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Abstract
Measurements and numerical studies of the self-induced magnetic field effects of two-
dimensional niobium Josephson junction arrays have been performed. Experiments
focus on the dc electrical properties of these arrays and can be classified into four
regimes: the superconducting state, flow-flow regime, the row-switching state, and
novel resonance steps. We find that self-field effects can be modeled accurately with
the inclusion of all the cell-to-cell interactions in the array.

In the superconducting state, an increase of the depinning current occurs when
the penetration depth in the array, is of the order of one or less. There is also evidence
for a destruction of commensurate vortex states in the arrays as the depinning current
becomes almost independent of the applied magnetic field.

In the flux-flow regime, vortices can be modeled as massive particles due to the ca-
pacitive energy of the junctions. Self-field effects change the array flux-flow dynamics
by effectively decreasing the vortex mass.

When a row is switched, all of its junctions oscillate in a coherent fashion at the
temperature dependent gap frequency and the vortex-as-a-particle phenomenological
picture can no longer be used. This intra-row phase-locking is due to flux quantization
and appears very robust with regards to self-fields. However, phase-locking between
rows, inter-row phase-locking, is reduced with strong self-fields. It was also found
that row-switching ordering appears to have some symmetry even in the presence of
disorder.

At a certain temperature, a transition from row-switched states to a resonant step
occurs. This novel step is independent of temperature and seems to depend on both
self-fields and the horizontal junctions for its dynamics.

Thesis Supervisor: Terry P. Orlando
Title: Professor of Electrical Engineering



Acknowledgments

First, I thank Dr. Herre van der Zant, whose guidance, advice, and knowledge were

instrumental in the evolution of my research. I also thank Professor Terry P. Orlando

for his valuable suggestions, and theoretical insights that form a large part of this

thesis. I would also like to acknowledge Professor Steven Strogatz for the many

useful discussions.

The samples were fabricated at IBM, MIT Lincoln Laboratory and Hypres with

the help of many individuals. I specially thank Jay Sage of MIT Lincoln Labora-

tory for allowing me to use their mask layout design tools. Support of the National

Science Foundation through a graduate fellowship and an NSF grant is gratefully

acknowledged.

I am also grateful for both the contributions and friendship of my fellow graduate

students. In particular, I thank Joel Phillips for providing his numerical simulation

code and answering my questions. I am also indebted to Dave Carter, Amy Duwel,

Mauricio Barahona, and Shinya Watanabe.

Finally, I thank my family and friends for their love and support. Special thanks

must go to my closest friend, Tricia Skarzynski, for her patience and understanding.

I appreciate the encouragement of my brothers Fernando and Ram6n, my parents,

my grandmother, and specially my grandfather who always challenged and inspired

me to learn.



4



Contents

1 Introduction

1.1 Overview of Thesis

2 Background

2.1 One junction preliminaries . . .

2.2 Arrays of junctions .......

2.3 Continuum limit.

2.3.1 Continuum operators

2.3.2 The equations .

2.4 Details of dynamic simulations .

3 The

3.1

3.2

3.3

3.4

Superconducting State

Experimental Landscape .....

Depinning current vs. Al .....

Depinning current vs. frustration

Conclusions.

4 The Flux-Flow State

4.1 The Experimental Landscape

4.2 Phenomenological theory .

4.2.1 Equation of motion

4.2.2 Calculating the mass

4.2.3 The effective damping

4.2.4 Dependence on f . . .

5

13

15

17

. . . . ..... . . . . 17

. . . . ..... . . . . 20

. . . . ..... . . . . 28

........ . .28

........ . 30

........ . .34
39

. . . ... ... 39

. . . ... ... 41

. . . ... ... 45

. . . ... ... 49

51

. . . . . . . . . . . . . . . . . . . 51

. . . . . . . . . . . . . . . . . . . 55

................ .. . .57

. .. . . . . . . . . . . . . . . . . .58

. . . . . . . . . . . . . . . . . . . 60

. . . . . . . . . . . . . . . . . . . 61



4.3

4.4

4.5

4.2.5 Dependence on c ...............

4.2.6 Dependence on A± .

4.2.7 Flux-flow model with Ai and P, dependence

Comparison with experiments and simulations . . .

Deviation from phenomenological theory ......

Conclusions.

5 Beyond Flux-Flow

5.1 Row-switched states.

5.1.1 Experiments .

5.1.2 Comparison to simulation

5.1.3 Conclusions ........

5.2 Array resonances.

5.2.1 Experiments . .......

5.2.2 Comparison to simulation

5.2.3 Conclusions ........

6 Conclusions

6.1 Summary .................................

6.2 Future directions.

A Published papers

99

99

101

103

6

........ .....62

........ .....63

........ ....66

........ .....66

....... . .72

........ ......75

77

. . . . . . . . . . . . . . . . . . . . 78

. . . . . . . . . . . . . . . . . . . . .78

. . . . . . . . . . . . . . . . . . . . 81

. . . . . . . . . . . . . . . . . . . . .86

. . . . . . . . . . . . . . . . . . . . .86

. . . . . . . . . . . . . . . . . . . . .86

. . . . . . . . . . . . . . . . . . . . .90

. . . . . . . . . . . . . . . . . . . . .97



List of Figures

1-1 Typical I-V, indicating the depinning current, flux-flow region, par-

tially row-switched, and fully row-switched states. The data was taken

at 7.4 K with A = 0.73 and PA = 46. .................. 15
2-1 Equivalent circuit for a Josephson junction with an insulating barrier. 18

2-2 Schematic showing the circuit diagram for the square arrays ...... 20

2-3 Schematic describing the different variables used to analyze the square

arrays .................................... 21

3-1 Geometry of two-dimensional Josephson-junction array ......... 40

3-2 Typical I-V showing how the depinning current is defined. ...... 41

3-3 Depinning current as a function A1 ............... . 42

3-4 AE as a function A1 for a 15 x 15 array. Circles depict the total energy

barrier, squares show the magnetic contribution to the barrier, while

the triangles represent the Josephson contribution. .......... 43

3-5 Top: Measured depinning current as a function applied field. Bottom:

Simulated depinning current as a function applied field. ....... 47

3-6 Dynamic formation of a vortex lattice for A = 0.3 on the right and

A = 5 on the left with f = 0.25. This vortex distribution snapshot

was taking just before the depinning current ............... 48

4-1 Typical set of I-V 's taken by varying the magnetic field from f = 0.1

to 0.3 at 8.6 K with A1 = 1.04 and /, = 5.1. The numbers indicate the

resistance of the flux-flow. ........................ . . . 53

7



4-2 Typical set of I-V's taken by varying the temperature at f = 0.2. In

this sample /, < 6 so that only the parameter A± affects the slope... 54

4-3 Top: typical set of Rd vs. bias current measurements taken by varying

the magnetic field at T = 7.8 K. Bottom: same set of Rd measurements

plotted to depict the flux-flow landscape ................. 56

4-4 Vortex mass normalized to the vortex mass at A = oo calculated using

the quasi-static approximations for a continuous film, and a discrete

Josephson array of 15 x 15 cells ...................... 65

4-5 Simulated I-V's for a 15 x 15 array with A = 0.5. .......... 67

4-6 Comparison between measured Rff vs. f for sample H2 and simulations. 68

4-7 Measured Rff vs. PC for samples H1 and a large aluminum array.

Filled-in circles are simulations with A_ = oo for a 15 x 15 array with

f = 0.2. Dashed line is spin-wave dependence. .............. 69

4-8 Measured Rff vs. A1 for samples H1, H2 and P. Dashed line is single

vortex approximation while the fill-in circles are points taken from

dynamic simulations of 15 x 15 array with P = 5 and f = 0.2. .... 70

4-9 Normalized Rff vs. A for samples H1, H2 and P. ............ 71

4-10 Measured I-V for every row of sample H3 at T = 8.1 K and f = 0.2.. 72

4-11 Measured Rff for f = 0,0.1,0.2,0.3,0.4 and 0.5 for sample H2 at

T= 8.5 K .................................. 73

4-12 Measured Rff vs. f at different current biases. Numbers indicate slope

of the line. ................ .. . . . . . . . . . . . . . . 74

5-1 Row-switched steps measured by slowing stepping the amplitude of

sweep current. Data recorded at 6.0 K and f = 0.1. .......... 79

5-2 Order of row-switching steps. Each dot represents the current value

when the indicated row switched. The numbers indicate the corre-

sponding step number in the total I-V of the array. Data recorded at

6.0K and f = 0.1 .............................. 80

8



5-3 Simulated I-V with A± = 0.44 and Pc = 49.5, the critical currents in

the simulations had a uniform random distribution of 10% ....... 81

5-4 Simulated I-V of each vertical junction with Al = 0.44 and P, = 49.5. 82

5-5 Instantaneous vortex configurations for 7 x 7 arrays with three rows

switched. Left graph is A = 0.44 and the vortices in the rows are out

of phase, while the graph on the right for Al = oo and all the vortices

in the rows are in phase. ......................... 83

5-6 Phase portrait of a horizontal and vertical junction in an active row of

the array. iGraphs (a) and (c) depict the the first horizontal junction

in row four on the right side of the array. While the graphs (b) and

(d) are for the first vertical junction on row four of the right side of

the array. Bottom graphs show the dynamics at the beginning of the

step, and top graphs at the top of the step ................ 85

5-7 Phase portrait of a horizontal and vertical junction in a quiet row of

the array. The graph on the left depicts the first horizontal junction in

the first row of the left side of the array. While the graph on the right

shows the first vertical junction on the first row of the left side of the

array ................................... . 85

5-8 Temperature dependence of resonant step at f = 0.5. The step is

located at 2mV, and the gap is shown in the upper right-hand

corner as it varies with temperature. ................... 87

5-9 Measured I-V's of each individual row showing resonant step at T =

8.1K and f = 0.5 .............................. 88

5-10 Measured I-V's vs. applied magnetic field at T = 8.1 K. Inset:

Measured voltage vs. applied field at the same parameters at a current

bias of 58 A ............................ 89

5-11 Simulated I-V's comparing Al dependence of the resonant step at f =

0.5 and ,3 = 19.7 for a 7 x 7 array. Dots represent an I-V with Al = oo,

while circles have a Al = 1.02. Though there are no resonances for the

AI = c0 a clear step is seen at Al = 1.02 ................. 91

9



5-12 Simulated I-V of each vertical junction with A = 1.02, Pc = 19.7, and

f = 0.5 ................................... 92
5-13 Simulated I-V 's comparing f dependence of resonant step at Al = 1.02

and /, = 19.7 for f = 0.5, 0.4 and 0.3. ................. 93

5-14 Simulated I-V's for 7 x 1 ladder and parallel array comparing depen-

dence of the step at f = 0.5 and /, = 19.7. .............. 94

5-15 Graphs (a) and (c) phase portraits of the first horizontal junction in

row four on the right side of 7 x 7 array. While (b) and (d) are for the

first vertical junction on row four of the right side of the array. Bottom

graphs show the dynamics at the beginning of the step, and top graphs

at the top of the step. .......................... 96

10



List of Tables

4.1 The measured samples. RJ is the normal state resistance of the Joseph-

son junction, AJ is the area of the junction and Cj the capacitance.

L, is the self-inductance of the loop and p is the lattice spacing of the

array ..................................... 52

11



12



Chapter 1

Introduction

Josephson junctions are natural dc to ac converters. They are highly tunable oscil-

lators that can reach frequencies in the terahertz range. Also, due to their nonlinear

properties they can be used as sensitive detectors and mixers of electromagnetic waves.

Therefore a substantial effort has been spent on using Josephson junctions for

oscillators, mixers, detectors, and parametric amplifiers in the millimeter and submil-

limeter range. However Josephson device technology has yet to produce a marketable

product, mostly for the following reasons:

1. Josephson junctions need very low temperatures to operate.

2. A single junction has low voltage (mV) and power levels (nW).

3. It is difficult to impedance match a junction ( 1 ) to conventional microwave

devices ( 50 Q).

4. High susceptibility to electrical shocks and thermally induced processes increase

the linewidths ( MHz).

The first two factors are fundamental. They follow from the very small energy gaps in

superconducting materials. The last two are technologically dependent. In the past

several years, several solutions have been proposed:

1. The advent of high temperature superconductors and small-scale refrigeration
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units make it feasible to design into a single small package the superconducting

electronics and necessary cooling micro-machinery in the near future [15].

2. An array of Josephson junctions working coherently could raise the operational

voltages (1V) and power (W) to useful levels.

3. Arrays combined with superconducting microwave microstrips may improve

impedance matching.

4. Again, arrays of Josephson junctions are less vulnerable to noise than single

elements. Linewidths can be reduced to the 10 Khz range.

Therefore, coherent arrays would overcome many of the technological limitations

of single junction rf devices.

In particular, two-dimensional arrays of Josephson junctions are of importance

because by phase-locking, they overcome the problems of low impedances and power

when using single junctions. For example, an array with Nx cells perpendicular to the

current direction and Ny parallel, the phase-locking of the array implies the power

delivered to a load scales with Ny(Nz + 1) and, at the same time, the linewidth with

1/Ny(N, + 1) [40]. Coherent emission and power levels in the microwatt range have

been detected [2] in niobium arrays with 9 by 10 cells. In that paper it was suggested

that the 2D array itself might provide a mechanism for phase locking through quasi-

long-range interactions between its junctions.

Generally speaking, the delivered power is proportional to the critical current I,

so that the demand of high power stipulates the use of junctions with large critical

currents. High critical currents, however, may destroy the internal locking mechanism

in the arrays [27, 8]. In 2D arrays, the penetration depth for perpendicular applied

magnetic fields, Al, is inversely proportional to I. A small Al weakens the range

of the vortex interactions thereby reducing the the ability of the whole array to

mutually phase-lock. Clearly, an engineering compromise must be made for optimal

performance.

14
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Figure 1-1: Typical I-V, indicating the depinning current, flux-flow region, partially
row-switched, and fully row-switched states. The data was taken at 7.4 K with Al =

0.73 and /i = 46.

1.1 Overview of Thesis

Although the effects of self-fields have been calculated for various array properties,

there have been no detailed measurements of these effects. This thesis, presents an

experimental and numerical study of the inductance effects on the electrical properties

of square two-dimensional Josephson arrays. The experiments will focus on resistance

and dc current-voltage (I-V) characteristics as a function of applied magnetic fields

and temperature. However, the resulting richness in the dc I-V reflects the complex

dynamics of the junctions. We find that these inductance effects are important in

practical niobium arrays that have AIg-a and that these effects can be modeled well

by numerical simulation that take into account the mutual inductive interactions

between every cell of the array.

A typical I-V is shown in Fig. 1-1. There are three distinct regions in the I-V: a

superconducting state at zero voltage, a flux-flow region, and a row-switched region.

15

f=0.2, 15 by 15 cells

partially row-switched ........

fluxflow .... all rows switchedflux flow f. .....
, .

Idep

F
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Chapter 2 provides the necessary background and theoretical modeling needed to

describe arrays of Josephson junctions.

Chapter 3 will discuss the depinning current, Idep, that indicates the onset of the

flux-flow region. We will show how A affects the cell-to-cell energy barrier of an

array. This barrier is directly related to vortex pinning. We also show that strong

self-fields prevent the formation of a commensurate vortex lattice with the array.

Chapter 4 will study the flux-flow region and develop phenomenological theory of

its magnetic field and temperature dependence. In this region a vortex can be viewed

as a particle with an extent of Al. Its electrical energy can be interpreted as its mass

and the array can be modeled as a viscous media. We find that strong self-fields

reduce the equivalent viscosity of the array.

Chapter 5 will present measurements and simulations of the row-switched states

as well as a novel resonance step. In this regime vortices can no longer be viewed as

particles. Instead rows of junctions phase-lock and behave coherently. We find that

strong self-fields affect the strength of phase-locking between rows.

