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Abstract

With 3-D integration, the added vertical component could theoretically increase the device density per
footprint ratio of a given chip by n-fold, provide a means of heterogeneous integration of devices fabricated
from different technologies, and reduce the global RC delay to a non-factor in circuits by using smarter 3-D
CAD tools for optimizing device placement. This thesis work will focus primarily on the development
and realization of a viable 3-D flow fabricated within MTL. Specifically, the presentation will attempt on
answering these questions in regards to 3-D:

1. What enabling technologies were needed for 3-D to work ?

2. Does it really work ?

3. Will the "3-D heat dissipation problem" prevent it from working ?

4. What applications is it good for ?

Referring to the first item, a viable 3-D integration flow has been developed on both the wafer-and-
die-level, and the enabling technologies were the following: Low temperature Cu-Cu thermocompression
bonding, an aluminum-Cu based temporary laminate structure used stabilizing the handle wafer - SOI
wafer bond, and tooling optimization of the die-die bonder setup in TRL. Next, nominal feasibility of the
3-D flow was demonstrated by fabricating a 21-stage and 43-stage CMOS ring oscillators, where each sin-
gle CMOS inverter / buffer stage was constructed by connecting NMOS-only devices from one substrate
with PMOS-only devices from a separate substrate. Proof-of-concept was accomplished when all 92 Cu-Cu
bonds, 204 thru-SOI Cu damascene vias, and 56 pairs of MOSFETs communicated simultaneously to pro-
duce a 2.75 MHz (43-stage) and 5.5 MHz (21-stage) oscillators, ringing rail-to-rail at 5 V Vdd under proper
Vt adjustments on the SOI-PMOS using integrated backgates.

Furthermore, to combat the perceived heat dissipation problem in 3-D, this work focused on using the
Cu-Cu interlayer bond as heat dissipators, with Cu planes working as flux spreaders and Cu vias as direct
heat conduits. Finally, 3-D RF passive integration onto existing chips can be made feasible, under certain
device performance trade-offs, by using cobalt magnetic shielding, which offers at least a -10 dB throughout
0-20 GHz, with a max isolation of -24 dB at 13 GHz, at +4 dBm reference input power.
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Chapter 1

Introduction to 3-D Technology

The advent of copper chemical-mechanical polishing (CMP) by IBM in 1997 created a new avenue of attack

in the never-ending struggle between semiconductor device engineers and the designed maximum speed

of a given microprocessor. By replacing aluminum interconnects with copper, the overal RC delay of a chip

decreased by a factor of 2. Moreover, chip reliabilty also increased dramatically because copper's bamboo-

like grain structures offer a much higher resistance to electromigration compared to its aluminum cousin

[4]. For a few years, this was a revolution in the industry as engineers took advantage of 50% RC reduction

and out came with blazing fast chips such as the Intel's Pentium and AMD's K2 processors. However, as

Moore's law continued past year 2000, it was evident that good times don't last very long in this industry.

Even as device scaling continues to push the gate delay down and the device density up, benefits provided

by miniaturization has been offset by a substantially larger increase in back-end delays. Hence, the term

"the interconnect bottleneck" has gotten much attention lately [5, 6]. According to the 2005 ITRS roadmap

[7], the total active-wiring interconnect length per cm2 consisting of metal layers 1-5 is about 1 km long, and

it will increase in an exponential fashion from year 2005 onwards! Furthermore, by year 2011, when the

DRAM (Dynamic Random Access Memory) half-pitch and a microprocessor's metal-i half-pitch coincides

at 40 nm, that same total interconnect length is projected to be around 2.5 km with 12 metal layers, and

there are no known solutions for achieving such wiring complexity, let alone trying to decrease the RC

delay caused by these long wires. To top off the bad news, that's projected to occur 5 years from now !
This should not be a shocking news to anyone; rather, it is just a consequence of the quintessential

planar, two-dimensional (2-D) design that engineers have relied on since the inception of the integrated

circuit industry. Let's digress for a moment and see why this is so.



1.1 Some Perspectives on Interconnections

1.1.1 2-D City Development

If you currently work or live in an urban environment, take a quick peek outside your office window for

a moment. Now, try to search for a one-story building within your line of sight. I am willing to bet that

you'll see less than three, if you're lucky. Why is that? Simple: Real estate = money. There are many reasons

for this phenomenon, but none are more important than the value of faster communcation. When economic,

agricultural, political, and educational institutions (and whatever else there may be inside a city) are place

together in a nexus, efficiency often increases - but up to a certain point. And what's the limiting factor ?

Without exception, it's always related to land area. The never-ending open loop of increasing population

density, leading to increase in city efficiency, which then leads to a need for city expansion has plagued

every civilization since the time when Egyptian pharaohs ruled. As we will see, the parallels between city

expansion and back-end integrated circuit (IC) architecture is actually quite amazing.

Consider the following: Before the invention of steel-reinforced concrete and the birth of skyscrapers,

cities around the world were always build and designed with a 2-dimesional roadmap. Nucleation of

towns usually start with a cluster of properties that were built around the town square, or its counterpart in

microprocessors, the Arithmetic / Logic Unit (ALU). Next, the absolute essential elements in a city, whether

it's a city hall (the registers), a military central post (decoders) or what not, were always placed at a distance

closest to the town square for immediate access by citizens (electrons) who commuted to and from work

(act of memory access); hence, the city (processor core) growth pattern takes shape of a circle. As cities

grow, its dimensions increases steadily in a radial fashion 1.

Figure 1-1: Maps of ancient Athens (left) and ancient Rome (right) Taken from [1] and [2].

1Ironically, although circuit designers know that geometrically one should pack neighboring transistors radially to minimize the
nearest-neighbor RC delay, all modern microprocessor designs are instead generally laid out as Manhattan-style grids. Why ? This
was a result of both lithography limitations in the early years of IC and the fact that those engineers were more concerned with
packing density (rectangular tesselations can be close-packed to 100% efficiency while circles can't) rather than worrying about the total
interconnect length
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Figure 1-2: Maps of modern-day Beijing(left) and Boston (right) Taken from http://www.beijingmap.us and
[3].

Take a look at Figure 1-1, which shows some sketches of ancient Athens (circa 500 BC.) and ancient

Rome (circa 300 AD). Compare these skethes with those of modern-day Beijing and Boston in Figure 1-2,

one can see that the trend of radial density growth has changed little over the course of almost 2 millenia.

It is also interesting to note that while maintaining their radial topography, both building and population

densities of modern cities exponentially surpass those from the pre-Industrial Revolution era. Why is that ?

It was because the invention of steel by Bessemer in 1855 and its offspring invention, the reinforced concrete

in 1857 by Monier, revolutionized the way engineers build structures. While keeping the same 2-D street

blueprints, they can now build up instead of across, thus saving real estate and at the same time increased the

population, productivity, and communication of the city [8] 2. Just think - without the vertical integration

capability offered by steel, New York City would never have become the economic hub of the world as it is

today.

Although our analogy between city design to microprocessor design may seem a bit far-fetched, their

evolutionary steps are surprisingly similar. Both were built and designed around a 2-D "substrate," and

both are destined to suffer the following fates:

1. As the city grows, the town square's activity increases, but so does its real estate value.

2. Higher real estate values near the city's core forces the relocation of non-essential elements towards

the city's outer limits (ie. The poor citizens !). Commuting times thus increase.

3. Re-incorporation of relocated subjects back into the city limits requires an overall area expansion

4. Repeat cycles 1-3 for every city growth event

2It can be argued that the Romans were quite capable in the art of vertical integration, constructing huge structures like the Colo-
seum and the aqueducts that lasted even to this day. However, they could not achieve anywhere near the vertical densities provided
by skyscrper designs.



5. Breaking point:

* Growth cycle will cease when city limit expansion hits natural / political boundaries or it hits a

critical commute time that hurts commerce

* Growth cycle will recommence when new building technologies emerge (ie. 3-D adobes such as

skyscrapers) that will exponenetially increase the density of citizens, property, and city activities

while maintaining a constant real estate.

Let's see if the growth and evolution of a typical microprocessor follow this trend.

1.1.2 2-D Microprocessor Development

First, let's look at some die photos of Intel's earlier processors as depicted in Figure 1-3:
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Figure 1-3: Die photos of Intel chips, areas approximately to scale (33 mm2 , 94mm 2, 81mm2 respectively)

In the first generation Intel processors (8088), the entire silicon footprint was used to fit just the core;

any peripheral connections such as math-coprocessors (one may call this an off-chip "core") or memory

have to made off-chip, which -drastically increased the transit time between read / write cycles. The first

and easiest solution was to expand the silicon area and increase the functionality per footprint ratio. Two

generations later in the 386x series, the core area tripled, the chip can indeed do more than its predecessors

with its new 32-bit bus, but its peripherals continue to linger outside the main I/O pins. The off-chip RC

delay problems have yet to be solved.

Rather than pushing to an ever-larger silicon footprint, device engineers had another weapon up their

sleeves: Scaling. By revamping core architecture and using 1 ym CMOS instead of the previous 1.5 ym

r
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devices, the 468x series contained the following innovations: An overall decreased gate delay, both on-

chip L1 cache and the math-coprocessor were integrated on-chip, and if that wasn't enough, the total chip

area has decreased a bit. The Intel 486x family really started the current scaling war among chip-making

companies. Before anyone knew it, the Pentium and its AMD / Cyrix clones have pushed the envelope

even further. By the end of this fifth-generation chip lineage, CMOS devices have been scaled down to 0.35

pm, the L1 cache capacity has been maximized, the dual pipeline design ("superscalar" architecture) was

a mainstay, and to fit all those features under one roof while maintaining good yield, the Si footprint has

been minimized to around 141 mm 2 , just a tad bigger than the long-obsolete 386x. However, applications

that uses these newer / faster processors need even more memory, and a solution to fix this problem was

the utilization of the L2 cache, of which was eventually implemented off-chip because the engineers ran out

of their allotted Si real estate. Therefore, by scaling and increasing the overal density to make a chip faster,

we have taken a step back with the introduction of a new source of back-end RC delay. Can this problem

be resolved?

i L2 cache

Core+L1 Core+ L +L2
.... .... "............... L2 cache

* a

* I

Pentium Pentium 2 Pentium XE 840
Figure 1-4: Die photos of Intel chips, areas approximately to scale (147mm 2, 203mm 2, 206mm 2 respectively)

Alas, when in doubt, integrate ! And the fruits of the labor are the latest consumer microprocessors on

the market, aptly dubbed the"Sixth Generation" chips as seen in Figure 1-4. The family includes the Pen-

tium II and its newer cousins, the Pentium dual-core Extreme Edition 840 and AMD's dual-core Athelons,

both of which were introduced in 2005. All three 64-bit processors come with a fully integrated L2 cache

and are both superpipelined and hyper-threaded for faster and more efficient multitasking. Furthermore,

the multicore chips have two independent execution units that takes multi-tasking to a new level, albeit

with one major concession made in the chip's physical layout: You have to double-up the components for

each core, which requires a bit more Si area than normal. While multi-core designs seem to be the way of
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the future (Intel predicts they'll introduce their quad-core chips sometime in 2007), the good news come

with an asterisk, though - The emergence of a multi-core structure is a signal that benefits of scaling are going to

end and some new technology is going to carry the torch for further improvement in IC design. In a nutshell, today's

chips are so over-intergrated to the point that its activity is generating heat levels that are degrading device

performance; in essence, modern chips are creating a self-made fever that apparently no medicine can cure.

To clarify the above statements, consider the following facts.

1. The higher the switching frequency, the more power P each transistor will dissipate since P = CV2f,

where C = gate capacitance, V = voltage, and f = frequency

2. Higher density of devices means the total power dissipation density (W/m 3) has increased, which in

turn increases the maximim on-chip temperature

3. Self-heating of SOI devices produces positive feedback in Item 2

4. Higher device density also leads to a higher number of (and longer) interconnects, which in turn

increases the current need to drive these wires, thus exacerbating Items 1 and 2

The heat dissipation problem is the main reason why designers are relying on multicore processors. Us-

ing sub-optimial cores running at lower clock frequencies, one can still achieve equal or better performance

with innovations in computer architecture while keeping device performance constant. Again, the price to

pay is the required redundancy in all circuit components - in other words, we need to double the real estate.

Upon re-examining Figure 1-4, one can immediately see where 3-D integration might help. Can we just fold

the dual cores on their axis of symmetry and gain twice the functionality, and at the same time, reducing

the Si footprint by 50% as show in Figure 1-5? Or how about constructing 3-D structures from substrates

that are otherwise incompatible with each other during CMOS / III-V processing ? One can dream of the

following scenario:

Homogeneous Integration Bonding of like parts, such as the 3-D multicore example, or DRAM on top of

CMOS logic

Heterogeneous Integraton Bonding substrates of dissimilar technology, such as CMOS to III-V, MEMS, or

any other combinations

Thus, as steel was a revolutionary tool for increasing density, effieciency, and elegance in macro 2-D

structures, 3-D integration could be the same holy grail for microelectronic 2-D structures. The method of

choice in the MIT 3-D integration scheme is to use copper (Cu) wafer bonding, and the rest of this thesis

will explore its feasiblity, its practicality, and some selective structures that will benefit the most from it. In

fact, this is the perfect place to ask the follwoing question: What is the purpose of this thesis ?



Figure 1-5: Homogeneous 3-D implementation of a dual-core processor ? Maybe !

1.2 Identifying the Thesis Topics

Theoretically, one can make numerous statements about how 3-D can increase the device density, decrease

the global interconnect RC delay, increase the circuit functionality-per-footprint, and etc, but can they prove

it? This thesis will examine a real-life examples that cover all sides of story - The good, the bad, and the

ugly. Specifically, the four rather blunt questions this thesis will attempt to answer are the following, where

the pronoun "it" refers to "3-D integration":

1. What will enable it to work ?

Two chapters will be devoted to identifying the technological challenges associated with MIT's 3-D

process flow. Specifically, the major technological roadblocks associated with wafer-wafer alignment,

overall bond quality, handle wafer realease, and the die-level counterparts of all above issues will be

discussed.

2. Does it really work ?

The easiest method to implement a proof of concept is to build a simple circuit that demonstrates the

feasiblity of Cu-Cu bonding. The vehicle of choice is the 3-D CMOS ring oscillator, where for demon-

stration purposes only, one wafer would contain all PMOS devices and on the other substrate purely

NMOS devices. If the oscillators work, then it proves that the 50+ PMOS - NMOS interconnections

are indeed reliable and the substrate-substrate alignment was accurate enough.

3. Does it really help ?

Since the ring oscillator design will not be state-of-the-art, it will be very difficult to make any 2-D to

3-D performance comparisons such as decrease in overal RC delay vs. circuit topology. Instead, this

thesis will try to investigate the "thermal dissipation problem" associated with 3-D and how, or if it's

even possible, to decrease the overall maximum temperature of a chip by using Cu-Cu bonding in a

creative way. To be more specific, we will try to see which topography in the Cu bond layer can act as

a better heat conduit: Cu thermal vias or thermal planes ?



4. What else is it good for ?

One of the ways in which 3-D can really help is to reduce the Si footprint by building area-consuming

circuit blocks or elements on top of its neighbors. A good candidate for such scheme is the area

minimization of the impedance matching spiral inductors in RF power amplifiers. Normally, a cas-

coded RF amplifier uses inductors in both the base and collector terminals to match the input /output

impedance and to tune the respective port's Q in order to maximize the transducer gain of the circuit.

By placing the large spiral inductors on top of the already-large RF SOI LDMOS (or BJT), one can use

the area saved by 3-D stacking for other devices. For this to be successful, however, one needs an ef-

fective magnetic shield to eliminate any eddy currents induced caused by the inductor's RF magnetic

field on the Si device surface. Hence, the focus of the thesis here will be on testing the effectiveness of

cobalt magnetic shields.

1.3 Executive Summary of Thesis Results

Nominal feasibility of 3-D integration using Cu-Cu bonding was demonstrated with the successful ringing

of both a 21-stage CMOS and a 43-stage CMOS ring oscillator implemented using face-face wafer bonding.

The claim of feasibility stems from the fact that in the 43-stage oscillator, 56 pairs of PMOS / NMOS- SOI

devices (fabricated on two separate wafers) successfully communicated with each other through a combi-

nation of 200+ Cu damascene vias topped by 90+ inter-level Cu-Cu bonds. Integrated backgates provided

the user an option for manual Ve adjustments of all top-tier PMOS-SOI gates, and body-backbiasing proved

to be an integral element in mitigating the unwanted Vt-shifts caused by SOI-body and SOI-BOX interface

charging, which in turn, were due to impact ionization events occuring within the channel.

The face-face bonding configuration, when considering a 2-layered stack, provided a convenient method

in decoupling the body-to- interconnect parasitic capacitance that plagues the face-back bonded ring oscil-

lators, of which none of them oscillated but their flatline outputs did respond linearly to changes in Vdd.

Also, the wafer-level, face-to-face bonded Cu exhibited a much lower Cu-Cu series resistance when com-

pared to the face-back, die-die integrated analogue. This suggest that the overall Cu bonding quality can

and will influence the thermal and electrical characteristics in 3-D circuits, and bonding equipment re-

finement - including better die-die and wafer-wafer alignment systems, better die-die mechanical contact

schemes, in-situ surface cleaning options, and etc, are the real keys to success Cu-Cu 3D integration.

