlMOS issues can be found in

the PRIME reference manual. (PRIME, 1980).

C.2.a. Compilation.

The source code of the program is currently in a

file called CONFLICTS. When that file is updated each

149

semester, it will need to be recompiled. PR1MOS compiles

the source code in the CONFLICTS file and creates a file

with the compiled (binary) object code called BCONFLICTS.

The PRIMOS command to compile a PASCAL program is "PASCAL

FILENAME" where FILENAME is the name of the file containing

the source code. (On-line help is available; type "HELP

PASCAL" at the "OK" prompt.) The following is the actual

compilation command and response indicating no errors.

(Here and throughout this Appendix, user commands are in

lower case; PR1MOS responses are in UPPER case. Note that

PRIMOS actually does not distinguish between upper and lower

case characters. Finally, "OK" is the standard PR1MOS

"ready" prompt.)

OK, pascal conflicts
[PASCAL Rev. 19.4.10]
0000 ERRORS [PASCAL Rev. 19.4.10]
OK,

The program should compile successfully as long as no

incorrect changes are made. However, since the

implementation does require a user to modify the source

code, I recommend that the user be experienced at least with

some programming language, and preferably PASCAL.

C.2.b. Linking and Loading.

The compiler creates a file called B_FILENAME

which contains the binary object code resulting from the

150

source code in FILENAME. (In this case, the actual FILENAME

is CONFLICTS.) Once this is accomplished, the user needs

to link the object code to other PRIMOS runtime routines.

The user does this by using the PRIMOS SEG command. (Again,

on-line help can be accessed by typing "HELP SEG".) The

following is the appropriate sequence of commands.

OK, seg -load
[SEG Rev. 19.4.10]
$ load b conflicts
$ li paslib
$ li
LOAD COMPLETE
$ save
$ quit
OK,

This command sequence creates a SEGMENT sub-directory

with the files necessary to run the program. The sub-

directory will be called B_FILENAME.SEG.

C.2.c. Execution.

Once the segment directory is created, the user

can execute the program by using the following command:

OK, seg b conflicts
69 STUDENT SURVEYS WERE PROCESSED.

OK,

If all of the input data is valid, the program will

151

send a message to the terminal indicating the number of

surveys that were processed. If some of the input data is

invalid (e.g., non-existent course numbers), the program

will send appropriate error messages to the terminal.

C.2.d. Input Data.

The program expects the survey data to reside in a

text file called SURVEYS. This file can be created in

EMACS. It should contain the student survey data, listing

the courses for one student per line, in integer form. A

maximum of 5 per courses per student are allowed, but fewer

than 5 can be entered if the student listed less than 5

courses. Within a line, the data can be "free form", i.e.,

additional spaces can be placed between the courses. An

example of valid input for three students is:

15568 15933 15435 15825 15932
15436 15437 15525 15438
15962 15437 15435 15436 15932

In this case, the second student listed only four courses.

Note that there should not be any blank lines or extraneous

characters, comments, etc. in the file.

C.2.e. Program Output.

If all of the input data is valid, the program

will compute all of the pairwise conflicts and create a file

152

This file will contain a report which

summarizes the conflict data. (Note: every time the

program is run, the former GROUPINGS file, if present, will

be erased. If the old GROUPINGS file is desired to be kept,

it must be renamed.) The GROUPINGS file can either be

printed or examined on the screen using EMACS. The

following is a sample of the first few lines of the report:

COURSE CONFLICT REPORT

COURSE 1 ENROLLMENT COURSE 2

15013
15013
15013
15013
15013
15013
15013
15013
15013
15013
15018
15018
15018
15018
15018
15018
15018
15034

15035
15435
15525
15564
15568
15812
15825
15931
15932
15933
15231
15351
15521
15615
15665
15825
15832
15436

ENROLLMENT OVERLAP

3
21

8
5
19

3
11

7
24
15

4
15

8
8
3

11
11
16

(etc.)

153

OVERLAP
PCT

11.11
14.81
14.29
27.27
4.00

11.11
5.88
7.69
3.33

14.29
11.11
10.00
7.69

15.38
12.50
6.25

12.50
5.88

called GROUPINGS.

The columns represent the following:

- COURSE 1 and COURSE 2 are the two courses in

this pair;

- The ENROLLMENT columns list their respective

(expected) enrollments; i.e., the number of

students listing that course on their surveys;

- OVERLAP is the actual number of students listing

both of the courses in the pair ("absolute

overlap");

- OVERLAP PCT is the absolute overlap expressed as

a percentage of the total number of students

listing either or both of the courses

("relative overlap"); (As explained in the

text, the maximum relative overlap is 50%).

154

The output may be made more meaningful by sorting the

conflict pairs by their absolute and/or relative overlaps.

The sorting can be performed using the PRIMOS SORT command.

I will provide the commands below, but again, on-line help

is available by typing "HELP SORT".

The SORT command will sort the lines (records) in the

report according to any specified columns (fields). In the

GROUPINGS file, the absolute overlap field is in columns 57

to 59 and the relative overlap field is in columns 72 to 76.

The user types "SORT" at the "OK" prompt. PR1MOS will ask

for the input file (GROUPINGS), an output file (say,

GROUPINGS.ABS), and the number of fields used for the sort.

(e.g., two: absolute and relative overlap.) The default is

for an ascending sort, but if the user desires the output to

be in descending order (highest conflict pair first), he can

specify the 'r' (reverse) option for each set of columns.

The first dialogue shows the command sequence used if

the user desires to sort on two pairs of columns: first on

absolute overlap, and then on relative overlap for pairs

within groups having equal absolute overlap. The sorts will

be in reverse order and the output will be sent to a new

file called GROUPINGS.ABS. (Note that text files are in

ASCII format so the default data type is appropriate.)

155

OK, sort

SORT PROGRAM PARAMETERS ARE:
INPUT TREE NAME -- OUTPUT TREE NAME FOLLOWED BY
NUMBER OF PAIRS OF STARTING AND ENDING COLUMNS.

groupings groupings.abs 2

INPUT PAIRS OF STARTING AND ENDING COLUMNS
ONE PAIR PER LINE--SEPARATED BY A SPACE.
FOR REVERSE SORTING ENTER "R" AFTER DESIRED
ENDING COLUMN--SEPARATED BY A SPACE.
FOR A SPECIFIC DATA TYPE ENTER THE PROPER CODE
AT THE END OF THE LINE--SEPARATED BY A SPACE.

"A" - ASCII
"I" - SINGLE PRECISION INTEGER
"F" - SINGLE PRECISION REAL
"D" - DOUBLE PRECISION REAL
"J" - DOUBLE PRECISION INTEGER
"U" - NUMERIC ASCII,UNSIGNED
"LS" - NUMERIC ASCII,LEADING SEPARATE SIGN
"TS" - NUMERIC ASCII,TRAILING SEPARATE SIGN
"LE" - NUMERIC ASCII,LEADING EMBEDDED SIGN
"TE" - NUMERIC ASCII,TRAILING EMBEDDED SIGN
"PD" - PACKED DECIMAL
"AU" - ASCII, UPPER & LOWER CASE SORT EQUAL
"UI" - UNSIGNED INTEGER

DEFAULT IS ASCII.

57 59 r
72 76 r

BEGINNING SORT

PASSES 2 ITEMS 219

[SORT-REV19.2]
OK,

156

The second dialogue sorts first on relative overlap,

and then on absolute overlap for pairs within groups having

equal relative overlap. In this case, the output is sent to

a new file called GROUPINGS.REL.

OK, sort

SORT PROGRAM PARAMETERS ARE:
INPUT TREE NAME -- OUTPUT TREE NAME FOLLOWED BY
NUMBER OF PAIRS OF STARTING AND ENDING COLUMNS.

groupings groupings.rel 2

INPUT PAIRS OF STARTING AND ENDING COLUMNS
ONE PAIR PER LINE--SEPARATED BY A SPACE.
FOR REVERSE SORTING ENTER "R" AFTER DESIRED
ENDING COLUMN--SEPARATED BY A SPACE.
FOR A SPECIFIC DATA TYPE ENTER THE PROPER CODE
AT THE END OF THE LINE--SEPARATED BY A SPACE.

"A" - ASCII
"I" - SINGLE PRECISION INTEGER
"F" - SINGLE PRECISION REAL
"D" - DOUBLE PRECISION REAL
"J" - DOUBLE PRECISION INTEGER
"U" - NUMERIC ASCII,UNSIGNED
"LS" - NUMERIC ASCII,LEADING SEPARATE SIGN
"TS" - NUMERIC ASCII,TRAILING SEPARATE SIGN
"LE" - NUMERIC ASCII,LEADING EMBEDDED SIGN
"TE" - NUMERIC ASCII,TRAILING EMBEDDED SIGN
"PD" - PACKED DECIMAL
"AU" - ASCII, UPPER & LOWER CASE SORT EQUAL
"UI" - UNSIGNED INTEGER

DEFAULT IS ASCII.

72 76 r
57 59 r

BEGINNING SORT

PASSES 2 ITEMS 219

[SORT-REV19.2)]
OK,

157

C.3. Listing of the PASCAL code.

The following pages present a listing of the PASCAL

code. It is long, but much of the length is due to

extensive comments.

Note: A programmer would probably prefer to work from

a version of the program printed directly from the PRIME on

standard computer paper. This output is provided solely for

purposes of documentation.

158

PROGRAM PROCESSSURVEYS (SURVEYS, GROUPINGS, OUTPUT);

(* This program will read the student survey data
from the file SURVEYS.

First, Procedure READSURVEYS will check the course
numbers that are input to make sure they are valid.
Valid course numbers are converted to the special
COURSES type and then read into the array STUDENT.

Next, the Procedure CALCCONFLICTS computes the number
of student conflicts for each pair of courses.

Finally, Procedure FINDPAIRS writes a report summarizing
all of the absolute and relative conflicts to the
output file GROUPINGS. (See thesis text for an
explanation of the absolute and relative overlap
measures.) *)

(* The following CONSTANTS must be updated each semester:

MAXCOURSES is the number of courses each student
is allowed to list on his/her survey.