Finally, Chapter 6 will provide a brief summary and future direction of research.

16



Chapter 2

Background

This chapter will present the basic concepts needed to understand the physics of

Josephson junction arrays. It will also explain how the arrays can be modeled and

simulated.

2.1 One junction preliminaries

A Josephson junction consists of two superconducting electrodes that are coupled

through a thin barrier. If these superconducting electrodes are smaller than the Lon-

don penetration depth, AL, then the supercurrent in the electrode can be described

by a macroscopic wavefunction n/ 2 ei, where n represents the total number of su-

perconducting electrons. These superconducting electrons consist of two electrons,

Cooper pairs, bounded, with an energy of 2A, through phonon interactions of the

atomic lattice. When the barrier is thin enough, the wavefunctions of the electrodes

can overlap and Cooper pair tunneling can occur [22]. It is this tunneling of the

supercurrent, the Josephson effect, that forms the basis for most superconducting

devices.

For insulating barriers, junction behavior can be modeled accurately by a super-

current channel, a geometric capacitance and quasiparticle tunneling conductance.

Fig. 2-1 shows the equivalent circuit of this type of Josephson junction. This RCSJ

model describes the state of the junction with a phase X and resulting constitutive

17
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Figure 2-1: Equivalent circuit for a Josephson junction with an insulating barrier.

relations
V

I = Ic sin 0 + R + CV (2.1)
R,

and a voltage phase relation [22]

= V. (2.2)

Since 0 is a measurable quantity it must be gauge invariant. Imposing this condition

yields

01 -02 - 2r 2 (r, t). dl (2.3)

where the O's are the macroscopic phases of the supercurrent wavefunction in the top

and bottom electrodes of the junction and A(r, t) is the magnetic vector potential.

The quantity 0 is usually referred to as the gauge-invariant phase of the junction.

Electrons not bound as Cooper pairs are called quasiparticles. In general they

can be created either by temperature or by an induced voltage. If the voltage is

greater than the gap voltage, Vg = 2A/e, then very few Cooper pairs remain bounded

and the quasiparticle tunneling conductance, l/Re, is described by the normal state

conductance of the junction, 1/R. When the voltage is lower than the gap, thermal

excitations induce most of the Cooper pair breaking. In this regime 1/Re is described

by a temperature dependent subgap conductance G 9g(T)/R,.

A Josephson element can also be viewed as a parametric inductor. Taking the

18



time derivative of Josephson channel equation

dtI = (I sin ) d(2.4)

and substituting in the voltage phase relation, we find

dI= 27I V. (2.5)
dt o)0 cos 7

This is the constitutive relation of an inductor and the coefficient in front of the

voltage is the reciprocal of an equivalent inductor that is dependent on the phase of the

junction. The parametric inductor is equal to LJ = L cos 0, where LJO = 4/(27rI).

It is common to re-normalize the above equations. From the current conservation

of the RCSJ model, Eq. 2.1,

I = sin + V + fVl (2.6)

and the voltage phase relation becomes

=V, (2.7)

where V has been normalized by IP, I by I, and the overdot represents differ-

entiation with respect to wjt, with wj = R,/LJo. The effective voltage dependent

conductance, G(V), has been set to one. This is a reasonable approximation, since

most of the presented measurements are done close to the critical temperature and

hence the subgap resistance is equal to the normal state resistance of the junctions.

The coefficient ,/ is equal to &RCwj and is referred to as the Stewart-McCumber

parameter. It is the ratio of the two characteristic time constants in the system and

can be interpreted as a measure of the importance of the capacitance.

19
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Figure 2-2: Schematic showing the circuit diagram for the square arrays.

2.2 Arrays of junctions

In this section, we will use basic concepts of network theory to derive the governing

equations of a two-dimensional array of Josephson junctions. The typical schematic

circuit is shown in Fig. 2-2. The elements with crosses, the branches, represent Joseph-

son junctions, and are arranged as a two-dimensional square grid. The intersection

of the junctions, the nodes, represent superconducting islands. There are Nx cells, or

meshes, in the horizontal direction and Ny cells in the vertical direction.

In this thesis, we will only consider devices of this square geometry. We will also

only consider arrays that have uniform current injection at every node on the top of

the array and uniform current extraction at the nodes of the bottom.

Any circuit can be described topologically by its oriented graph. In turn, an

oriented graph can be characterized by three types of quantities: node, mesh, and

branch values. We will denote mesh quantities by a superscript m. All of our meshes

are square and they contain four branches, or segments. These will be denoted by

superscript b while the node variables will be denoted by a superscript n. Figure

2-3 shows the different quantities with respect to the shown coordinate system and

20
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Figure 2-3: Schematic describing the different variables used to analyze the square
arrays.

orientations.

These mesh, branch, and node variables are related by discrete operators M and

A. It is common to characterize M as a loop sum operator and A as a node sum

operator. To get a basic idea of how these operators can be used we can rewrite the

traditional Kirchhoff's laws: the loop sum of branch voltages equals zero

MV b = O, (2.8)

and the sum of branch currents at a node is zeros

AI = O. (2.9)

It can also be shown [6] that the mesh, node, and branch quantities are related by

MTIm = b and ATVn = Vb (2.10)

In our arrays we will use mesh quantities for the flux within a cell and the mesh

current. The branch quantities will be the voltage, gauge invariant phase , and

branch current; the node quantities will be the node voltages and the phase, 0, of the

order parameter at a superconducting electrode.

21
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We can generalize the definition of the gauge invariant phase, Eq. 2.3,

qi+½,j =AToij _ 27rbJ i+ j+,+

where 4)b is a vector containing all the line integrals of the vector potential and is

referred to as the partial flux of a branch [29].

Also, if we inject a current, It, at a node ij, we can extend Kirchhoff's current

law by noting that the sum of all the branch currents at the node will no longer be

zero, but equal to the external current,

AI = ezt. (2.12)

This equation represents the nodal boundary conditions of the array.

We can use the constitutive relations of our Josephson branch elements, the RCSJ

model of Eq. 2.6 and Eq. 2.7, and the boundary conditions of the circuit, Eq. 2.12

to derive the nodal equation for the superconducting island phases. Combining them

and generalizing to a vector form, we have

A [sin(ATO _ b)±A T + _ (ATE- -ILb I . (2.13)

Here /l is a matrix describing the capacitive coupling in the array. The diagonal

entries correspond to the coupling between nearest neighbor nodes. The off-diagonal

elements are the next nearest-neighbor capacitances, and so on. In this thesis, we

neglect all other capacitances except nearest-neighbors and 0/3 reduces to a scalar

value of the usual Stewart-McCumber parameter. The column vector I, describes

the effect of the injected external currents at every node of the array. For uniform

injection at the top of the array and uniform extraction at the bottom, I, will have

I,.t's at all of the top nodes where current is being injected and -Iet's at the bottom

nodes where the current is being extracted.

Since our equations are gauge invariant we are free to choose a Coulomb gauge

such that Ab = 0 [8]. The governing equation for becomes

22



Asin (ATo _ o b) + AAT + 3CAAT = Is (2.14)

Only differences of node quantities, 0, appear in the above equation. This is

a direct consequence of the non-physical nature of the phase of the supercurrent

wavefunction at the electrodes. Any constant can be added to the column vector 0

and result in exactly the same dynamical equation. Hence, this equation does not

uniquely determine 0 and mathematically, it can be shown that AAT is singular.

In order to resolve the problem, it is common in circuit analysis to ground one of

the nodes. In effect, we set one of the phases to zero and treat it as our reference.

Thereby, all the node phases can be determined in terms of this reference.

Though the nodal equations, Eq. 2.14, is always valid for the appropriate gauge,

it is most useful when the self-induced magnetic fields can be neglected so that the

flux is fully determined by the applied field. In this case the time derivatives of the

flux vanish and one can choose any other convenient gauge. It is common to choose

a Landau gauge such that A(r, t) = Hxy- so that qb vanishes along the -direction

and is equal to Hpx along the n-direction.

If the effects of self-fields cannot be neglected, as is the case in Nb arrays, it is

possible to develop a dynamical equation for the flux, 1Dm. Starting from Maxwell's

equations and the principle of superposition, the total flux in a mesh can be de-

composed into the applied flux and the flux induced by the currents flowing in the

branches:

( m = Mib = bext + induced- (2.15)

Here the induced and externally applied parts of the flux are both mesh variables.

The term M b is the sum of all the partial fluxes and it is equivalent to summing

the the vector potential around a loop. Therefore, Mob is equal to the enclosed flux

[29].

To calculate the induced fields it is necessary to determine the inductance in-

teractions in the array. These inductance interaction can be characterized in terms

of induced flux of the array mesh currents. For a circuit consisting of many closed
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meshes

· = LI m , (2.16)

where Lm is a square matrix that describes the inductive interaction between all the

meshes in a circuit. Since all meshes can be decomposed into branches, it is possible

to construct the induced flux by summing the contributions of each branch. Though

the partial fluxes due to the branches are a useful abstractions, the real physical

quantity is the flux in a mesh. Mathematically, it can be shown [29] that

induced = MLbIb. (2.17)

The M operator must sum over all of the branches that compose the mesh and Lb is

a matrix describing the pair-wise inductive coupling of branches.

When dealing with any circuit, sources always present a problem because they are

not easily described by a lumped element. In our Josephson arrays, it is possible to

close the current sources so that an injecting branch on a top node is matched by an

extracting branch on a bottom node of the array and therefore the current sources

can be described as meshes. However, in the actual experiment the source loop is

closed through a variety of instruments and filters. To model the precise inductance

interaction between the array meshes and the source meshes would be very difficult.

However, the coupling between between the source meshes and the array meshes is

much weaker than the coupling between the interior array meshes and so is usually

neglected.

By neglecting the inductance due to the source meshes, we can no longer use

Eq. 2.16, since the source meshes have no inductance associated with them. Instead

it is convenient to use the branch formulation of defined flux, Eq. 2.17. However, care

must be taken to define the branch currents carefully.

We have already shown that the current injection can be expressed in terms of

current conservation at the nodes. It is also possible to formulate the current injection

boundary condition in terms of these mesh sources. One can think of the source
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meshes at the boundaries so that

MTIm + I, = Ib (2.18)

Since Im does not include the currents of the sources, it cannot fully describe the

branch currents of the system. 1I is a vector that adjusts the operation of multiplying

by M so that the branch currents at the edges are calculated correctly. Rewriting 1

in component form for the special case of uniform current injection, we find

Ijj = Klext

I1 = (i-K)Iext

= (i - K)Ixt

IN j = ((N. + 1) - K)Ixt (2.19)

where I,t is the uniformly injected branch current at a node, K is some arbitrary

constant and i goes from 1 to N,. In essence, the branch current along an edge will

be the difference of the interior mesh current and the source current.

As noted, it is possible to construct a different I in terms of nodal current con-

servation while still utilizing Eq. 2.18. In fact, the I vector then has It for every

vertical junction in the array. In a two-dimensional system without horizontal cross-

junctions, this is the more convenient form of expressing the boundary conditions.

We can factor out the self inductance term from the branch inductance matrix in

Eq. 2.17 and normalize the current by I to get the defining equation for the induced

flux in terms of the array parameters,

2 4rinduced __1 MLbi b~r -- ML~b. (2.20)
(o A_ 

Here Al = LJ/lpop and represents the characteristic length of which fields and currents

decay in the array. As a consequence, A can be also be viewed as the extent of a

vortex. Also, Lb is now normalized by pop.
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Combining Eq. 2.20 and Eq. 2.18 gives

LmIm + MLbI8 = 2r- - 27rf (2.21)
Al A2 1)

where f = Deat/(o and L m is the mesh inductance matrix, MLbMT. The parameter

f is referred to as the frustration. If we neglect the induced field, the array is at the

lowest energy state when all the phases are at zero. When there is an applied field,

the array can no longer reach the minimum energy and it is said to be frustrated

hence the name frustration. The MLbI term is not due to the flux of the sources,

but rather to the correct calculation of the branch current along an edge. The branch

current of a mesh at the boundary of the array will be the difference of the mesh

current and the source mesh, so the flux due to this branch will have a component

with I,.

To piece all of the above equations into a governing equation of the flux, we need

to take the loop sum of the voltage phase relation

Vb = ¢, (2.22)

So that

MVb = M(ATO- 2 7rb) (2.23)

but 0 is multi-valued so MATO = 2rn. Since n is just an integer, it is independent

of time, and

MVb = -M b = _m. (2.24)

Multiplying Eq. 2.18 by M and substituting Eq. 2.6 for Ib

MMTIm = Msin(A T O _ 27rlb) - c- , m + MI,. (2.25)

This equation along with the governing equation for the 's, Eq. 2.21, and the

definition of the flux, Eq. 2.20, describe the dynamics of a square Josephson junction

array.
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However, this formulation is not very attractive from an analytical or numerical

standpoint due to the complicated argument of the sine term.

These governing equations have been studied in several limiting cases. It is com-

mon to take the overdamped limit where Pc = 0. In particular, A = oo has been

extensively studied. From Eq. 2.15, )m = e,,t and hence there is no dynamical

equation for the flux since it is fully determined by the applied flux. The only equa-

tion needed to describe the system is the nodal equation for the supercurrent phase

on the islands, Eq. 2.14. We can further simplify the problem by choosing a more

convenient gauge such as the Landau gauge.

For finite A± it is also possible to describe the system in terms of the gauge

invariant phase [25] by noting that

M = MATO- M( 2.b)
21r

- 2rn - - M (2.26)
'Do

This is the famous flux quantization condition of a loop of Josephson junctions. Since

the only measurable quantities depend on sin and one can try to redefine the

phases such that the 27rn is absorbed in the equation. A solution for a new set of

phases, 4', such that M4' = MO - 2rn would effectively absorb the constant 2rn

values. Mathematically, a set O's can be found if there is at least one junction at the

boundary. From this fact, it follows that the dynamical equations are 'DO periodic and

we can set n to zero without loss of generality. Physically, if there was not a junction

at the boundary, there would be a superconducting loop and the enclosed flux would

still be quantized but the dynamics would no longer be 0o periodic. Instead, the

number of enclosed flux would become a topological constraint on the system.

To get the governing equations of the gauge invariant phase, we make use of the

mesh boundary condition, Eq. 2.18, and the RCSJ model. We find that

MT I m = sin b + + (2.27)
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and from the definition of the flux, Eq. 2.21, and flux quantization, Eq. 2.26,

1
- (LI m + MLbI) = MO + 27rf. (2.28)

In constructing the I vector for the mesh boundary condition and uniform current

injection, Eqs. 2.19, we need to choose a value for the arbitrary constant K. If we use

the self-consistent formulation with the full inductance matrix, then the dynamics are

independent of this reference value. However, if we truncate the inductance matrix,

then it is important for the external current meshes to be antisymmetric so that the

induced fields of the external meshes have a maximum at the edges and decay toward

the center, as in any superconducting material. In effect, we choose the K such that

the center source mesh is equal to zero.

2.3 Continuum limit

Having described the formalism needed to model Josephson circuits, we can now

derive continuum approximations in order to more fully understands the physics of

these square arrays. We will find that in certain regimes the dynamics of the two-

dimensional circuits can described in terms of flux transport and that the basic unit

is a Josephson array vortex.

2.3.1 Continuum operators

First we will determine what the operators A and M look like for a continuous

approximation. A discrete operator with a finite basis is analogous to a continuous

operator plus boundary conditions. For instance, a discrete gradient operator has

built-in Neumann or Dirichlet boundary equations that would have to be specified

separately in a continuous approach.

We will treat the boundaries in the following section. For now, we ignore them in

order to get the equivalent continuous operator of A and M.