Although the face-face configuration 3 seemed to be superior to the face-back counterpart in all electri-

cal aspects of 3-D, it theoretically suffers immensely from heat dissipation problems, for the top-tier devices

in the face-face bonded circuits will be located further away from the base heat sink. Regardless of either

bonding configurations, the first-order solution in tackling the 3-D heat dissipation problem should revolve

3 Again, when considering a bilayer stack



around using the pre-existing Cu bonding layer as heat flux diffusers. By re-distributing the heavily-biased

z-dependence in heat flow onto the x and y-axes, the effective vertical thermal gradient can be decreased as

much as 15 % according to FEM (finite-element model) simulations. As for Cu thermal vias, while theroeti-

cally and experimentally they were very effective in removing local hotspots and creating thermal Faraday

cages to isothermally sequester extreme hotspots, these vias were unable to affect the global temperature

profiles unless one increases their cross-sectional area. Therefore, unless there is a real temperature cri-

sis somewhere on a chip, the usage of thermal vias should be considered only as an emergency measure

because of their cost in real estate is high.

Lastly, the application of 3-D we chose to focus on was how to integrate an area-expensive passive

element (RF spiral inductor) on top of an existing circuit by virtues of 3-D. The path to success revolved

around finding the proper magnetic shielding that can protect the underlying circuits from B-field-induced

substrate currents generated by the top spiral inductor at RF frequencies. A solid cobalt (high permeability)

shield of 400 nm exhibited a -24 dB improvement in substrate isolation at 13 GHz when compared to a

reference, dual-inductor substrate crosstalk detector that lacked any magnetic shielding. Moreover, the

same cobalt shield proved to be superior to an Al shield of 2 pm thick across mid-range RF frequencies of

6 - 20 GHz. Although the solid cobalt shield proved to be a formidable magnetic shield, keen judgement

must be used before applying Co films as EMI shields because of its inherent high RF power dissipation, of

which when placed near high-Q devices, will definitely be a detrimental factor rather than an enhancement.



Chapter 2

3-D Integration Challenges

The focus for this chapter will be to explore the challenges associated with wafer-level 3-D integration using

Cu-Cu thermocompression bonding. To begin our discussions, we will first take a quick glance at the MTI

3-D process flow.

2.1 The MIT 3-D Approach

To begin, one has to be aware that there are many variations of 3-D integration in the literature, and each

offer its own advantages and disadvantages over each other. Intead of doing a compare-and-contrast ex-

ercise on each 3-D method, the reader is invited to read some wonderful reviews given on selective silicon

epitaxial growth [9, 10], multi-chip modules (MCM) [11], MEMS mciro-spring contacts [12], and polymer

and oxide-based wafer bonding methods [13, 14, 15, 16]. Right now, let's focus on the rationale behind our

choice in Cu wafer bonding [17, 18, 19, 20]. Figure 2-1 shows such a structure:

Through w\afcr
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D)L D)evice Laver
MI-M4 Interconnect Lavers

Figure 2-1: The MIT 3-D model



The MIT model 3-D structure shows that two device layers, denoted by DL1 and DL2, complete with

its own multi-level interconnect layers M1-M4, were fused together by thermocompression bonding of two

pre-existing Cu films deposited on their respective substrates. The model also shows that the combination

of an inter-level via and part of the Cu-Cu bonding interface provide the electrical connnection between

DL1 and DL2. Copper films adjacent to the electricall-active Cu-Cu bond acts as dummy bonding pads

that enlarge the effective bonding area and naturally the cross-wafer bonding strength. Now that we've

described the final product, let's take a brief look at the fabrication process flow.

2.1.1 An Overview of the MIT 3-D Process Flow

The MIT 3-D process was based on a modular flow where each successive device layer bonds on top of an

existing vertical base stack. The process was also designed such that exposure of the continually-growing

base stack to mechanical or chemical attack were minimized.

Before one can construct a multi-layer device stack, we first have to start with two wafers. One of these

two members will be an SOI wafer (designated as the "top" wafer in Figure 2-2) that will undergo backside

substrate thinning and a subsequent backside via etch and fill. The filled backside vias were then capped

with a thin copper / tantalum (Cu/Ta) bilayer to facilitate bonding. Afterwards, the resultant thin-film

device layer will then be bonded to a base wafer (designated as the "bottom" wafer in Figure 2-2) in a face-

to-back fashion. Finally, the dummy support wafer used in the wafer-thinning step has to be released from

the 3-D bond stack. In the end, since the "initial" seed stack is topologically identical to the green "bottom"

wafer, the seed stack can re-enter the process loop and multiple Cu-bonds can be made with relative ease.

The salient features of this process are:

* The process is inherently modular, where one can either construct a multilayer stack by serial bonding

of single-layer stacks, or if one wishes to, an m-layered seed stack can be bonded to an n-layered "top"

stack

* The process allows devices from the "top" substrate to be made from any given technology, whether

it's III-V, strained Si, or organic semiconductors that can tolerate the required bonding temperatures

* The growing seed stack does not have to undergo any substrate etchback steps, thus preserving the

structural integrity of the base Si wafer or die

Figures 2-3 and 2-4 depict these processes in more detail, and if the reader wishes to dive deeper into

each process, then please refer to Appendix A at the end of the thesis for the nuts-and-bolts of the fabrication

flow.
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2.2 Wafer-Level Integration: Bonding Uniformity Challenges

2.2.1 Bond Microstructure

One may say that Cu-Cu wafer bonding should be easy: Just slap two wafers together, press them and heat

them, and presto -you're done, right? Sadly, nothing could be farther than the truth. While two clean Cu

or Au surfaces do indeed bond to each other readily, metal thermocompression bonding is notorious for

having global bond uniformity problems. The metallic system has neither the "chemical zipper" like the

van der Waals attraction force in Si-Si direct bonding [21, 22] nor the solvent-matrix coagulation between

two spin-on polymer surfaces 1. Instead, Cu-Cu or Au-Au bonding proceeds only with atomic diffusion

and grain growth at elevated temperatures, and whether or not the reaction proceeds depends largely on

the micro-roughness of the metallic interface. When the micro-roughness variation becomes a long-range

order defect, these microscopic voids and other defects can easily grow into macroscopic ones upon two

4000C bonding anneals.

In fact, Chen, et. al. has shown that while a freshly e-beamed Cu pair exhibit the highest bonding

strength, a Cu pair that has been exposed in cleanroom air for more than two weeks bonds just as well,

even with no pre-bonding surface cleans [23]. However, if one tries to remove the native copper (II) oxide

(CuO) with dilute HC1 prior to bonding, the RMS surface roughness increases from sub-nanometer to about

1.5 nm, and just that slight increase in pre-bonding roughness can result a post-bonding Cu-Cu interface

undulation of more than 75 nm [23]. Worse, if at some random local spots the surface roughness far exceeds

the RMS value, no amount of heat and mechanical pressure can supply enough kinetic energy to facilitate

plastic deformation and inter-atomic diffusion. This results in micro-voids, and when voids aggregrate in

the wrong spot in a Cu-Cu 3-D structure, one would have an open circuit or a film delamination spot.

Lesson Learned: Fresh deposition of Cu ensures the highest possible bond quality, while surfaces with

slight oxidation also results in a smooth bonding interface if no acid cleans were performed. Pre-

bonding acid cleans do strip the Cu surface of impurites but roughens up the bonding interface dra-

matically, and thus is actually detrimental to the final Cu-Cu bond quality.

2.2.2 Mechanical Contact

Even when Cu surface conditions were perfect, the quality of the bond was often dictated by the a second

variable: How well can one press the two wafers together while maintaining an even contact force across

the 6" substrates. Again, this problem may appear on the surface as a trivial matter, but there's much

more than meets the eyes. The critical factors of concern are the compliance of the chuck material, the

material compliance of the inserts in-between the wafers and piston, the piston's travelling distance, and

1Metal-metal surfaces can indeed have a zipper-like bonding wavefront upon contact, but this can only occur under high vacuum
and must be preceded by an in-situ, pre-bonding Ar sputter clean, in which the unstable dangling bonds formed at one metal-air
interface are hungry for interactions with the other interface



the amount of piston downforce needed for a successful bond. To see the interplay of these factors, let's

look at the bonder setup after a wafer pair has been aligned and it's ready for bonding. This is depicted in

Figure 2-5.

waferbow
piston

Bonding ceramic
chamber waferbow

Quar
backi

plate

wafer

ers
nded

lamnMV.I 1 I

Figure 2-5: Electronics-Vision EV501 wafer bonding setup

The Piston Backstop

In wafer bonding, the correct piston travelling distance needs to be set to ensure maximum contact between

the two wafers. This was accomplished by dialing in the total thickness of the to-be-bonded substrates and

of the graphite diffuser by rotating the piston backsop collar. From Figure 2-6, it should be clear that if the

limit distance was dialed in too large, the the piston will never make contact with the graphite diffuser; on

the other hand, if one dials in the thickness a little too short, then upon a piston downforce more than 300

N, either the quartz backing plate will fracture or there will be a mechanical displacement of the backstop

relative to its initial zero position. While breaking the quartz backing plate is an irrecoverable fault, the

vertical displacement of the backstop can be monitored and re-zeroed after every bonding session. With

constant vigilance in monitoring the equipment state, the bonding quality for 4" and 6" Cu-Cu thermo-

compression has become more consistent, although the overall uniformity is still subpar. Some examples of

these ever-present random delamination between the SOI-handle bonding interface after Si etchbacks are

in Figure 2-7 2.

2For reference, the wafers in Figure 2-7 has undergone the following processes:

1. Starting handle wafer: 5000 A thermal oxide on Si

* one* 
•
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Figure 2-6: Piston backstop position during resting and bonding phases. The graphite insert and wafer
thickness were 2.55mm and 650pm each, respectively

Since the bonding uniformity has not yet been fully optimized, there must be other mechanical factors

in the system in which one can improve on. This actually leads to our next topic of discussion - the bond

diffuser design.

The Bond Diffuser

From Figure 2-8, there were three basic kinds of diffusers available in MTL: Solid steel circular, steel donut

with an 1 cm deflectable steel center tab, and solid graphite circular. The following discussions will hope-

fully convince the reader that both the flatness and the diffuser material compliance were also key factors

in maximizing the Cu-Cu bond quality.

To start with, let's briefly review the Cu-Cu bonding results from the stainless steel diffusers and prove

that diffuser flatness is an essential element to be contended with. The first experiment involved the com-

parison of a solid steel vs a donut-shaped steel diffuser with deflectable center. The idea behind the de-

2. Starting fake SOI wafer: Si base with the trilayer

* 5000 A thermal oxide as BOX

* 2500 A LPCVD poly as the fake SOI

* 1 pm PECVD oxide (from concept-i) as the fake ILD

3. Sputter 20 /4m of Al on the fake SOI as part of the laminate structure
4. E-beam 500 / 3000 A of Ta/Cu on both wafers

5. Cu-Cu bonding, followed by mechanical grindback and TMAH etchback, thus exposing the fake BOX's back surface

N
A

- z=0

= A

I

I
I9.
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Figure 2-7: Random delamination between the SOI-handle interface after TMAH etchback.

flectable center tab is that for Si-Si direct bonding, the initial push by the waferbow pin at the wafer center

creates a "bonding wavefront" that travels radially outward, and along that wavefront, the cleaned Si-Si

surface will automatically adhere to each other via van der Waals forces. In Cu-Cu thermocompression

bonding, however, the deflectable center tab can actually be quite a nuisance because the waferbow pin's

maximum downforce was only 7 N. The performace of the three types of diffusers can be compared from

Figure 2-9 .

The rough patterns observed on the wafers were the results from micro-fractures at places where the Cu-

Cu bond was either incomplete or completely failed. Furthermore, while the facture patterns made by the

steel solid chuck were random by nature and changed from sample to sample, a target-like microfracture

pattern persist on all wafers bonded with the donut steel diffuser. These results suggest that the while

3 The wafers in Figure 2-9 consist of the following layers and underwent these steps:

1. Starting top and bottom wafers: 5000 A thermal oxide on Si

2. Sputter blanket 500 / 3000 A of Ta/Cu, with no exclusion rings

3. Bond top and bottom wafers

4. Mechanical grindback 500 pm of Si from one side, followed by TMAH aqueous etchback until the buried thermal oxide is
present
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Figure 2-8: Bond diffuser geometry: Solid circular vs. donut
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Figure 2-9: Bond diffuser geometry: Solid circular vs. donut, wafer after TMAH etchback

the center-deflectable tab in the donut-diffuser is indeed detrimental to the bonding process due to a weak

waferbow pin contact pressure, the global surface smoothness of the donut diffuser was much better than

the solid steel diffuser because of its repeatable fault patterns. Thus, this experiment showed that the

diffuser flatness is an absolute must for a good bond.

Next, the importantace of diffuser compliance was tested by comparing the results between the flat steel

donut diffuser vs a solid graphite diffuser, of which was both thinner and softer than its steel cousin. Figure

2-10 the results. These wafers have undergone the same treatment as Figure 2-9 except for the TMAH

aqueous etchback. Just after mechanical grindback, one can already see that the graphite diffuser bonds

better than the steel donut because its compliance can compensate for some degrees of surface roughness

(The circular imprint did not show up too well in the photo because it very difficult to show such a minute

difference in polarization in normal photographic film). Moreover, to prove that the graphite diffuser gave



6" Solid Graphite Electrode

Figure 2-10: Bond diffuser geometry: Solid donut vs. solid graphite, wafer just after grindback

an uniform bond for blanket Cu films, we have constructed the following structure that will give some

extra information about the bonded Cu films. In short, we have replaced the mechanical grindback step in

the preparation for Figures 2-9 and 2-10 with a CHF 3 dry etch to remove the 5000 A thermal oxide from one

side of the bonded pair only (designated the "top" side). This was followed by a TMAH etchback, and the

result can be seen from Figure 2-11.

The top view shows the exposed smooth thermal oxide surface with no apparent delaminations in any

regions; this is in contrast of the bottom view, which shows that the backside of the "bottom" wafer was

attacked viciously by TMAH. The fact that the Cu-Cu bond beneath the smooth thermal oxide surface did

not delaminate after an inordinate amount chemical attack gave proof that the graphite diffuser indeed

made the Cu-Cu bond smoother and stronger.

On a side note, one other interesting thing came out of the the above experiment. If one focuses on

the edge view of the etched wafer in Figure 2-11, the photo shows that the entire stack exhibits a concave

curl (the "bottom" surface, which still contains about 100 pm of Si substrate, was pointed up towards

the computer keyboard). This is proof that the sputtered Cu film was deposited in tensile and remains

in tensile stess even after two 400 'C thermal cycles worth of grain growth. Unforseen by yours truly at

the time, the tensile stress combination provided by the Cu-Cu bond and the laminate structure proved

to be a disaster waiting to happen when one was ready to bond a PMOS wafer to a handle. The culprit

here: Massive waferbow. Its cure: Maximum bond downforce, bow-compensation metal deposition, and

maximum downforce during thru-wafer Cu via damascene.

Waferbow Compensation

Last, but not least, the final mechanical variable in bonding is the amount of piston downforce needed

to ensure good wafer contact and to exert enough external energy into the bonding interface to facilitate

atomic diffusion. To first order, if one dials in the correct piston backstop collar height, empirical results

6" Donut Steel Electrode
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Figure 2-11: Graphite-bonded wafers after etchback, showing both global uniformity in Cu bonding and
high tensile stress of annealed Cu films

show that a normal 6" diameter, 650 pm-thick Si wafer with a 5-10 ~m waferbow in either flexture concavity

can bond to its Siamese twin substrate with contact forces as low as 2000 N. But as the thin film stacks add

up during front-end and back-end processing, the total film stress and the overall waferbow will both

increase. As proof, recorded in Table 2.1 was a sequence of NMOS waferbow measurements after some

selected process steps taken prior to wafer bonding (a " ^ " sign because a compressive film deposited on Si

will create a convex curvature, whereas a "U" sign denotes a tensile bow because tensile film deposited on

Si will exhibit a concave curvature). 4. Since wafers with excess bow (usually also very stiff as a result) will

resist mechanical forces applied by the piston and tends to create air pockets within the Cu-Cu interface,

bow management prior-to and during bonding can also make or break the quality of the overall bond.

During the course of fabricating the NMOS and PMOS devices for the ring oscillators, we actually

encountered a huge parity in terms of waferbow management techniques between the two wafer groups. In

both cases, the waferbows were large enough such that bow-compensation techniques were needed prior to

bonding. Focusing our attention to the NMOS process first, as the MOSFET fabrication process moves from

the front-end to the back-end, the waferbow of an SOI substrate tends to become mildly compressive up

to the point where the topside Cu damascene vias are ready to be etched and filled. In terms of waferbow,

4 These measurements were peformed on the Tencor FLEX laser scanner available in TRL, and a double-side polished Si wafer with
an 1 pm PECVD top oxide was chosen to be our reference wafer because it represents the lowest common denominator case where a
single wafer contains some standard amount of ILD on top. The measured waferbow value of +16.44 pm was a sanity check that our
oxide bow measurements was indeed compressive and was correct.