MAXSTUDENTS is an upper bound on the number of
students returning surveys. It is used to define
several arrays so it should not be too large.

FIRST is the integer representing the lowest numbered
course offered this semester.

LAST is the integer representing the highest numbered
course offered this semester.

CONST
MAXCOURSES = 5;
MAXSTUDENTS = 500;
FIRST = 15001;
LAST = 15965;

159

(* The user-defined type COURSES contains all of the
(elective) courses offered this semester. (CORE
courses are excluded because the model will not
attempt to schedule around second year students'
conflicts resulting from their not finishing the
CORE in their first years.

The format is C15xxx where 15xxx is the integer
course number. This special type must be used
since PASCAL will not allow arrays to be indexed
by integers that are not in consecutive intervals.

It is true that we could define the relevant arrays for
every integer value in the interval [15001, 15999].
However, this would be extremely inefficient since there
are 1000 integers in this interval, but usually no more
than 75 electives in any given semester. (Not every
number is used.)

TYPE
COURSES = (C15001,

C15013,
C15018,
C15034,
C15035,
C15053,
C15058,
C15059,
C15065,
C15075,
C15081,
C15083,
C15099,
C15141,
C15221,
C15231,
C15232,
C15301,
C15312,
C15317,
C15351,
C15361,
C15371,
C15412,
C15413,
C15415,
C15435,
C15436,
C15437,

160

C15438,
C15521,
C15525,
C15539,
C15564,
C15565,
C15568,
C15601,
C15615,
C15664,
C15665,
C15671,
C15674,
C15691,
C15763,
C15768,
C15769,
C15812,
C15814,
C15824,
C15825,
C15832,
C15874,
C15878,
C15931,
C15932,
C15933,
C15962,
C15964,
C15965);

(, *** ,)

(* DATA DICTIONARY *)
(* *)
(* *** *)

(* The following (global) variables are defined:

SURVEYS is the text file containing the student survey
input data. The data should be in integer format with
one student per line. The number of courses can vary
by student, and within a line, the data can be freeform.

GROUPINGS is the output text file to which the report
summarizing the student conflicts is written.

161

ENROLL is an array indexed by COURSES.
It holds the number of students expected to enroll in
each course, based on the survey data.

OVERLAP is a two dimensional array, with both dimensions
indexed by COURSES. For every pair of courses (i,j),
OVERLAP contains the number of students who listed both
i and j on their surveys. Note that due to the way
OVERLAP is calculated (see procedure FINDPAIRS), the
total overlap between i and j is equal to the sum of

OVERLAP[i,j] + OVERLAP[j,i].

II and JJ are two index variables defined on the
COURSES type.

NUMSTUDENTS is the actual number of students who
have returned surveys.

STUDENT is the array into which the raw survey data
is read. For each student, it contains the courses
listed by that student. (Note that STUDENT contains
the course data in the user-defined COURSE type.)

VALIDCOURSE contains the number of valid courses each
student's survey contained.

ALLVALID is a boolean variable which equals TRUE if
and only if all of the courses read from all of the
student survey data are valid, that is, that they
are in the COURSES type and hence, are actually
being offered this semester. If ALLVALID is FALSE,
the program will notify the user of the invalid
input data and will skip the overlap calculations.

FIRSTCOURSE and LASTCOURSE are variables defined on
the COURSE type. They correspond to the lowest
and highest course numbers offered this semester.
FIRSTCOURSE and LASTCOURSE must be updated each
semester in the initialization section of MAIN,
below.

162

VAR
SURVEYS, GROUPINGS : TEXT;
ENROLL : ARRAY [COURSES] OF O..MAXSTUDENTS;
OVERLAP: ARRAY [COURSES, COURSES] OF 0..MAXSTUDENTS;
II,JJ : COURSES;
NUMSTUDENTS : 0..MAXSTUDENTS;
STUDENT : ARRAY l..MAXSTUDENTS, 1..MAXCOURSES] OF COURSES;
VALIDCOURSE : ARRAY [1..MAXSTUDENTS] OF 0..MAXCOURSES;
ALLVALID : BOOLEAN;
FIRSTCOURSE, LASTCOURSE : COURSES;

PROCEDURE READSURVEYS;

(, *** *)

(* This Procedure will process the SURVEYS input file.
In particular, it will

1. Check to make sure that all course input numbers
are valid. If all survey input is valid, it will
return a value of TRUE to ALLVALID. If not, it
will return a value of FALSE to ALLVALID and print
error messages to the OUTPUT file identifying
specific errors. (Unless otherwise specified by
a programmer at a later time, the default OUTPUT
file is the terminal.)

2. Count the number of students responding and
return that value to the variable NUMSTUDENTS.

3. For each student:

a. Return the number of valid courses to the
array VALIDCOURSE.

b. Convert the numerical input to the special
COURSES type and return each student's
survey response to the array STUDENT.

163

(* The following local variables are used:

VALID is a BOOLEAN variable which is TRUE if
this student's survey is valid in that all of
courses selected are actually in the COURSES
type and are thus being offered this semester.
If VALID is FALSE, that student's data is
not valid. In that case, ALLVALID is set to
FALSE and error messages ar sent to the terminal.

NEXTCOURSE is a temporary integer variable used to
store the data read from the SURVEYS file in
integer form. A CASE statement converts the integer
value to the COURSES type to be stored in the
STUDENT array.

STUNUM is an integer index variable. It is used to
index the processing of the student surveys.

*)

VAR
VALID : BOOLEAN;
NEXTCOURSE : FIRST..LAST;
STUNUM : 0..MAXSTUDENTS;

BEGIN

(* First initialize STUNUM and ALLVALID. *)

STUNUM := 0;
ALLVALID := TRUE;

(* Now cycle through the SURVEYS file. The steps are:

1. Initialize VALIDCOURSE for each student and
increment STUNUM.

2. For each student:

a. First assume the data is valid.
(VALID := TRUE)

b. Read the next course.

c. Process using a CASE statement. In

164

particular, if the NEXTCOURSE represents
a valid course, convert NEXTCOURSE to
the COURSES type and update the STUDENT
array for this STUNUM. If NEXTCOURSE
is not a valid course, set VALID to
FALSE and write an error message to
the terminal.

d. Finally, if VALID is TRUE, update the
ENROLL array and the VALIDCOURSE array.

*)
WHILE NOT EOF(SURVEYS) DO
BEGIN

STUNUM := STUNUM + 1;
VALIDCOURSE STUNUM] := 0;
WHILE NOT EOLN(SURVEYS) DO

BEGIN
VALID := TRUE;
READ (SURVEYS, NEXTCOURSE);

(* IMPORTANT: THIS CASE STATEMENT MUST BE *)
(* UPDATED EACH SEMESTER FOR *)
(* THE DIFFERENT SET OF COURSE *)
(* OFFERINGS.

(* SEE THESIS, APPENDIX C. *)

CASE NEXTCOURSE OF

[STUNUM,
[STUNUM,
(STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,

(VALIDCOURSE STUNUM]+1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE STUNUM + 1)
(VALIDCOURSE [STUNUM]+1)
(VALIDCOURSE STUNUM] +1)
(VALIDCOURSE CSTUNUM] +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE STUNUM + 1)
(VALIDCOURSE STUNUM]+1)
(VALIDCOURSE[STUNUM) +1)
(VALI DCOURSE C STUNUM] + 1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE STUNUM] +1)
(VALIDCOURSE [STUNUM]+1)

:= C15001;
:= C15013;
:= C15018;
:= C15034;
:= C15035;
:= C15053;
:= C15058;
:= C15059;
:= C15065;
:= C15075;
:= C15081;
:= C15083;
:= C15099;
:= C15141;
:= C15221;
:= C15231;
:= C15232;

165

15001:
15013:
15018:
15034:
15035:
15053:
15058:
15059:
15065:
15075:
15081:
15083:
15099:
15141:
15221:
15231:
15232:

STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT

15301:
15312:
15317:
15351:
15361:
15371:
15412:
15413:
15415:
15435:
15436:
15437:
15438:
15521:
15525:
15539:
15564:
15565:
15568:
15601:
15615:
15664:
15665:
15671:
15674:
15691:
15763:
15768:
15769:
15812:
15814:
15824:
15825:
15832:
15874:
15878:
15931:
15932:
15933:
15962:
15964:
15965:

STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT
STUDENT

[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
(STUNUM,
[STUNUM,
CSTUNUM,
CSTUNUM,
[STUNUM,
CSTUNUM,
CSTUNUM,
[STUNUM,
CSTUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
CSTUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
CSTUNUM,
C STUNUM,
[STUNUM,
[STUNUM,
CSTUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
[STUNUM,
CSTUNUM,
CSTUNUM,

(VALIDCOURSE [STUNUM]+1)
(VALIDCOURSE [STUNUM] +)
(VALIDCOURSE[STUNUM] +1)
(VALIDCOURSECSTUNUM] +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE (STUNUM] +1)
(VALIDCOURSE [STUNUM]+1)
(VALIDCOURSE [STUNUM]+1)
(VALIDCOURSE[STUNUM) +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE[STUNUM] +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE [STUNUM]+1)
(VALIDCOURSE[STUNUM] +1)
(VALIDCOURSE [STUNUM]+1)
(VALIDCOURSE STUNUM] +1)
(VALIDCOURSE [STUNUM]+1)
(VALIDCOURSE CSTUNUM] +1)
(VALIDCOURSE[STUNUM] +1)
(VALIDCOURSE STUNUM] + 1)
(VALIDCOURSE [STUNUM] +)
(VALIDCOURSE [STUNUM + 1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE [STUNUM]+1)
(VALIDCOURSECSTUNUM] +1)
(VALIDCOURSE [STUNUM]+1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE [STUNUM] +)
(VALIDCOURSEC STUNUM +1)
(VALIDCOURSECSTUNUM] +1)
(VALIDCOURSE [STUNUM) +1)
(VALIDCOURSE [STUNUM] +1)
(VALIDCOURSE [STUNUM + 1)
(VALIDCOURSE [STUNUM) +1)
(VALIDCOURSECSTUNUM] +1)
(VALIDCOURSE[STUNUM]+1)
(VALIDCOURSE [STUNUM] +1)