For some node ij, the node sum operator, A, can be written in component form

28



asbj= Ib jI + Ij- j+I. (2.29)
2 2,3 2,3-~ 2 (2.2,-

All our equations, including the definition of A1 are already normalized to the

lattice constant p so we can change the coordinates to continuous variable by using

Ax = 1/N= and Ay = 1/Ny and therefore approximate the discrete operator by

AI, I(y) - I(y + y) + I(x) - I(x + Ax). (2.30)

In the continuum limit, we get

AIrj _ -ydy d- x-x (2.31)
dy dx

If we let N = N = N then

AI t-NV -I (2.32)

where I is a vector describing the current flow in i and y direction.

Similarly

AT0n -- VO(x, y) (2.33)
N

where 0 is a scalar function describes the phase of the order parameter at some

coordinate (x, y). Hence the combination AATO is simply the Laplacian of S.

A similar analysis can be made for the loop sum operator M:

1
MO $ V x (2.34)N

1MTIm .VxI (2.35)N

where

a(xy) o
= Y(, ) and I = 0 (2.36)

0O IM(x,y)
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and the combinations of the M operator are

1
MTMc - V x V x Vx (2.37)

N2

MMTIm ,, v2 Im. (2.38)

The continuous variable Im describes the circulating current in the array, while 0

describes the phase differences along the i and y directions.

2.3.2 The equations

The discrete equations contain an inductance matrix that is difficult to work with in

a continuous limit. Therefore, as a first approximation we will diagonalize the mesh

inductance matrix. This is equivalent to studying only self-induced fields because the

flux in a mesh is fully characterized by its circulating current. From Eq. 2.15 and the

flux quantization condition

I m = -A±(MO + 27rf) (2.39)

and substituting into the governing equation of the gauge invariant phase, Eq. 2.27,

we can evaluate the discrete expression that describes the array when only self-

inductances are considered

- A±(MTMq + MT(2irf)) = sin X + Q + 3c. (2.40)

The term MT(2irf) is zero everywhere but at the boundaries, so that the contin-

uous equation becomes [21]

AIN2V x V x = sin q + + 3, (2.41)N2

subject to the boundary conditions

V X [bound = 2rf (2.42)
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In this self-inductance limit it is customary to use A2 = A1 . To derive these equations

we have ignored the external current drive. They can be included, as in the discrete

case, by Neumann boundary conditions at the edges.

It is constructive to show that the continuous equation reduces in the one dimen-

sional limit to the Sine-Gordon equation, SGE, that describes the dynamics of a long

one-dimensional Josephson junction. Let

= XY(x) . (2.43)

In a one dimensional limit, the phase will only depend on x and time, and will be

directed in the p-direction.

Therefore, -V x V x q = &0~ and Eq. 2.41 reduces to

A 2 a2 0 = sin 0 + +/IBE (2.44)k..N) a~z~=sin~t~f~ (2.44)

and at the boundary

9 0 = 27rf (2.45)

which with the appropriate time scale is the continuous SGE. In contrast to the well

studied SGE, the two dimensional generalization of the continuous mesh equation,

has not been studied in any detail.

It is also possible to derive the equation for the vector potential in a bulk su-

perconductor and the second London equation. In the continuum limit the phase

invariant phase becomes
1 2r

= -- V - -A(r, t) (2.46)N (Do

and substituting into the continuous governing equation, Eq. 2.41, while linearizing

the sin term and at steady state

AV x V x A(r,t) = 
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271'=-V -V - A(r,t)

V x B = / 0oJ,. (2.47)

J, is the usual supercurrent equation with an appropriately scaled penetration depth.

It follows that 0 is analogous to the current in a bulk material and Im is analogous

to B. Note that the equation is only defined in the x-y plane. This is equivalent to

considering a cylinder of infinite dimension in the 2-direction, confirming that diago-

nalizing the mesh inductance matrix is equivalent to studying self-fields for cylindrical

geometries where magnetic fields extend to infinity in the 2-direction.

Since the second London equation allows singular solutions of circulating currents,

called vortices [22], it is natural to consider if it useful to use the classical vortex

picture when describing the dynamics of the discrete array. Though it should be

possible to study the discrete system directly, the nonlinearity and high degree of

coupling make it difficult. Instead, we find through phenomenological models that in

the superconducting state, and in the flux-flow regime vortices are a convenient way

of describing the dynamics. However, in the row-switched regime the vortex picture

breaks down and the array dynamics can no longer be viewed in terms of vortices and

must instead be viewed as coherent oscillations of junctions.

From the London equations we can derive the mathematical structure of these

vortices. If we restrict the current to flow only in the x-y plane and allow the vector

potential to vary in all of space, then we recover Pearl's thin film result for the

structure of a two dimensional vortex. The solution is fundamentally different from

the three dimensional bulk limit. In both, the current falls off as 1/r up to a distance

A1. Subsequently, the two dimensional vortex has a current drop-off of 1/r2 [24] while

in the bulk material it falls off exponentially [22]. Therefore two-dimensional vortices

are expected to behave differently from their bulk three-dimensional counterparts

[25].

It is also possible to investigate the nature Josephson array vortices directly from

the Josephson arrays equations. For the A1 = oo limit, mathematically it is more

convenient to begin with mesh formalism instead of the nodal equations. If we used
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the nodal equations, we would get terms involving the divergence of sin q, which is

not easily treated analytically. Instead, we can multiply M by the mesh equation,

Eq. 2.27, and recall that Mb is a constant related to the applied flux. From there,

one can easily derive the Poison equation that determines Im. Together with the

governing equation of the gauge invariant phase difference, Eq. 2.27, and the flux

quantization, Eq. 2.26, the system is fully determined.

However, we can still use the continuous nodal formulation to verify the structure

of Josephson array vortex. We will analyze the simplest case of an infinite array at

steady state and f = 0. The equation is

V sin(VO) = 0. (2.48)

This equation describes the current distribution in the array. Because we know the

current will fall to zero far from the vortex core we can linearize the sine term. Hence

V2 = 0. (2.49)

This is Laplace's equation which is easily solved. By symmetry considerations 

depends on the azimuthal angle and is independent of the distance from the origin.

The solution is the so called arctan approximation, 0 = tan-l(y - yo/x - x0). We can

get the approximate current distribution by noting that I/II, VO, and hence the

current has a 1/r dependence. Of course this result is only asymptotically correct at

distances far away from the vortex core.

As expected from the above arguments, the vortex in the array does have a 1/r

current dependence at distances smaller than AI. Similarly from the above analysis,

if we take into account self-inductances we recover the result for a vortex in a three-

dimensional bulk material and in the limit the magnetic field is dependent on (, y, z)

but the current is confined to the (x, y) plane, we recover Pearl's thin film result of

an algebraic current drop-off. Therefore, a Josephson array supports vortex solutions

of the same type as in two-dimensional thin films.

We have shown that governing equations of a square Josephson array can be
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written in a continuous approximation. This formulation allows for singular vortex

solutions. It will be shown in later chapters, that in certain regimes the dynamics of

the discrete arrays can also be described in terms of propagating vortices.

2.4 Details of dynamic simulations

To compare the measurements with the derived governing equation for the Josephson

array, we performed numerical integration of equations of the array in two regimes:

A = oo and A < 5. In the former limit we use the nodal formulation described

by Eq. 2.14 and a Landau gauge to describe the applied magnetic field. Using this

nodal formulation, we can write the set of equations in a standard format that can

be integrated using commercial numerical packages. The system of equation is thus

(AAT-'(Iext- Asin(A T o- 2 ob) - V )

= V. (2.50)

We could have used the mesh formalism of Eq. 2.27 and Eq. 2.28. However, because

they are no longer coupled through the mesh currents it is impossible to write them

as a standard system of first order ODE's. The mesh formalism in the AI = cc case

is more useful for analytical work than for numerical integration.

Numerically speaking, there are two issues when dealing with integrating systems

of equations. One is evaluating the right hand side, RHS, while the other is the

integrating algorithm to use. For the nodal formalism we evaluate the RHS, by

factoring AAT into its LU components and backsolving. This is an O(n2 ), where n is

the number of nodes minus one. Depending on the computer system speed and size

of the array, the cost may be prohibitive. In this case one can take advantage of the

sparsity of AAT. In particular AAT represents a discrete two-dimensional Laplacian

operator and there are many efficient numerical schemes that deal with optimally

solving this problem [4].

For the finite A we can use the mesh formalism described by Eq. 2.27 and Eq. 2.28,
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since we can solve for the mesh currents. A standard system of first order ODE's is

easily constructed

V (MTL - sin- V - I,)

= V (2.51)

LmIm = -A(MO + 2rf)-MLbI, (2.52)

For small arrays the above system of equations can be solved by performing an

LU factorization of L and backsubstituting to solve for Im at each evaluation of

of the RHS. For n total of meshes, this is an O(n2) operation. For an array of

size N, this is equivalent to an O(N 4 ) problem. Hence for larger arrays performing

the backsubstitution is prohibitively expensive. In this case, one can exploit the

inherent symmetry of Lm . By analyzing the structure of the product L m Im , it can be

derived that it represents a two dimensional convolution. It is possible to use an FFT

algorithm to perform this dense product and reduce its cost from O(n 2) to O(n log2 n)

[25]. However, in this thesis all the simulations were performed for arrays less than

N = 15; hence no optimization was necessary.

The second numerical issue is the integration algorithm to use. In general, there

are two types: explicit and implicit methods. Explicit integrators solve for new time

steps in terms of the previous calculated time step. Therefore, the new time step

is explicitly related to previous time steps. In implicit algorithms, the next time

step to be evaluated is expressed in terms the both the previous time steps and the

new step. Hence implicit algorithm require solving a system of equations, whereas

explicit algorithms only require evaluating a RHS. Which method to use depends on

the behavior of the solution and the required step size.

If the solution is well behaved and smooth, then an explicit integrator is most

efficient. However, if the solution has very fast transients an explicit integrator can

be used only if it has a small step size so that it can track the correct solution. In

this case, the system is said to be stiff. If the problem is very stiff, the small time

steps needed might be prohibitively expensive and an implicit scheme must used. In
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general, the implicit schemes have better stability properties and can keep track of

the solution even if the time step is larger than the transients.

From a qualitative view of the system of equations, a large RHS will occur when

3c is small. Therefore, a small Pc is more likely to make the problem stiff. Also,

the RHS has an Lm1 dependence. This can cause problems if the eigenvalues of Lm1

are large. From forming several inductance matrices, we can empirically deduce that

the maximum eigenvalue is proportional to 1/Lo. Therefore, a small self-inductance

produces large eigenvalues and makes the problem stiffer so that we are forced to

use an implicit integrator if we want to take reasonably large step sizes. The self

inductance, 1/Lo, is of the oder of A± and our arrays have a ,c > 5 and AI < 3 so

that stiffness is not an issue. Hence it is advantageous to use an explicit method. In

the simulations a variety of explicit integrators were used, including different orders

of Runge-Kutta and a code that uses a variable order ADAMS formulas. In each case,

the integration error in each step has been kept at less that 10 - 4 in the normalized

units.

With our system of equations we can turn to Matlab [33] or other numerical

packages and perform a simulation. The technical details of calculating the inductance

matrix are described elsewhere [25, 28]. The goal is to reproduce a measured current

voltage characteristic as closely as possible. For the finite A our procedure is as

follows

1. Guess and v.

2. Calculate Im using Eq. 2.52.

3. Integrate Eqs. 2.52 for a predefined time interval.

4. Throw away transient (first a time steps).

5. Average the rest of the solution to get a dc voltage.

6. Increment Iet.

7. Go back to step 2.
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In every cycle we are perturbing the problem slightly by increasing Iext. By

sweeping the current, we are able to calculate the I-V characteristic of the array. The

procedure is similar for the Al = oo set of equations.

The current usually ranges from 0 to 1.2 by increments of 0.01 in units of I,

and the simulation is allowed to integrate for predefined time interval at each It

value. To calculate a dc value, the resulting voltage after discarding the transients

is averaged over a fixed time. To reduce the complexity of the time averaging, the

integration time steps remain constant.

The length of the both the transient and averaging times is difficult to gauge.

We know that pc is the ratio of the characteristic times of the system. Since our

time is already normalized by wj, /p provides a useful time scale. From qualitative

experiments a time of lO10, for the transients and 25 PC for the averaging seems to

provide good results. However, if the array is in the normal state or a row-switched

state, then the solution is periodic with a period that is inversely proportional to the

applied current. Hence, in theory, the averaging time should decrease the higher one

is in the I-V, but in practice it is difficult to determine when the array is in a periodic

solution.

In this thesis we will compare measurements of fabricated Nb arrays with the

simulations. The simulations will allow us to more fully characterize the dynamics

of these devices. Also, since we use a full mutual inductance matrix it allows us to

quantify the effects of induced fields on the dc properties of the arrays.
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Chapter 3

The Superconducting State

In this chapter we study how self-induced fields affect the superconducting state of

a Josephson arrays. We will study the pinning of vortices and the formation of

commensurate states as a function of A using both experiments and simulations.

3.1 Experimental Landscape

A total of five different arrays were fabricated using a Nb-Al2Ox-Nb trilayer process

with varying critical current densities, J. Fig. 3-1 shows the physical layout of the

arrays. The bottom electrode is represented by the hatched islands, the black squares

represent both the vias and the etched counterelectrode of the trilayer that form the

Josephson junction. These are connected by a metallic layer shown by the unhatched

islands. We only consider square arrays where every inner island is connected to four

neighbors. All the arrays have junctions arranged in a N, x Ny square matrix, where

N, is the number of cells in the perpendicular direction of the injected current and

Ny is the number of cells in the same direction as the injected current. In this chapter

arrays with N, = Ny = N = 15 with a cell spacing of p were studied. Array 1 was

fabricated at Hypres [16] with J, = 1000 A/cm 2. Arrays 2-5 were fabricated at MIT

Lincoln Laboratory using a DSNAP process [3]. In this paper we report detailed

measurements of array 1.

Array 1 consists of 3x3 /um2 junctions with p = 16.5 gm. By injecting the current
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Figure 3-1: Geometry of two-dimensional Josephson-junction array.

through resistors of 0.5 Q connected on each island of the top and bottom of the

array, uniformity in bias current was achieved. The voltage was measured between

the rightmost islands of the top and bottom row.

The junction normal state resistance, R, is determined from the measured array

resistance, R,array, at T~8 K by the relation Rs = R,array(Nx + 1)/Ny. At T = 0 K

the IcR, is equal to 1.9 mV, so that the junction critical current, I, can be estimated.

For array 1, the junction capacitance, C, is 300 fF and R,aray = 19.3 Q so that Rn

is calculated to be 20.6 Q. From the above values we can estimate t3c = 27rR2CI/( o

and the dimensionless penetration depth A1 = %o/27irpopI. Furthermore, by varying

the temperature of the sample we can vary a junction's i and hence change its /3 and

A1 by up to a factor 5 in a controlled way. For array 1, 6 < , < 30 and 0.2 < AI < 1.

We define Idep as the current where there first occurs a nonzero voltage across the
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Figure 3-2: Typical I-V showing how the depinning current is defined.

array as shown in Fig. 3-2.

3.2 Depinning current vs. A1

In this section we present a study of the dependence of the depinning current, Idep,

with Al. An externally applied magnetic field, Ho0, was used to inject vortices in the

array. This field is characterized by the frustration f = oHp2/'(1o which measures

the fraction of flux quanta, o40, in a cell. Fig. 3-3 shows Idep for f = 0.2 for the various

samples of 15 x 15 cells at various temperatures. We see that the depinning current

increases strongly as Al becomes less than 1.

To calculate a depinning current the motion of single vortex is modeled as a

damped massive particle moving through a sinusoidal potential of amplitude AE/2,

with AE representing the intrinsic cell-to-cell energy barrier of the array. This equa-

tion of motion maps onto the same form as the RCSJ model of a single junction

[30, 37] with a critical depinning current Idep = (E/2Ej)Ie, where EJ = (4oI/27r is
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Figure 3-3: Depinning current as a function )A.

the Josephson energy.