-- -·· · · · ·



Radius of
Substrate Waferbow curvature

X2-side polished Si + 1 pm oxide 16.44 pm 120.03 m(reference)

X2-side polished NMOS
(substrate thickness=525 pm)

+ 2 pm sputtered Cu frontside 52.34 pm U 33.65 m

+ 1 pm sputtered Cu backside 4.06 pm A 648.05 m

+ Anneal at 300 °C, 1 hr 7.13 pm A 270.34 m

+ Cu via damascene, frontside 14.66 pm A 132.63 m

Table 2.1: NMOS waferbow measurements, at different process stage prior to bonding. A" ^" sign denotes
compressive bow, and a "U" sign denotes tensile bow.

the damascene via fill was a turning point in the process because to properly fill-in an 1.1 itm-deep via

prior to Cu damascene, a bilayer of 500 A Ti and an excessive2tim Cu film had to be deposited as an

overfill prior to Cu CMP. At this point, the waferbow dramatically turned into a tensile one (see Table

2.1 for numerical details), and its magnitude was large enough that it caused a serious uniformity issue

when one tries to perform Cu damascene CMP. This is not a show-stopper, however, and it was remedied

somewhat by sputtering an 1pm bow-compensating Cu film on the backside. Upon polishing off the Cu

via overfill and adding an extra 500 / 3000 A Ta/Cu lift-off process to define the Cu bond pads, the ready-

to-be bonded NMOS SOI wafer has a nominal bow of 14.66 /m compressive, which in the wafer bonding

world, this was considered to be relatively flat. In summary, if the NMOS wafers did not receive a bow-

compensation treatment, the extreme tensile bow exhibited by the Cu damascene vias would have made

the wafer bonding step much more difficult.

The seemingly harmless need for NMOS waferbow compensation during the Cu damascene step was

a prelude for bigger problems when it came to the PMOS wafers. This was because the laminate layers

that hold the PMOS and the handle wafers contain two, 10 to 20/pm-thick Al release layers, both of which

add a tremendous amount of tensile stress to the overall stack. Thus, the PMOS-handle complex exhibited

an enormous tensile waferbow that hindered the handle wafer bonding, the backside Cu via damascene,

and the final Cu-Cu bond processes. Table 2.2 lists some bow measurements taken from various PMOS

wafers after handle bonding and backside Si grindback / etchback. Moreover, Figures 2-12 and 2-13 are

the pictorial representation of the PMOS-laminate-handle stack and a photo of a bonded-etchbacked PMOS

wafer used in the bow measurements in Table 2.2, respectively.

Because the PMOS tensile bow was too large to be completely corrected by backside film compensation,

the only course of action in achieving an uniform PMOS-NMOS bond across the entire 6" wafer was to use

a piston downforce of 10,000 N (maximum machine limit) and a piston backstop collar overpress distance
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Figure 2-12: Details of the laminate stack in reference to bow measurements presented in Table 2.2.

Figure 2-13: Photo of PMOS wafer, after successuful handle-wafer bonding and substrate etchback after a
piston-based bow compensation press. The Al release layer thickness in this sample was 10 im.

of -100 im (in other words, dialing in the total wafer + diffuser thickness and then subtract 100 jm to

compensate for the inherent waferbow of the individual PMOS and handle) were required.

Lesson Learned: In the EV aligner-bonder system, the waferbow pin height (ie. The backstop collar) needs

to be calibrated frequently to ensure a good wafer contact. Moreover, contact energy transfered

from the piston to the wafer pair can be maximized by using a solid, compliant diffuser made out

of graphite. Finally, a thick Al release layer in the laminate structure or a thick Cu damascne via

overfill can create tensile waferbows in excess of 100-200 jm, thereby requiring waferbow compensa-

tion techniques such as backside film deposition or stress-induced cracks on wafer surfaces to enable

further fabrication processes.



Substrate Waferbow Radius of
curvature

X2-side polished Si + 1 pm oxide 16.44 pm 120.03 m
(reference)

20 pm Al laminate- blank dummy 300.55 pm U 5.98 m

20 pm Al laminate - real PMOS 108.95 pm U 15.94 m

10 pm Al laminate - real PMOS 177.25 pm U 10.27 m

10 pm Al laminate - real PMOS 286.46 pm U 6.98 m
with thinner handle substrate

Table 2.2: PMOS waferbow measurements for different Al thickness within the laminate structure that holds
the PMOS and handle wafers together. A " ^ " sign denotes compressive bow, and a "U" sign denotes tensile
bow. Each indicated Al thickness correspondsto the thickness of a single release layer shown in Figure 2-12.

2.3 Wafer-wafer Alignment

The ability to accurately align one wafer to another can also be the determining factor in whether or not

3-D would be a viable technology in the future. "Why is this important?" the reader might ask. It's simple:

A n-fold increase in vertical via pitch results in a n2 increase in via density. This might not seem much, but

it can be significant as the via pitch approach the 1 tim barrier. To see this, let's examine the effect of vertical

integration as we scale down the via pitch. For instance, using wafer bonding techniques, it is conceivable

for monolithic 3-D integration to improve the vertical via density by a factor of 400 using monolithic 3-D

integration over a MCM-based (multi-chip module) 3-D architecture. This is assuming that the MCM was

made from typical ball grid solderjoints with a via width and pitch of PMCM = 100 Mm within a 0.8x0.8 cm2

area, as shown on the left diagram in Figure 2-14. Now, 3-D integration with Cu-Cu bonding, it is very easy

to create and bond Cu via pads with a pitch of Pc,3d = 5 ym, provided that our wafer-to-wafer alignment

tolerance is much smaller than 5 ym.. and bingo ! Just by increasing the n by 20, the vertical via density

by a factor 400, or in absolute numbers, our 16 BGA solder balls have just grew to 6400 Cu pads. From a

standard packaging perspective, a 400x increase in the number of solder joint connections is considered to

be a vast improvement in terms of increased connection density.

Furthermore, if the wafer-to-wafer alignment technology improves to about +/- 1 tim, then it's possible

to shrink the via pitch to about 24m and we would gain another 6.25x in via density. As one should expect,

the critical factor in Cu-Cu 3-D integration is how well you can align the two wafers prior to bonding. As

mentioned before, for every factor n in alignment improvement, there is a factor n reward in via pitch and

n2 increase in via density. Unfortunately, the same factor of n in alignment improvment means that the

wafer alignment system has just increased exponenetially in complexity. Unlike regular lithography where

the sub-micron alignment accuracy by a stepper is the norm, there is a ceiling to how well one can align
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Figure 2-14: Increase of via density by factor of 400 from 100 ym via to 5 Jm via.

one 6" wafer to another. The fundamental enemy here is not of mechanical dexterity in wafer handling, but

rather that in MTL's current alignmen scheme, we are trying to scan and align opposing surface registration

marks on two thick and opaque substrates to an accuracy on the order of 1 ym. The emphases on wafer

thickness and opacity are multi-faceted:

* If all substrates considered were opaque and were made of Si, then one can design an infrared aligning

system that allows a thru-wafer view with a one-shot alignment process. The IR system must have

enough depth of focus and light transmission to see through at least two 650 pm worth of Si substrate

to be effective.

* If IR is not available, then one must design a system with some sophisticated double-side alignment

mark scheme. This will ultimately decrease the total alignment accuracy because two or more regis-

tration procedures are now needed. The EV-620/501 aligner at MIT is of this classification.

* The choice of material for the laminate layer and the handle wafer will also determine which optical

system one should use. For example, the MIT 3-D process's laminate structure contains blanket films

of Cu and Al, both of which are impervious to infrared transmission.

The following discussion may seem mundane to the reader, but understanding in detail how we perform

wafer-wafer alignment in MTL will expose the fact that while our alignment system is excellent for MEMS

applications, it has glaring limitations when used for integrated circuits where bond pads are smaller and

denser. For starters, the EV-620/501 aligner/bonder system in MTL is a non-IR, double-sided registration
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Figure 2-15: Wafer-wafer aligning protocol

alignment system that exhibits a +/- 1 ILm alignment tolerance specification for 4" and 6" substrates. The

actual alignment process is shown in Figure 2-15.

Although the registration mark positions of the top (or the first) wafer can be made arbitrary within the

microscope's field of view, the position and alignment accuracy of the second wafer's pre-made, double-

side registration marks are the key to success 5. Assuming that the contact aligner has an inherent +/- 1 /m

misalignment tolerance, an accumlation of both orthgonal +/- 2 [m shift and a slight 0 shift can occur be-

tween the top and bottom registration marks. Now, combine this shift with a +/- 1 tm orthgonal and some

5 Although not shown in Figure 2-15, the key instrument used in the front-to-back registration lithography step in MTL is the
Electronic Visions EV1 contact aligner. Unlike a normal contact aligner, this particular model has 4 microscope objectives - 2 topside,
2 bottomside. The description of the process is actually very similar to that of Figure 2-15:

1. Align, expose, develop, and etch frontside Cu registration mark using the top objectives

2. Insert same mask in TRL's EV1 contact aligner

3. Optically align the bottom microscope objectives to the mask

4. Align computer-generated superficial crosses to the actual marks on the mask

5. Insert opaque wafer, with pre-etched frontside registration marks facing down and resist-side up

6. Using the same bottom objectives, manaully align the pre-etched frontiside marks to the computer-generated crosses

7. Expose, develop resist on "backside" of wafer; etch backside registration marks



more 0 shift during wafer-to-wafer alignment, and sudden you're up to a +/- 3 pm orthogonal mislalign-

ment plus maybe up to an 1 degree shift in 0, which further degrades the orthogonal components. If one

takes the +/- 3 pm wafer-wafer misalignment as a base parameter, then the minimum Cu pad dimensions

can be no smaller than about 5 pm x 5 pm. Moreover, the air moats dimensions described on Item #6 in

Figure 2-4 also cannot be smaller than 5 pm, and this can reduces the effective Cu-Cu bond area across the

wafer by a significant amount. 6

In all, due to the machine-dependent aligmnment constraints, the 3-D ring oscillator and the heat diode

mask set were made to have an overly-relaxed set of layout. Pre-empting the discussion in later chapters,

the Cu bonding layer's design rules were:

1. Assume a maximum wafer-wafer misalignment tolerance of +/- 10 pm

2. Thru-wafer Cu damascene via dimensions were 10 pm x 10 pm

3. Cu bonding pad has to overlap thru-wafer Cu vias by at least 5 pm

4. Minimum length of any electrically-active Cu areas is 10 pm

5. Mimimum air moat length in any direction is 10 pm

The +/- 10 pm maximum wafer-wafer misalignment tolerance assumption can easily be satifisfied on the

6" wafer level but not on the die-level (more about die-die alignment in a later section). Furthermore, as

mentioned previously, any Cu-Cu misalignments will change the air gap isolation distances between the

electrically- active and inactive Cu pads. One consequence of this could be an unwanted increase in para-

sitic capacitance skwed towards one particular layout direction, and its exact effect on circuit performance

can be very difficult to predict or extract. This could be an implicating factor in why our face-back, die-

level CMOS oscillators failed to function (also to be discussed later), but it's difficult pinpoint if that is true

or not. To continue with our misalignment discussion, since the air gap moat widths across the die is no

longer a constant 10pm, the local bonding strength among different regions of a given die could become

unbalanced. A quick example of this can be seen in the bonded Cu-Cu chain resistor, whihc was fabricated

on the same wafer as the face-face 3-D ring oscillators to be discussed in Chapter 4, was displayed in Figure

2-16.

In this particular case, our wafer-wafer misalignment was merely around 2.5 pm in the x-direction only

7. However, since the designed width of each resistor leg was 10ypm, the effective Cu-Cu overlapping area

has decreased by a whopping 50% (A misalignment of 2.5 pm means you have to subtract 2.5 pm from

both edges of the Cu line, which totals to 5 pm Cu-overlap loss) ! Exacerbating the situation is the large

area of air moats surrounding these resistors, which in which the purpose of such layout was to gauge how

6 Worst of all, the aforementioned misalignment tolerances are actually what one would get on a good day and does not include any
misalignments caused during the physical transportation of the wafer pair going from the aligner to the bonding chamber.

7In other words, anyone who regularly bonds wafers in MTL would say, "The bonder aligned pretty well today !"
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Figure 2-16: Photo of bonded Cu-Cu chain resistor. For reference, the sample was prepared by a face-to-face
waferbond of 2 NMOS wafers and a subsequent SF6 / TMAH bulk Si etchback from one side.

large can the non-bonding area of a given plot be until either stress-induced film delamination or physical

puncture from sag points along the free-standing film occur. From the photo, one can observe that the

overall structural integrity in regions of sparse Cu pads can be quite good, despite exposures to a 5+ hr

plasma etch and a 3 hr hot TMAH attack, if both wafer-wafer alignment and bond uniformity were close to

perfect. Conversely, if wafer or die-die alignment was way off, acid or alkaline encroachment due to liquid

penetration into free-standing film defects can wreak havoc on the devices. Such disaster can be seen in

Figure 2-17, where acid corrosion occured in rampant in regions of either sparse Cu coverage or with very

wide thru-wafer Cu damascene vias (severe via dishing can create huge voids within a big Cu-Cu bond

pad).

Regions of dense Cu pads
(3-D CMOS ring oscillators)

*\Film delaminaion in
regions of sparse

7/ Cu pads or
large thru-wafer vias

Figure 2-17: Photo of bonded 3-D ring oscillators and dummy solenoid structures, where the mislalignment
was about 9 Mm in the vertical direction. For reference, the sample was prepared by face-to-back, die-die
bonding of a PMOS/NMOS pair and a subsequent 6 hr HCI acid encroachment release of the handle die.



Now, with all the fabrication and design problems associated with our base +/- 3 ym figure of merit,

how can we make it better ? It is the humble opinion of the author that the cure for misalignments (which

leads to tighter air moat tolerances, denser Cu vias, etc.) lies within a state-of-the-art, custom-made IR

aligner and bonder setup like those from Mitsubishi's Advanced Mechanics and Systems group [17]. In

their system, the pre-bonding, alignment, and the bonding chambers were all integrated into one contigu-

ous complex and all operate under ultra-high vacuum (UHV) for cleaniness. To be more specific, the device

wafers first undergo a pre-bonding Ar sputter clean to create unstable dangling bonds along the metal-

air (or oxide-air) interface. Without leaving UHV, the wafers then travel to the alignment stage where the

combination of their IR setup and the piezoelectric-controlled micromanipulators can obtain an alignment

accuracy of sub - 0.5 ym without the use of a double-sided registration system. Once aligned, wafers were

immediately set into contact mode within the UHV environment, where a bonding wavefront will start

from the point of contact and travel outward towards the wafer edges. This is very similar to the van der

Waals bond between two pre-cleaned Si wafers, but with a twist: The group claims that using their Ar pre-

sputter clean approach, they can bond any metallic surface to its Siamese twin regardless of which element

it is. Above all, the aligned and contacted wafers were transported to the piston chamber without human

handling of the substrates and the bond chuck, thus further minimizing alignment errors.

Lesson Learned: Critical wafer-wafer or die-die alignment is the key to maximizing the vertical-to-planar

interconnect density raio in 3-D integration. Alignment tolerances can directly affect parameters such

as the size of Cu bond pads, the pad-pad air isolation distance, the total percentage of Cu coverage

in a given footprint (directely related to the overall bond strength and quality of the wafer pair), the

pad-pad parasitic capacitances, and much more. While MTL's double-registration mark system was

more than adequate for MEMS-related devices where alignment tolerance were more forgiving, it

may not be suitable for 3-D integration purposes. A more robust, in-situ pre-clean, IR alignment, and

bonding system like the ones from Mitsubishi is probably the desirable option.

2.4 Handle Wafer Release

To recapitulate, the thesis discussions have so far focused on the material science (Section 2.2.1, the coarse

mechanical (Section 2.2.2), and the fine mechanical engineering (Section 2.3) aspects of wafer-wafer bond-

ing. In this section, we shall touch on the the chemical aspects of the MIT 3-D integration flow - the design

and implementation of the handle-SOI sacrificial bond, also known as the laminate layer, and its destruc-

tion mechanism: The handle wafer release. To start with, let's a global look at the entire 3-D process flow in

Figure 2-18.

To have a robust face-to-back 3-D process, one needs to create a sacrifical bond layer in Step 2 that's

strong enough to withstand the vigorous mechancial grindback and TMAH etchback in Step 3, the Cu via

damascene CMP in Step 5, the permanent Cu-Cu bond's thermal budget of 400 °C for 30 min in Step 7, and
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then be able to be destroyed somehow in Step 8 without damaging any other layers in the resulting 3-D

stack. Knowing that there's no single "magic bullet" bonding material that can satisfy all these conditions,

the basic design of the sacrifical bonding layer, or also referred in our literature as the laminate structure, will

be divided into three parts: Choosing a suitable permanent bonding material that can withstand all forms

of corrosion or mechanical abuse, choosing a suitable cladding material or scheme that will be destroyed by

a specific chemical reagent, and choosing the release reagent itself; in essence, the permanent bond material

will stay in its place forever, while the release cladding layer will act as a "permanent bond bypass" and

will facilitate separation of the handle substrate and the main 3-D stack. A rough schematic of the laminate

structure scheme can also be found in the magnified inset in Figure 2-18.