OTHERWISE
BEGIN
VALID := FALSE;
ALLVALID := FALSE;
WRITELN ('INPUT FOR STUDENT ', STUNUM:4, ', COURSE '

NEXTCOURSE:7, ' IS INVALID')
END (* OTHERWISE *)

END; (* OF CASE STATEMENT *)

166

:= C15301;
:= C15312;
:= C15317;
:= C15351;
:= C15361;
:= C15371;
:= C15412;
:= C15413;
:= C15415;
:= C15435;
:= C15436;
:= C15437;
:= C15438;
:= C15521;
:= C15525;
:= C15539;
:= C15564;
:= C15565;
:= C15568;
:= C15601;
:= C15615;
:= C15664;
:= C15665;
:= C15671;
:= C15674;
:= C15691;
:= C15763;
:= C15768;
:= C15769;
:= C15812;
:= C15814;
:= C15824;
:= C15825;
:= C15832;
:= C15874;
:= C15878;
:= C15931;
:= C15932;
:= C15933;

C= C15962;
:= C15964;
:= C15965;

IF VALID THEN
BEGIN
VALIDCOURSECSTUNUM) := VALIDCOURSE[STUNUM] + 1;
ENROLL[STUDENT[STUNUM, VALIDCOURSE STUNUM]]] :-=
ENROLL[STUDENT[STUNUM, VALIDCOURSE[STUNUM]]] + 1

END

END; (* OF EOLN STATEMENT *)

READLN (SURVEYS)

END; (* OF EOF STATEMENT *)

NUMSTUDENTS := STUNUM;

END; (* OF READSURVEYS *)

PROCEDURE CALCCONFLICTS;

(* *** *)

This procedure processes the STUDENT array to compute,
for every course pair, the number of students listing
both of the courses in the pair on their survey.
Results are placed in the array OVERLAP.

*)
(* *** ,)

(* The following integer index variables are used:

I and J are index variables used to cycle through
the course dimension of the STUDENT array.

STUNUM is an index variable used to cycle through
each student in the STUDENT array.

*)

VAR
I,J : l..MAXCOURSES;
STUNUM : 0..MAXSTUDENTS;

167

(* The procedure works as follows:

1. We loop through all the students.

2. For each student, we loop through all
of his courses (up to the next-to-last).

3. For each course, we loop through all of
the courses the student listed, after that
course. Thus, on each iteration, we have
identified one overlap. The OVERLAP array
is updated accordingly.

*)
BEGIN
FOR STUNUM := 1 TO NUMSTUDENTS DO
FOR I := 1 TO (VALIDCOURSE[STUNUM] - 1) DO
FOR J := (I+1) TO VALIDCOURSE[STUNUM] DO

OVERLAP [(STUDENT[STUNUM, I]), (STUDENT[STUNUM,J])] :=
OVERLAP [(STUDENT[STUNUM,I]), (STUDENT[STUNUM,J])] + 1;

END; (* OF CALCONFLICTS *)

FUNCTION CHTONUM (CHCOURSE : COURSES) : INTEGER;

(* This function converts a variable of the type COURSE to
its corresponding integer value. This is necessary
since PASCAL does not support I/O for user-defined
types. Thus, in order to output the conflict pairs,
the COURSE type must be converted back to integers. *)

(* TEMPVAL is used to temporarily store the integer value
of the input variable, CHCOURSE. *)

VAR
TEMPVAL : INTEGER;

(* This CASE statement converts the COURSE type to the
appropriate integer value. *)

168

(* *)
(* IMPORTANT: THIS CASE STATEMENT MUST BE *)
(* UPDATED EACH SEMESTER FOR *)

THE DIFFERENT SET OF COURSE *)
(* OFFERINGS. *)
(* *)

SEE THESIS, APPENDIX C. *)

(***)

BEGIN
CASE CHCOURSE OF

C15001: TEMPVAL := 15001;
C15013: TEMPVAL := 15013;
C15018: TEMPVAL := 15018;
C15034: TEMPVAL := 15034;
C15035: TEMPVAL := 15035;
C15053: TEMPVAL := 15053;
C15058: TEMPVAL := 15058;
C15059: TEMPVAL := 15059;
C15065: TEMPVAL := 15065;
C15075: TEMPVAL := 15075;
C15081: TEMPVAL := 15081;
C15083: TEMPVAL := 15083;
C15099: TEMPVAL := 15099;
C15141: TEMPVAL := 15141;
C15221: TEMPVAL := 15221;
C15231: TEMPVAL := 15231;
C15232: TEMPVAL := 15232;
C15301: TEMPVAL := 15301;
C15312: TEMPVAL := 15312;
C15317: TEMPVAL := 15317;
C15351: TEMPVAL := 15351;
C15361: TEMPVAL := 15361;
C15371: TEMPVAL := 15371;
C15412: TEMPVAL := 15412;
C15413: TEMPVAL := 15413;
C15415: TEMPVAL := 15415;
C15435: TEMPVAL := 15435;
C15436: TEMPVAL := 15436;
C15437: TEMPVAL := 15437;
C15438: TEMPVAL := 15438;
C15521: TEMPVAL := 15521;
C15525: TEMPVAL := 15525;
C15539: TEMPVAL := 15539;
C15564: TEMPVAL := 15564;
C15565: TEMPVAL := 15565;
C15568: TEMPVAL := 15568;
C15601: TEMPVAL := 15601;

169

C15615: TEMPVAL := 15615;
C15664: TEMPVAL := 15664;
C15665: TEMPVAL := 15665;
C15671: TEMPVAL := 15671;
C15674: TEMPVAL := 15674;
C15691: TEMPVAL := 15691;
C15763: TEMPVAL := 15763;
C15768: TEMPVAL := 15768;
C15769: TEMPVAL := 15769;
C15812: TEMPVAL := 15812;
C15814: TEMPVAL := 15814;
C15824: TEMPVAL := 15824;
C15825: TEMPVAL := 15825;
C15832: TEMPVAL := 15832;
C15874: TEMPVAL := 15874;
C15878: TEMPVAL := 15878;
C15931: TEMPVAL := 15931;
C15932: TEMPVAL := 15932;
C15933: TEMPVAL := 15933;
C15962: TEMPVAL := 15962;
C15964: TEMPVAL := 15964;
C15965: TEMPVAL := 15965

END;

CHTONUM := TEMPVAL

END;

- -.....- ---------
(-.-- --------- -- -------- ----------

170

PROCEDURE FINDPAIRS;

(* ** *)

This procedure processes the OVERLAP array.
It outputs a report of all course pair overlaps
to the GROUPINGS text file.

*)
(* ** ,)

(* The following local variables are used:

TOTOVERLAP is the total overlap between two
courses (i,j). It equals

OVERLAP(i,j) + OVERLAP(j,i).

OVERFACT is the relative overlap percentage for
each course pair. (See thesis text for a
discussion of the relative overlap concept.)

II and JJ are index variables defined on the
course type. They are used to cycle through
the OVERLAP array.

*)
VAR
TOTOVERLAP : INTEGER;
OVERFACT : REAL;
II,JJ : COURSES;

(* The procedure merely cycles through the overlap array.
For each course pair, the absolute and relative overlap
are computed and written to the output report in the
GROUPINGS text file.

BEGIN

WRITE(GROUPINGS, ' ');
WRITELN(GROUPINGS, 'COURSE CONFLICT REPORT
WRITELN (GROUPINGS);
WRITELN(GROUPINGS);
WRITE(GROUPINGS, 'COURSE 1 ENROLLMENT
WRITE(GROUPINGS, 'COURSE 2 ENROLLMENT
WRITELN (GROUPINGS, 'OVERLAP OVERLAP PCT');
WRITELN (GROUPINGS);

');

171

FOR II :-= FIRSTCOURSE TO PRED(LASTCOURSE) DO
FOR JJ := SUCC(II) TO LASTCOURSE DO

BEGIN
TOTOVERLAP := OVERLAP[II,JJ] + OVERLAP[JJ,II];
IF ((ENROLL[II] + ENROLL[JJ]) > 0)
THEN
OVERFACT := TOTOVERLAP / (ENROLL[II] + ENROLL[JJ])
ELSE OVERFACT := 0;

OVERFACT : = OVERFACT * 100;
IF OVERLAP[II,JJ] > 0 THEN
BEGIN
WRITE(GROUPINGS, CHTONUM(II) :6, '
WRITE(GROUPINGS, ENROLL[II):4, ')1
WRITE (GROUPINGS, CHTONUM(JJ) :6,
WRITE(GROUPINGS, ENROLLCJJ]:4, '
WRITE(GROUPINGS, TOTOVERLAP:4) ;
WRITELN(GROUPINGS, , OVERFACT:6:2)

END
END

END;

(* *)..(* *)~~~~~~~~~~~~~~1~~~~

172

BEGIN (* MAIN *)

(* INITIALIZATION *)

(* IMPORTANT: FIRSTCOURSE AND LASTCOURSE MUST
BE UPDATED EACH SEMESTER. *)

FIRSTCOURSE := C15001;
LASTCOURSE := C15965;

FOR II := FIRSTCOURSE TO LASTCOURSE DO
BEGIN
ENROLL[II] := 0;
FOR JJ := FIRSTCOURSE TO LASTCOURSE DO
OVERLAP[II,JJ] := 0

END;

RESET (SURVEYS, 'SURVEYS');
REWRITE (GROUPINGS, 'GROUPINGS');

READSURVEYS;
IF NOT ALLVALID
THEN
WRITELN ('INPUT FOR AT LEAST ONE STUDENT IS INVALID.')
ELSE
BEGIN
WRITE (NUMSTUDENTS :2);
WRITELN(' student surveys were processed.');
CALCCONFLICTS;
WRITELN;
FINDPAIRS

END;

CLOSE(SURVEYS);
CLOSE (GROUPINGS)

END.