From the Josephson relations one can derive the potential energy of a junction

EJ cos(1 - 4). This is the free energy of the insulating barrier and it is analogous to

the potential energy of a pendulum.

In the limit where Al is larger than the array size, this barrier to vortex motion

was first calculated by Lobb, Abraham, and Tinkham, (LAT) [20]. They considered

the total static Josephson energy,

EIE = ~(1 - cos 0), (3.1)

of the array when a single vortex is in the middle of a cell and when the vortex is

on top of a junction. Since these represent respectively the minimum and maximum

energy configurations, their difference is a barrier, AE, to vortex motion. The LAT

result of AE = 0.2E yields an expected Idep = 0.lI, which has been measured by

various groups [30, 37] and our data does indeed approach Idep = O.lI as A± > 1.

There is also a magnetic energy associated with the self-field effects generated by
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Figure 3-4: AE as a function A1 for a 15 x 15 array. Circles depict the total energy
barrier, squares show the magnetic contribution to the barrier, while the triangles
represent the Josephson contribution.

the circulating currents of a vortex. Phillips et al. have shown that as Al decreases

this stored magnetic energy,

1 MTEm/Ej = I L mIm, (3.2)
2AI

must be included. Fig. 3-4 shows the energy barrier as a function of A1 with the

different contributions from the magnetic fields and the Josephson energy explicitly

shown.

In contrast to the Josephson energy, a vortex has a smaller magnetic field energy

when it is on top of a junction than when it is in the middle of a cell. This is a direct

consequence of the current distributions in a discrete array. When a vortex is in the

middle of the cell, there are four junctions that carry the same current. When it is on

top of the a junction, that junction carries no current and the four nearest junctions

are farther away, hence they carry less current and the overall magnetic field energy
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is lower. Also, it can be qualitatively inferred from the graph that the magnetic field

energy can be neglected when A1 is of the order of the array size.

The value of E/E = 2 as A1 approaches to zero is easily understood in terms

of the localization of the vortex. As the vortex decreases in size, the total energy of

the array when the vortex is in the middle of the cell is zero. In essence, the vortex

disappears. On the other hand, when the vortex is on top of a junction the phase

difference of the junction is always r. Even though there are no currents in the array

in the Al = 0 limit, the junctions will maintain the phase difference and the energy

of the array will not be zero. In this respect, it is the localization of the vortex in

the discrete array that plays a major role in the determination of the energy barrier.

The inclusion of the magnetic energy provides an important correction.

The important conclusion from analyzing Fig. 3-4 is that a smaller AI, strong

self-fields, produces an increase in AE [25] and hence Idep also increases.

The dashed line of Fig. 3-3 represents the depinning current associated with AE

calculated for a single vortex in a 127x 127 array taking into account both the Joseph-

son and magnetic field energy. This static calculation asymptotically approaches the

LAT value of O.1Ic.

Although the static calculation appears to fit to our measurements, it assumes

that there is only one vortex in the system. Therefore, to more closely approach our

physical situation, we performed dynamical simulations that included all the mutual

inductances [26] with f = 0.2 on an array of 15 x 15 and calculated I-V curves.

(The mutual inductance matrix is calculated numerically from the actual sample lay-

out.) With such a high applied field many vortices are present so that both vortex

interactions and edge effects are included in our dynamic simulations. We extracted

the depinning current using the same experimental criteria outlined in Section II. The

result is shown in the solid line of Fig. 3-3 that lies above the dashed line. LAT showed

that AE is inversely dependent on N. Since the dynamic simulation was made for a

smaller array than the static calculation, one would expect the solid line of Fig. 3-3

to be lower than the dashed line. However, if the size of the array is small enough,

depinning from the edge can affect the overall depinning current. This may account
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for the fact that Idep is a third larger than the static calculation even at A1 = 5. To

verify if the edge effects could cause an increase in Idep, a dynamic simulation was

performed for Al = 5 for a 15 x 15 array and a 31 x 31 array. As seen in Fig. 3-3, for

the smaller array Idep/Ic equals 0.17. For the larger array Idep/Ic equals 0.13, so that

edge effects account for most of the increase in Idep and are thus more pronounced

than vortex interactions for arrays 15 x 15 or smaller at f = 0.2. This is in direct

contrast to the static calculations. When Al > 1, the energy barrier is smaller as the

array decreases in size.

The measured data follows the same trend as the dynamic simulation except the

values tend to be lower. This may be due to thermal noise introduced by the finite

temperature. The simulations do not take thermal noise into account. Since these

arrays have such large 3c's, thermal noise may easily cause vortices to depin at lower

currents.

3.3 Depinning current vs. frustration

In Fig. 3-5 we show measurements of the depinning current versus frustration for

array 1 with various values of A1. The data was taken at temperatures of 4.2 K, 7.9 K

and 8.6 K. By increasing the temperature the individual junction's critical current

decreases and hence change A from 0.2, 0.5 to 1 respectively. We verified that the

depinning current is symmetric about f = 1/2 and periodic with f = 1 as expected.

The measured data has a large peak at f = 0 followed by a rapid decay to a saturation

level. This saturation level contains a substructure when A > 0.2 with clear peaks

at f = 1/2, as well as some smaller peaks at f = 1/4 and f = 1/3. This substructure

tends to be washed out as Al decreases and disappears when A = 0.2. Note also

that the saturation level increases as A decreases.

For comparison a simulation taking into account all the mutual inductance inter-

actions was performed for the same parameters of array 1. The trends are strikingly

similar. The same substructure is seen and the saturation level increases as A be-

comes smaller, although the levels are lower in the measured data. Similar trends are
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reported in recent numerical simulations in which the inductance matrix is calculated

analytically [28].

We first focus on the f = 0 region of Fig. 3-5. For large Al we expect the array to

behave coherently as a single junction with a critical current scaled by (N + 1) and an

RP which is N times smaller. In this state every junction in the array is oscillating with

the same frequency. So as expected, the superconducting region in the simulations

extends to Idep = (N + 1)I. It has been shown that the in-phase solution of the

junctions is neutrally stable so that the junctions may not necessarily be in-phase

[40]. However, experimental measurements of the power emitted by junction arrays

always indicate some degree of phase-locking. It is probable that an applied magnetic

field, or the effects of A1 < N may provide a mechanism for weak phase locking in

the array.

As A1 decreases more current begins to flow around the edges inducing a locally

larger magnetic field. Since f = 0, only pairs of opposite-signed vortices may be

induced by the current. These pinned vortices can lower the depinning current from

the A1 = oo case. Though vortex-antivortex creation is possible, it is more likely

that the reduction of the depinning current is due to the nonuniformity of the current

distribution in the array. It is known that inclusion of all the mutual interactions

reduces this screening effect, however the junctions on the edges of the array would

still have twice the current as the junctions in the middle, even for small values of A1.

These outer junctions will switch to a voltage state at a lower value of the driving

current than when the current is uniformly distributed for A1 = c.

In both the simulations and the measurements we see the trend that the f = 0

peak decreases with decreasing A1 . However, the measured levels are lower. This

may be explained by two reasons. First, a truly zero applied field state is very

difficult to obtain experimentally and secondly, thermal noise might depin the vortices

prematurely.

The substructure is a result of a vortex superlattice forming a commensurate state

with the underlying geometry of the array. These occur at values of f = p/q, where p

and q are small prime integers. For instance, at f = 1/2 it is known that the ground
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Figure 3-5: Top: Measured depinning current as a function applied field. Bottom:
Simulated depinning current as a function applied field.
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Figure 3-6: Dynamic formation of a vortex lattice for A = 0.3 on the right and
A1 = 5 on the left with f = 0.25. This vortex distribution snapshot was taking just
before the depinning current.

state for A = oo is a checkered board pattern and that Idep = 0.41IC [30]. The large

Idep is a result of the depinning of the larger vortex ground state which requires more

energy than the depinning of a single vortex. The peaks at those special values of f

represent the formation of commensurate ground states which require higher energy

to depin.

Fig. 3-6 shows the vortex configuration that is formed in dynamic simulations just

before depinning for two different values of A1 at f = 0.25. The vortex location is

defined in terms of the loop sum of the gauge invariant phases as in [27, 35]. The

graph on the right shows a commensurate state at f = 0.25 for A = 5. This is

not the ground state for this magnetic field value, but a meta-stable state with a

higher energy. In the dynamics simulations, it is difficult to form the ground state

at small values of f since there are many other neighboring states that the array

can converge to. Nonetheless, the graphs show that for larger A1 the vortices are

uniformly distributed in the array and form a superlattice, while for smaller values

of Ai the vortex lattice is no longer commensurate. As A1 decreases vortices become

more screened and hence their interaction is diminished. It is likely that these ground

state superlattices can no longer form and hence the substructures disappears.
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3.4 Conclusions

A study of the effect of self-induced fields on the depinning current of a square Joseph-

son array was presented. First, it was found in experimental measurements and

dynamic simulation that as A1 becomes smaller than one, the depinning current is

increased. In static simulation of a single vortex, the cell-to-cell energy barrier in-

creased as A1 < 1. Since the depinning current is proportional to the energy barrier,

the effect of self-induced fields on the depinning current can be explained in terms of

the energy of the array. In essence, the increase in the energy barrier is caused by the

localization of the vortex. As the vortex becomes smaller the energy required to stay

in the middle of a cell approaches zero, but the energy required for a vortex to be on

top of a junction does not and hence the barrier increases as A1 decreases. Secondly,

strong self-fields disturb the formation of commensurate vortex lattices on the array.

It appears that the screening due to a small A1 prevents the vortices from forming

these superlattices. As A1 decreases, the depinning current becomes independent of

the frustration. Thirdly, for smaller arrays, edge-effects are important in describing

the dynamics of the array depinning current, even for A1 that is of several lattice

spacings. The exact mechanisms have not yet been determined.
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Chapter 4

The Flux-Flow State

The understanding of vortex motion and pinning in bulk Type II materials is an

important area of applied superconducting research. Phenomenological models have

been successful in describing the vortex flow, but controlled experiments are difficult

to undertake. Furthermore, high-T, materials have been shown to act as stacked

two-dimensional sheets of weakly coupled superconductors. However, it is difficult

to fabricate homogeneous films and very difficult to vary the film parameters in a

controlled fashion.

Two-dimensional arrays of Josephson junctions provide an ideal controlled envi-

ronment for the study of vortex transport in superconductors. Vortices in the flux-flow

region tend to flow in an incoherent way across the array and are most similar to the

motion of vortices in thin films. For values of f that do not produce a commensurate

state with the lattice, the flux-flow region is linear and it is possible to calculate a

flux-flow resistance, Rff. In this chapter will study the effects of temperature, induced

fields and applied magnetic fields to Rff.

4.1 The Experimental Landscape

Several different samples were fabricated and measured in order to investigate the

flux-flow resistance in a large parameter range of Pc and Al. All of the samples were

fabricated using Nb-Al2Ox-Nb trilayer process with varying critical current densities.
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Table 4.1: The measured samples. RJ is the normal state resistance of the Josephson
junction, AJ is the area of the junction and Cj the capacitance. L is the self-
inductance of the loop and p is the lattice spacing of the array.

All had uniform current injection and none of the junctions was shunted. The relevant

parameters are shown in Table 4.1.

Samples in group H were fabricated at Hypres [16]. Most of the results presented

are measurements from this group. Arrays H1 and H2 were designed with a size of

15 x 15 in order to make the comparison to simulations easier. For larger arrays

the simulation runs take a prohibitively long time. Sample P was fabricated at IBM

with its planarized all-refractory technology (PARTS) [18]. This array has a small /,

range, so the effects of Al can be studied more accurately.

The measurements were performed in a He4 probe. Inside the vacuum can there

is a u-metal shield surrounding the sample as well as a small magnet that is used

to apply a perpendicular magnetic field of 0 to 300 mG. To reduce high-frequency

noise, the leads from the sample pass through 7r filters before measurements are taken.

Data was recorded on a computer via the use of digital voltmeters and digital lock-in

amplifiers with the use of standard four probe measurement techniques.

The junction normal state resistance, R, is determined from the measured array

resistance, R,array by the relation R, = Rn,array(Nx + 1)/Ny, and is independent

of temperature. Ny is the number of array cells in the direction of current flow,

while Nx is the number of cells perpendicular to the injected current. The junction
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parameter H1 H2 H3 P
RJ (Q) 260 19 37.7 29.6
AJ (/Lm 2 ) 9 9 9 1

CJ (fF) 300 300 300 67

pc(0) 450 33.3 64.3 10.2

A±(0) 2.17 0.17 0.31 0.45
I(O) (A) 7.3 91.3 50.9 64.4
J, (A/cm 2 ) 80 1100 570 7000
p (m) 16.5 16.5 16.5 9
Ls (pH) 25.1 32.8 25.0 13.6
size (cells) 15x15 15x15 7x7 47x47
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Figure 4-1: Typical set of I-V 's taken by varying the magnetic field from f = 0.1 to
0.3 at 8.6 K with Al = 1.04 and /c = 5.1. The numbers indicate the resistance of the
flux-flow.

critical current is assumed to follow the Ambegaokar-Baratoff [1] dependence I, =

0.86(irA/2e&) tanh(A/2kBT), where A is the temperature dependent quasiparticle

excitation gap. The IR product of a junction is constant and equal to 1.9 mV.

By measuring the normal state resistances of various samples on a single trilayer the

critical current uniformity can be estimated to be 10%. The junction capacitance is

calculated by measuring the Fiske steps of a one-dimensional array [39].

Typical current-voltage, I-V, characteristics vs. applied magnetic field are shown

in Fig. 4-1. The depinning current, Idep, indicates the onset of the flux-flow region

which extends until the voltage switches. There is a transition part of the I-V curve

from the depinning current to a linear region. The flux-flow resistance, Rff, is defined

as the slope of this linear region. The graph shows the assigned resistance values

versus different applied magnetic fields.

Fig. 4-2 shows the temperature dependence of the flux-flow region. Since the

depinning current varies with temperature, both the measured current and voltage
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Figure 4-2: Typical set of I-V's taken by varying the temperature at f = 0.2. In
this sample ,c < 6 so that only the parameter A1 affects the slope.

have been normalized by (N, + 1)IC and IR, respectively. This allows for a better

comparison of the flux-flow slope. Even when the applied current is normalized, the

depinning currents will not be equal since they depend on the value of A1 as well as

temperature. In this particular measurement the resistance decreases with increasing

temperature. For other arrays or even temperature ranges the flux-flow slope might

have an opposite behavior. In general, it is not possible to describe how the flux-flow

slope will change solely with respect to temperature.

However, by changing the temperature of the sample we can vary a junction's

I, and change its ,c and A1 by up to a factor 5 in a controlled way. It is therefore

possible to map out the Rff dependence on both /P and A1. Recall that A1 is inversely

proportional to I while , is proportional to Ic, therefore in the experiments A1 and &,

cannot be varied independently and, as will be shown below, affect the flux-flow slope

in an opposite way and thereby make the interpretation of the measurements difficult.

Instead of interpreting this temperature dependence directly, a phenomenological

model will be presented that explains the slope of the flux-flow region in terms of the
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junction parameters A1 and p,.

It is also possible to measure the dynamic resistance, Rd, directly by the use of a

lock-in technique. A small ac excitation current is mixed in with the dc bias current

and the resulting voltage is measured with a lock-in amplifier. The ratio of the output

voltage and input excitation current gives Rd. Care was taken to use a frequency high

enough to avoid the 1/f noise of the amplifier while low enough to avoid cross-talk in

the lead wires. A frequency of 237 Hz was used for most of the lock-in measurements.

A small excitation amplitude was also used in order to avoid sample heating.