Laminate Structure Construction

Rather than going through the entire design matrix, it will suffice to say that the optimum choice for the

bond member inside the laminate structure should be Cu, the optimum wafer release layer material was

chosen to be Al, and the optimum releasing reagent was chosen to be hot HC1. Here's a checklist to justify

these choices: Copper was an excellent bonding medium choice because

* We already knew from previous experiments that a 400 OC Cu-Cu bond was strong enough to survive

both the razor test (tensile stress) and mechanical grindback of Si (shear stress)

* We know from chemistry that Cu can withstand all forms of hot alkaline attack up to 120 OC 8.

8Household chemistry proof: Do you have a washing machine with Cu pipes installed ? Copper pipes can last years of abuse by a



* We know that Cu can withstand multiple rounds of 400 oC anneals

* We know that Cu can withstand any common cleanroom acids that are non-oxidizing (HCL, HE cold

H2SO4, cold H3PO4 , buffered-oxide etch, CH 3COOH), all developers, and all cleanroom solvents

except "Microstrip"

* For extra protection, it is fortunate that the Ta diffusion layer is chemically inert to all known aque-

ous chemical attack up to 1500C with the exception of strong HF or HF + nitric acid solutions. In

some respect, Ta is more "noble" than Au or Pt in the analytical chemsitry world because it is even

impervious to hot solutions of aqua regia (HC1 + HNO3).

* We know that Cu is impervious to nearly all room-temperature plasma etch chemistries, due to the

low vapor pressure of its etch products (chlorides, fluorides, etc.). However, Cu will oxidize quite fast

in any kinds of ashers.

On the other hand, Al was an excellent choice for the release layer cladding material because

* Although aluminum oxide (A120 3) acts a self-passivating oxide in many semiconductor processes, it

succombs easily to strong, hot acid or base attack when the anodized film is thinner than 1 Lm 9

* Al is impervious to SF6 plasma attack, which can be used to our advantage if we chose to dry etch the

entire handle substrate from the top instead of using a wafer release reagent.

Last, but not least, hot HCI was the optimum choice for the release reagent because it does not attack Cu

(provided the air content inside the solution wss kept in check to reduce Cu oxidation) and it can destroys

layer of Al upon contact. But wait.. there is a conundrum here: Won't the Al cladding layers undergo severe

corrosion during TMAH etchback ? This would cause a premature separation of handle wafer from the PMOS-SOI,

right ? The answer to both questions was "yes," and indeed there is a scheme to circumvent this problem.

Instead of depositing the layers inside the laminate structure one after another, the Al layer deposition can

be first made to have an exclusion ring around the wafer edges. Then, one can protect this Al layer from

any forms of corrosion by depositing the Cu/Ta overlayers without exclusion rings. A schematic of the

laminate layer construction can be seen in Figure 2-19

If the reader has an insatiable thirst for more details on the science behind acid-encroachment han-

dle wafer release, which includes a brief dialogue on the physical, interfacial, and surfactant chemistry

of things, please refer to Appenix B for further information. Otherwise, the reader now must be thinking,

"Well, that's interesting, but does the acid release process actually work on a bonded 6" wafer pair ?" Sadly,

the answer is no, and in fact, it barely worked on a bonded 4" wafer pair. Figure 2-20 depicts the outcome

combination of scalding water, 3% sodium hypochlorite (aka bleach, an oxidizer much more potent than the feared nitric acid at equal
molarity), and various forms of alkaline laundry detergents

9 Once the protective oxide was destroyed, Al is one of the "wimpiest" metal in terms of corrosion resitance, for it is so amphoteric
that it dissolves in solutions with pH <4 (Coca Cola) and ph > 10 (Drano).



Handle Wafer

Handle Wafer
.... .... ....

500 nm oxide

50 nm Ta
Sacrificial

Cu-Cu bond
0A of

V I ...............
-----I -

I IL
I I
I I
I I
I I
I (
I r
I
I r
I I

I

I Bulk grindback
of 400 pm

BOX

- -------------- .............. About 100 pmDevice Wafer Device Wafer Abo ut i re maining
of Si remaining

Top View of Device Wafer

K
TIp Layer: Cu/Ta. no exclusion ring

(sputtered)

Lower Layer: "Release layer,"
with exclusion ring
(e-beam or sputter)

Figure 2-19: Constructing the laminte structure: The Al release layers can be protected from mechanical
grindback and TMAH etchback by an exclusion-ring deposition followed by a non-exclusion ring deposi-
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of acid encroachment on bonded 4" pairs as a function of the Al release layer thickness. The release times

varied from sample to sample, but most of these measurements were taken after 1 day's worth of acid

soaks. The release reagent in this case was a volumetric mixture of 1:1:1:0.16 of HC1, H3 PO4 , water, and the

non-ionic surfactant nonylphenol ethoxylate (NPE) 12-mol moiety. The temperature of the solution was set

at 100 oC.

What always happened was the following. Within the first hour of acid release, the initial transient

acid encroachment rate is fast and furious. However, but as time approaches infinity, the resulting acid

encroachment distance reaches an asymptotic value, but not quite. Basically, there seems to be a two-tier

transient response, the first being approximately exponential in time, and the second following a square-

root time dependence. Nevertheless, the conclusion is that even with a dual 20 pm Al release layers, wafer-

level handle release with acid encroachment is impossible due to surface tension effects.

Lesson Learned: The optimal sacrificial handle-SOI laminate structure design comprised of two parts:

Choosing Cu as a permanent bonding medium and choosing two cladding layers of Al, sputtered

with exclusion rings, as the release layer. Thus, the resulting laminate structure was able to with-
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Figure 2-20: Results of 4" wafer-level acid encroachment release. In each sample, the indicated Al thickness
was that of the release layer, the handle material refers to either a 5000 A thermal oxide base or an 1000 A
LPCVD nitride base, and the "Edge" value refers to the maximum bond encroachment distance.

stand mechanical grindback, TMAH etchback, Cu CMP, and the thermal stress applied to the system

during the final Cu-Cu interconnect bond. Although a hot HC1 solution can be used to destroy the

Al release layers and causing the collapse of the laminate structure, the acid encroachment distance

within the release layer cavity was not deep enough to facilitate the separation of even a 4" bonded

pair. Therefore, this method of wafer release can only work if:

* If additional release cavities were deep-RIE etched from the top of the handle wafer, or

* If the substrate size was reduced further, such as on a die-scale.

And this is where our next adventure takes us -the realm of die-level 3-D integration.



Chapter 3

Die-level 3-D Integration

During my graduate career at MIT, there were always people asking me this particular question while we

were presenting our 3-D schemes at a conference: "Ummm.. say, don't yall have a yield problem when you do

3-D integration on a wafer-level?" Yes indeed. When one attemps to bond a 6" wafer with a 9x9 die array to

its counterpart, we run into an old semiconductor yield issue called the known-good-die (KGD) problem.

Simply put, no one can guarantee that a working 3-D device can be found at a predetermined spot on a

bonded die without pre-testing those two dies individually beforehand. Moreover, the KGD problem can

be exacerbated when an engineer decides to waferbond a 4-level 3-D stack, where a yield of 95% per wafer

can suddenly drop of (0.95)4 = 81.4% for the multi-layer stack. Therefore, it makes perfect sense on paper,

at least, to convert 3-D integration into a die-level scheme where the KGD problem can be circumvented

altogether. In addition, if one chooses die-scale integration, he or she can take a KGD from a III-V process,

bond it to a CMOS KGD, and the result is a serious exercise in OEIC integration ! Fortunately in the MIT

3-D process, there are numerous breakpoints where one can do a wafer-to-die scale conversion, and this

was depicted in Figure 3-1.

In Figure 3-1, our recommendation for the earliest breakpoint is right after Step 3, or the Si substrate

etchback. As noted in the figure caption, it is very difficult to perform mechanical and Si grindback on a

die level mainly because of the tooling involved in handing such small substrates can be more trouble than

it is worth. Also, if the wafer-die scale conversion occcured there, the Al release layers no longer contain

an Cu/Ta edge envelope, and will therefore be prone to TMAH corrosion. Furthermore, if one desires a

"damascened" backside via, we would actually recommend that the wafer-die conversion be pushed back

to Step 6. This was the path we took for the thesis work on the face-to-back bonded CMOS ring oscillators.

While the perceived benefits of going to die-scale 3-D integration, whether it's heterogeneous inte-

gration or what not, are plentiful, it's obvious that there's no free lunch here. The three demons of die-

integration are: Throughput, the quality of die-die alignment, and the quality of the die-die bond. We will

touch on the last two points in the remainder of this chapter, and both of them again require discussions on
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Figure 3-1: The MIT 3-D fabrication flow, with wafer or die-level processing options. Die-level integration is
not recommended before Step 4 because it is very difficult to maintain structural integrity of the handle-SOI
complex during die-level substrate etchback.

equipment limitations. Since we've already mentioned all the major bonding parameters at great extents in

previous sections, the following discussions will be much more brief and succinct.

3.1 The Wafer/Die-Bonder

3.1.1 The Bond Chuck

The aformentioned EV 620/501 wafer aligner-bonder system in TRL can be retrofitted into a die aligner-

bonder with a few more gadgets. To begin with, since the vacuum grooves that hold the 4" or 6" wafers

during alignment do not have extensions at the bond chuck center, a brand new die-level chuck was de-

signed and custom made, and a photo of this was shown in Figure 3-2. As seen in the schematic, the center

vacuum hole sits on top of a 1 mm stainless steel mesa with a cross-sectional diameter of 4 mm. The idea be-

hind the mesa design was to make sure that the dies were elevated enough to ensure total contact between

the substrate, the bond glass, the diffuser, and the piston surface when the entire stack is sitting inside the

bonding chamber.

3.1.2 The Bond Glass , Bottom Support, and the Wide-angle Objective

Next, in order for us to continue the equipment discussion, a description of the alignment process must be

presented. To the first order, the die-die alignment procedure is exactly the same as in the wafer-wafer case

in Section 2.3 but with a slight twist. As shown in Figure 3-3, one would insert the first die into the aligner

upside down and the chuck's center vacuum tap will then hold the substrate upside down. After aligning

the computer registration marks and the physical registration marks as shown previously in Figure 2-15 on



Vacuum hole
a) Depth - 500 pm
b) Diameter = 4 mm

Steel mesa
a) Height = 1 mm above base
b) Diameter = 4 cm

Flat stainless-steel base -

Top View

Photo of generic
6" bond chuck,
but without the

retrofitted center
vacuum hole

Side View

Figure 3-2: Die-level bond chuck schematics. The chuck itself was retrofitted from a regular 6" waferbond

chuck, and a sample photo of it was shown on the right.

page 44, the second die with the double-side registration marks can be inserted for alignment.

Bond glass (z-cut quartz plate)

microscope
objectives

1

1. Insert top wafer,
circuit-side down

w w

U U

2. Insert bottom wafer,
circuit - side up.

w w
U U

3. Align bottom wafer
to computer marks

Figure 3-3: Die-die alignment procedure.

Although this sounds theoretically feasible, unfortunately the above tasks cannot be done with the nor-

mal 6" bottom aligner supporter because it is both opaque at the chuck center and it also lacks vacuum

grooves to hold the bottom die in place during aligning. Going further, even if the aligner's bottom sup-

port was fully transparent, neither microscope objectives on the aligner could travel all the way out to the

center of the chuck. In fact, the objectives' travelling distance was so small that if one places an 1 in x 1 in

die at the center of a transparent support, the objectives were unable to see the edge of the die.

Bond chuck

Ni l ohm



To fix all these problems, a new aligner bottom support was custom-made and a corresponding quartz

bond glass was machined with the correct vacuum groove positions in place. Also, a single 3.5x wide-angle

extension objective was also purchased in order to extend the aligner's field of view. Previewing things

to come, two of these objectives should have been bought because without binocular vision, the theta-

misalignments between the top and bottom dies will be extremely difficult to correct because of the small

substrate size and its inherent difficulty in 0 alignments.

Next, the schematics for both the transparent bottom support and the bond glass were presented in

Figure 3-4. Again, note that both of these parts has to exhibit naked-eye transparency to e.nsure proper aligner

operation. The consequence of this was severe becuause, as we shall see, a transparent bond glass exhibits

some undesirable mechanical limits that could interfere with the overall die-die bonding quality if thermocompression

was the method of choice.

Quartz bond glass:
Wafer-side

Quartz bond glas:
Pressure-plate side

Figure 3-4: Die aligner's new bottom support and the new quartz bond glass.

Once the dies were properly aligned inside the aligner, the combination of the bond chuck and clamped

dies have to be physically removed from the aligner, flipped upside down, and then inserted into the

bonding chamber. Figure 3-5 shows both a topside and a cross-sectional view of the chuck-die combo right



Top view of chuck + damped dies

Graphite diffuser
2 aligned dies

Quartz bond glass
Chuck mesa

Side view of chuck + damped dies

Figure 3-5: Top and side view of the aligned dies, just after alignment and before bonding

before bonding.

3.1.3 The Mesa Pressure Plate and the Graphite Insert

Finally, when the clamped dies were loaded into the bonder, the actual thermocompression routine can

commence. This entire setup depicted in Figure 3-6. To ensure maximum energy transfer from the piston to

the bond chuck, a stainless steel mesa pressure plate was designed such that its cross-sectional area roughly

matches the mesa protrusion of the bond chuck. We still don't know the function of the narrow grooves

milled onto the mesa surface, but perhaps it's related to adding friction to the mesa - bond glass interface.

Last, but not least, a soft graphite diffuser was placed on top of the entire assembly in order to evenly

distribute the force applied by the piston during bonding. As we will see, the condition of this graphite

insert was THE KEY ELEMENT in obtaining a good Cu-Cu die bond. For the next couple of pages, we will

discuss four modifications applied to the aformentioned die-bonding setup that improved the die-bonding

yield:



Center hole.
Diameter = 5 mm

Narrow grooves,
depth- 1 mm *

Steel mesa
a) Height = 2 mm above bas4
b) Diameter = 4 cm

Flat stainless-steel base

Chuck-side view

Figure 3-6: The bonder setup during thermocompression bonding.

1. Fix 1: Home-made Bond Chuck The mesa bond chuck's center vacuum tap was an impediment in our

struggle to achieve a good bond unifomity in both 2"x2" or 1 cm x 1 cm dies. Instead, we made our

own die-bonding chuck where the base was entirely flat and silver paint was used for die-attachment

in place of vacuum.

2. Fix 2: Backstop Collar Overpress to Reduce Bond Glass Bow As seen from Figure 3-6, to ensure

maximum energy transfer from the mesa pressure plate to the aligned substrates, one needs to over-

come the bond glass's bow, a situation created by the anchoring clamps on either side of the chuck.

Re-calibrating the piston backstop and zero-ing in the yield point of the quartz glass proved to be a

time-consuming and an expensive exercise, albeit a fruitful one.

3. Fix 3: Plateau Dies and Post-alignment Check One cannot rely on faith and assume that the dies

are perfectly aligned when the alignment prcoess was completed. Without visual confirmation of the

alignment prior to bonding, the end result was always a die-die misalignment on the order of 20 ym

or more orthogonally and more than 1 degree off in 0. The best way to check for alignment was to



make the top die's area a bit smaller than the bottom, thus forming a plateau region where registration

marks from both substrates can be seen simultaneously by an indepedent optical microscope.

4. Fix 4: Pyrex Wafer Subsitution and Graphite Insert Monitoring Foreshadowing to later discussions,

the quartz bond glass eventually broke after x-number of bonds. It turns out that a 6" pyrex wafer

functioned just as well as the quartz did, and during the pyrex bonding experiments it was deter-

mined that the condition of the graphite inserts needs to be monitored closely to enusure the best

possible bond quality.

Readers who are interested in the details of these quick-fixes are invited to read Appendix C. But it

is suffice to say that these improvements resulted in the successful fabrication of a face-back, die-level

integrated 3-D stack. Figure 3-7 is a gallery of a face-back bonded sample that underwent successful acid-

encroachement release with a 20 ptm Al release layer.
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Figure 3-7: A gallery of successful die-level integration. All photos were taken from a face-back, die-bonded
sample with a 20 bm Al release layer. (a) and (b) shows that the misalignments between the two wafers
were on the order of almost 10 .m. Photo (c) shows is a "looking-glass" structure where in regions devoid of
Cu bonding pads, the lower-tier NMOS devices can be simultaneously visualized with the top-tier PMOS
devices. Photo (d) shows a section of a completed 21-stage CMOS ring oscillator (when tested later, the
output was flatlined but responded to changes in Vdd). Photo (e) shows a two-layer SOI Schottky heaters
with satellite temperature- detecting diodes.
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3.2 Multi-level 3-D Die Integration

Now that we've "solved" all the problems associated with die-die alignment and bonding, can it actually

be used in a 2-level integration process ? Or how about in multi-device level integration processes ? The

answers to both questions were fortunately yes, and for the moment, we will leave the 2-level integration

results for the next chapter. Right now, let's take an extremely abbreviated look at some preliminary results

for multi-level die-level integration. To start with, our vision of a multi-level die integration flow is rep-

resented in Figure 3-8, where the basic idea is to first construct a 2-level seed die to which additional die

layers can be added onto. However, the real question the reader should be wondering about is: Can our

current process actually produce a multi-layer die stack ? The proof of concept can be seen in the 3-layer

stack shown in Figure 3-9 and Figure 3-10.

...................
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Figure 3-8: The MIT 3-D die-level integration scheme.