173

Appendix D: Summary of the Model Formulation.

This appendix presents a summary of the model described

in the text. All necessary data sets, parameters, and

equations are shown. Section D.1 presents the basic model

described in Section IV.A. Section D.2 summarizes three

alternative formulations: cumulative room size groups,

Friday sessions for CORE courses, and specific concentration

requirements for different CORE sections. These

alternatives are described in the text in Sections IV.B.6

and VII.A.1.

D.l. The Basic Model.

Let xij = (1 if course i is assigned to time j;

{ 0 otherwise.

We define the following subsets of all of the courses:

Ir = set of courses compatible with room type r;

If = set of courses taught by faculty member f;

Is = set of courses taken by CORE section s;

174

Ish = set of courses taken by section s in

half semester h;

Ic = set of courses fulfilling requirements for

concentration c;

Ip = set (pair) of courses in high conflict

pair p;

Isem = set of courses offered as three hour

seminars;

Now define the eight standard time slots as described

in the text (e.g., j = 1 is Mon/Wed at 9; j = 2 is Mon/Wed

at 10:30, etc.). Further, define subsets of the standard

time slots as follows:

TSEM = set of time slots not valid for three hour

seminar courses;

JMW = Monday/Wednesday time slots;

JTT = Tuesday/Thursday time slots;

175

Define the following subsets of the faculty:

FMW = set of faculty members wishing to teach on

Monday/Wednesday;

FTT = set of faculty members wishing to teach on

Tuesday/Thursday;

FMWNBB = set of faculty members teaching on

Monday/Wednesday who do not wish to

teach back-to-back;

FTTNBB = set of faculty members teaching on

Tuesday/Thursday who do not wish to

teach back-to-back;

FMWYBB = set of faculty members teaching on

Monday/Wednesday who do wish to

teach back-to-back;

FTTYBB = set of faculty members teaching on

Tuesday/Thursday who do wish to

teach back-to-back;

176

Finally, define the following parameters:

Cij = a measure of the desirability of assigning

course i to time j (faculty "utility");

N(r)j = the number of rooms of type r available

at time j;

The model is thus:

I · ij i j

subject to:

xij = 1

xij <= N{r)j

all i;

all r,j

(D2)

(D3)

(D1)

Xij <= 1

:Ea 1
all s,h,j

177

max

(D4)

all f,j<= 1

<= 1

fG FMW;

f 6 FTT;

j E JTT;

j 4 JMW;

(Xil + xi 2)

((Xi3 + Xi4)

(xi 5 + xi 6)

(xi7 + Xi8)

<= 1

<= 1

<= 1

<= 1

f c. FMWNBB;

f E FMWNBB;

f - FTTNBB;

f 6- FTTNBB;

178

(eI~4.
xij

xij

xij

all c,j

all p,j

(D5)

(D6)

(D7)<= 1

= 0

= 0

= 0

x ii

xij

xii

(D8)

(D9)

(DI0)

(D11)

(D12)

(D13)

(D14)

r

,t~Y\

(Xil + xi 3)

% (xi1

(Xil
* • (xi 2

*. (xi2

S(xji5

(xi 5

(Xi 6

+ xi 4)

+ xi3)

+ xi 4)

+ xi 7)

+ xi8)

+ xi 7)

<= 1

<= 1

<= 1

<= 1

<= 1

<= 1

<= 1

' (Xi 6 + xi8) <= 1

(6:14.

f FMWYBB;

f 6 FMWYBB;

fE FMWYBB;

f & FMWYBB;

f C FTTYBB;

f & FTTYBB;

f • FTTYBB;

f 6 FTTYBB;

x binary;

The equations represent the following conditions or

policies. (A detailed discussion is given in Sections

IV.A.1 and IV.A.2).

179

(D15)

(D16)

(D17)

(D18)

(D19)

(D20)

(D21)

(D22)

(Dl). Objective Function.

(D2). Assignment of every course to one slot.

(D3). Room availability.

(D4). CORE section feasibility.

(D5). Faculty feasibility.

(D6). No more than one course per concentration
at any one time.

(D7). High overlap courses
concurrently.

not scheduled

(D8). Three hour seminars given at 2:30 PM.

(D9). Faculty members teaching only on
Monday/Wednesday.

(D0O). Faculty members teaching only on
Tuesday/Thursday.

(Dll), (D12). Faculty members teaching on
Mon/Wed who do not wish to
teach back-to-back.

(D13), (D14). Faculty members teaching on
Tue/Thur who do not wish to
teach back-to-back.

(D15), (D16), (D17), and (D18).

Faculty members teaching on Monday/Wednesday
who do wish to teach back-to-back.

(D19), (D20), (D21), and (D22).

Faculty members teaching on Tuesday/Thursday
who do wish to teach back-to-back.

180

D.2. Alternative.Formulations.

This section considers three alternative formulations:

cumulative room size groupings; Friday sessions for certain

CORE courses; and CORE requirements that vary by

concentration.

D.2.a. Cumulative Room Size Groups.

This alternative was discussed in Section IV.B.6

in the text. The formulation would allow smaller courses to

be scheduled in larger rooms, if such rooms were available.

To implement this formulation, we would change the room

availability constraint (D3) as follows:

<- N(l)j

<= (N{l)j + N{2)j)

<= (N(l)j + N{2}j + N(3}j)

all j; (D3a)

all j; (D3b)

all j; (D3c)

Sxij <= (N({1)j + N{2)j + N{3}j + N(4)j)

Em; all j; (D3d)

181

xij

. ·xii
Xij~L

Iet~R

In this revised formulation, constraint (D3a) ensures

that enough rooms of R1 are available. Constraint (D3b)

allows courses in group R2 to be scheduled in rooms in

either R2 or R1. Rooms in R1 can be used only if there is

slack in constraint (D3a). Similarly, constraint (D3c)

allows courses in R3 to be scheduled in R3, R2, or R1, again

if there is slack in constraints (D3a) and (D3b). Finally,

constraint (D3d) allows courses in R4 to be scheduled in any

available slot, again subject to availability in R1, R2, R3,

as measured by the slack in the other constraints.

D.2.b. Friday Sessions for CORE Courses.

This alternative was discussed in the text in

Section VII.A.l. Let Isfh be the set of courses required

for CORE section s in half semester h that have Friday

sessions. As described in the text, the policy is to ensure

that the Friday sessions are held at the same time as the

sessions during the rest of the week. Thus, let

Jl = { Mon/Wed 9-10:30 and Tue/Thur 9-10:30 }

J2 = { Mon/Wed 10:30-12 and Tue/Thur 10:30-12 }

J3 = { Mon/Wed 1-2:30 and Tue/Thur 1-2:30 }

J4 = (Mon/Wed 2:30-4 and Tue/Thur 2:30-4).

182

Then the constraints are:

Sxij <= 1 all s, h, t; (D23)

D.2.c. CORE Requirements Vary by Concentration.

As discussed in the text in Section VII.A.1, this

condition does not require any new constraints. The

requirement that all potential section/concentration

combinations be kept feasible can be modelled by simply

increasing the number of de facto sections. In particular,

if there are N concentrations with special requirements, and

if there are S sections, then there will be a total of N * S

de facto combinations.

In the text, I recommended that this problem instead be

handled by reassigning sections by concentration for the

Spring term. If this is done, the number of sections need

not change. However, the sets Is containing the courses

required for each section s will change, depending on the

concentrations assigned to that section.

183

Appendix E: Assignment of Sections to Offerings.

The Sloan School currently divides the first year class

into 12 Sections (A thru L). CORE courses are offered in

four different size formats which allocate the 12 sections

as follows:

Type I: 2 offerings, 6 sections per offering;

Type II: 3 offerings, 4 sections per offering;

Type III: 4 offerings, 3 sections per offering;

Type IV: 6 offerings, 2 sections per offering.

Note the important distinction between a "section" and an

"offering". A section is a group of students. An offering

is a group of sections assigned to take a given CORE course

together. (E.g., Accounting, Sections A-D is an offering.)

Professors are assigned to offerings. The choice of a

specific size format for each CORE course is a policy

decision made well in advance of the actual scheduling

process. However, as described in the text, (Section

IV.B.2) the model does not assign specific sections or

professors to course offerings; such assignments are taken

as given by the model.

I would like to acknowledge the assistance provided by
Professor Robert Freund in helping me to better understand
the issues discussed in this appendix.

184

Currently, the school assigns sections to offerings in

lexicographic order. That is, the sections are assigned to

offerings as follows:

Type I: 2 offerings: A-F and G-L;

Type II: 3 offerings: A-D, E-H, and I-L;

Type III: 4 offerings: A-C, D-F, G-I, and J-L;

Type IV: 6 offerings: A-B, C-D, E-F, G-H, I-J, K-L.

This appendix will show that this rule of thumb is in

fact optimal in terms of minimizing the number of what I

call "section conflicts". I define "section conflicts" to

be the number of offerings, across courses, that include the

same sections. The fewer the section conflicts, the more

independently can the various offerings of different CORE

courses be scheduled. The fact that the rule of thumb is

optimal is particularly important given that the model does

not endogenously assign sections to courses.

We begin with the Type I courses, those given in two

offerings. For convenience, let us assume that sections A-F

are assigned to the first offering, and sections G-L to the

second. The actual letters are arbitrary at this point. If

necessary, the sections could be reordered to achieve this

assignment.

185

Now consider the Type III courses, those given in four

offerings. Clearly, an optimal split of A-F and G-L would

be one such that each of the four Type III offerings

contains sections which belong to only one of the two Type I

offerings. In that case, each Type III offering would

intersect only one Type I offering. Conversely, each Type I

offering would intersect two Type III offerings. Since the

number of sections per Type I offering (6) is greater than

the number per Type III offering (3), this is the minimum

possible.

Therefore, let us assume that the four offerings are

allocated as follows:

Type I offering: A-F; Type III offerings A-C, D-F;

Type I offering: G-L; Type III offerings G-I, J-L;

Again, the assignment of specific sections within a Type I

offering to a Type III offering is arbitrary at this point.