The top graph of Fig. 4-3 depicts a typical measurement of the Rd vs. dc bias

current at different values of applied field. The peak at f = 0.5 is a consequence of

the rising depinning current at the commensurate field. The taller peaks at the high

bias current indicate switching of the I-Vfrom the flux-flow state to row-switched

state. To get a better perspective for this flux-flow 'surface' the Rd is re-plotted in

the bottom graph of Fig. 4-3.

There are regions of constant resistance in Fig. 4-3 that are associated with flux-

flow. This resistance is better defined for frustrations that are less than 0.3. For

higher values of f the slope ceases to be linear and it is difficult to assign an Rff.

As will be shown in later sections, the applied current needs to be strong enough

so that vortices do not feel the intrinsic pinning force of the array lattice before the

I-V begins its linear region. For this reason Rff is only well defined for a region well

above Idep. Hence, the measured Rff values are collected by performing a least square

fit on the most linear part of the flux-flow region.

4.2 Phenomenological theory

In this section, a phenomenological theory for the flux-flow resistance that will explain

the experimental dependence of the flux-flow resistance on the applied magnetic field

and temperature will be developed. The effects of self-induced fields will also be

analyzed.
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Figure 4-3: Top: typical set of Rd vs. bias current measurements taken by varying
the magnetic field at T = 7.8 K. Bottom: same set of Rd measurements plotted to
depict the flux-flow landscape.
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4.2.1 Equation of motion

The essence of the phenomenological model is that a vortex can be treated as a

massive independent particles. The justification for the model will rest on how well it

can explain the experimental facts of flux flow. The basic assumptions are as follows:

* vortices are particles with mass M(P,, A±)

* vortices do not interact

* vortices experience linear damping

* arrays are of infinite length

With these assertions a Bardeen-Stephen like model for flux-flow can be developed.

If the arrays are current biased in the -direction the vortices will experience a

Lorentz force in the -direction. Let a vortex travel across an array with velocity

u(x), the equation of motion of the vortex becomes

M(#, A l)i + n7 = dU(x) (4.1)dz

where U(x) includes the force of the driving current, oIet/p, and the cell-to-cell

potential barrier to discussed in the previous chapter. The spatial properties of the

barrier have been analyzed and for the A = oo limit the potential due to the barrier

can be schematically viewed as an egg carton. This is the two-dimensional version

of the famous washboard potential of a Josephson junction. Since the vortices only

travel in the -direction, the resulting slice of the "egg carton" potential is a cosine.

The equivalent potential energy that describes the array is thus

U(x) = -(AE)Ejcos (2p)7 - (4.2)

where AE is the value of the energy barrier.
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4.2.2 Calculating the mass

In underdamped arrays, one cannot neglect the shunt capacitance of the RCSJ model.

This capacitance creates an electrical energy that needs to be taken into account. This

energy

CC-v2 (4.3)

can be calculated using a quasi-static approximation. In reality there is capacitive

coupling between every superconducting island and to ground that need to be included

to the electrical energy. However, this effect is much smaller than the inductance

effects caused by the array loops. Hence, only nearest neighbor capacitances, the

RCSJ shunt capacitance, have been used in the calculations.

In this calculation the voltage is approximated from the static current distribution

of a vortex. As shown below, this energy is proportional to the square of the velocity

of the vortex and can be viewed as kinetic energy. The coefficient of the squared

velocity can in turn be interpreted as the vortex mass.

As a first approximate step, we assume that far from the vortex core we can

linearize the basic Josephson current relation

J J (4.4)

If we let u be the vortex velocity, d/dx, then for the -direction

do d J u (
dt dt J J, -

and similarly for the 9-direction. It is now possible to estimate the magnitude of q,

1do~ - u (J \ 2 aj \2]2
Ido uii 8j i)2 ± (\x 2+ (4.6)

and the resulting magnitude of the voltage by using the Josephson voltage relation

= (o db
2ir dt
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O 2 aJc) il) + aJ (4 7)

From Eq. 4.7, the square of the voltage is proportional to the square of the vortex

velocity. Hence, the electrical energy of the array can be equated to the kinetic energy

of the vortex

2 2

where the sum is over all junctions in the array. In the continuum limit

EV2 f OJV2 dd (4.9)

and the resulting double integral after substituting Eq. 4.7 is

r (to1) I (=IJ I dxdy (4.10)2ir Jcp 1kJ [k x Ax

where c represents the cutoff at the vortex core.

By linearizing the Josephson relation and applying the chain rule to convert time

derivatives into spatial ones, the voltage of a junction has been re-expressed from its

phase difference to the local spatial current distribution. To calculate F all that needs

to be determined is the current distribution of a vortex. Since the equations have

been linearized, it seems appropriate to use the thin film results to derive J.

When the magnetic penetration depth is larger than the array size there are no

induced fields and the vortex size is independent of the penetration depth. In this

regime the arctan approximation can be used. For the linearized Josephson relations

at f = 0 the surface current is K = IVO, where 0 represents the phase distribution

in a thin film and K is the superconducting surface current. Let the superconducting

thin film have a thickness of d. If the film is thin enough such that the current

is uniformly distributed across its cross-section, then K = dJ and for the arctan

approximation
d 1 1

J - = (-sin 0: + cos 0/). (4.11)
Ic r r
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Substituting J, and Jy into the above double integral, Eq. 4.10, and converting into

cylindrical coordinates, we find

-= (2 p) (-c) 2 32dr. (4.12)

The critical current can be rewritten in terms of a current density, I = AJJ,, and by

letting the area of the Josephson junction, AJ, equal to dp, we get

EV2 r = ( u) 2 X (4.13)

The coupling of the length scales of the thin film current distribution and lattice

spacing of the arrays occurs through the area of the junction. In a sense the junction

becomes a phenomenological window that allows this coupling since the equations

have been linearized and no proper Josephson junction can exist.

It has been shown that the vortex core cut-off value is equal to 6 = p/xv/ [10].

Using this value, the expected form of vortex mass is derived,

M= p 2 (4.14)
2 p2'

This value of the mass was derived in the Al = oo limit using the arctan approxima-

tion. As will be shown below, mutual inductances, or equivalently a small Al, have

a considerable effect on the vortex mass.

4.2.3 The effective damping

With a Bardeen-Stephen-like model for flux-flow, we can equate the viscous energy

dissipated by a vortex moving between adjacent cells to the power dissipated in each

junction [37]. Even though our array is current biased, when a vortex crosses a

junction, the junction behaves as if it were voltaged biased. Specifically in the quasi-

static approximation the moving vortex imparts a voltage of (o/2r)Aq/At, where

AO$ = r and At = p/u. During this brief time the junction will behave as if it

was voltaged biased. If the vortex is moving at a constant velocity then the power
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dissipated by the viscous medium is equal to the power dissipated in all the junctions:

7bsU2 = E V 2 /Re. (4.15)

Re represents the effective voltage bias resistance of the junction which depends on

temperature and voltage, and the sum is over all the junctions in the array. For most

of the measurements, the temperature is near to T, and Re Rn.

Using the same approximations as when calculating the mass, it possible to esti-

mate the sum of the squared voltages and calculate the damping coefficient,

7rbs = 2p 2 R, (4.16)

As expected from the voltage biased condition, the larger the resistance, the lower

the dissipated power. This result is calculated for a steady-state motion of a vortex

so that it is independent of f/ and does not include the effect of mutual inductances.

4.2.4 Dependence on f

When a vortex is driving at high currents and is at steady state we can simplify

the equation of motion by neglecting the cell-to-cell energy barrier. In this limit the

Lorentz driving force is much larger than the pinning force and the effect of the barrier

can be ignored. For the vortex to be at steady state, the viscous drag force, r/u, must

be balanced by the driving current. Hence at constant bias the vortices are traveling

at a constant velocity u = DoIezt/ip.

Let the system have nf independent vortices at this constant velocity. The fre-

quency at which they pass along the array is u/Np. Hence the voltage is

V= 20 .= 20
27r 27r

- 2lru/(Nzp41f

-QI)onf/Np. (4.17)
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When Al > 1 the free vortex density can be estimated by nf = fNNy. Substituting

the corresponding f and the steady state value of the array driving current, (Nx +

1)Iext

Rff = 2fN i +1 Rn. (4.18)

A linear resistance is expected at fixed values of f.

4.2.5 Dependence on /c

It has been shown in simulations [35] and experiments [37] that underdamped arrays

have an enhanced viscosity. This is due to spin-wave excitation created by mov-

ing vortices. These spin-waves are caused by the LC oscillations of the Josephson

equivalent inductor, LJ, and the junction capacitance that resonate at a frequency of

Wp = 1/ L-C

Recall that a moving vortex imparts a voltage Vma, = (o/27r)A5/At = (Po/27r)7ru/p

when it crosses a junction. Therefore, when the vortex moves to the next cell, the

junction in its wake will oscillate with a voltage of

V = Vma cos(wpt) (4.19)

Using the Josephson voltage relation, it is possible to calculate the corresponding

maximum amplitude of qb, Dma. In the quasi-static limit Dm,, = (2r/o)Vmax/wp

and the energy per unit time becomes DmaEj/At. Equating this energy to the

dissipated power ,,su 2 yields

1 2 1
77sw 021 2 p2 / (4.20)

Spin wave dissipation is independent of R,. Though it might at first be counter-

intuitive, it easily explained. When a passing vortex deposits some of it's energy in a

junction, this energy will probably be dissipated in an RC time-scale. However, the

equivalent array viscosity does not try to explain how long it takes for power to leave

the array, but how much power a vortex losses to the array. In this regard, the power

62



lost by the vortex is only dependent on the amplitude that it can impart on the LC

oscillations and that is mostly dependent on the value of C.

We can also rewrite the spin-wave damping in terms on the Bardeen-Stephen like

damping,

=7sw1-U 2-r V 7bs (4.21)

The more underdamped the array, the larger the dissipation due to spin-waves.

4.2.6 Dependence on AI

When calculating the mass and viscosity of the array, it was assumed that the Al was

larger than the array so that the effects of the mutual inductances could be neglected.

If the penetration depth is smaller than the sample size, then the induced fields are

important and the current distribution of a vortex is no longer described by the arctan

expression. However, it can be approximated well by the equation due to Pearl [24]

K o 1 1

2K O7rAl r 1 + r/2AL

1 1 . (4.22)r 1 + r/2A± 

Here, K is the surface current of a infinite thin film with one vortex. In the limit

where A = oo, the arctan result is recovered. Also, A is the physical penetration

depth and is not normalized to p.

Using the procedure outlined in Sec. 4.2.2 to estimate Ir m E V2 and using the

same vortex core cutoff of p//2-, we find

r = 2 2° )G(A±) (4.23)

where

p1 2 1 2 naV2/p 1 p2 1 2 1 p 2AG(A/p) =1- P +- -P + _ - (4.24)
2A1 iXr 8 A2r 4 7rA 1 4 ra 2 3 ra3
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and

= p- + 2I (4.25)2 7±A±

This equation describes the effect on the sum of the junction voltages when the

vortex size is decreased from the Al = oo case. Though it seems to depend on Al

and p separately, it actually only depends on the ratio of A±/p, which is the usual

normalized definition of Al. This can be shown more clearly with the following

equation that approximates Eq. 4.24 accurately

GA2 ir 1 +48Ir (4.26)

here A is the usual normalized penetration depth.

Therefore, the mass equals

M = C)2 G(A±) (4.27)
2 p 2

and 71 becomes

r= 22 RG( (4.28)

To get an idea of this dependence on the mass and similarly on the viscosity, G(A±)

is plotted in Fig. 4-4. The solid circles represent a quasi-static calculation where the

sum of the junction voltages was calculated numerically taking into account all of the

mutual inductances in the array. Mo is the expected mass for A1 = oo. Though not

shown in the figure, the quasi-static calculation was performed for arrays as small as

7 x 7 and as large as 31 x 31 and the results were almost identical as for the 15 x 15

array. This is not surprising since in the mass is calculated by moving one vortex from

one cell to the next and calculating the resulting voltage changes. Even if the size

of the vortex, A, is large the voltage differences are mostly localized to the nearest

cells. The fit of G(Ai) to the quasi-static calculation is surprisingly good.

The reduction of both the vortex mass and array viscosity can be explained easily.
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As A1 approaches zero, the mass decreases and the viscosity will also decrease. For

strong mutual inductances, A1 < 1, the extent of the vortex can still be modeled by

a radius of A1 . As A becomes smaller the vortex becomes physically smaller and as

it moves across the array it crosses less junctions and it dissipates less energy. This

is equivalent to reducing the viscosity of the array.

4.2.7 Flux-flow model with A1 and 3 dependence

To combine all of the above concepts into a comprehensive phenomenological picture

of flux-flow in a square array, we need to make one last assumption. We will postulate

that the damping is separable into the Bardeen-Stephen component and the spin-wave

damping,

? = lswlbs- (4.29)

Using the calculated values of the appropriate damping, Eq. 4.21 and 4.28, it is

possible to formulate the viscosity in terms of the array parameters

71 = 2p° R1 (A (4.30)

Again, since the junctions are voltaged biased the viscosity is inversely proportional

to the flux-flow resistance and

Rff = 2f 2r 1) (4.31)
N, + 1 / G(X)

as 3c > 1. With this result it is possible to interpret the experimental data.

4.3 Comparison with experiments and simulations

To verify the validity of the phenomenological model, a series of simulations and

measurements was performed. Fig. 4-5 shows typical simulated I-V. Since we are

trying to characterize inductance effects, our simulations use the consistent set of

Maxwell's equations and take into account the inductive interaction between all the
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Figure 4-5: Simulated I-V's for a 15 x 15 array with Al = 0.5.

cells of the array. Further details of the simulations are described in Chapter 2.

The flux-flow region of both the experimentally measured I-V 's, Fig. 4-1, and

the simulated I-V's are examined in the same manner. Flux-flow is defined from the

moment of depinning until the voltage jumps to a row-switched state. In this state

the array dynamics can be described in terms of localized vortices. In simulations

this region is linear when the applied magnetic field is not commensurate with the

array lattice. At field values of 0.5 or 0.25, the depinning current raises slightly and

the flux-flow region becomes linear only at the top part of the flux-flow step. For this

reason, we always extract the flux-flow resistance using a least-square fit on the top

part of the flux-flow region. A similar situation occurs in the measurements. Most of

the measurements are taken at temperature that are close to T. This is because in

this temperature range the critical current, and hence A , has the largest variations.

At higher temperatures there are smooth transitions from the superconducting state

to a linear region. In this case we define our flux-flow resistance as the part of the
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Figure 4-6: Comparison between measured Rff vs. f for sample H2 and simulations.

I-V which is most linear shown in Fig. 4-1 and we extract the resistance using a

least-square fit.

A direct comparison was performed between the measured data and the simula-

tions. The crosses of Fig. 4-6 represent the measured data, while the open squares

are simulations with the same parameters. The correspondence between simulation

and experiment is very good for small values of f and deviates only slightly for larger

values. Also for small values of f the data has a slope only slightly lower than the

predicted 2f.

First we will investigate the /, dependence of the flux-flow resistance. Fig. 4-7

shows both measurements and simulations and the expected dependence of 1/A/.

The simulations were performed in the limit of A = oo and the aluminum mea-

surements are for A1 > 1. In this regime, where the self-induced fields can be

neglected, the flux-flow resistance can be characterized in terms of spin-wave damp-

ing. At higher values of 3c there appear to be a reduction of the spin-wave damping

in the simulations. It is likely this is due to the small size of the simulated array.
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Figure 4-7: Measured Rff vs. Pc for samples HI and a large aluminum array. Filled-in
circles are simulations with Al = oo for a 15 x 15 array with f = 0.2. Dashed line is
spin-wave dependence.

Fig. 4-8 shows the compilation of the raw flux-flow resistance data for the sam-

ples and various values of the applied field. The filled-in circles represent data from

dynamic simulation of a 15 x 15 array.