Now, can we build the stack even higher ? Absolutely. Figures 3-11 and 3-12 proves the point, shows a

4-layer stack built by three successive Cu bond / acid release loops.



E 0 2 pm ILD (PECVD oxide)

5000 A poly (fake SOl)

5000 A thermal oxide (fake BOX)

500 / 3000 A of Ta/Cu for permanent bond

2500 A poly (fake SOI)

1000 A thermal oxide (fake BOX)

Figure 3-9: Construction of a 3-layer stack. In (a), two separate die-level Cu bonding / acid release loops
were created on top of a base SOI substrate, thus forming a 3-layer stack. A proof-of-concept 3-layer blanket
stack was made in (b) with the bonding configuration of (c), which was similar to what we had in Figure
C-1.

3.2.1 Epilogue

During the course of this entire chapter, we have shown that within the bounds of our current 3-D process,

wafer-level 3-D integration can only work if the devices were face-to-face bonded. This limitation was

due to our inability to successfully release a 6" handle wafer using our current acid encroachment method;

that is, we did not construct additional fluidic channels within the handle wafer itself to enhance the acid

seepage rate into the Al release layer, of which can be easily done and it is a topic for future work.

On the same token, another topic of interest for future work is using the SmartCut process to facilitate

the handle wafer release step - a work started by our former group member C.S. Tan. [24]. Instead of de-

stroying the laminate structure on a macro-scale using acid corrosion or polymer laser ablation (developed

by IBM) [25, 26], H+ atoms can be pre-implanted into the handle wafer prior to the sacrifical handle-SOI

bond. Then, at the time of wafer release, a heat treatment of the bond at 400 OC will activate the H+ implants

which evolute into tiny bubbles of H2 gas. This results in global micro-crack formations on the first 10-100

ym of the Si wafer, thus the handle wafer appears to "peel" off from the 3-D stack during release. It sounds

simple, but work has to be done to control the both the thermal cycle of the 3-D process and any external work

done to the handle-SOI bond, i.e. any piston downforces, after H+ implants. Preliminary results showed that if

a Cu-Cu bond was again chosen to be the handle-SOI bonding medium, the H2 implant was pre-maturely

activated even in a handle-wafer bond at 250 OC and with 2000 N of piston downforce. By stark contrast,
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Figure 3-10: SEM photo of the 3-layer stack from sample (b) of Figure 3-9.

C.S. Tan has repeatily shown that if one uses a room-temperature SiO 2 -SiO2 handle wafer bond 1 that was

followed by a 3 hr anneal at 300 OC, the H+ implants remains inactive. This simple example shows that

control of the total work budget at the handle-SOI interface has to be carefully investigated if SmartCut was

to be a viable process.

In terms of die-bonding, we have shown that die-level integration does indeed work and can be repeated

numerous times to construct a multi-level structure, albeit a few equipment modifications were required.

Nevertheless, in terms of mechanics, a proof of concept was demonstrated in both wafer-level and die-level

Cu-Cu bonding. The question now is: Does Cu-Cu 3-D integratio really work ? In the next chapter, I hope

the reader will agree that the resounding answer to that question is "yes!"

1A successful oxide-oxide bond via van der Waals attraction requires, on top of all other parameters, a good microscopic and
macroscopic oxide surface planarity. While it's simple to bond a blank, post-CMP oxide wafers with a 0.1 nm RMS local surface
roughness, it is much more difficult to bond fully-integrated wafers in which the ILD oxide surface, initially with a +/- 1.5 pm surface
topography caused by the underlying MOSFET and Al interconnects, has undergone a professional(Entrepix, Inc. in Arizona) global
CMP of which the step heights have been reduced to rolling hills of 200-500 A high. In terms of back-end IC integration, this was
pretty much as "flat" as one can get with global CMP, but unfortunately it's not good enough for direct SiO 2 -SiO2 bonding.
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Figure 3-11: Construction of a 3-layer stack. In (a), three separate die-level Cu bonding / acid release loops
were created on top of a base SOI substrate, thus forming a 3-layer stack. A proof-of-concept 3-layer blanket
stack was made in (b) with the same bonding configuration from (c), of Figure 3-9.

Figure 3-12: SEM photo of the 4-layer stack from sample (b) of Figure 3-11.
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Chapter 4

Electrical Characterization: 3-D Ring

Oscillators

4.1 Overview of 3-D Ring Oscillator Design

4.1.1 Motivation

From the inception of the MARCO 3-D Interconnect Project, we spent some time in the planning stage

deciding on what sort of circuits can best demonstrate the feasibility of 3-D integration. Should we build

a simple memory capacitors on top of simple logic ? How about an interconnect-limited FPGA network ?

Not before long, it became apparent that a 3-D ring oscillator should be the definitive vehicle of choice -

both for its design simplicity (or so as we initially thought) and its fabrication simplicity (ditto the previous

notion!). Going deeper, we also decided that the feasibility metric can be "kicked up a notch" by building

a CMOS-based 3-D ring, and for each CMOS inverter in the ring, one would completely segregate the

PMOS drain-side load from the NMOS transistors by splitting them onto separate substrates. Hence, the

3-D CMOS ring oscillators will ring if and only if 1 all Cu-Cu contacts and all PMOS / NMOS devices

were aligned well, bonded well, and the devices all work simultaneously within one region of a die. The

remainder of this chapter will focus on analyzing the results from our latest lot, which in short, the face-face

bonded samples worked but the face-back samples did not. But before one dives into the data analysis, let's

take a brief look at the layout design of the oscillators.

1
That was probably not a good idea to begin with.. putting all the eggs in one basket like that. But I didn't know any better back

then!



4.1.2 Overall Structure of the 3-D Ring Oscillator

As previously mentioned, the PMOS and NMOS devices within each circuit were completely isolated from

each other by constructing them on separate wafers. To be specific, all NMOS devices will reside on the

bottom wafer and will have a choice between a SOI or bulk design, while all PMOS devices will be SOI's

and will reside on the top wafer. The actual Cadence layout of a 21-stage CMOS ring oscillator can be seen

from Figures 4-1 and 4-2. For this particular example, the width of each NMOS member within the main

21-stage ring was 60 Im, and it corresponding PMOS partner's width was set to 120 pzm to offset for the

50% reduction in mobility for holes. Also, each nearest-neighbor inverter within the main ring was oriented

in a head-to-tail fashion to minimize the wire length, or equivalently, the parasitic capacitance between the

output stage of one inverter and the input stage of the next. A semi-3D schematic of this can be seen in

Figure 4-3.

Figure 4-1: Cadence layout of a 21-stage CMOS ring oscillator, WNMOS = 60 &m, L = 1 pm.

If one look a bit closer on the lower right-hand corner of Figure 4-1, there was a giant probe pad labeled

"Vdd pad shorted to back-bias pad." This meant that whatever positive Vdd level was applied to the

circuit, the PMOS Cu backgates are also going to be at the same positive bias. Physically, this was achieved

by shorting the Vdd pad with the auxiliary Cu bond pads that normally would not be electrically active. In

fact, during the layout of the Cu bond pads, care was taken such that all electrically-inactive Cu auxiliary

pads (i.e. Cu bonding areas that were not in contact with the source / drains / gates of MOSFETS) were

shorted together, thus creating a gigantic back-bias plane that could be used to shift the Vt's of the PMOS

if be needed to. Furthermore, an additional 10 ym air moat was added to the perimeter of each 3-D ring

oscillator cell to completely isolate the backbias gates from inter-cell crosstalk. The Cu-only layout can
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Figure 4-2: Skeleton of a CMOS oscillator schematic, showing all 4 probe pad connections.

Vdd

Belongs to the top PMOS wafer

Cu bonding layer

S Belongs to the bottom NMOS wafer

Figure 4-3: A more detailed circuit diagram of a 3-D ring oscillators, showing the head-to-tail connections
between the inverter I/O ports and weaving between different wafers.
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Figure 4-4: A stripped-down layout of the same CMOS ring oscillator, this time showing the Cu bonding
layer and the Cu damascene via positions only. Since this is a dark-field mask, the large, black field regions
represent Cu metal coverage, whereas the white boxes denote regions of air moat isolations. Also, a group
of Cu damascene vias on the lower right shorts the Vdd pad and the Cu backbias region together.

be seen in Figure 4-4. In addition, if one wishes to control the Cu backbias planes independently, all the

designer would do is to cut the top Al Vdd pad into two halves - and instantly, you'll have yourself an

independent bias pad with the same exact Cu layout as shown in Figure 4-4.

4.2 Preliminary Cadence Simulation of the Ring Oscillators from Real

MOSFET Data

4.2.1 Initial Design Considerations

Now we have seen a glimpse of how the 3-D ring oscillators were laid out, let's go briefly into the circuit

design side of the layout. To begin with, the entire chip contained two main ring oscillator groups. A quick

table of this can be found in Table 4.1.

1. 21 or 43-stage, 2-D NMOS Rings : All devices associated with these oscillators reside only on the

bottom NMOS wafers. The main NMOS switch was either 60 pm or 80 ym wide and all had 1 pm

long channels. An active load was used as the load resistor, (these NMOS loads were running in

enhancement-mode, where both the gate and the drain were shorted to Vdd), and their widths vary

from 20 pm down to 5gm. These 2-D ring oscillators were made as safeguard devices., just in case

if none of the 3-D rings worked, the plan was to pull the 2-D oscillators signals up from the bottom



NMOS wafers to the Al contact pads on the top surface using the huge Cu damascene vias and simple

Cu-Cu bond pads as a conduit. If that at least worked, then it was proof that the Cu-Cu contacts were

somewhat viable, but of course, not completely viable.

2. 21 or 43-stage, 3-D CMOS Rings: The NMOS transistor widths in these cells vary were all 60 pm,

and the PMOS widths were all twice that, or 120 pm. Within these 2 groups, the MOSFET channel

lengths were either 3 pm (my safeguard devices) and 1 pm (more aggressive designs). Further still,

each of those groups were divided into cells that could or could not be backbiased independently, and

in retrospect, the forced-Vdd bias cells were quite redundant and useless.

NMOS-only rings CMOS

21-stage 43-stage 21-stage 43-stage

Switch - Switch - Only NMOS W/L ratio shown;
load load FB = forced backbias. IB = indpendent. backbias

Inverter #1 60/1 - 10/1 60/1 - 10/1 Inv. #1-2 60/1 - FB 60/1 - FB
Inverter #2 60/1 - 20/1 60/1 - 20/1 Inv #3-4 60/1 -IB 60/1 -IB
Inverter #3 80/1 - 5/1 80/1 - 5/1 Inv #5-6 60/3 - FB 60/3 - FB
Inverter #4 80/1 - 10/1 80/1 - 10/1 Inv #7-8 60/3 - IB 60/3 - IB

Table 4.1: A collection of NMOS-only and CMOS ring oscillator configuratons. Each W/L ratio correspond
to the width / length of MOSFETs in microns. In the NMOS-only cells, the first set of W/L corresponds to
the switching transistor, while the the second W/L corresponds to the enhancement-mode NMOS active
loads. In the CMOS cells, the PMOS transistors' widths doubled their NMOS counterparts. Forced-backbias
means that Vdd was shorted to the Cu backbias pad, whereas in independent backbias cells, those two ports
are separate.

Before the devices were even built, these ring oscillators were designed with presumed Vt's in mind.

Through numerous iterations of Tsuprem simulations and refining the dose of the threshold voltage adjust

Vt implants, a threshold voltage Vt of 1.23 V for NMOS and -0.9 V for PMOS provided a starting point

for the overall design. For 3 ym long devices without major parasitics, a 21 stage CMOS ring oscillator

was initially simulated to ring at arond 120 MHz at 5 V Vdd with rail-to-rail output, which at that time,

the design looked somewhat feasible. Such simulated results from Cadence is presented in Figure 4-5. We

shall not report the other a priori simualted oscillator results here; rather, a more interesting exercise is to

obtain the actual measured Vt's from real devices, re-enter them into Cadence and simulate the oscillator's

response without parasitics, and then compare it to the measured oscillator results (provided if any of them

worked at all in the end).
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Figure 4-5: The basis simulation from which all other ring oscillators were designed around. Each col-
ored curves represent the output response of a 21-stage CMOS ring oscillator (W/Lmo, = 60/3, W/Lpmo,
= 120/3) for a given value of Vdd. The NMOS and PMOS Vt's were assumed to be 1.23 V and -0.9 V,
respectively.
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4.2.2 Measurement of Fabricated single NMOS / PMOS devices

Upon finishing the design and layout, the final chip contained a total of 12 masks - 2 for PMOS/NMOS

active areas on different wafers, 1 for gate poly, 2 for PMOS/NMOS contact cuts, 2 for Al Metal #1 for

NMOS and PMOS, 1 for Cu damascene via, 1 for Cu bonding pad, and 3 for the lateral thermal diodes

to be discussed in the next chapter. Starting with SOI substrates for both the NMOS and PMOS lots, the

NMOS wafers were completed all the way up to its final Cu bonding pad layer and would wait for the

PMOS lots to catch up before the final 3-D Cu-Cu bond can commence. On the other hand, the PMOS SOI

substrates took a bit longer to go through the entire process; so, upon etching the Metal #1 Al lines, one

wafer was taken out of the lot for some quick measurements. Table 4.2 is a collection of unbonded NMOS /

PMOS data measured right after the Metal #1 etch. In the NMOS data, the threshold voltage was extracted

by plotting the drain current Id as a function of Vg,, for at a small Vds of 1.5 V. In other words, from the

MOSFET equation in the linear region:

Id = L-- 2 (Vg - Vt)Vds - V (4.1)
2L

if Vds is somewhat smaller than (V,,-Vt), then the above equation reduces to:

Id = C (Vg,, - Vt)Vd, (4.2)

and when one then plots Id as a function of Vg, for at a constant small Vd,, Vt can be extrapolated from

the x-intercept of the graph's least-square linear fit. Moreover, the PMOS table entries also confirmed the

expected Vt shift as one applies an increasing negative backbias on an isolated PMOS-SOI device lightly

biased at Vd, = -1.5 V. Finaly, all pertinent IDVD, IDVG, and the VT least-square extraction graphs can be

viewed from Figure D-1 thru Figure D-3 in Appendix D. Within these graphs, two features of the NMOS

IDVD plots are worth mentioning. First of all, all 1 pm channel devices (plots (a)-(e) of Figure D-1 suffer

from velocity saturation, and this can be deduced at a glance because the spacing between each I-V curves at

saturation was linear, not qudratic, with respect to Vg. Simply put, our usual quadratic saturation equation

[tCw
Id = 2(VL - Vt) 2  (4.3)

now becomes a linear equation under velocity saturation, with (V,,-Vt)

Id = Co (Vosat)2 (4.4
2L

where

VDsat = 2(Vg,- V)JEcL (4.5)

and E, is the empirical critical electric field parameter at velocity saturation. Therefore, we expect there

are some hot electrons within our channel, and as we will see when we probe the actual 3-D ring oscillators,



these hot electrons may be colliding with the lattice with such ferocity that optical phonon interactions could

occur 2

Next, from the IDVD graphs, one can observe that each of the 1 Am devices break down at a higher

Vdd as V,, increases. This was also probably due to impact ionization metioned above - a classic case

of avalanche breakdown at work. Since we have already established that these NMOS reaches velocity

saturation fairly quickly, even at very low gate voltages (like for the V, = 1 V curve). The channel electrons

become "hot" (ie. out of equlibrium with the substrate as they go from the source towards the drain as

we sweep Vd, from 0 to 4V. This exacerbates the breakdown because the numerous holes generated from

the ionization events at the drain, aided by the positive gate electric field, are being swept to and collected

at the bulk substrate, or in SOI wafers, charging up the buried oxide-silicon (BOX-Si) interface. Once the

BOX-Si interface gets enough positive charge on it, the p-type body and the n+ source junction becomes

forward biased, and then more electrons will be injected into both the body and the drain, causing more

impact ionization events.

As V, increases, the breakdown now happens at a larger Vd, because saturation occurs later, thereby

delaying the avalanche event. Incidentally, the charging of the BOX-Si interface has a profound effect for

the 3-D ring oscillators because as we shall see, a face-to-face bond body-charging event merely changes the

Vt of the PMOS and adds a little bit of parasitic capacitance, while in a face-to-back 3-D bond, the charge

buildup could become a huge parasitic capacitance between the device layers, although this remains to be

proven true. As a last comment, notice that both of these characteristics were less pronounced in the longer

3 jm channel device (Figure D-1, plot (f)).