For example, an allocation of A-F to (A,B,F) and {C,D,E) is

equivalent to the one shown. For convenience, let us again

reorder the sections (if necessary) to obtain the groupings

as shown.

Now consider the Type II courses, those given in three

offerings of four sections each. Since 4, unlike 3, is not

186

a divisor of 6, at least one of the Type II offerings will

have to overlap two of the Type I offerings. In particular,

four of the six sections of each Type I offering can be

allocated to one Type II offering. However, at least two

(= 6-4) of the six sections in each Type I group must

overlap a second Type II offering.

Similarly, consider Type II relative to Type III.

Since the number of sections in each Type II offering (4) is

greater than the number of sections in each Type III

offering (3), each Type II offering must overlap at least

two Type III offerings.

Given this analysis, (one of) the way(s) to allocate

the the sections for the Type II courses optimally is into

offerings that contain the following groups of sections:

A-D; E-H; and I-L. The A-D and I-L offerings overlap only

one Type I offering. The E-H offering overlaps two Type I

groups (E-F belong to A-F and G-H to G-L) but this is the

minimum possible, as discussed above. In addition, each

Type II offering overlaps two Type III offerings. Again, as

discussed above, this is the minimum possible.

Finally, consider the Type IV courses. These courses

are given in six offerings of two sections each. Clearly,

since 2 divides 6 and 4, the sections can be assigned. to

187

Type IV offerings so as to overlap only one Type I and Type

II offering respectively. However, 2 does not divide 3, the

number of courses per Type III offering. Thus, at least

some of the Type IV offerings will have to overlap more than

one Type III offering. Now, while 2 does not divide 3, it

does divide (2*3). Thus, the six sections in each of the

two groups of two Type III offerings (i.e., A-C, D-F; and

G-I, J-L) can be assigned so that 3 Type IV offerings

account for each of those two Type III offerings. Moreover,

since 2 (the number of sections per Type IV offering) is

less than 3 (the number of sections per Type III offering),

two of those three Type IV offerings need overlap only one

Type III offering. Thus, an optimal configuration is:

Type IV Offering Number of Overlaps with Offerings in:

Type I Type II Typ III

A-B 1 1 1

C-D 1 1 2

E-F 1 1 1

G-H 1 1 1

I-J 1 1 2

K-L 1 1 1

188

Thus, the straightforward lexicographic ordering

employed by the Sloan School is an optimal way of allocating

the sections to offerings. Other combinations could be

found, but they can be shown to be combinatorially

equivalent to this one, merely by reordering the sections.

(E.g., switch sections B and C everywhere. The resulting

combination is also optimal, but obviously equivalent to the

one shown. Note that not every such exchange would maintain

optimality. For example, the configuration resulting from an

exchange of sections A and L would not be equivalent, nor

would it be optimal.)

It is important to emphasize what this analysis does

and does not imply. The only conclusion we can draw is that

the current method of allocating 12 sections to these 4

different types of courses is optimal in terms of minimizing

the number of section overlaps across courses. From a

scheduling standpoint, this method is preferred to one in

which the sections are assigned to offerings at random. We

may conclude that if the administration desired to mix

students of different sections in the second semester, it

would be preferable, from a scheduling perspective, simply

to reassign the students to sections, as opposed to

reassigning the sections to offerings.

However, the analysis presented here does not imply

189

that the current (arbitrary) way of allocating offerings

(groups of sections) to professors is similarly optimal. In

the text, (Section IV.B.2) I discuss that issue/problem in

greater detail. In particular, my discussion there

acknowledges the conceptual problem, but describes how it

may tend to be less of an empirical issue since many

professors teaching CORE courses teach more than one

offering anyway.

190

Appendix F: GAMS Model and Documentation.

This appendix presents the actual GAMS model used for

the Fall, 1987 test case. In the future, the GAMS code can

be updated to obtain schedules for other semesters. Section

F.1 briefly describes some essential GAMS syntax and

implementation issues. Section F.2 summarizes the data used

in the model. Section F.3 describes the equations and

relates them to the model summary in Appendix D. Finally,

Section F.4 presents the actual GAMS code.

F.1. GAMS Essentials.

It is not my purpose here to provide a comprehensive

user's manual for the GAMS language. A reader unfamiliar

with GAMS is urged to consult the GAMS manual. (Kendrick

and Meeraus, 1985). It should be noted that GAMS was

especially designed to help a non-technical user formulate

and solve mathematical programs quickly and easily.

However, there are a few essentials I can describe quickly

so as to help such a reader understand the code for this

model.

There are five key components to a GAMS formulation.

These are: Sets, Data, Variables, Equations, and Model &

Solution Statments. I will briefly discuss each of these.

191

Sets. GAMS sets correspond to the data sets I have

used in the text and Appendix D. For example, I have

defined sets of all courses (I), all time slots (J), faculty

members (F), and so on.

The reader should note two important facts about sets.

First, if a subsequent set is a subset of a former set, that

fact should be denoted in the GAMS formulation so that GAMS

can perform "domain checking" to ensure that the subset is

indeed valid. For example, if I is the set of all courses,

and CORE is a subset consisting of the CORE courses, then

the definition of CORE should be CORE(I) to denote the fact

that CORE is a subset of I.

Second, sets can denote mappings between other sets.

For example, I have used a set FTOI(F,I) which maps courses

(I) to faculty members (F). (These sets correspond to the

sets If in the text and Appendix D.) Other mappings I have

used include CONTOI(CON,I) (concentrations to courses) and

PTOI(P,I) (high conflict course pairs to courses). These

correspond, respectively, to Ic and Ip in Appendix D.

Data. Data in GAMS can be scalar, or one or multi-

dimensional. One dimensional data (e.._g, estimated

enrollment by course) is represented by PARAMETERS. Data

that is two or more dimensional (e.Q., the number of rooms

192

of type r available at time j or the objective contribution

of assigning course i to time j) is represented by TABLES.

The dimensions of a variable a specified in parentheses when

that variable is defined (e.g., ENROLL(I) or CONTRIB(I,J)).

Variables. Variables can also be multi-dimensional.

In my model, there are two variables: X(I,J) corresponds to

the definition in the text; OBJ is the objective function.

(GAMS requires the objective function to be a single

variable. In reality, the OBJ variable is only used for

"accounting" purposes.)

Eauations. Like the variables, the equations in a GAMS

model can also be multi-dimensional. This is one of the

chief advantages of using GAMS. For example, ASGT(I) is the

equation which ensures that all courses (I) are assigned to

one time slot. That equation need only be specified once;

GAMS will automatically generated the relevant equations for

all the courses in the Set I. The equations I defined in

the GAMS model correspond directly to the equations in

Appendix D.

Model and Solution Statements.

The Model statement tells GAMS which equations to

include in the model. In my model, all equations are

193

included. However, sensitivities could be run which would

not include certain constraints. In those cases, the model

statement would include only those constraints desired for

that run. Multiple models can be defined within a given

formulation. The SOLVE statement tells GAMS which model(s)

to solve on any given run, which solution package to use

(e.g., LP), the direction (max or min) of the optimization,

and the objective function.

Other Aspects.

Output. A default model output will be generated.

The user can tailor output reports using DISPLAY statements.

Comments. Comments in a GAMS formulation are

denoted by an asterisk (*) in the first column of a row.

All other rows must begin in the second (or beyond) column.

Syntax. Given the explanation above, the model

syntax should be straightforward, with one exception. GAMS

uses the $ sign to mean "such that". For example, consider

the following equation:

194

SUM (I $ FTOI(F,I), X(I,J)) =L= 1;

This equation says that, "For each faculty member F and time

J, the sum of all the variables X(I,J) corresponding to

courses I such that I is in FTOI(F,I) (for this F) must be

less than or equal to one." This is the faculty feasibility

constraint.

Help. In addition to the user's manual, a file

GAMSHELP.HELP is on the PR1ME. That file explains how one

may execute a GAMS formulation as well as various GAMS

runtime options that are available on the PRIME.

Once again, a potential user is referred to the GAMS

manual (Kendrick and Meeraus, 1985) for further details.

F.2. Data Used in the Sloan School Model.

The following data sets and parameters are defined in

the GAMS model. I give a brief description of each. Unless

otherwise noted, the GAMS data corresponds directly to the

model in Appendix D.

195

Faculty(F,J)..

Data Sets.

1. I is the set of courses.

2. J is the set of time slots.

3. TSEM(J) is the subset of time slots not valid
for three hour seminars.

4. JMW(J) is the subset of time slots
Monday/Wednesday.

5. JTT(J) is the subset of time slots
Tuesday/Thursday.

occurring on

occurring on

6. R is the set of room types.

7. S is the set of CORE sections.

8. HALF is the set of half semesters. (Corresponds
to (h) in Appendix D.)

9. CORE(I) is the subset of courses that are in the
CORE. (Not explicitly used in Appendix D; A discussion of
the CORE section constraints in GAMS is given below).

10. F is the set of faculty members teaching more
than one course during the standard hours. (Faculty members
teaching only one course will always be feasible.)

11. FTOI(F,I) is the subset of courses I taught by
faculty member F. (Corresponds to If in Appendix D.)

12. FMW(F) is the subset of faculty members desiring
to teach on Monday/Wednesday.

13. FMWNBB(FMW) is the subset of faculty members
teaching on Mon/Wed who do not wish to teach back-to-back.

14. FMWYBB(FMW) is the subset of faculty members
teaching on Mon/Wed who do wish to teach back-to-back.

196

15. FTT(F) is the subset of faculty members desiring
to teach on Tuesday/Thursday.

16. FTTNBB(FTT) is the subset of faculty members
teaching on Tue/Thur who do not wish to teach back-to-back.

17. FTTYBB(FTT) is the subset of faculty members
teaching on Tue/Thur who do wish to teach back-to-back.

18. CON is the set of defined concentrations.
(Corresponds to c in Appendix D.)

19. CONTOI(CON,I) is the mapping of courses I to
concentration CON. (Corresponds to If in Appendix D.)

20. P is the set of pairs of courses that have a
high overlap in student demand. (Absolute and Relative).

21. PTOI(P,I) is the mapping of courses I to the
high conflict pairs P. (Corresponds to Ip in Appendix D.)

22. SEM(I) is the subset of courses desired to be
offered as three hour seminars.

Parameters.