The simulations were performed with a c of 5 in order to reduce the effects of

spin wave damping. The dashed line is the phenomenological dependence for a single

vortex, Eq. 4.24. The measurements were taken for samples HI, H2 and P. Sample P

has a ,3 of less than 5. This data has very similar trend to the expected theoretical

calculation because spin-wave damping is negligible. Sample HI has IP of the order

of 300. Its flux-flow resistance is reduced significantly because of spin wave damping.

Sample H2 has a moderate /c value, - 30, and this may account for the deviation

from the theoretical prediction. The simulations also lie slightly below the theoretical

curve.

Since the data is normalized to f, one would expect all the curves for the respec-

tive sample to stack on top of each other. This is not the case and may just be a
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Figure 4-8: Measured Rff vs. A1 for samples Hi, H2 and P. Dashed line is single vor-
tex approximation while the fill-in circles are points taken from dynamic simulations
of 15 x 15 array with P,c = 5 and f = 0.2.
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Figure 4-9: Normalized Rff vs. A for samples H, H2 and P.

limitation of the phenomenological model. The basic assumption that vortices do not

interact probably breaks down as f becomes larger than 0.1 and may account for the

displacements of the curves.

By assuming the damping is separable, the Rff values can be renormalized using

Fig. 4-7 and therefore made to show only the A l dependence. The reduction of Rff

due to spin-wave damping can be estimated and the measured Rff value adjusted

accordingly. Fig. 4-9 shows the result. The dashed line represents the theoretical

single vortex calculation, while the filled-in circles are the dynamic simulations. The

group of data for H2 has an improved fit to the theoretical prediction and the mea-

sured data for the HI follow the simulations closely. In general, the trend of an

increased flux-flow slope as A1 decreases is apparent in both the measurements and

the simulations.

Though the phenomenological theory does not explain all the aspects of the data,

it does give a valid description of the A1 dependence on the perceived viscosity of a

vortex. The result is that strong self-induced fields reduce the viscosity of the array.
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Figure 4-10: Measured I-V for every row of sample H3 at T = 8.1 K and f = 0.2.

4.4 Deviation from phenomenological theory

Besides the differences between measurements and phenomenological theory pointed

in the previous section, there are others that are worth noting.

Though the phenomenological model does not try to include edge effects that does

not imply that they can usually be neglected. Sample H3 has voltage pads on every

row and it was possible to measure edge effects in the flux-flow region. Fig. 4-10 shows

the measured I-V for every row at f = 0.2. The first and last rows, the edge rows,

have very little flux-flow. Most of the flow is through the center five rows. This was

also observed in the simulations. Essentially, different rows have different flux-flow

resistances. This spatial dependence may be caused by the edges or nonhomogeneity

of the junction critical currents. In general for small array, less than 15 x 15, there

is some row activation in the flux-flow region where some rows are mostly quiet and

others have vortices flowing through them. This is visible in the I-V as substructure

in the flux-flow region.
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Figure 4-11: Measured Rff for f = 0, 0.1, 0.2, 0.3, 0.4 and 0.5 for sample H2 at T= 8.5
K.

In order to define a Rff we need to find a region of constant slope in the I-V.

By measuring the dynamic resistance, Rd, directly, one expects to see plateaus of

the Rd as in Fig. 4-3. This is due to the linear dependence of the vortex speed

with the driving current. However, most measurements do no have this constant

resistance. Fig. 4-11 shows a dynamic resistance measurement at T= 8.5 K. In this

measurement it is difficult to assigns a single Rff value to an I-V. In fact it seems

as though the resistance is linearly dependent on the driving current. Though it is

still possible to average all the resistances to assign an Rff, the basic assumption of

the phenomenological model of linear dependence of the driving force breaks down.

Experimentally it is possible to measure the slope of the f dependence on the

array resistance directly. Biasing the array at a current level in the flux-flow region

and continuously changing the applied magnetic field while reading the resistance

with a lock-in amplifier will produce graphs such as the one shown in Fig. 4-12. The

different curves correspond to different measurements at the indicated bias currents.
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Figure 4-12: Measured Rff vs. f at different current biases. Numbers indicate slope
of the line.

There does seem to be a mostly linear dependence for small values of f as expected,

but the linear fit is dependent on the bias current. From the phenomenological the-

ory we expect the slope to be of order two and independent of the driving current.

Though the order of magnitude is correct these slopes have a relatively large range

of values and it is difficult to make quantitative comparisons between measurements

at different temperatures. If the flux-flow region were truly linear then for a range of

bias currents the f dependence on the flux flow resistance should be constant. This

is not observed in most measurements. The lack of linearity in the flux-flow slope

may be an indication that the effective array damping is not truly linear but of some

other functional form as has been suggested elsewhere [13].

These issues only appear when one tries to quantify the flux-flow resistance very

precisely. By taking derivative of the I-V, instead of performing a linear fit on the

I-V directly, any deviations will be amplified. However, it is always possible to do

a least square fit on the original I-V, even if the flux-flow region is not truly linear
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and extract some estimates for the flux-flow that are explained qualitatively by the

phenomenological model.

4.5 Conclusions

Josephson arrays represent a complex coupled system. However, in the flux-flow

regime the I-V characteristics can be mostly explained in terms of a simple phe-

nomenological theory of vortex transport. These vortices represent a bundle of mag-

netic flux that are linearly driving by the applied current. Furthermore, vortices in

the flux-flow region are localized and, because of the electrical energy in the junctions,

can be treated as massive particles. It was assumed that the applied field specifies

the density of vortices present in the array. Knowing this density, the driving force,

and the viscosity of the array allows for the calculation of the dependence of the

flux-flow resistance in terms of the array parameters and applied magnetic field and

linear dependence to the applied field is found.

It has also been shown that Rff is dependent on both A1 and /. The depen-

dence on 6c follows from spin-wave damping while the A1 dependence is a result of a

reduction of the viscosity caused by the decreasing physical size of traveling vortices

as A1 decreases. This simple phenomenological theory gives a qualitative as well as

a semi-quantitative description of the dynamics. The effects can also be modeled

accurately in simulations that take into account all the mutual inductances between

cell pairs.

However, the flux-flow region appears to be richer in its dynamics than the pre-

sented model can account for. It has been shown that for small arrays, there is a

spatial dependence of the flux-flow region. Different rows have different flux-flow

slopes and the outer rows closest to the edge appear to have almost no flux-flow as-

sociated with them. Also, the effective linear damping of the array appears be an

over-simplification. Though these deviations do not diminish the useful and intuitive

results from the phenomenological theory, they do point the way for further research.
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Chapter 5

Beyond Flux-Flow

When the flux-flow state of an underdamped Josephson junction array becomes un-

stabilized, the I-V curve jumps to a resistive step. It is known from both experiments

[38, 34] and simulations [41, 26] that these resistive steps correspond to coherent os-

cillations of all the junctions in a single row. It is precisely this type of spontaneous

coherent oscillation of junctions that makes two-dimensional arrays technologically

attractive as high frequency rf devices.

At those resistive steps, the array is usually referred to as being in the row-switched

state and every junction in the switched row will be oscillating at the junction gap

voltage. The location of the step corresponds to the voltage gap which is temperature

dependent. Higher resistive steps in the I-V correspond to the switching of more than

one row in the array and we do not expect to see more than Ny steps, where Ny is

the number of rows in the array. At low temperatures this row-switching behavior

was observed and the first part of this chapter is devoted to the characterization of

the row-switched steps and how they are affected by self-fields.

At higher temperatures there is a transition between row-switched states and a

new type of resonant step. This resonant step differs from the row-switched steps in

that the voltage position of the resonant step is temperature independent and self-

induced fields play an important role in its formation. The second part of this chapter

will characterize some of the properties of the novel step.
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5.1 Row-switched states

Row-switched states have been known to exist in underdamped arrays for several

years. In this section we review some of those results, and provide some preliminary

studies of the ordering of row-switching events. Though the position of these steps

is independent of the strength of self-fields, it will be shown below that the inter-row

phase-locking of switched rows is affected by strong self-fields. This is an important

result because any reduction in the overall phase-locking of the junctions will increase

the line-width and reduce the power of the output high frequency rf signal. To build

effective devices it is important to find a parameter range where the inter-row phase

locking is maximized.

5.1.1 Experiments

In this chapter, measurements from sample H3 are presented. This sample is a 7 x 7

array, with uniform current injection. It has voltage pads on every superconducting

island on the right edge of the array. This array design allows us to measure the

voltage across any combination of rows. By varying the temperature we can change

the junction parameters from 15 < /3 < 60 and 0.3 < A < 1.2. The experimental

techniques and equipment are described in previous chapters.

Figure 5-1 shows typical measured data for row-switched steps for sample H3 at a

temperature of 6.0 K. At each recorded I-V the amplitude of the sweep current was

increased slightly so as to allow retracing of each row-switched step and record the

typically hysteretic behavior of these underdamped arrays. The data is normalized

to seven times the measured array gap voltage. This measured array gap voltage

corresponds to seven times the predicted individual junction temperature dependent

gap. As expected, there are seven row-switched steps corresponding to each of the

individual rows switching. No flux-flow region is observed at this temperature. This is

due to a combination of a small applied magnetic field and the large subgap resistance.

The small field produces a very small flux-flow resistance. Furthermore, since i, is

proportional to the square of the effective resistance, it is going to be the square of
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Figure 5-1: Row-switched steps measured by slowing stepping the amplitude of sweep
current. Data recorded at 6.0 K and f = 0.1.

the large subgap resistance. Thereby Pc is very large and as shown in the previous

chapter the flux-flow resistance will be very small because of the losses due to spin-

wave damping. Hence no flux-flow slope is expected at temperatures.

Row-switched behavior was observed in sample H3 for 40 < 3 < 60 and 0.5 <

A < 0.3 . Van der Zant et al. [38] have also observed row-switched steps in un-

derdamped aluminum arrays. In those measurements, A1 was large enough so that

self-induced fields could be neglected. Several arrays were measured with P,'s ranging

from 7 to 2000. In the classical arrays, where the Josephson energy is much greater

that the capacitive energy needed to tunnel, row-switched behavior was observed. It

can be concluded from these measurements that there is no /c or A dependence of

the position of the row-switched steps, but instead only a dependence on temperature

through the temperature dependence of the gap.

Having studied the step locations in the array I-V, it is natural to ask if there

are any spatial patterns in the switching of rows. By concurrently measuring the
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Figure 5-2: Order of row-switching steps. Each dot represents the current value when
the indicated row switched. The numbers indicate the corresponding step number in
the total I-V of the array. Data recorded at 6.0 K and f = 0.l.

voltage across the whole array and the voltage across an individual row, it is possible

to deduce at what voltage step a row will switch. If we repeat the measurement for

all seven rows of sample H3, we can map the current values that individual rows

switched and the corresponding voltage step in the array I-V.

In Fig. 5-2 each dot marks the current value a row switches and the number

indicates the sequential order that that row switched. Each dot represents one si-

multaneous I-V measurement of the total array voltage and the corresponding row

voltage. Therefore, Fig. 5-2 is the result of about 50 I-V's and represents a statistical

measure of the order of row switching.

In general, there is no definite switching order and a single row may correspond to

several different voltage steps in different measurement runs. For instance, row three

switched first in all but one measurement, when it was the third row. Statistically we

can infer that the third row is likely to switch first, followed by the sixth row. The

first and last rows are most likely to switch last.
first and last rows are most likely to switch last.
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Figure 5-3: Simulated I-V with A_ = 0.44 and ,c = 49.5, the critical currents in the
simulations had a uniform random distribution of 10%.

Though it is generally believed that the order of row switching is related exclu-

sively to nonhomogeneity of critical currents in the array, it has never been shown

experimentally. From this preliminary study, it is clear that there are some edge ef-

fects and symmetry in this switching. These effects are probably inherent to the array

dynamics but may depend weakly on the applied field, A , or other array parameters

as well as the array uniformity of critical currents.

5.1.2 Comparison to simulation

Simulations for both A = oo and finite Al show row-switching behavior. Typically

for homogeneous arrays where the critical current of every junction is the same, row

switching is symmetric about the center row. Since all rows other than the center

row switch in pairs, it is impossible to see every expected step in the I-V.

Introducing disorder in the simulations by varying the critical currents of the

junctions breaks this symmetry, and rows begin to switch individually. Fig. 5-3

81



1

0

C

60

Vertical junction

Figure 5-4: Simulated I-V of each vertical junction with Al = 0.44 and ic = 49.5.

shows a simulated I - V with the same parameters as Fig. 5-1 and a 10% uniformly

distributed random variation of the critical currents. The first step corresponds to the

switching of the center row while the second smaller step correspond to the switching

of row six. Afterwards, row two switches, and this symmetric step is stable for a

larger range of current biases until rows three and five switch simultaneously and

finally the two rows on the edges switch. This type of ordering of the rows is similar

to what was observed in the experiments.

Fig. 5-4 further demonstrates the spatial dynamics of row-switching. In the figure,

the I-V of every vertical junction is plotted. Row one contains junctions one through

eight. Row two is represented by junctions nine through sixteen and similarly for all

other rows. In this parameter range, where the array I-V has no flux-flow state, every

junction is either in its superconducting state or in the normal state.

The simulations do not include a subgap resistance; hence when a row switches

it will switch to the IRP part of the I - V. However, since the critical currents are
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Figure 5-5: Instantaneous vortex configurations for 7 x 7 arrays with three rows
switched. Left graph is A1 = 0.44 and the vortices in the rows are out of phase, while
the graph on the right for AI = oo and all the vortices in the rows are in phase.

randomly distributed but the IcR product of all the junctions is constant, the Rn of

individual junctions is also randomly distributed in the same way as the junction's

critical currents. Nonetheless, at a row switched state all the junctions in a switched

row have the same I-V characteristic. This is a collective effect of a row. It can

phase-lock all the junctions such that they are oscillating at the same frequency even

in the presence of inhomogeneities.

In the actual experiments, the temperature is sufficiently low that there is a very

large subgap resistance. If we include this subgap resistance in the simulations, then

the resistive steps would have a steeper slope and the simulations would be almost

indistinguishable from the experimental data [26].

The two-dimensional nature of these arrays provides for two types of phase-locking

mechanism: intra-row, and inter-row. The locking between junctions in a row, inter-

row phase-locking, is determined mostly by the flux quantization condition and ap-

pears very robust in both the simulations and experiments. The inter-row phase-

locking appears to be much weaker. It is in the interaction between rows that self-

fields play an important role. In essence, strong self-fields tend to disturb the phase

locking between switched rows.

Fig. 5-5 shows the instantaneous vortex configuration for an array with three

rows switched. The vortex location is defined in terms of the loop sum of the gauge

invariant phases as in [27, 35]. Vortices only move through the switched rows. These
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vortices provide the strong coupling need for the junctions in a row to be phase- 

locked. The other rows have no voltage associated with them. For XI = 00, switched 

rows are in phase and vortices travel across the array in columns. As XI < 1 the in- 

phase stability of the rows begins to weaken, and vortices no longer travel through the 

switched rows in columns. The in-phase stability of the inter-row vortex configuration 

appears to weaken from the XI = 00 as XI becomes smaller than 1. I t  is possible that 

there is an optimum XI value that maximizes the ability of rows to phase locked, or 

it may be that maximum phase-locking occurs a t  the XI = oo limit. 

To get a better understanding of the behavior of the junctions we can plot their 

phase portrait. Fig 5-6 shows the phase portrait of a vertical, (b) and (d), and 

horizontal, (a) and (c), junction in an active row for both the beginning, (c) and (d), 

and top, (a) and (b), of a step. The first obvious conclusion is that the junctions 

are behaving periodically. The vertical junctions rotate in an almost sinusoidal way 

and their average value is the measured junction voltage. In contrast, the horizontal 

junctions librate around a fixed point of zero voltage and a small negative phase. 