Unbonded NMOS Unbonded PMOS

ST-slope Backbias V (V) ST-slope
(mV/decade) (V) (mV/decade)

80/1 0.662 118.35 6013 Floating 0.103 -77.3
60/1 0.662 125.96 60/3 Grounded 0.105 -77.21
20/1 0.645 150.25 60/3 -5 0.431 Always on
10/1 0.643 208.20 60/3 -10 0.83 Always on
5/1 0.661 293.88 60/3 +10 -0.665 71.16
60/3 0.900 85.82

Table 4.2: Summary of basic MOSFET parameters for unbonded NMOS and PMOS wafers. Vt = Threshold
voltage, and ST-slope = Subthreshold slope

Next, the serires resistance and the effective channel length of the NMOS devices can be extracted if one

2 To foreshadow the interesting results ahead, the face-to-face ring oscillator's titanium backbias pad (probed at floating bias) had a
parasitic oscillation signal drawn from the main-stage MOSFETS that rang at a frequency 6 times faster than the output buffer signals.
Furthermore, the peak-to-peak voltage of these parastic oscillations grew to very strong levels as Vdd increases.



plots the on-resistance as a function of the theoretical channel length of each device, for as many values

of V9 as possible as long as V9 > Vt is valid. This is because low drain voltages, the channel and the

source-drain resistance combined can be given as:

Lm - 26L
Rm = + R, (4.6)pnCo0 W(V9 - Vt)

where

Rm = the channel resistance + the 2 source/drain resistances (measured linear MOSFET resistance)

Lm = the theoretical gate length of the devices from the maskset

6L = the decrease of channel length L from each side due to process-induced source-drain overlap

Rx = the dual source/drain resistance combination (value independent of channel length)

The data plotted in Figure 4-6 were obtained for the following two devices:

* NMOS, W/L = 60/3: Vg = 2 to 5 V

* NMOS, W/L = 60/1: V9 = 2 to 5 V

As seen in the graph, if the iso-V9 values were linearly interpolated, the experimental value of R, can be

extracted at the nexus of all 4 curves due to the fact that the source and drain series resistance do not vary

with the channel length (notice that we kept the channel width at a constant 60 pm for R-preservation).

Thus, a single source or drain series resistance was a mere 5/2 = 2.5 0, and the channel length shortening

due to processed-induced source/drain overlap was about 0.125 = 2 4.L, or SL = 0.0625 pm total.

Switching gears, the PMOS plots within Figures D-4 thru D-6 of Appendix D show what we expect

from an SOI device that has undergone a positive and negative backside bias. The Vt's of the floating body

and the grounded body devices were both around +0.1 V, which was quite weird at first glance because

even if there was no Vt-adjust implant, the theoretical Vt of a PMOS should always normally be negative.

The anomaly on-hand could mean that there was some work-function mismatch between the p+-doped

poly gate and the n-well implant, or if dopant segregation occured within the p+-doped poly during the

source/drain anneal, then Vt shifts could also occur. Nevertheless, Vt can be adjusted easily by applying a

backbias on the substrate chuck contact, and this will be a key theme for the 3-D ring oscillator results: If

the output ring response is undesirable, just crank up the body voltage - and problem solved !

Notice in plots (c) and (d) of the IDVG figures, the Vt's have been shifted so much in the positve direction

that the devices didn't turn off within our V, sweep. Also, the source / drain series resistance were not

extracted from the PMOS devices; instead, we also assumed it to be 2.5 Q per implanted region. Finally, a

critical note for the PMOS lot: All PMOS-SOI device with channel lengths less than 2 pm had shorted

source-drains 3

3
This was due to my mistake in trusting the TSuprem simulations for the source /drain anneal thermal cycles.



Extraction of Series Resistance
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Figure 4-6: Extraction of unbonded NMOS series resistance. The on-resistance of each 60 jm-wide NMOS, at
Vds = 0.5 V, was plotted as a function of both the gate length L and the gate bias Vg. The total source-drain
series resistance 2R, was extrapolated at the approximated to be about 5 0, or at intersection of all curves
except for the outlier line Vg = 2.
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4.2.3 Simulated Oscillator Results: With Measured Vt's and First-order Parastics

Now, once we've found the true Vt's, the corresponding series resistance through measurements, we can

re-evaluate our simulated ring oscillator results to get a more realistic expectation of what our real 3-D

oscillators would look like 4. Inserting the corresponding values from Table 4.2 on page 71 into the Cadence

circuit models, we can get simulated results such as the the 21-stage, 3 ym-length CMOS ring oscillator

shown in Figure 4-7. Again, instead of plotting all these results in separate figures, the ring frequency vs.

Vdd for each kind of oscillators were collectively tabulated in Table 4.3.

=: Vdd = 1 V
-: Vdd = 4V

v: Vdd = 2 V
a: Vdd = 5 V

a: Vdd = 3 V

40,0n 80•0n 120n 160n
time ( s )

200n

Figure 4-7: Simulated 21-stage, 3 pm-channel CMOS ring, with real NMOS Vt = 0.900 V and a properly-
biased PMOS Vt = -0.665 V (taken from value at +10 V backbias for safe measures).

4The mobility values and the effective substrate doping (the SOI film was thin enough where a mere Vt implant can change the
body doping) for NMOS / PMOS models in Cadence were also changed such that they matched the measured I-V characteristics of
individual devices. The combination of these 2 corrections proved to be of upmost imporantance, for if they remained uncorrected,
the simulated output frequency of the CMOS oscillator was about 20x faster than the measured output. With the corrections, the
simulated output frequency was only 3.7x faster than the measured data.
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Table 4.3: Summary of CMOS ring simulations, with real NMOS / PMOS Vt's included in the models.
For the all 3 /m long device, Vt,,m,, = 0.9 V and Vtpmo, = -0.665 V (assuming that our Vt can be properly
biased to a well-behaved negative number). For the 1 pim long devices, Vtmo, = 0.662V and the PMOS Vt
remained the same.

4.3 3-D Ring Oscillator Measurements

The long-awaited results for this entire project are presented in the next couple of sections. Out of the 4

possible CMOS ring oscillator configurations, two of the cells managed to ring: The face-to-face bonded

21-stage and the 43-stage circuits with 3 pm channels. It was no surprise that the 1 /&m rings did not

work because all 1 ym PMOS transistors became resistors after the overly-aggressive source / drain + poly

resistivity reduction anneal. In particular, it was surprising that the 43-stage variety worked at all, since

that particular circuit had a combination of 112 FETs scattered bewteen two separate wafers, 102x2 = 204

individual Cu damascene vias, 5 and 92 Cu-Cu bonds on top of those Cu vias to complete the chain. Every

element mentioned above have to work simultaneously or the chain would have be broken and the outputs

would have been flatlined.

Unfortunately, none of the face-to-back CMOS rings worked. This was probably due to a combination

of poor bonding, aligning, and most of all, there was probably too much parasitic capacitance between the

PMOS Cu back gate and the Cu/Al interconnect layers of the NMOS below. We will go through each of the

results and try to make sense and possibly de-embed some of the parasitics involved.

4.3.1 Face-to-Face Ring Oscillators: 21-Stage CMOS, L = 3 /m

Floating Backbias

The grand results of this entire thesis can really be summarized in this and the following section. In brief,

this set of devices were made by a hybrid process without the use of a handle wafer. First, the NMOS and

5And that's not counting the redundant ones on the big probe pads; these 204 vias were all part of the critical path between the
PMOS/NMOS s/d outputs and their respective gate inputs.

21-stage CMOS 43-stage CMOS

L = 1 pm L=3 ~m L= 1 pm L=3 pm

Vdd Freq (MHz) Freq(MHz) Vdd Freq (MHz) Freq(MHz)

5 82.25 24.59 5 42.19 11.89
4 68.68 19.05 4 33.94 9.25
3 49.50 13.32 3 24.45 6.49
2 27.33 7.13 2 13.49 3.17
1 21.67 0.526 1 1.067 0.260



PMOS devices were face-to-face bonded with Cu. Then, the Si bulk from the PMOS substrate was removed

by a combination of SF6 plasma etching for 6 hrs and a TMAH etchback that stopped on the PMOS BOX

layer. Next, a thin layer of 1000 A Ti was sputtered on top of the PMOS BOX to act as a makeshift backgate.

This was done because our "designed Cu backgate" auxiliary bond pads were now sandwiched in-between

the Al interconnects and the ILD layers of both PMOS/NMOS layers, or in other words, the backgate was

located too far away from the PMOS gates, thus rendering it useless. Last, but not least, an approximately

1.1 ym deep thru-SOI contact hole was etched from the top using both 50:1 HF to etch through the Ti

and BOE to etch through the BOX, field oxide, and the LTO passivation oxide that belonged to the PMOS

SOI. The exposed Al pads (Vdd, ground, output of oscillator, and useless Cu backbias Al pad) were then

directly probed through the vias. Naturally, the Ti metal left over on the top surface will be our makeshift

Ti backgate for the PMOS devices. A brief pictorial tour of the above proces is shown in Figure 4-8, and a

schematic representation of the face-face circuit is shown in Figure 4-9.

Without further ado, Table 4.4 is a detailed list of the working ring oscillator's frequency and output

voltage maxima / minima as a function of Vdd. Also, the measured output signal from the oscillator, the

parasitic signal coming the floating Ti backbias pad, and the parasitc signal coming from deep within the

"useless" Cu backbias plane (denoted by "Al Bias pad" in the legend) were all plotted as a function of time.

For discussion purposes, we will only plot the oscillator response for seleected voltages:

* Vdd = 1 - 2.5 V in Figures 4-10,

* Vdd = 7.0 V and the frequecy vs. Vdd response in Figure 4-11,

* The oscilloscope signal coming from the both the floating Ti backgate and the useless Cu pad within

Figure 4-12 in the body of this chapter.

The entire spectrum of this oscillator's response can be found in Appendix D, section D.3.



21-Stage CMOS, L = 3 Gpm: Backbias = Floating

Vdd V- V+ Vpp Freq (MHz)

1.0 0.109 0.953 0.844 2.857
1.5 0.094 1.813 1.719 4.310
2.0 0.094 2.313 2.219 4.673
2.5 -0.25 3.063 3.313 4.762
3.0 -0.625 3.625 4.25 5.102
3.5 -0.625 3.438 4.063 5.376
4.0 -0.938 4.0 4.938 5.434
4.5 -0.813 4.50 5.313 5.494
5.0 -1.063 4.938 6.001 5.494
5.5 -1.063 5.188 6.251 5.682
6.0 -1.125 5.813 6.938 5.747
6.5 -1.313 6.563 7.876 5.682
7.0 -1.313 7.50 8.813 5.682

Table 4.4: Output from 21-Stage CMOS ring, L = 3 pm, with floating backbias on the PMOS body
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Figure 4-8: The makeshift face-face 3-D process: In (a), the PMOS and the NMOS substrates were bonded
with the standard Cu recipe. Then, a SF6 plasma and a TMAH etch was able to clear the backside of the
PMOS substrate in (b). After the Ti backgate depositon (c) and topside via etch (d), the 3-D ring oscillators
were ready for probing at the red circles in (e).
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Titanium PMOS backbias plane (you can probe anywhere on the top surface of 3-D stack)

II
T T -
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Figure 4-9: The makeshift Ti backgate position relative to all the other probe pads. Notice that the buried
Cu-Cu bonding backplane was useless here because the top Ti backgate, sitting right on top of the PMOS
BOX, has a more direct access to the PMOS gate than the Cu plane.
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Figure 4-11: 21-Stage CMOS, L = 3 /hm: The plot at Vdd = 7.0 is in (a). In (b), the frequency and the peak-
to-peak voltage Vpp of the output was plotted as a fuction of Vdd. Note the saturation of the oscillation
frequency at high Vdd's.
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Floating Ti pad average DC offset and RMS as function of Vdd

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Vdd (V)

Figure 4-12: 21-Stage CMOS, L = 3 pm: The DC offset and the RMS voltage of the fast oscillations coming
off of the floating Ti bckgate and the useless Cu floating pads

As the reader would agree, the preceding figures contains a wealth of information that's tough to swal-

low in one shot. Let's discuss some of the interesting features in detail.

1. The Ring Oscillator Speed was SLOWER Compared to the Simulated Results : One quick compar-

ison between Table 4.4 and Table 4.3, and you will find that our face-face, 21-stage CMOS 3 pm ringer

was about 4.5x times slower 6 than what Cadence told us after we inserted the real Vt's and source-

drain series resistance into our model. Evidently, there is a lot of parastics in our Cu-Cu bonded

samples that we didn't even account for in our simuation models. As we shall see in a few sections,

the two major parasitic contributers in our 3-D circuit are within the Cu damascene vias and the little

extraneous capacitances lay littering upon the entire 3-D landscape.

2. V+N- of Main Output Exceeds Vdd : As seen from both Table 4.4 and the left column in every

Figure from 4-10 to 4-11, the value of V+ often exceeds over Vdd by a little bit and the value of V-

6At Vdd = 5 V, the ratio between the simulated and measured output frequencies is (24.59 MHz / 5.494 MHz) = 4.48



always dipped below the ground rail. Since the PMOS-SOl body voltage was floating, we expect some

sort of charging event at the SOl-BOX interface that's raising the effective V+ above the Vdd top rail.

"But what about the values of V- dipping below aVT one might ask. A quick answer to this question

is that even though the NMOS-SOl body contacts were firmly clamped to zero by the ground chuck,

the overall V- voltage can still shift below av by virtue of SOl-BOX charging occuring at the SOl-BOX

interface. If one was to explain the above statements in more careful fashion, though, we'll have to

take into account our next interesting feature of the oscillator, which was that:

3. The Floating Titanium Backbias Pad both Rings and Contains a DC Offset : If one looks at all

right-column plots from Figure 4-10 he or she would see that both the floating 11 PMOS bias pads and

the "useless" Cu-AI bias pads exhibited some parastic ringer signals that seeped out from the main

ring oscillator chains. In addition, these oscillations were about 6x faster than the proper outputs

coming out of the 9x-buffer port, and both signals have a DC offset component and an oscillatory

V rrns component that increases with Vdd 7. Furthermore, although the the DC offset - Vdd relatioship

was linear, the RMS voltage of the fast oscillatory signal saturates at high Vdd (see Figure 4-12).

Now, armed with knowledge #2 and #3, we are ready for a final discourse on what's happening to these

face-face bonded 3-D oscillators. To begin with, during the time when the PMOS gates are ON within the

oscillator, holes are being injected from the source end (tied at +Vdd) and are collected at the PMOS drains.

Assuming that our PMOS reaches velocity saturation very quickly, as in the case when we measured the

unbonded PMOS device, the holes drifting towards the drain might acquire enough energy to become

hot carriers, thus creating numerous impact ionization events near the drain-channel region. Now, if the

impact ionization energy was great enough, generation of new electron-hole pairs will occur. While the

excess holes will be re-collected at the drain junction by lateral E-fields, electrons, coaxed by the negative

Vgs bias during the PMOS ON-stage, would be swept and collected at the either

• Within the SOl body itself

• At the interface traps between the SOl-BOX interface

Remembering that the PMOS BOX neighbors two conductive substrates (Si channel one one side, 11

backgate on the other side), an electron build-up at the Si-BOX interface would cause a buildup of positive

charges on the 11-BOX interface due to charge neutrality. Since the entire 11 backgate is equipotential, the

buildup of positive charges on the entire Ti surface is the reason why the measured DC offset was positive.

Moreover, since the body discharge rate when the PMOS turns off (when the body-to-drain or body-source

paths are severely reverse-biased) is much slower than the charging rate, an accumulation of electrons will

7In theory, the Ti and Al pad signals should not be shorted together. I think the reason why they're shorting out here was there
were some stringers left on the surface after the topside Ti/contact via etch. This can be proved in our 43-CMOS ringer data where
indeed a proper etch will electrically isolate these two pads completely
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buildup within the body when averaged over time. Since the body and the Ti-gate can store large amounts

of charge, as Vdd increases to larger values, the positive voltage on the ll-gate will continue to increase

without bounds. This matches the observation in Figure 4-11, where the DC offset of the ll-gates keesp

on increasing linearly with Vdd. Since this is an process averaged over time, it is considered to be a slow

process and can be summarized in Figure 4-13.

However, the above does not explain why the RMS voltage of the oscillation saturates at high Vdd. To

explain this effect, one also has to consider simultaneous electron accumulation events occuring at the SOI­

BOX interface. Given there exists a series of interfacial charge states at the oxide interface, electrons injected

into this region from impact ionization will quickly fill these states up when the PMOS is on, and the level

of filling depends on the operating voltage, or Vdd. Since these interfaical states (Qit) are few in number

compared to the charge capacity within the SOl bulk, they can respond to a much higher frequency stimulus

than the aformentioned body charging events. Furthermore, if the value ofVdd exceeds the bandgap, then

all Qit sites will be filled, and this was probably why the Vrms saturates at high Vdd's. The entire Qit

fast-charging scenario was illustrated in Figure 4-13.
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Pinned Backbias

Having gone through the floating gates results in length, let's look at some results where we forced a

backbias onto the Ti backgate. As one would predict, Table 4.5 shows that a postive bias on the PMOS

gate can both shift the Vt and limit electron-charging at the Si-BOX interface, thus forcing V-/V+ back to

where they belongs - above the 0 V rail and below the Vdd rail, respectively. This effect can be readily

seen in measured outputs at Vdd = +5.0 V in Figure 4-15. Taking a closer look, one can see that when the

backbias voltage = +5.0 V = Vdd, The output of the oscillator returned within the rail-rail ranges of 0 - 5 V.

In addition, as one increases the backbias past +5 V (like +6.5 V in plot (c)), the PMOS tends to remain in

the on-state for a much wider input voltage range. Therefore, when the NMOS gates are supposed to be

on, the PMOS gates remain on for some fraction of a time, and by doing so there's a period in which both

the PMOS and NMOS forms an desirable voltage divider. Thus, this is the reason why the output signal

in (c) does not touch the ground rail. A converse argument can be made when when the PMOS Ti-gate is

negatively biased, as in the case plotted in (e), where it's the NMOS that fails to turn off properly.