1. CONTRIB(I,J) is the contribution to total faculty
satisfaction obtained when course I is assigned to time J.
It corresponds to cij in Appendix D.

2. COREHALF(CORE,HALF) is a parameter which equals 1
if a given CORE course is offered in this HALF semester; it
equals zero otherwise. It is used in the CORE section
feasibility constraints.

3. COREMAP(CORE,S) is a parameter which equals 1 if
a given CORE course is required for Section S; it equals
zero otherwise.

197

The reader may note that the product of COREHALF and COREMAP

is a parameter which equals 1 if the course is required for

Section S in half-semester HALF. The parameter thus

corresponds to Ish in Appendix D.

4. ROOMS(J,R) is the number of rooms of type R
available at time J. It corresponds to N{r)j in Appendix D.

5. ENROLL(I) is the estimate of expected enrollment
for all courses I. It is used to allocate the courses to
room types.

6. ROOMMAP(I,R) is a parameter which equals 1 if
course I is assigned to room group R; it equals zero
otherwise. ROOMMAP is calculated using the ENROLL
parameter. It corresponds to I r in Appendix D.

F.3. Eauations in the GAMS Model.

The equations in the GAMS model correspond directly to

those presented in Appendix D. In this section, I present,

for each equation in Appendix D, the corresponding GAMS

equation.

Appendix D Equation GAMS Equation

D1 OBJDEF

D2 ASGT(I)

D3 ROOMCAP (J, R)

D4 REQCORE(S,HALF,J)

D5 FACULTY(F,J)

198

Appendix D Equation

D6 CONCEN (CON, J)

D7 CONPAIRS (P, J)

D8 SEMINAR

D9 OFFMW (FMW, JTT)

D10 OFFTT(FTT,JMW)

D11 NBBMWAM(FMWNBB)

D12 NBBMWPM(FMWNBB)

D13 NBBTTAM (FTTNBB)

D14 NBBTTPM (FTTNBB)

D15 YBBMW1(FMWYBB)

D16 YBBMW2(FMWYBB)

D17 YBBMW3(FMWYBB)

D18 YBBMW4 (FMWYBB)

D19 YBBTT1 (FTTYBB)

D20 YBBTT2(FTTYBB)

D21 YBBTT3(FTTYBB)

D22 YBBTT4(FTTYBB)

F.4. The GAMS Code.

The remainder of this appendix presents the actual GAMS

code. This code is also found in the file F87NEWV2.GAMS on

the PRIME 850.

199

GAMS Equation

OPTION ITERLIM = 3000;
OPTION RESLIM = 2000;

SET I Set of all Courses taught in standard times in Fall 1986

15011AF Applied Micro Sections A thru F
15011GL Applied Micro Sections G thru L
15061AF DSS II Sections A thru F
15061GL DSS II Sections G thru L
15280AB Comnunication Sections A and B
15280CD Communication Sections C and D
15280EF Communication Sections E and F
15280GH Communication Sections G and H
15280IJ Communication Sections I and J
15280KL Communication Sections K and L
15311AC Managerial Behavior Sections A thru C
15311DF Managerial Behavior Sections D thru F
15311GI Managerial Behavior Sections G thru I
15311JL Managerial Behavior Sections J thru L
15515AD Accounting Sections A thru D
15515EH Accounting Sections E thru H
155151L Accounting Sections I thru L
15560AF DSS I Sections A thru F
15560GL DSS I Sections G thru L
15930AC Strategy Sections A thru C
15930DF Strategy Sections D thru F
15930GI Strategy Sections G thru I
15930JL Strategy Sections J thru L
15001 Managerial Economics 1 and 2
15013 Industrial Econ for Strategic Decisions
15018 Econ of Intl Business
15034 Appt Econometrics and Forecasting for Mgt
15035 Pricing Strategy
15053 Introduction to Mgt Science
15058 Applied Math Programming
15059 Math Prog Models and Applications
15065 Decision Analysis
15075 Applied Statistics
15081 Introduction to Math Programming
15083 Comnbinatorial Optimization
15099 Doctoral Statistics
15141 Comparative Health Systems
15221 Intl Business Mgt
15231 Mgt and Tech in the People's Republic of China
15232 The Firm and Business Environment in JapanJ
15301 Managerial Psychology
15312 Managerial Decision Making and Leadership
15317 Comparative Study of Organizations
15351 Managing Technology and Innovation
15361 MOT course in MTI
15371 The R&D Process
15412 Financial Management II
15413 Topics in Corporate Financial Management
15415A Finance Theory Section A
154158 Finance Theory Section B
15435A Corporate Financing Decisions Section A
154358 Corporate Financing Decisions Section B
15436 International Managerial Finance
15437 Options and Futures Markets
15438 Investment Banking and Markets
15501A Financial and Cost Accounting Section A
15501B Financial and Cost Accounting Section 8

200

15521
15525
15539
15564
15565
15568
15601
15615
15664

* 15665
15671
15674
15691
15763
15768
15769
15812
15814
15824
15825
15832
15874
15878
15932
15933
159518
15951C
15962
15964
15965

Management Accounting and Control
Corporate Financial Accounting
Special Seminar in Accounting
Management Info Technology I
Management Info Technology II
Management Info Systems
The American Legal System 601 and 611
Mgrs Legal Function Birth to Bankruptcy
Management of Human Resources (paired with 15665)

15665 was paired with 15664 for scheduling purposes only
since both are three hour seminar courses.

Power and Negotiation (not modelled -- included with 15664)
Labor Economics I
Comparative Systems of IR and HRM
Research Seminar in IR
The Practice of Operations Management
Operations Mgt in Services Industry
Manufacturing Strategy
Marketing Management
MOT course in Marketing
Marketing Communications
Marketing Models
Marketing Measurement
System Dynamics for Business Policy
Economic Dynamics
Technology Strategy
Advanced Strategic Management
Introductory Managerial Accounting
Undergraduate Managerial Communication
Competition in Telecommunications Industries
Strategy Models
Spec Sem in Mgt Technology Mktg Interface

J Standard Time Slots

Monday and Wednesday
Monday and Wednesday
Monday and Wednesday
Monday and Wednesday
Tuesday and Thursday
Tuesday and Thursday
Tuesday and Thursday
Tuesday and Thursday

9 to 10:30
10:30 to 12
1 to 2:30
2:30 to 4
9 to 10:30
10:30 to 12
1 to 2:30
2:30 to 4

TSEM(J) Time Slots that are not applicable to three hour seminars

/ tl, t2, t3, t5, t6, t7 /

JMW(J) Time Slots on Mondays and Wednesdays

/ tl, t2, t3, t4 /

JTT(J) Time SLots on Tuesdays and Thursdays

/ t5, t6, t7, t8 /

R Room Types

Capacity
Capacity
Capacity
Capacity

90
55 and LE 89
25 and LE 54
24

S CORE Sections

/ SecA, SecB, SecC, SecD, SecE, SecF, SecG, SecH, Secl, SecJ, SecK, SecL /

HALF Half Semesters

/ H1, H2 /

CORE(I) Courses in the CORE

Applied Micro Sections
Applied Micro Sections
DSS II Sections A thru
DSS II Sections G thru
Communication Sections
Communication Sections
Communication Sections
Communication Sections
Communication Sections
Communication Sections
Managerial
Managerial
Managerial
Managerial
Accounting
Accounting
Accounting

Behavior
Behavior
Behavior
Behavior
Sections
Sections
Sections

A thru F
G thru L
F
L
A and B
C and D
E and F
G and H
I and J
K and L

Sections
Sections
Sections
Sections
A thru D
E thru H
I thru L

DSS I Sections A thru F
DSS I Sections G thru L
Strategy Sections A thru
Strategy Sections D thru
Strategy Sections G thru
Strategy Sections J thru

15011AF
15011GL
15061AF
15061GL
15280AB
15280CD
15280EF
15280GH
15280IJ
15280KL
15311 AC
15311DF
15311GI
15311JL
15515AD
15515EH
155151L
15560AF
15560GL
15930AC
15930DF
15930GI
15930JL

A thru
D thru
G thru
J thru

F Faculty members teaching more than one course

Berndt
Barnett
Yates
Piotrowski
Nickel
Healy
OBrien
Treacy
Malone
Venkatrama
Freund
Kaufman
Westney
VonHippeL
Parsons
Ancona
Lessard
ALLen
Bhushan
Piore
Kardes
Horwitch

FTOI(F,I) Mapping of courses to Faculty teaching more than one course

Berndt.(15011AF, 15011GL, 15034)
Barnett.(15061AF, 15061GL)
Yates.(15280AB, 15280EF)
Piotrowski.(15280CD, 15280GH)
Nickel.(152801J, 15280KL)
Healy.(15515EH, 15539)
O8rien.(15515AD, 155151L, 15525)
Treacy.(15560AF, 15560GL)
Malone.(15560AF, 15560GL)
Venkatrama.(15930DF, 15930GI)
Freund.(15059, 15081)
Kaufman.(15065, 15099)
Westney.(15232, 15317)
VonHippel.(15351, 15965)
Parsons.(15435A, 154358)
Ancona.(153110F, 15361)
Lessard.(15221, 15436)
AlLen.(15301, 15371)
Bhushan.(15501A, 155018, 159518)
Piore.(15671, 15674)
Kardes.(15812, 15832)
Horwitch.(15932, 15933)

FMW(F) Faculty that only want to teach on Mondays and Wednesdays

/ Treacy, Malone, Venkatrama, Freund, Parsons, Kaufman, Ancona,
Barnett, VonHippel, Lessard, ALlen /

203

FMWNBB(FMW) Faculty that do not want to teach back to back on MW

/ Freund, Kaufman /

FMWYBB(FMW) Faculty that do want to teach back to back on MW

/ Treacy, MaLone, Parsons, ALLen /

FTT(F) Faculty that only want to teach on Tuesdays and Thursdays

/ Berndt, HeaLy, OBrien, Westney, Kardes, Horwitch /

FTTNBB(FTT) Faculty that do not want to teach back to back on TTh

/ HeaLy, Westney, Kardes /

* FTTYBB(FTT) Faculty that do want to teach back to back on TTh

* This set is "commented out" since it is null this semester.