Their librating magnitude is four orders smaller than the vertical junctions. This 

implies that the horizontal junctions conduct a small dc current. We can conjecture 

that the row-switched state is a periodic solution of the governing equations. The 

non-linearity of the horizontal junctions is probably important in the coupling of 

rows though their librations seem almost negligible. Since the horizontal junctions 

virtually have zero phase, the flux quantization condition, M+ = -arn, will strongly 

couple the vertical junctions of the row and may account for the robustness of the 

intra-row phase-locking. . 

Fig. 5-7 shows the phase portrait of a vertical and a horizontal junction of non 

switched-rows in the array. We can draw similar inferences as above. Like in the 

row-switched states, horizontal junctions librate a t  very small amplitudes around a 

fixed point of zero voltage and a small positive phase. The same can be said for the 

vertical junction, though the vertical junction supports much more current. Most 

of the applied current will flow through the vertical junctions, but there is a small 

circulating current in the horizontal junctions. From the simulations, it is difficult to 
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discern any patterns of the small horizontal current flows.

5.1.3 Conclusions

Several qualitative conclusions can be drawn from both simulations and experiments.

Row-switching steps are related to coherent oscillations of individual rows. Once a

row is switched it behaves as if it were a single junction that has jumped to its gap.

Therefore, these voltage steps only depend on temperature in the same way that the

junction gap depends on temperature. The location of the steps is independent of AI

and pc.

However, there is a A± dependence; strong self-fields disturb the phase-locking

between switched rows, inter-row coupling. Once a row has switched it will remain

in that state and different steps in the I-V correspond to the switching of more rows.

Center rows tend to switch first, while rows near the edges are the last to be triggered.

The dynamics of horizontal junctions and vertical junctions of quiescent rows are

very similar. They both have very small librations. Vertical junctions of switched-

rows rotate periodically and all other junctions just support small currents with small

parametric effects. The nature of the inter-row coupling is not fully understood, and

needs further study.

5.2 Array resonances

In this section we report preliminary findings of novel resonant steps present in all the

measured H samples. These steps are fundamentally different from the row-switched

steps and seem to depend on both self-fields and horizontal cross junctions for their

existence.

5.2.1 Experiments

The distinguishing feature of these steps is the temperature independence of the

position of the step voltage as shown in Fig. 5-8. The step is located at V - 2 mV
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Figure 5-8: Temperature dependence of resonant step at f = 0.5. The step is located
at 2mV, and the gap is shown in the upper right-hand corner as it varies with
temperature.
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Figure 5-9: Measured I-V's of each individual row showing resonant step at T = 8.1 K

evident that the step height varies with temperature, but the step location remains

constant in terms of voltage. The depinning current and flux-flow regions vary in

accordance with the material presented in earlier chapters.

Since these steps are not dependent on the gap, they become fundamentally dif-

ferent from the row-switched steps. This also implies that these steps originate from

geometric resonances of the array since the array geometry is naturally temperature

independent.

Though the step was observed for the three H samples, only measurements for the

H3 sample will be presented. This sample allowed a detailed study of the dynamics of

the array because measurement of the I-V characteristic of each individual row was

possible. Fig. 5-9 shows the measured I-V's for each row in the array. We can deduce

that all the rows are oscillating at the same frequency and this step corresponds to

a coherent motion of vortices throughout every row of the array. Notice that edge
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Figure 5-10: Measured I-V's vs. applied magnetic field at T = 8.1 K. Inset: Measured
voltage vs. applied field at the same parameters at a current bias of 58 uA

effects are very visible in the flux-flow region but only affect the resonant step at its

top, just before switching to the subgap resistance. There clearly is a large current

range where every row of the array is oscillating at exactly the frequency.

The magnetic field dependence of the step is shown in Fig. 5-10. There is an f

dependence on the large resonant step. To quantify the magnetic field dependence

of this step we biased the array at its center and continuously varied the applied

field while measuring the output voltage. The inset of Fig. 5-10 shows the result.

In the region 0.2 < f < 0.8, the f dependence seems sinusoidal with some subtle

substructure. As the step changes position with respect to its voltage its height is

also changing. For f < 0.2 the step disappears and the array is now biased at the

subgap resistance.

At f = 0.2, a sequence of I-V was measured for every row. The step was still

clearly visible. However, only the five middle rows had the same voltage and therefore

were oscillating at the same frequency. The outer two rows, one and seven, had a
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slightly higher voltage. It is important to note that the resonance is not a consequence

of the special symmetry at f = 0.5, but appears for a large range of frustration.

As shown in Fig. 5-10, other steps become visible as f is varied. The nature

of these smaller steps has not been studied yet, but it seems possible that there are

other resonant modes in the array just as in one-dimensional arrays there are different

resonant Fiske steps.

In summary, this novel step may be a geometric resonance because its position

is independent of temperature. However, the step is more than just a standing wave

mode in the array because it has a magnetic field dependence. At f = 0.5, the step

correspond to coherent oscillations of all the vertical junctions in the array. As f is

lowered only the center rows oscillate coherently, while the two outer rows begin to

oscillate at a different voltage.

5.2.2 Comparison to simulation

To get a better understanding of the dynamics of this resonant step, simulations

were performed and compared to the measurements. These simulations produce a

resonance step with properties that agree well with the measurements. In contrast to

the row-switching states, it appears as though self-fields and the horizontal junctions

are crucial to the formation of the step.

Fig. 5-11 compares two I - V's with different A 's. The circles represent a sim-

ulation with the same junction parameters as in Fig. 5-10 at f = 0.5 while the dots

correspond to an I - V with the same parameters except A = oc. The difference

in Idep can be explained in terms of the increase of the cell-to-cell energy barrier for

a vortex. The difference of the flux-flow slope can be explained in terms of the re-

duced viscosity of a small A±. There are no row switching events in the I - V for

A1 = o because the applied field of f = 0.5 injects enough vortices in the array so

that the first step has all of its rows switched. On the other hand, for the A = 1.02

there is a large voltage step. This step has been observed in the simulations for Al

as large as 2, but no detail study has been performed. Fig. 5-12 shows the I - V

characteristics of all the vertical junctions of the array. This step clearly represents

90



0 1 2 3 4
V/IcRn

5 6 7 8 9

Figure 5-11: Simulated I-V's comparing Ai dependence of the resonant step at
f = 0.5 and Pc = 19.7 for a 7 x 7 array. Dots represent an I-V with A 1 = oo, while
circles have a A 1 = 1.02. Though there are no resonances for the A = oc a clear
step is seen at A = 1.02.
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Figure 5-12: Simulated I-V of each vertical junction with A = 1.02, /? = 19.7, and
f = 0.5.

coherent oscillations of all the vertical junctions. These simulations agree very well

with the measurements. In terms of Ic, , the resonant step was measured at 3.5,

qualitatively similar to the simulations value of 2.9.

A sequence of I-V 's was calculated to determine if there is a similar magnetic

field dependence. Fig. 5-13 shows the I-V's for f = 0.5, 0.4 and 0.3. Similar to the

measurements, there is a slight f dependence: as the magnetic field is decreased the

step voltage is decreased. Also the step height is reduced and more structure is seen

in the I-V as the magnetic field is decreased.

Since all of the vertical junctions seem to be oscillating coherently at the same

frequency, it is natural to ask if the rows can be decoupled. For instance, in the

row-switched steps, the dynamics could be interpreted in terms of independent rows

where the vertical junctions of a row were either oscillating or quiet.

To answer that question, a series of I-V 's was performed for a 7 x 1 ladder array.
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Figure 5-13: Simulated I-V's comparing f dependence of resonant step at Al = 1.02
and p = 19.7 for f = 0.5, 0.4 and 0.3.
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Figure 5-14: Simulated IV 's for 7x 1 ladder and parallel array comparing dependence
of the step at f = 0.5 and Pc = 19.7.

For comparison, a simulation was also performed for a 7 x 1 parallel array. The

difference in geometry between a parallel array and a ladder array is that the former

has junctions in the horizontal links while the latter has superconducting wires. The

I-V denoted by the solid circle in Fig. 5-14 is a simulation for a 7 x 1 ladder array with

f = 0.5 and /3, = 19.7 and AI = 1.02. The open squares represent an I-V with the

same parameters and geometry except with Al = oo. The diamonds are an I-V for

a parallel array with the same parameters.

These I-V 's are essentially one row of the two-dimensional array. A large resonant

step appears for the finite A± but it is not present when self-fields are neglected. The

same conclusion can be reached as when the full 7 x 7 array was simulated: self-fields

are necessary to produce the resonant step. We can also deduce that these resonances

are not due to the coupling of rows, since it appears in a one-dimensional ladder array.

To further investigate the mechanisms of the step we can compare the I-V to a
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7 x 1 parallel array. Fig. 5-14 shows this comparisons. As expected, the array without

cross junctions (diamonds) behaves as a discrete long Josephson junction. We see the

general I-V structure of this type of geometry including the several Fiske steps. On

the other hand, when cross junctions are included in the array (solid circles), the

I-V characteristics change substantially. The depinning current is increased and

there are no visible Fiske steps, and only the large resonant step appears. A slight

f dependence was observed in the 7 x 1 ladder array, but a more detailed study is

needed to verify if the experimentally measured f dependence is due to the coupling

between rows, or can be attributed solely to the dynamics of a ladder array.

Since it appears the the cross junctions are important in the dynamics of this step,

a phase portrait of both a vertical and horizontal junction in the middle row of the

7 x 7 array is plotted in Fig. 5-15. The vertical junctions are graphs (b) and (d) while

the horizontal ones are graphs (a) and (c). The beginning of the step is plotted on

the bottom two graphs while the top of the step, just before the jump to the normal

state, is plotted on the top two graphs.

We see that at the beginning of the step, the solution for both the vertical and

horizontal appears to have more than one frequency, and it is not periodic. At the

top of the step the horizontal junctions librates periodically and the vertical junctions

rotate nonuniformly. It appears as though all of the fast oscillations decay away and

only the dominant slower frequency remains as the current is increased through the

step. Also the horizontal junctions are librating at a fairly large amplitude, almost

of the same order as the vertical junctions, and they support a small horizontal

current. Though it seems possible to characterize this horizontal current flow, it does

not appear trivial in the simulations. Some rows have half the horizontal junctions

flowing in one direction and the other half flowing in the opposite, while other rows

have some junctions that support no current. For the 7 x 1 ladder array the behavior is

very similar, vertical junctions rotate with an average voltage and horizontal junctions

librate at almost the same magnitude voltage.

The simulations very closely match the experimental measurements and provide

a tool for further study of the dynamics of this resonant step.
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Figure 5-15: Graphs (a) and (c) phase portraits of the first horizontal junction in
row four on the right side of 7 x 7 array. While (b) and (d) are for the first vertical
junction on row four of the right side of the array. Bottom graphs show the dynamics
at the beginning of the step, and top graphs at the top of the step.
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5.2.3 Conclusions

A resonant step has been observed in the I-V characteristics of several arrays that,

among other possible factors, would not exist without induced self-fields. These steps

are independent of temperature, therefore they are geometric resonances of the array.

At f = 0.5, the step correspond to coherent oscillations of all the vertical junctions of

the array. A magnetic field dependence was observed for both the height and voltage

location of the step hinting that the steps are more than just standing wave modes

in the array.

From the simulations it has been shown that the resonant step requires at least

a self-inductance in the governing equations and so self-fields are important. It has

also been shown that the step is not a fundamentally two-dimensional phenomenon

since it appears in 7 x 1 ladder arrays, though it is possible that the magnetic field

dependence might be due to the coupling of rows. Also, the nonlinearity of horizontal

junctions appear to provide a parametric inductance that is crucial in the dynamics of

the step. Without the horizontal junctions the step does not form. Further research

is needed to determine the full dynamics of these resonant steps.
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Chapter 6

Conclusions

6.1 Summary

The role of self-induced fields in two-dimensional arrays of Josephson junctions has

been studied in both simulations and experiments.

Several different arrays were fabricated using a Nb-Al2Ox-Nb trilayer process with

critical currents ranging from 100 to 7000 A/cm 2 . Along with varying the critical

currents, it was possible to change the area of the junction and the lattice spacing of

the array. This allowed for a large experimental exploration of the parameter space.

The range of A1 was between 0.17 to 5 and Pc ranged between 2 and 400. Most of

the arrays were 15 x 15, but a 47 x 47 and 7 x 7 array were also measured. The small

size allowed for comparison to simulation and for the measurement of individual rows

in the array.

The experiments focus on the dc current-voltage, I-V, characteristics of the array.

Though these electrical properties are averaged both in space and time, the dynamics

of the array can be inferred. In this thesis the experiments have been classified into

four regions of the dc I-V curve: the superconducting state, the flux-flow regime,

row-switching events, and resonant steps.

For the superconducting state, it was found that strong self-fields increase the

energy barrier of vortex motion. It was also found that strong self-fields reduce the

ability of vortices to from a commensurate states with the array and thereby make
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the depinning current independent of the applied field.

In the flux-flow region, it was found that self-fields reduce the mass of the vortex.

This is equivalent to a reduction of the array viscosity coefficient. The effect can

be explained terms of the localization of the vortex. The dissipation of a vortex is

proportional to the number of resistors that it encloses. The stronger the self-fields,

the smaller the vortex becomes and the smaller the number of resistors it must travel

through. This decrease of the dissipation results in an increased flux-flow resistance.

The localized vortex picture was found to adequately explained most of the obser-

vation in both the superconducting state and the flux-flow region. Deviations from

this phenomenological theory were found, but the overall effects of self-fields observed

in both simulation and experiments can be accounted for.

In the flux-flow region, the most interesting deviation was the spatial structure in

the small arrays. It was found that rows have different flux-flow slopes. This may be

accounted for by a combination of edge effects and disorder of the array.

In the row-switching state the vortex as a particle picture can no longer be used.

Instead entire rows of the array oscillate coherently at the temperature dependent

gap voltage of a single junction. It was found that self-fields affect the coupling

between rows. Strong self-fields seem to destroy this coupling. Also it was found

that there is some symmetry in the ordering of row switching. In the simulations

this symmetry exists even in the presence of disorder of the critical currents of the

junctions. Horizontal junctions play a role in the dynamical formation of a row-

switched states, but their voltages are orders of magnitude smaller than the vertical

junctions.

A new type of resonant step was observed at temperature close to T,. It was

measured for a range of applied fields, and at f = 0.5 it corresponds to coherent

oscillations of all the junctions of the array. From simulations, it was deduced that the

step differs from row-switched states in that self-fields are essential to its formation.

Another difference is that horizontal junctions have voltages that are of the same

order of magnitude as the vertical junctions.

In summary, self-fields are important in niobium arrays where the penetration
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depth can be of the order of a cell size. These effects can be accurately modeled in

simulations by taking into account all of the inductive interactions between cells.

6.2 Future directions

There are many theoretical as well as experimental unanswered questions that remain

to be explored.

In the superconducting state, the ground state formation for A± = oc is well

understood. It is not known how the ground states change as self-fields become

important. Also the mechanism that affect vortex depinning through the edges are

not well understood.

In the flux-flow regime, the simulation and measurements show fine structure

that may be due to the small array size. These type of discreteness effects could lead

to further understanding of vortex motion in two-dimensional discrete system. The

essential question is how relevant is the vortex picture in the presence of discreteness.

Also, it would be interesting to investigate how edges affect two-dimensional vortices.

It is generally assumed that the flow-flow state ceases to exist when a vortex

reaches a limiting velocity. There is evidence that instead that the creation of other

stable states, such as a row-switched states, limit the span of the flux-flow. The

question of how the flux-flow state becomes unstabilized remains open.