Finally, while only the Vdd = +5.0 response was plotted in this chpater, the aggregate results of backbi-

asing, from Vdd = +5.0 V down to Vdd = +3.0 V, can be found in Appendix D, starting from page 182.

21-Stage CMOS, L = 3 pm: Backbias = Varied

Vdd PMOS backbias V- V+ Freq (MHz)

0 -0.625 4.938 5.682
+5.0 0.125 4.675 5.376
+6.5 1.75 5.062 4.95

5.0 +7.5 3.25 4.656 4.629
-15.0 0.719 4.406 5.319

0 -0.156 3.563 5.435
+5.0 0.063 3.906 5.208

4.0 +6.5 2.281 3.656 4.857
+7.5 2.375 3.875 3.012
-15.0 0.438 3.938 5.155

0 -0.219 3.156 5.263
+5.0 0.656 2.969 4.808
+6.5 1.906 2.969 1.906
-14.0 1.563 2.969 5.555

Table 4.5: Output from 21-Stage CMOS ring, L = 3 ym, with varied backbias points on the PMOS body
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Figure 4-15: 21-Stage CMOS, L = 3 pm, Vdd = +5V, with: (a) Grounded backgate, (b) +5 V backbias, (c) +6.5
V backbias, (d) +7.5 V backbias, (e) -15 V backbias. Note that as the positive backbias increases, the V- and
V+ values crawls back within the bound ground and +Vdd rails, and at Vdd = +5 V, V-/V+ almost resided
on the rails themselves, albeit with some voltage dr•7from internal series resistance.
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4.3.2 Face-to-Face Ring Oscillators: 43-Stage CMOS, L = 3 pm

Floating Backbias

Without question, the crown jewels of this thesis are the 43-stage CMOS oscillators. It was a miracle that

two of these devices actually survived the entire face-face 3-D flow, let alone having all the FETs and the

Cu-Cu contacts working simultaneously. Again, we have Table 4.6 displaying the important results in

tabular form, and Figures D-15 thru D-18 within Appendix D display the actual output trace from the

oscilloscope. What the reader will find is that the 43-stage oscillator can presents the following features

even more elegantly than its 21-stage sibling:

* Since the 43-stage oscillator contains around twice the amount of inverters as the 21-stage oscillator,

one would expect the oscillation frequency of the longer chain to be half that of the smaller chain.

Comparing results between Tables 4.6 and 4.4 (on page 77), this was roughly confirmed.

* Without proper back-biasing, the V-/V+ extrema traveled much farther away from the ground and

Vdd rails (V+ was at 12 V for Vdd = 7 V!) as opposed to the 21-stage ringers. This was because the 43-

stage chain was larger in area, thus the Ti backgate and the Si-BOX interface could hold more amounts

of charging.

* Maximization of the Ti backgate's DC offset from electron charging of the Si-BOX interface was more

prominent here because of the larger charging area. Also, the subesquent rise in parasitic oscillation's

amplitude due to an increase in avalanche breakdown activity was easier to see in these devices

(again, perhaps optical phonon scattering plays a significant role here too).

Again, the backbias situation here differs from the 21-stage oscillators because the Ti backgate covers a

much wider area. Therefore, since there are more PMOS devices beneath the Ti surface, this causes a huge

amount of electron buildup at the Si-BOX interface and a proportional positive charge buildup on the Ti

gate. Table 4.7 shows that it takes an inordinate amount of backbias voltage, +13 V to be exact, to force the

V+/V- extrema back to the Vdd and ground rails. One can observe this theme over and over again within

Figures D-20 to D-22 plotted within Appendix D.



Table 4.6: Output from 43-Stage CMOS ring, L = 3 /m, with floating backbias on the PMOS body

43-Stage CMOS, L = 3 pm: Backbias = Varied

Vdd PMOS backbias V- V+ Freq (MHz)

0 -1.625 7.25 2.8367
+5 -1.438 6.688 2.778
+10 -0.938 5.813 2.577

5.0 +13 -0.188 5.375 2.293
+14 0.125 5.5 2.101
-10 -0.875 6.375 2.809

0 -1.188 5.250 2.778
+5 -0.938 4.563 2.688

4.0 +10 -0.375 4.00 2.359
+12 0.063 4.00 2.137
-10 -0.125 5.125 2.632

0 -0.875 4.0 2.66
3.0 +5 -0.75 3.688 2.577

+10 -0.188 2.656 1.953
-10 0.0 3.938 2.358

Table 4.7: Output from 43-Stage CMOS ring, L = 3 /um, with varied backbias points on the PMOS body

43-Stage CMOS, L = 3 pmn: Backbias = Floating

Vdd V- V+ Vpp Freq (MHz)

1.0 -0.094 0.766 0.86 1.522
1.5 -0.313 1.563 1.876 2.232
2.0 -0.375 2.00 2.375 2.404
2.5 -0.75 2.594 3.344 2.604
3.0 -1.00 3.094 4.049 2.631
3.5 -0.875 3.813 4.688 2.732
4.0 -1.688 4.188 5.876 2.778
4.5 -1.875 4.4385 6.313 2.778
5.0 -1.688 6.938 8.626 2.778
5.5 -1.875 7.75 9.625 2.841
6.0 -2.063 8.563 10.626 2.809
6.5 -2.375 9.188 11.563 2.874
7.0 -2.563 9.875 12.438 2.874



4.3.3 Face-to-Back Ring Oscillators: CMOS Failures, NMOS success

Encouraged by the success of the face-face CMOS ring oscillators, tests were also done on the face-to-back

bonded CMOS oscillators to see if any of them worked. Summing up all the results in one sentence: All

face-face CMOS oscillators had flatline outputs, but its DC offset responds to variations in Vdd. In all three

examples listed below, the devices wre constructed from a face-to-back, die-level, 20 ym-Al release layer

process. In each figure, the Vout vs. Vdd data points were plotted along with a dashed-green test line to

check if at any point Vout was shorted with Vdd. Under a quick examination, Figure 4-16 shows a 21-stage

L=3/tm CMOS oscillator was a "flatliner" probably because there was too much parasitic capacitance or

series resistance linking the PMOS gates, the Cu-Cu bond that doubled up as the PMOS backgate bias plane,

and the NMOS interconnect layers that lie immediately underneath the Cu bias plane. Notice also that the

metastable output voltage was about half the applied Vdd value (the interpolated data line approximately

bisected the angle made between the x=y test line and the x-axis). Please also note that the relationship

between Vout and Vdd was approximately a linear one at intermediate Vdd values.

To continue, a quick examination of Figure 4-17 shows that the interpolated data line from this "flat-

liner" hugged very close to the x=y line, suggesting that this 43-stage CMOS oscillator either had a shorting

defect from Cu-Cu mis-alignment, underetched stringers, or from other unknown causes. Again, like its

other face-to-back bonded siblings, this oscillator did not ring because it was also in a metastble state of

operation. Lastly, even if the oscillator from Figure 4-18 had a floating backbaias, the end results were quite

similar to the previous two devices. The linear relationship between Vdd and Vout can be seen across the

entire spectrum of Vdd inputs.



Flatlne Output Levels of: 21-Stage CMOS L-3um, Face-back +20 um Al die release

--- y = x test line for Vdd-Vout shorting
0 Backblas = +5 V

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Vdd (V)

Figure 4-16: 20 jm Al released, Face-back bonded 21-stage CMOS at L = 3 /Am with +5 V backbias on the
PMOS backgates. Since all output responses were flatlines, the output DC voltage Vout was plotted against
the power supply voltage Vdd. This particular circuit had no Vdd-Vout shorts and was in a metastable
state that inhibited oscillation.



Flatilne Output Levels of: 43-Stage CMOS L=3um, Face-back +20 um Al die release

y = x test line for Vdd-Vout shorting
Backbias = +5 V

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Vdd (V)

Figure 4-17: 20 pm Al released, Face-back bonded 43-stage CMOS at L = 3 Ym with 5+ V backbias on the
PMOS backgates. Since all output responses were flatlines, the output DC voltage Vout was plotted against
the power supply voltage Vdd. This particular circuit exhibits an almost-shorted Vdd-Vout path near the
PMOS transistors, and like the other oscillator, this sample was also in a metastable state that inhibited
oscillation.



Flatline Output Levels of: 43-Stage CMOS Lalum, Face-back +20 um Al die release
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Figure 4-18: 20 yrm Al released, Face-back bonded 43-stage CMOS at L = 1 Pm with floating PMOS back-
gates. Since all output responses were flatlines, the output DC voltage Vout was plotted against the power
supply voltage Vdd. This particular circuit also had no Vdd-Vout shorts and was in a metastable state that
inhibited oscillation.
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4.4 Cu Parasitic Extraction with Bonded MOSFETS and 2-D Ring Os-

cillators

4.4.1 2-D Ring Oscillator Output From Cu-Bonded Substrates

Although the face-face ring oscillators worked, we still have to investigate the parasitics that contributed

to its 4.5x reduction in oscillation frequency when compared to a parastic-free Cadence model. To the first

order, these unknown parasitics must involve the Cu-Cu bond and/or planes in terms of either adding stray

capacitances or adding series resistance to the oscillators' critical path. One quick way to check for these

parasitics is to compare the results of the 2-D, NMOS-only ring oscillators on virgin NMOS-SOI subtrates

to the equivalent oscillators in both the face-face and face-back bonded samples. Probing results from the

bonded samples can be easily done because we designed a big thru-PMOS via that tunnels down from the

stack's top surface down to the NMOS layer's Al Metal #1 pads. A quick schematic of this can be seen in

Figure 4-19.

Vdd

Vout

thru-PMOS
vias)

Gnd

Main Chain 1x Buffer 9x Buner

3x Buffer 16x Buffer

Figure 4-19: The buried 2-D NMOS oscillators can be probed by pulling the signals up from the bottom
layer with the Cu-Cu bond pads and the Cu damascene vias.

The litmus test would be based on the following 2-D, 21-stage NMOS oscillators:

* Switch NMOS W/L -Load NMOS W/L = 80/1 - 5/1

* Switch NMOS W/L - Load NMOS W/L = 80/1 - 10/1

* Switch NMOS W/L - Load NMOS W/L = 60/1 - 10/1

* Switch NMOS W/L - Load NMOS W/L = 60/1 - 20/1

The outputs of these 2-D ringers were first measured and recorded from an unbonded NMOS-SOI sub-

trate. Then, those oscillope output traces will be compared with outputs from these 3 samples:



1. Face-back bonded made from a 10 pm Al release layer PMOS-handle complex

2. Face-back bonded made from a 20 jm Al release layer PMOS-handle complex

3. Face-face bonded samples

A sample simulation result of a 2-D ring oscillator, without parastics, is shown in Figure 4-20. Care was

made to ensure that the W/L = 80/1, 60/1, 20/1, 10/1, and 5/1 NMOS models approximately matched

the measured I-V curves from individual, unbonded devices. Also, a table of comparison between the

simulated and experimental results from these 2-D NMOS rings is shown in Table 4.8, where all samples

and the simulation itself were biased at Vdd = +4V. This bia was chosen as a merit because it is the maximum

sustainable voltage before the on-chip MOSFETS suffer from impact ionization.
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Figure 4-20: Simulated 2-D NMOS rings, all biased at Vdd = +4 V. In each plot, the caption "NMOS W1/L1
- W2/L2" refers to the width/length ratio of the NMOS switch (W1/L1) and the ratio of the active NMOS
load (W2/L2).

Furthermore, plotted in Figures 4-21 thru 4-24 were the comparison results for only Vdd = +4 V, and if

the if the reader wishes to examine the oscillator output at other bias points, the aggregate results for Vdd =

+3, +4, and +5 V can be found from Appendix D.7 to Appendix D.7.4. To begin our short discussion on the

2-D rings, looking only at the measured result in Figure 4-21 (while excluding the simulated plots in Figure

4-20 for the moment), the glaring result was that the unbonded and face-face bonded oscillators were almost

NMOS 60/1 - 20/1, Vdd = 4 v

Ilu2ýj

I ......... . ---- -- --- I -- -- --_. _ _'_- ---------



Face- Face-
Vdd 2-D NMOS Simulated Unbonded Face-face back, back,
(V) Rings (MHz) (MHz) (MHz) 10 gm Al 20 pnmAl

release (MHz)
I. . . . .. (M H z)

80/1 - 5/1 39.06 5.154 5.682 5.434 5.882
80/1 - 10/1 61.72 5.814 6.250 6.098 6.097

4.0 60/1 - 10/1 73.52 8.475 9.259 8.772 X
60/1 - 20/1 105.26 9.615 10.00 10.00 X

Table 4.8: Summary of simulated and measured rsults from the 2-D NMOS ring oscillators biased at Vdd =
+4 V only. The red "X" means that those devices were unavailable for testing.

identical in both operations frequency and V+/V- extrema. On the other hand (only refering to Figure 4-

21 here), oscillator output from both face-back bonded varieties match each other, but their performance

were inferior to the unbonded / face-face pair. In the face-back pairs, the output V+/V- extrema and

their operation frequency suffer from severe series resistance problem. It could not have been predicted

that parasitic capacitance mattered as much because both the face-face and the face-back samples had the

same amount of Cu plane coverage on top of the 2-D NMOS ringer cells and the same vertical separation

between the cells and the Cu plane. In fact, if one refers to Table 4.8, even though the V+/V- values in both

face-to-back catagories were sub-par, at least for the face-back, 20 ftm-Al released circuits, the oscillation

frequencies of the 80/1 -5/1 and 80/1 - 10/1 rings were fairly comparable to both the unbonded and face-

face moieties. 8

Although we have just said that the parasitic capacitance between the Cu-Cu bond plane and the Al

interconnects of the 2-D NMOS oscillators could be a secondary matter, the layout-dependent parasitic

capacitance of these 2-D ring oscillators appears to overwhelm the circuit. One could make such postulate

when comparing the simulated output frequencies in Table 4.8 to the measured counterparts, where in all

instances, there was a 7x - 11x disparity (about twice that of the 4.5x difference in the CMOS simulation -

measurement frequencies) between the Cadence model and the real circuit. In order to refine the Cadence

model bridge this parity, a distributed parastic capacitance of around 6 pF - 7.8 pF has to inserted at the

inputs of every inverter stage. Physically, this capacitance could probably have been contributed by the long

and wide feedback path in the ring oscillator layout itself 9, but it doesn't account for all of the supposed 6

pF worth of extra capacitance per inverter stage. Other sources for this simulation - measurement disparity

could also come from inaccurate NMOS Cadence models (despite our efforts to match all the parameters

between the model and the experimental MOSFET I-V's). And lastly, of course, the aforementioned parastic

sAlthough some of the oscillope outputs in Figures 4-21 thru 4-24 appears (by eye) to contradict the frequency match arguement
made in the main text, after careful replots in MATLAB and going over the raw .CVS data files from the Agilent digital oscilloscope,
the frequency results in Table 4.8 were confirmed

9Part of the feedback path was made wide at the section where a 2500 A-thick doped-poly local underpass was needed. This was
done to decrease the critical path's resistance, but unfortunately it also created a huge poly-substrate capacitance.
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Figure 4-21: 2-D NMOS-only, 80/1 - 5/1 ring oscillator powered at Vdd = +4 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 /Am Al released sample in (b), a face-back bonded, 20 /m Al released
sample in (c), and a face-face bonded sample in (d)

resistance of the layout also needs to be taken into account. It is obvious that more fine-tuning of the

simulation model is needed.

With all these facts combined, we conjecture that although the Cu-Cu bonding interface - induced par-

asitic capacitances do play a huge role in limiting the quality of face-back bonded devices, the series re-

sistance within the Cu damascene vias and within the Cu-Cu bond itself caused a much more observ-

able disturbance in the ring oscillators' output when layout-associated parastic capacitances are excluded.

Therefore, the focus of the following section will be on attempting to extracting the parasitic resistance hid-

den in the critical path. To extract the exact series resistance from the Cu-Cu bond and the Cu damascne

vias, it's easier to use results from single NMOS and PMOS I-V's, which we shall take a look at in the next

section.
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Figure 4-22: 2-D NMOS-only, 80/1 - 10/1 ring oscillator powered at Vdd = +4 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 pm Al released sample in (b) that died during processing, a face-back
bonded, 20 pm Al released sample in (c), and a face-face bonded sample in (d)
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Figure 4-23: 2-D NMOS-only, 60/1 - 10/1 ring oscillator powered at Vdd = +4 V. from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 jm Al released sample in (b), a face-back bonded, 20 ym Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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Figure 4-24: 2-D NMOS-only, 60/1 - 20/1 ring oscillator powered at Vdd = +4 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 pm Al released sample in (b), a face-back bonded, 20 ym Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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4.4.2 Single NMOS / PMOSOutput From Cu-Bonded Substrates

Recalling Figure 4-19 from the last section, we can also probe the buried individual NMOS devices on

our bonded samples because our gate-source-drain probe pads have similar thru-SOI vias on them. If one

merely repeats the series resistance extraction exercise done as in Figure 4-6 on our new Cu-Cu bonded

NMOS samples, then we can compare and extract how much extra series resistance do the Cu damascene

vias and the Cu-Cu bond contriubtes from that of the unbonded case. As seen in Figures 4-25 and 4-26,

the face-face bonded NMOS have a single source/drain series resistance of about 7.5 0, which was 3 times

that of the unbonded NMOS wafers. Furthermore, a face-back bonded NMOS device exhibits a single

source/drain series resistance of about 127.5 Q2, or about 50 times as much as the unbonded case and about

17 times that of the face-face bonded sample. Since the only processing differences between the face-face

and face-back devices were:

* The Cu damascene via quality for the face-face samples was more pristine than the face-back samples

because the CMP was smoother

* The Cu-Cu bond for the face-face sample was probably more uniform because it was done on a wafer-

wafer level prior to dicing

Could the series resistance factor alone cause the face-back oscillators to fail? Or how about the fact that

the face-face oscillators rang slower than the parasitic-free Cadence models? By plugging adding in each

series resistance 5, 15, and 255 0 on the source-end of both PMOS and NMOS devices, the transition of

operational frequency decreased only slightly, from the theoretical 24.59 MHz down to about 22.67 MHz,

then plunges to about 10.73 MHz in the 21-stage, L = 3 ym cell simulations. To get the simulated frequency

down to about 5 MHz (of what we actually measured), either the series resistance has to increase up to

about 750 Q, or if the series resistance stays around 15 0 as in the face-face bonded sample, then we have to

add an inordinate amount of parasitic capacitance across the output of each inverter, which does not make

sense physicallly even when we consider the backbias plane's capacitance contribution. More work needs

to be done on on de-embedding 3-D structure before one can properly model the entire circuit.