CON Defined Concentrations

/ Acctg Accounting and Control
ApplEcon Applied Economics
Strategy Corporate Strategy
OpRes Operations Research
OpMgt Operations Management
Finance Finance
HRM Human Resource Management
OrgStud Organization Studies
Mktg Marketing
MIS Management Info Systems
IR Industrial Relations
SysDy System Dynamics
IntL International Business
Health Health Care Management
MTI Mgt of Tech Innovation
Law Business Law

CONTOI (CON,I) Mapping of Courses to Concentrations

Acctg.(15521, 15525, 15539)
AppLEcon.(15013, 15018, 15034, 15035, 15962)
Strategy.(15932, 15933, 15964)
Finance.(15435A, 15436, 15437, 15438)
Health.(15141)
HRM.(15312, 15664, 15671, 15674)
IR.(15664, 15671, 15674, 15691)
IntL.(15018, 15221, 15231, 15232, 15317, 15436, 15674)
MIS.(15564, 15565, 15568)
Mktg.(15034, 15035, 15824, 15825, 15832, 15965)
OpRes.(15059, 15065, 15081, 15083, 15099)
OpMgt.(15763, 15768, 15769)
OrgStud.(15312, 15317)
SysDy.(15874, 15878)
MTI.(15351, 15371, 15965, 15932) /

P Number of pairs of courses that should not be taught together

/ ABSI, ABS2, ABS3, ABS4, ABS5, ABS6, ABS7, ABS8, ABS9,
REL1, REL2, REL3, REL4, REL5, REL6, REL7, REL8 /

PTOI(P,I) Mapping of course pairs to courses

/ ABS1.(15568, 15932)
ABS2.(15351, 15568)
ABS3.(15932, 15965)
ABS4.(15351, 15932)
ABS5.(15438, 15932)
ABS6.(15438, 15525)
ABS7.(15436, 15933)
ABS8.(15438, 15933)
ABS9.(15351, 15438)
REL1.(15013, 15564)
REL2.(15317, 15371)
REL3.(15436, 15525)
REL4.(15769, 15874)
REL5.(15521, 15832)
REL6.(15521, 15825)
REL7.(15564, 15615)
REL8.(15018, 15615) /

SEM(I) Courses taught in three hour seminar format

/ 15311AC, 15311DF, 1531161, 15311JL, 15962, 15099,
15141, 15664, 15674, 15769 /

TABLE CONTRIB (I,J)

T1

15011AF
15011GL
15061AF
15061GL
15280AB
15280CD
15280EF
15280GH
152801J
15280KL
15311AC
15311DF
15311GI
15311JL
15515AD
15515EH
155151L
15560AF
15560GL
15930AC
15930DF
15930GI
15930JL
15001
15013
15018
15034
15035
15053
15058
15059
15065
15075
15081
15083
15099
15141
15221
15231
15232
15301
15312
15317
15351
15361
15371
15412
15413
15415A
154158
15435A
154358
15436
15437
15438
15501A
15501B
15521
15525

Faculty Preference for Time J

T2 T3 T4 T5 T6 T7 T8

1 1
1 1
3 1
3 1
1 5
1 5
1 5
1 5
4 1
4 1
5 1
5 1
5 1
5 1
3 3
3 3
3 3
5 4
5 4
3 3
1 5
1 5
1 1
3 3
5 1
3 3
1 5
5 1
4 2
2 1
3 3
1 1
3 3
3 5
3 3
5 1
1 1
4 3
3 3
3 3
1 1
4 1
3 3
1 1
4 2
1 1
3 3
3 3
3 3
3 3
3 3
3 3
4 3
5 3
5 1
3 1
3 1
3 3
3 3

15539 3 3 3 3 3 3 3 3
15564 5 4 1 1 5 4 1 1
15565 5 4 3 2 5 4 3 2
15568 3 2 1 5 1 1 1 1
15601 1 1 1 5 1 1 1 1
15615 3 3 3 3 3 3 3 3
15664 1 3 5 5 1 3 1 5

* 15665 This course was commented out since it is included
* with 15664 for modelling purposes.

15671 1 1 3 5 1 1 1 4
15674 1 1 1 4 1 1 1 5
15691 1 1 1 1 1 1 5 1
15763 3 3 3 3 3 3 3 3
15768 5 4 3 2 3 2 2 1
15769 1 1 1 5 1 1 1 3
15812 1 1 1 1 2 5 5 4
15814 3 3 3 3 3 3 3 3
15824 2 5 5 3 1 4 4 3
15825 4 5 4 3 2 3 2 2
15832 1 1 1 1 2 5 5 4
15874 3 3 5 3 3 3 3 3
15878 3 3 3 5 3 3 3 3
15932 3 3 3 3 3 3 3 3
15933 3 3 3 3 3 3 3 3
15951B 1 4 5 3 1 4 5 4
15951C 4 5 4 4 1 1 1 1
15962 1 1 1 5 1 1 1 1
15964 3 3 3 3 3 3 3 3
15965 1 5 4 1 1 5 4 1 ;

TABLE COREHALF (CORE, HALF) Mapping of CORE Courses to Half Semesters

Hi H2

15011AF 1 1
15011GL 1 1
15061AF 1 1
15061GL 1 1
15280AB 1
15280CD 1
15280EF 1
15280GH 1
152801J 1
15280KL 1
15311AC 1 1
15311DF 1 1
15311GI 1 1
15311JL 1 1
15515AD 1 1
15515EH 1 1
155151L 1 1
15560AF 1
15560GL 1
15930AC 1
15930DF 1
15930GI 1
15930JL 1 ;

TABLE COREMAP (CORE, S) Mapping of CORE Sections to Courses

SecA SecS SecC SecD SecE SecF SecG SecH Sect SecJ SecK SecL

15011AF 1 1 1 1 1 1
15011GL 1 1 1 1 1 1
15061AF 1 1 1 1 1 1
15061GL 1 1 1 1 1 1
15280AB 1 1
15280CD 1 1
15280EF 1 1
15280GH 1 1
152801J 1 1
15280KL 1 1
15311AC 1 1 1
15311DF 1 1 1
15311G1 1 1 1
15311JL 1 1 1
15515AD 1 1 1 1
15515EH 1 1 1
155151L 1 1 1 1
15560AF 1 1 1 1 1 1
15560GL 1 1 1 1 1
15930AC 1 1 1
15930DF 1 1 1
15930GI 1 1 1
15930JL 1 1 1 ;

Table Rooms(J,R) Number of Rooms of type R available at time J

R1 R2 R3 R4

ti 1 4 6 9
t2 1 3 6 9
t3 1 3 6 9
t4 1 4 6 9
t5 1 3 6 9
t6 1 3 6 9
t7 1 4 6 9
t8 1 4 6 9

* Extra room in R2 avaiLable when not used by Sloan Fellows or
* when a joint Sloan FeLtows/Masters course is offered.
* See Text, Section VI.

Parameter EnroLL(I) Estimated EnroLLment for each course

15011AF 123
15011GL 123
15061AF 62
15061GL 62
15280AB 23
15280CD 23
15280EF 23
15280GH 23
15280IJ 23
15280KL 23
15311AC 41
15311DF 41

208

15311G1 41
15311JL 41
15515AD 58
15515EH 58
15515IL 58
15560AF 70
15560GL 70
15930AC 50
15930DF 50
15930GI 50
15930JL 50
15001 53
15013 19
15018 61
15034 14
15035 30
15053 46
15058 46
15059 18
15065 30
15075 95
15081 34
15083 19
15099 6
15141 2
15221 83
15231 20
15232 30
15301 112
15312 41
15317 20
15351 50
15361 35
15371 54
15412 49
15413 30
15415A 45
154158 45
15435A 60
154358 60
15436 95
15437 68
15438 92
15501A 70
155018 70
15521 12
15525 13
15539 48
15564 61
15565 42
15568 64
15601 49
15615 49
15664 60

* 15665 commented out since scheduled with 15664 for modelling purposes.
15671 7
15674 9
15691 10
15763 22
15768 65
15769 60
15812 98
15814 35
15824 26
15825 45

209

15832
15874
15878
15932
15933
159518
15951C
15962
15964
15965

50
21
5
109
50
80
40
20
50
45

Parameter Roommap(I,R) Mapping of Courses to Room size groups;

Roommap(I,4"R1")
Roommap(I,"R2")
Roommap(I,"R3")
Roommap(,"R4")

Variables X(I,J)
OBJ

(EnrolL(I)
((EnrolL(I)
((EnroLL())
(EnroLL(I)

= 1;
and (Enroll(I)
and (Enroll(I)
= 1;

LE 89)) = 1;
LE 54)) = 1;

ASSIGNMENT OF COURSE I TO TIME J
OBJECTIVE FUNCTION;

Positive Variables X;

* This section fixes some courses.

X.FX("15768","t1") =
X. FX("15769","t4") =
X. FX('15311AC","t4")
X. FX("15311DF","t4'")
X.FX("15311GI","t4")
X. FX("15311JL","t4")
X.FX("15035","t2") =
X.FX("15075","t3") =
X. FX("15061AF","t2")
X. FX("15061G L" , '"t3")

See Thesis Text.