The most pressing issue in the row-switched regime is the determination of the

inter-row coupling mechanism. It is hoped that this mechanism is related to the

dynamics of Josephson series arrays, but may instead be an intrinsic mechanism

in the two-dimensional system. Another issue of interest is the determination of the

ordering of switching events and how they depend on the array dynamics and disorder.

Understanding how arrays behave in the presence of disorder is important in future

device applications.

On the experimental side, it would be interesting to measure the line-widths of

the row-switched states versus the junction parameters. This would provide a direct

measure of the phase-locking strength of the state. Understanding the phase-locking

101



mechanism of two-dimensional arrays is important if they are ever to become viable

as high frequency devices.

A new type of resonant step was found. Horizontal junctions as well as self-induced

fields play an important role in the dynamics of the step. It would be interesting to

determine the physical mechanisms. There is also no current theory of the magnetic

dependence of the step. Since the step appears in ladder arrays, it may provide

more insights into the cross-over from one-dimensional to two-dimensional Josephson

systems.

Experimentally, it would be exciting to find other resonant steps and to map out

the dependence on applied field and temperature.

If low temperature Josephson technology is going to produce a marketable device

it will be made with niobium junctions because of their high critical temperature

and their electrical and thermal stability. Self-induced fields play a major role in the

dynamics of arrays of niobium junctions and their effects can not be neglected.
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Appendix A

Published papers

The following published paper is summarized in this thesis:

E. Trias, J.R. Phillips, H.S.J. van der Zant, and T.P. Orlando,

"Self-field Effects in Two-dimensional Nb Josephson-junction

Arrays," Appl. Supercond. Conf., Boston 1994; to appear in

IEEE Trans. Appl. Supercond., Sept. 1995.
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Self-field Effects in Two-dimensional
Nb Josephson-junction Arrays

E. Trias, J.R. Phillips, H.S.J. van der Zant and T.P. Orlando
Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract-We have measured two-dimensional nio-
bium Josephson junction arrays in which self induced
fields are important. We find an increase of the de-
pinning current when A l, the penetration depth in the
array, is of the order of one. There is evidence for a de-
struction of commensurate vortex states in the arrays
as the depinning current becomes almost independent
of the applied magnetic field. Our data also show that
self-field effects change the array flux-flow dynamics
and decrease the effective array viscosity.

I. INTRODUCTION

There is a long standing interest in Josephson devices
as microwave sources in the millimeter and submillime-
ter range. Two-dimensional arrays of Josephson junc-
tions are of particular importance because by phase lock-
ing, they overcome the problems of low impedances and
power when using single junctions. For example, an ar-
ray with N cells perpendicular to the current direction
and M parallel, the phase-locking of the array implies
the power delivered to a load scales with M(N + 1) and
at the same time the linewidth with 1/M(N + 1). Co-
herent emission and power levels in the microwatt range
have been detected [1] in niobium arrays with 9 by 10
cells. In that paper it was suggested that the 2D array it-
self might provide a mechanism for phase locking through
quasi-long-range interactions between its junctions.

Generally speaking, the delivered power is proportional
to the critical current i so that the demand of high power
stipulates the use of junctions with large critical currents.
High critical currents, however, may destroy the internal
locking mechanism in the arrays [2], [3]. In 2D arrays,
the penetration depth for perpendicular applied magnetic
fields, AI, is inversely proportional to i. A small I
weakens the range of the vortex interactions thereby re-
ducing the the ability of the whole array to mutually phase
lock. Clearly, an engineering compromise must be made

Manuscript received October 18, 1994.
E. Trias, e-mail etriasOmit.edu, phone 617-253-4213;
This work was supported in part by the National Science Founda-

tion under Grant DMR-9402020 and a Graduate Research Fellow-
ship; and in part by Advanced Research Projects Agency through
the Consortium for Superconducting Electronics. We thank MIT
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Fig. 1. Geometry of two-dimensional Josephson-junction array.

for optimal performance.
Although the effects of self-fields have been calculated

for various array properties, there have been no detailed
measurements of these effects. In this paper, we present
an experimental study of the self-field effects on the depin-
ning currents and the flux-flow resistance in the array. We
find that these self-field effects are important in practical
niobium arrays which have AL-1 and that these effects
can be modeled well by numerical simulation.

II. ARRAY MEASUREMENTS

A total of 5 different arrays were fabricated and mea-
sured using a Nb-Al 2 Ox-Nb trilayer process with varying
critical current densities, J. Fig. 1 shows the physical
layout of the arrays. The bottom electrode is represented
by the hatched islands, the black squares represent both
the vias and the etched counterelectrode of the trilayer
that form the Josephson junction. These are connected
by a metallic layer shown by the unhached islands. We
only consider square arrays where every inner island is
connected to 4 neighbors. All the arrays have junctions
arranged in a 15 x 15 square matrix, where N = 15 is
the number of cells on the edge of the array spaced by
a lattice spacing of p. Array 1 was fabricated at Hypres
Inc. with J = 1000 A/cm 2 . Arrays 2-5 were fabricated
at MIT Lincoln Laboratory using a DSNAP process. In
this paper we report detailed measurements of array 1.

Array 1 consists of 3x3/pm 2 junctions with p =
16.5pm. By injecting the current through resistors of
0.5 connected on each island of the top and bottom of
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Fig. 2. Typical I-V, indicating the depinning current, flux flow
region, partially-row switched, and fully row switched states. The
data was taken at 7.4K with An = 0.73 and c = 46.

the array, uniformity in bias current was achieved. The
voltage was measured between the rightmost islands of
the top and bottom row.

The array critical current I, is defined as I, = (N+l)i,,
where i is the critical current of a single junction. The
junction normal state resistance. r,, is determined from
the measured array resistance. R,, at T~8 K by the re-
lation r, = R(N + 1)/N. At T = OK the ir, is
equal to 1.9mV, so that the junction critical current
can be estimated. For array 1, the junction capacitance,
C, is 300fF and R, = 19.321 so that r, is calculated
to be 20.612. From the above values we can estimate
13c = 2rR2Cic/4o and the dimensionless penetration
depth A1 = o/2iropi. Furthermore, by varying the
temperature of the sample we can vary a junction's i and
hence change its Al and A1 by up to a factor 5 in a con-
trolled way. For array 1, 6 < B, < 30 and 0.2 < A.L < 1.

A typical current-voltage (I-V) is shown in Fig. 2.
There are three distinct regions in the I-V: a super-
conducting state at zero voltage, a flux-flow region, and
a row-switched region. In this paper we will discuss the
depinning current, Idep, that indicates the onset of the
flux-flow region and comment on the A. and ,c depen-
dence of the flux-flow resistance region. We define Idep
as the current where there first occurs a nonzero voltage
across the array. The partially and fully row switched
states have been investigated elsewhere [4].

III. DEPINNING CURRENT VS. A1.L

We see that the depinning current increases strongly as
A1 becomes less than 1.

To calculate a depinning current the motion of single
vortex is modeled as a damped massive particle moving
through a sinusoidal potential of amplitude AE/2, with
AE representing the intrinsic cell-to-cell energy barrier of
the array. This equation of motion maps onto the same
form as the RCSJ model of a single junction [5], [6] with
a critical depinning current Idep = (AE/2Ej)I, where
Ej = oIc/27r is the Josephson energy.

In the limit where A. is larger than the array size,
this energy barrier was first calculated by Lobb, Abra-
ham, and Tinkham, (LAT) [7]. They considered the total
static Josephson energy of the array when a single vor-
tex is in the middle of a cell and when the vortex is on
top of a junction. Since these represent respectively the
minimum and maximum energy configurations, their dif-
ference is a barrier,AE, to vortex motion. The LAT result
of AE = 0.2Ej yields an expected Idep = O.1Ie which has
been measured by various groups [5], [6] and our data does
indeed approach dep = 0.1Ic as A. > 1.

Phillips et al. have shown that as A. decreases the
stored magnetic energy, E, = (1/2A)IT;LmIm, must be
included. Here, Lm is the dimensionless mesh inductance
matrix and I,, the mesh currents. For smaller AX, AE
increases [8] and hence Idep also increases.

The dashed line of Fig. 3 represents the depinning cur-
rent associated with AE calculated for a single vortex in
a 127x 127 array taking into account both the Josephson
energy and E,. This static calculation asymptotically
approaches the LAT value of O.1Ic.

Although the static calculation appears to fit to our
measurements, it assumes that there is only one vortex
in the system. Therefore to more closely approach our
physical situation, we performed dynamical simulations
that included all the mutual inductances [4] with f = 0.2
on an array of 15 x 15 and calculated I-V curves. (The
mutual inductance matrix is calculated numerically from

1
e. 0.5

In this section we present a study of the dependence
of the depinning current, Idep, with A 1. An externally
applied magnetic field Ho was used to inject vortices
in the array. This field is characterized by the frustra-
tion f = oHp 2/$o which measures the fraction of flux
quanta, 0, in a cell. Fig. 3 shows Idsp for f = 0.2 for the
various samples of 15 x 15 cells at various temperatures.

n
v0 1 2 3 4 5

Fig. 3. Depinning current as a function AX.
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the actual sample lay-out.) With such a high applied field
many vortices are present so that both vortex interactions
and edge effects are included in our dynamic simulations.
We extracted the depinning current using the same exper-
imental criteria outlined in Section II. The result is shown
in the solid line of Fig. 3 that lies above the dashed line.

LAT showed that AE is inversely dependent on N.
Since the dynamic simulation was made for a smaller ar-
ray than the static calculation, one would expect the solid
line of Fig. 3 to be lower than the dashed line. However, if
the size of the array is small enough, depinning from the
edge can affect the overall depinning current. This may
account for the fact that Idep is a third larger than the
static calculation even at A.l = 5. To verify if the edge
effects could cause an increase in Idep, a dynamic simu-
lation was performed for A.l = 5 for a 15 x 15 array and
a 31 x 31 array. For the smaller array Idepl/c = 0.17 as
seen in Fig. 3. For the larger array Idep/Ic = 0.13. So
that edge effects account for most of the increase in Idep
and are thus more pronounced than vortex interactions
for arrays 15 x 15 or smaller at f = 0.2.

The measured data follows the same trend as the dy-
namic simulation except the values tend to be lower. This
may be due to thermal noise introduced by the finite tem-
perature. The simulations do not take thermal noise into
account. Since these arrays have such large tc's, thermal
noise may easily cause vortices to depin at lower currents.

IV. DEPINNING CURRENT VS. FRUSTRATION

In Fig. 4 we show measurements of the depinning cur-
rent versus frustration for array 1 with various values of
Ai. The data was taken at temperatures of 4.2 K, 7.9 K
and 8.6 K. By increasing the temperature the individual
junction's critical current decreases and hence change A.
from 0.2,0.5 to 1 respectively. We verified that the de-
pinning current is symmetric about f = 1/2 and periodic
with f = 1 as expected. The measured data has a large
peak at f = 0 followed by a rapid decay to a saturation
level. This saturation level contains a substructure when
Aj. > 0.2 with clear peaks at f = 1/2, as well as some
smaller peaks at f = 1/4 and f = 1/3. This substructure
tends to be washed out as ,j. decreases and disappears
when Aj. = 0.2. Note also that the saturation level in-
creases as A1 decreases.

For comparison a simulation taking into account all
the mutual inductance interactions was performed for the
same parameters of array 1. The trends are strikingly
similar. The same substructure is seen and the satura-
tion level increases as A.l becomes smaller although the
levels are lower in the measured data. Similar trends are
reported in recent numerical simulations in which the in-
ductance matrix is calculated analytically [9].

We first focus on the f = 0 region of Fig. 4. For large
AX we expect the array to behave coherently as a single

ts
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Fig. 4. Top: Measured depinning current as a function applied field.
Bottom: Simulated depinning current as a function applied field.

junction with a critical current scaled by (N + 1) and an
R,/ which is N times smaller. In this state every junc-
tion in the array is oscillating with the same frequency.
So as expected, the superconducting region in the simu-
lations extends to Idep = (N + 1)ie. It has been shown
that the in-phase solution of the junctions is neutrally sta-
ble so that the junctions may not necessarily be in-phase
[101. However experimental measurements of the power
emitted by junction arrays always indicate some degree
of phase-locking. It is probable that an applied magnetic
field, or the effects of A. < N may provide a mechanism
for weak phase locking in the array [11].

As AL decreases more current begins to flow around the
edges inducing a locally larger magnetic field. If the field
is sufficiently strong it may produce pinned vortices near
the edges. These pinned vortices can lower the depinning
current from the A = oo case. In both the simulations
and the measurements we see the trend that the f = 0
peak decreases with decreasing A. However, the mea-
sured levels are lower. This may be explained by two
reasons. First a truly zero applied field state is very diffi-
cult to obtain experimentally and secondly thermal noise
might depin the vortices prematurely.

The substructure is a result of a vortex superlattice
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forming a commensurate state with the underlying ge-
ometry of the array. These occur at values of f = p/q,
where p and q are small prime integers. For instance, at
f = 1/2 it is known that the ground state for A = oo
is a checkered board pattern and that Idep = 0.411, [5].
The large Idep is a result of the depinning of the larger
vortex ground state which requires more energy than the
depinning of a single vortex. The peaks at those spe-
cial values of f represent the formation of commensurate
ground states which require higher energy to depin. As AX.
decreases vortices become more screened and hence their
interaction is diminished. It is likely that these ground
state superlattices can no longer form and hence the sub-
structures disappears.

V. DYNAMIC PROPERTIES

In this section we will consider the flux-flow region
shown in Fig. 2. Vortices in this region tend to flow in
an incoherent way across the array and are most similar
to the motion of vortices in thin films. For values of f
that do not produce a commensurate ground state the
flux-flow region is linear and hence it is possible to calcu-
late a flux-flow resistance, Rf .

With a Bardeen-Stephen-like model for flux flow, we
can equate the viscous energy dissipated by a vortex mov-
ing between adjacent cells to the power dissipated in each
island [6]. The resulting expression is Rff = 2fR,. This
result is calculated for a steady-state motion of a vortex
so that it is independent of 0, and does not include the
effect of mutual inductances. However, we have observed
a /3 and A. dependence of Rf; therefore we generalize
to Rff = afR,4 and now explain how a is dependent on

c and AX..

When A = oo, we can model the effect of a finite c,.
At the singular value of I = 0 there is no equivalent
mass and hence the vortex has a constant velocity. In
this regime a = 2 and we recover the Bardeen-Stephen-
like result. It has been observed that a large /c causes Rf
to become smaller [6]. This can be explained by an addi-
tional viscosity term caused by the coupling of the vortex
to the spin-wave excitations of the array. Simulations [12]
have shown that a = 2r/vT, as lc>1.

We find that it is also possible to include the effect of
mutual inductances on a. For strong mutual inductances,
A < 1, the extent of the vortex can sill be modeled by
a radius of A. As A becomes smaller the vortex be-
comes physically smaller. As it moves across the array it
crosses less junctions and hence it dissipates less energy.
This is equivalent to reducing the viscosity of the array.
Since Rff is inversely proportional to the viscosity, we
expect Rff to increase as A becomes smaller. WVe have
observed this result in both the simulations and in exper-
iments. However in the experiments A and f3l depend
on temperature, and so cannot be varied independently.

VI. CONCLUSION

Strong self fields affect both the static properties and
dynamic properties of a Josephson junction array. The
cell-to-cell energy barrier of the array increases as Aj. de-
creases and hence Idep increases. We have also shown that
Rff is dependent on both A and 3,. The dependence on
3, follows from spin-wave damping while the A depen-
dence is a result of a reduction of the viscosity caused
by the decreasing physical size of traveling vortices as A.l
decreases. Practical arrays for high-J, niobium tunnel-
junctions operate with A.-l where the self-field effects
greatly influence the device performance and modeling.
Further research is underway to explore the effects of self-
fields on the full range of dynamics in these arrays.
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