1;
1;
= 1;
=1;
= 1;
=1;
1;
1;
= 1;
= 1;

Equations ASGT(I)
ROOMCAP(J,R)
REQCORE(S,HALF,J)
FACULTY(F,J)
CONCEN(CON,J)
CONPAIRS(P,J)
SEMINAR
OFFMW(FMW,JTT)
OFFTT(FTT, JMW)

Each course must get a time
Room capacity for each room
No CORE conflicts

type and time

No Faculty Conflicts
No Concentration Conflicts
No contficts for high overlap course pairs
Three Hour Seminars taught at end of day
Single day teaching for MW faculty
Single day teaching for TTH faculty

* See thesis text (Section IV.A) for an explanation of the back to back constraints

NBBIWAM(FMWNBB)
NBBWPM(FMWNBB)
NBBTTAN(FTTNBB)
NBBTTPM(FTTNBB)
YBBMWI(FMWYBB)
YBBMW2(FMWYBB)
YBBMW3(FMWYBB)
YBBMW4(FMWYBB)

No back to back for Monday and Wednesday
No back to back for Monday and Wednesday
No back to back for Tuesday and Thursday
No back to back for Tuesday and Thursday
Yes back to back for Mon and Wed eqtn 1
Yes back to back for Mon and Wed eqtn 2
Yes back to back for Mon and Wed eqtn 3
Yes back to back for Mon and Wed eqtn 4

210

* These constraints commented out because FTTYBB was nuLL

* YBBTT1(FTTYBB) Yes back to back for Tues and Thurs eqtn 1
* YBBTT2(FTTYBB) Yes back to back for Tues and Thurs eqtn 2
* YBBTT3(FTTYBB) Yes back to back for Tues and Thurs eqtn 3
* YBBTT4(FTTYBB) Yes back to back for Tues and Thurs eqtn 4

OBJDEF Definition of objective function;

ASGT(I)..

ROOMCAP(J,R)..

REQCORE(S,HALF,J).

FACULTY(F,J)..

CONCEN(CON,J)..

CONPAIRS(P,J)..

SEMINAR..

OFFMW(FMUW,JTT)..

OFFTT(FTT,JMU)..

NBBMWAM(FMWNBB)..

NBBMWPM(FMWNBB)..

NBBTTAM(FTTNBB)..

NBBTTPM(FTTNBB)..

YBBMWI(FMWYBB)..

YBBMW2(FMWYBB)..

YBBMW3(FMWYBB)..

YBBMW4(FMYBB)..

* YB8TTI(FTTYBB)..

* YBBTT2(FTTYBB)..

* YBBTT3(FTTYBB)..

* YBBTT4(FTTYBB)..

OBJDEF..

SUM(J, X(I,J)) =E= 1;

SUM(I, ROOMMAP(I,R)* X(I,J)) =L= ROOMS(J,R);

SUM(CORE,
COREHALF(CORE,HALF) * COREMAP(CORE,S) * X(CORE,J)) =L= 1;

SUM(I $ FTOI(F,I), X(I,J)) =L= 1;

SUM(I $ CONTOI(CON,I), X(I,J)) =L= 1;

SUM(I S PTOI(P,I), X(I,J)) =L= 1;

SUM((SEM,TSEM), X(SEM,TSEM)) =E= 0;

SUM(I S FTOI(FMW,I), X(I,JTT)) =E= 0;

SUM(I S FTOI(FTT,I), X(I,JMW)) =E= 0;

SUM(I S FTOI(FMWNBB,I), (X(I,"T1") + X(I,"T2")))

SUM(I S FTOI(FMWNBB,I), (X(I,"T3") + X(I,"T4")))

SUM(I S FTOI(FTTNBB,I), (X(I,"T5I") + X(I,"T6")))

SUM(! $ FTOI(FTTNBB,I), (X(I,"T7") + X(I,"TS")))

SUM(I $ FTOI(FMWYBB,I), (X(I,"T1") + X(I,"T3")))

SUM(I S FTOI(FMWYBB,I), (X(I,"'T1") + X(I,"T4")))

SUM(I S FTOI(FMWYBB,I), (X(I,"T2") + X(I,"T3")))

SUM(I $ FTOI(FMWYBB,I), (X(I,"T2") + X(I,"T4")))

SUM(I $

SUM(I $

SUM(I S

OBJ =E=

=L=

=L=

=L=

=L=

=L
=

=L
=

=L
=

=L
=

FTOI(FTTYBB,I), (X(I,"T5") + X(I,"T7"))) =L= 1;

FTOI(FTTYBB,I), (X(I,"T5") + X(I,"T8"))) =L= 1;

FTOI(FTTYBB,I), (X(I,"T6") + X(I,"T7"))) =L= 1;

FTOI(FTTYBB,I), (X(I,"T6") + X(I,"T8"))) =L= 1;

SUM((I,J), CONTRIB(I,J)*X(I,J));

MODEL SCHED FIRST PASS / ALL / ;

SOLVE SCHED USING LP MAXIMIZING OBJ;

Display X.L;
DISPLAY REQCORE.L;
DISPLAY FACULTY.L;
DISPLAY CONCEN.L;

REFERENCES

Akkoyunlu, E.A. (1971). "Linear Characterization of the
Solutions of the Quadratic Assignment Problem."
Available as TR-4, Department of Computer Science, SUNY
at Stony Brook, New York.

Akkoyunlu, E.A. (1973). "A Linear Algorithm for Computing
the Optimum University Timetable." The Computer
Journal, Vol. 16, No. 4 (November), pp. 347-350.

Barham, Alan M. and John B. Westwood. (1978). "A Simple
Heuristic to Facilitate Course Timetabling." Journal
of the Operational Research Society, Vol. 29, No. 11
(November), pp. 1055-1060.

Bradley, Stephen P., Arnoldo C. Hax, and Thomas L. Magnanti.
(1977). Applied Mathematical Programming.
Reading, MA: Addison-Wesley Publishing Company.

Brooks, R. and A. Geoffrion. (1966). "Finding Everett's
Lagrange Multipliers by Linear Programming."
Operations Research, Vol. 14, No. 6
(November-December), pp. 1149-1153.

de Werra, D. (1985). "An Introduction to Timetabling."
European Journal of Operational Research, Vol. 19,
No. 2 (February), pp. 151-162.

Dyer, James S. and John M. Mulvey. (1976). "An Integrated
Optimization/Information System for Academic
Departmental Planning." Management Science, Vol. 22,
No. 12 (August), pp. 1332-1341.

212

Findlay, William and David A. Watt. (1978). Pascal. An
Introduction to Methodical Programming. Potomac, MD:
Computer Science Press, Inc.

Fisher, Marshall L. (1972). "Optimal Solution of
Scheduling Problems Using Lagrange Multipliers:
Part II." In: Symposium on the Theory of Scheduling
and its Applications, North Carolina State University,
1972. Berlin: Springer-Verlag, 1972.

Fisher, Marshall L. (1973). "Optimal Solution of
Scheduling Problems Using Lagrange Multipliers:
Part I." Operations Research, Vol. 21,
No. 5 (September-October), pp. 1114-1127.

Fisher, Marshall L. (1981). "The Lagrangian Relaxation
Method for Solving Integer Programming Problems."
Management science, Vol. 27, No. 1 (January), pp. 1-18.

Fisher, Marshall L. (1985). "An Applications Oriented
Guide to Lagrangian Relaxation." Interfaces,
Vol. 15, No. 2 (March-April), pp. 10-21.

Fisher, M.L., W.D. Northrup, and J.F. Shapiro. (1975).
"Using Duality to Solve Discrete Optimization Problems:
Theory and Computational Experience." Mathematical
Programming Study, 3, pp. 56-94.

Geoffrion, A. M. (1974). "Lagrangean Relaxation for
Integer Programming." Mathematical Programming
Study, 2, pp. 82-114.

Glassey, C. Roger and Michael Mizrach. (1986). "A Decision
Support System for Assigning Classes to Rooms."
Interfaces, Vol. 16, No. 5 (September-October),
pp. 92-100.

213

Graham, Daniel A. (1980). Microeconomics.
Lexington, MA: D.C. Heath and Company.

Held, Michael H., Philip Wolfe, and Harlan D. Crowder.
(1974). "Validation of Subgradient Optimization."
Mathematical Programming, Vol. 6, No. 1 (February),
pp. 62-88.

Kendrick, David and Alexander Meeraus. (1985). GAMS: An
Introduction. Washington, DC: The World Bank,
Development Research Department.

McClure, Richard H. and Charles.E. Wells. (1986).
"Departmental Planning in Academia by Decision
Support." College and University, Vol. 61,
No. 2 (Winter), pp. 81-89.

Mulvey, John M. (1982). "A Classroom/Time Assignment
Model." European Journal of Operational Research,
Vol. 9, No. 1 (January), pp. 64-70.

Prime Computer, Inc. (1980). Prime User's Guide IDR 4130.
Framingham, MA: Prime Computer, Inc.

Romero, Bernardo Prida. (1982). "Examination Scheduling in
A Large Engineering School: A Computer-Assisted
Procedure." Interfaces, Vol. 12, No. 2 (April),
pp. 17-23.

Sabin, G. C. W. and G. K. Winter. (1986). "The Impact of
Automated Timetabling on Universities -- A Case Study."
Journal of the Operational Research Society, Vol. 37,
No. 7, pp. 689-693.

214

Schmidt, G. and T. Strohlein. (1979). "Timetable
Construction: An Annotated Bibiliography."
The Computer Journal, Vol. 23, No. 4 (November),
pp. 307-316.

Shapiro, Jeremy F. (1971). "Generalized Lagrange
Multipliers in Integer Programming." Operations
Research, Vol. 19, No. 1 (January-February),
pp. 68-76.

Silver, Edward A., R. Victor Vidal, and Dominique de Werra.
(1980). "A Tutorial on Heuristic Methods." European
Journal of Operational Research, Vol. 5, No. 3
(September), pp. 153-162.

Tripathy, Arabinda. (1980). "A Lagrangean Relaxation
Approach to Course Timetabling." Journal of the
Operational Research Society, Vol. 31, No. 7 (July),
pp. 599-603.

Tripathy, Arabinda. (1984). "School Timetabling -- A Case
in Large Binary Integer Linear Programming."
Management Science, Vol. 30, No. 12 (December),
pp. 1473-1489.

215