Extraction of Series Resistance

0 0.5 1 1.5 2 2.5 3 3.5 4
Device Channel Length (urn)

Extrac•Io of Series Resistance: Zoomed-in plot
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Figure 4-25: Extraction of face-face bonded NMOS series resistance. The on-resistance of each 60 pm-wide
NMOS, at Vds = 0.5 V, was plotted as a function of both the gate length L and the gate bias Vg. The total
source-drain series resistance 2R, was extrapolated at the approximated to be about 15 0.
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E*action of Seies Resistance
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Device Chanel Length (umn)SEractidlon of Series Resistance: Zoornedm n plot

20
270

8240
1230

210
0 0.05 0.1 0.15 0.2 0.25 0.3

Device Channel Length (urn)
0.35 0.4 0.45 0.5

Figure 4-26: Extraction of face-back, 10 pm Al- bonded NMOS series resistance. The on-resistance of each 60
pm-wide NMOS, at Vds = 0.5 V, was plotted as a function of both the gate length L and the gate bias Vg.
The total source-drain series resistance 2R, was extrapolated at the approximated to be about 255 Q.
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4.5 Summary of Ring Oscillator Results

So, what have we learned by building a 3-D ring oscillator using Cu-Cu bonding ? For starters, a face-to-

face configuration was the quickest and most reliable method for achieving good circuit yield because it

was:

1. Easier to wafer-align and waferbond than to die-align and die-bond

2. The PMOS wafer surface after Cu via damascene was better when one doesn't have to perform a

handle-wafer bond and a substrate etchback before Cu CMP

3. In lieu of #1, the face-face Cu bond yields a lower contact (or series) resistance because the bond

quality and uniformity was better on the wafer-level. Having said that, there's no reason why die-

die bonding has to be inferior to wafer-level bonding -just as long as we re-design and improve the

machinery for the task.

4. The inter-layer parasitic capacitance between the PMOS and the NMOS was definitely lower because

the PMOS backbias plane was isolated from the NMOS bulk in the face-face bonding configuration.

However, an asterik has be placed on the last remark. The lower parasitic capacitance for the face-face

configuration can only be taken advantage of when the number of device layers is two. If one wishes to

add a third device layer onto the 3-D stack, then the managment of stray inter-level capacitance and how or

where to apply backbias to the upper device tiers will be an engineering and a design challenge. Going fur-

ther on the subject of inter-layer biasing, if any top-tier circuitry contains a vast patch of dense SOI devices

(such was in the case of the 43-stage, L = 3 pm CMOS ringers), a circuit or device design methodology that

decrease the amount of SOI body charging must be take into account. In other words, a method of which

one can drain the accumulated charge at the Si-BOX interface would be of great importance any kind of 3-D

integration.



Chapter 5

Thermal Characterization: Heat

Dissipation in 3-D

5.1 Overview of the Heat Dissipation Problem in 3-D

As previously described in Chapter 1, to maximize the chip performance per unit area, the semicondutor

industry's main ice density, lower effective fabrication cost, and higher operating frequencies all come with

two major penalties: A higher RC delay due to longer interconnects, and a higher chip power dissipa-

tion and density due to Joule heating from fast swtiching times within both gates and interconnects. [27].

Exacerbating this rise power dissipation, SOI devices used in modern circuits exhibit a well-documented

problem of "self-heating" [28]. That is, for medium-doped Si regions (i.e. inside the channel, where after

threshold voltage Vt-adjust implants the doping concentration can be approximately 1x1016 and lx1017

cm- 3 ), both electrons and hole mobilities decrease approximately as inverse-squared of the substrate tem-

perature [29, 30]. Since the resistivity of Si is inversely porportional to the carrier mobility, the resistance

inside a SOI channel goes approximately as T2 1. This means that in the self-heating process:

* Current within the MOSFET channel produces Joule heating, or P = I2R, and thereby increases the

temperature T inside the channel

* Rise in temperature induces a rise in channel resistance R

* Increase in R further increases the power dissipation P and the overall temperature T

The culmination of these power disspation problems are precisely the reasons why Intel and AMD are

shifting their next generation microprocessors to multi-core modules. Instead of having a high-frequency,

1"But wait!" one would exclaim, "I thought the equation for TCR (temperature coefficient of resistance) was a linear function of
temperature ?" Well, this is normally true if the material is very conductive, but for lightly doped n or p-Si, this is not the case. On the
other hand, if [dopant] > 101

s 
cm

- 3
, then the mobility is closer to a 1/T relationship, and thus the resistance of highly-doped Si is

indeed in the linear form R = Ro(l+a(T-To)).



high power dissipation chip. one could run two separate. identical cores at lower frequencies and achieve

the same or better performance enhancement at the cost of a larger chip area. Although engineers are

tempted to utilize 3-D integration in order to reduce the multi-core chip area. the current debate among

them is whether going to 3-D will exacerbate the heat dissipation problem even further. At a glance. if a

theoretical 3-D stack contains four SOl device layers. how is one going to remove heat effectively from the

middle layers?

Independent of 3-D research. investigators have always been looking into more effiecient heat removal

techniques for modern circuits. By far the most popular choice of heat removal is based on forced con­

vection (especially microchannel cooling [31]). and this makes physical sense not only because the heat

transfer coefficient in forced convection systems are quite high. it is also a proven technology since within

every modern PC or laptop there is a cooling fan installed to carry away heat from the heat sink. However.

until advancements in liquid forced convection cooling are mature enough for production. the number one

priority should still lie in maximizing the heat conduction efficiency travelling from the device hotspots

to the heat sink 2. Already there are some research groups trying to utilize metal surfaces and thermal

vias as microscale heat flux spreaders and conduits. respectively [32]. but most researchers believe that

if conduction was used as the main heat transfer vehicle. then the design of thermal vias are the keys to

success.

It is in the opion of this author. though. that metallic planes can be more useful than thermal vias in

reducing the maximum surface temperature of a 3-D stack. and a quick example of this can be made from

observing Figure 5-1. Suppose a capacitor was built between Metal # 8 and Metal # 9. and and one of the

electrode requires an electrical ground connection. To accomplish this. a circuit designer would simply pull

a ground Cu wire from of the substrate. pull it up through the ILD oxide (distance denoted by Lox = 100

pm). and a ground connection can be made with a negligible IR drop because the ratio of the electrical

resistacne between the Cu wire and the ILD was near zero. or:

(5.1)

where

(Tconductor

(Tinsulator (Tox

(5.2)

2 Real-life example: Why do S" wafers from Intel undergo backside grinding to remove 550 Jim of Si before dicing and packaging?
It's because this can reduce the basal thermal resistance of the chip by 75 %. The Au-Sn solder between the package and the chip acts
as both an adhesive and it maintains a good level of thermal condution from the substrate to the heat sink.
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Therefore, for every amp of current flowing with through the Cu ground via (suppose there was a tiny but

nonzero difference in potential bewteen the earth ground and the bottom capacitor electrode), the current

flowing through the ILD is basically nil.

Now referring to the thermal analogue on the right-hand side of Figure 5-1, let's say that there is a 100

OC temperature gradient between two metal layers within the circuit, and we require the bottom surface

to have an isothermal condition of 0 oC. In the thermal domain, however, one cannot simply connect a Cu

wire of a 0 oC ice bath, weave it through the L,, = 100 pm worth of ILD, and expect that bottom metal

surface to also be at 0°C. This is because the ratio of the thermal resistance between a good conductor (Cu)

and a good insulator (oxide) is no longer near zero. In fact, they are only 3 orders of magnitude apart, or

RTr 25
- 2 - 3.5 x 10-3  (5.3)

RT- 7142

where

kconductor kCk 400
kinsulator kox 1.4

= 285.7 (5.4)

Therefore, for every watt of power transferred through the Cu thermal via, about 3.5 mW of power is also

leaking through the thermal-insualating ILD, with a heat flux vector having both vertical and horizontal

components. The critical point in this exercise is that a good thermal isolator leaks a lot more energy when

compared to a good electrical isolator, and the disparity here is that:

0
conductor = 1021

0
insulator

kconductor = 102 (5.5)
kinsulator

Even if the thermal vias were redesigned to a shorter length, the thermal IR drop (or the thermal gradient

-VT) across the via while transporting a heat current is still far from negligible because the thermal insula-

tor's RT scales simultaneously with the thermal conductor. Therefore, instead of concentrating our efforts

on maximizing the heat flux magnitude purely in the z-direction, which is inherently a leaky process as was

described above, our objective for this chapter will be to use Cu planes in maximizing the divergence of the

heat flux. In other words, let's use the metallic planes to spread the heat flux such that the heat flow burden

can be shared by all three degrees of freedom, thereby reducing thermal gradient along the z-direction. In

effect, we'll be maximizing the "leakiness" of thermal insulators and use that to our advantage.
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Lo = 100 pm Lox = 100 pm

Figure 5-1: Poisson Eq. - Heat Eq. inequality: A quick reasoning as to why thermal vias may not be that
useful in decreasing the overall temperature of a chip. See text for details.

5.2 3-D Heat Transfer Simulations

One of the most important aspect of thermal engineering is to design material and physical features that

can accurately transport a desired amount of heat from one place to another while maintaining maximum

energy efficiency. In systems where conduction is the only medium of heat tranfer, the efficiency of a heat

circuit reduces to an exercise of manipulating a system's heat flux direction kVT. Moreover, by manipu-

lating the heat flux lines, the two main design specifications in any general thermal network that coule be

optimized are:

* The maximum temperature of the system

* The overall isotherm profile of the system

To begin with, the overall system isotherm profile (shape-wise) is a much easier requirement to satisfy

than that of the maximum system temperature. Since a system's isotherms are mathematically perpendicu-

lar to kVT, the isotherm shapes can be engineered if the heat flux lines can coerced into travelling in certain

directions using high thermally-conductive conduits. On the other hand, if the maximum temperature

; ;



requirement was added, then two design conditions have to be optimized simulatenously:

1. The direction of heat flux k\7T at a point (x,y,z)

2. The volume integral of - \7·(k\7T) within the object that the flux k\7T is passing through

With these two design conditions in mind, let's theoretically compare whether or not Cu planes could

be more effective in reducing the maximum temperature of a heat stack. A finite-element model (FEM) sim­

ulation is the best course of action here because it's often difficult, if not impossible, to obtain closed-form

solutions for the isotherms T(x,y,z) in mutli-layer structures with sharp thermal conductivity discontinuities

in 3-D.

5.2.1 Reference Simulation: 2-D SOl Heater

The first reference model simulated was an I-level SOl (unbonded) wafer containing three rows of n+ ­

doped SOl self-heating resistors. The choice of the three resistors were based on the fact that we would like

to explore the temperature profiles within and outside of a highly-packed, self-heating circuit. By applying

a V = 2.5 V bias, the resistors will undergo self-heating process governed by three coupled equations [33]:

P
V 2

R

C dT T V 2
--+-Tdi RT R

R = Ro(l + o:(T - To)) (5.6)

(5.7)
RTV2/Ro

Tssv = 1 +o:RTV2/Ro

where CT and RT were the equivalent heat capacitance and the equivalent thermal resistance of the SOl

structure, Ro = 60.75 D was the electrical resistance of the heating resistors at the reference temperature

To = 300 K, R is the total electrial resistance at an arbitrary temperature T, and finally, 0: = II6IxlO- 6 was

thermal coefficient of resistance (TCR) of the Si doped at 102 cm-3 (which was extracted from mobility

calculations). At steady-state, the time-varying term in the second equation approaches zero, which means

a single expression for the maximum steady-state tempearture within the structure can be obtained from

the coupled equation [33]:

A pre-simulation estimation of Tssv will require us to know the thermal resistance RT beforehand. Since

RT is a spatially nonlinear function that encompasses the geometry and thermal conductivity of every

subdomain in our structure, an accurate a-priori estimation for the thermal resistance value is theoretically

impossible most of the time. Therefore, we will rely on steady-state FEM simulations for the next few

sections to obtain Tssv as a function of geomerty, thus bypassing the need for the value of RT
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The simulated results for the I-level. self-heating SOl resistor from FEMLAB v3.1 are presented in Figure

5-2. where only half of the structure was simulated because adiabatic symmetry conditions can reduce the

amount of meshes in the FEM model. thus dramatically saving memory and computation time. Also. results

from the 250 pm x 250 pm adiabatic simulation boundaries could be mirror-imaged and summed over a

larger area. such as an 1 cm x 1 cm chip. by again taking advantage of symmetry. Therefore. to simulate a

field of dense heating elements on a large chip. all one would decrease adiabatic boundary dimensions and

use symmetry to sum up the individual results.

Continuing with the simulation discussion. the input power (excluding self-heating effects) for this

structure was solely provided by the 1.5 (52/60.75) = 617.28 mW of Joule heating using the "one-and-a­

half" resistors. The steady-state maximum temperature of63 °C occured at the resistor nearest to the x-axis.

which corresponds to the middle of the 3 heating resistors in full geometry. Also. since all 3 heat generators

were operating equally at constant power density (isoflux condition). the isotherm patterns were fair-shaped

ellipsoids and were concentric around the inner-most SOl heater. Since these ellipsoidal isotherms were

well-behaved shape-wise and extends all the way towards the bottom heat sink (and the Si substrate has

an uniform thermal conductivity k). the heat flux lines -k'VT exhibited a purely radial pattern across most

of the structure. Mathmatically. radial flux lines suggest that the volume integral of - 'V. (k'VT) was near its

maximum for this FEM model. and unless one drills a direct heat sink going from the resistors to the bottom

heat sink. the maximum temperature TTTlaX of this structure was very near the optimum point. The physical

interpretation of this lies in the fact the Si substrate itself acts as a giant heat flux spreader and no additional

thermal conductor planes can improve on their divergence. In terms of thermal circuit design. since the Si

substrate is large and thermally conductive. it has effectively decreased the overall thermal resistance RT

by increasing the effective cross-sectional area occupied by the heat flux lines.

5.2.2 Reference Simulation: 2-layer SOl Heater

The second reference FEM simulation performed was that of a double-layered SOl resistors where the

top heating elements aligned directly above the bottom heaters. which is the worst-case scenario for self­

heating 3-D devices. Once again. the self-heating resistors obey the three coupled equations in Eq. 5.6.the

input voltage of these resistors was 2.5 V. and the values of Ro = 60.75 nand 0: = 116IxIO- 6 were also

conserved. The two SOl resistor tiers were separated from one another by a 2-pm Si02 ILD layer and a thin

2000 A BOX layer that's associated with the top SOl film. Since there are 3 resistors in the equivalent half­

circuit. the total input power of the structure. again neglecting self-heating effects to start with. was about

3(52/60.75) = 1.23 W. Although we have effectively doubled the input power from the I-layer SOl model.

each heating element's power density was kept constant bewteen the two models 3. The overall structure

3rt seems like we're comparing apples to oranges, but the original thought here was that we wanted to see what happens if we
stacked two identical structures on top of another, such as the case if one divides a dual-core processor into 2 parts and stacked them
into a single column without re-engineering the power dissipation charactersitics of those 2 half-circuits.
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has a close resemblance of a face-back bonded 3-D stack with a SiO 2 -SiO2 bonding inteface, and because it

lacks any heat flux spreader planes or direct heat conduits, we expect this 3-D stack to heat up immensely.

This was the case shown in Figure 5-3 where Tma, has risen from 63 'C to 154.85 0, which was a + 92 "C or

+ 245% increase.

Upon closer examination, the isotherm of the SiO2-SiO 2 bonded 3-D SOI stack in Figure 5-3 were much

tighter in the x-y plane than that of the unbonded SOI heaters in Figure 5-2. Specifically, the surface

isotherms of the oxide-bonded model were not elliptical but were actually closer to an super-ellipsoid (a

rectangular block with rounded edges). This can be seen from a more detailed isotherm plot provided in

Figure 5-4, where the heat flux lines -kVT emanating from selected points at the top surface were plotted as

blue streamlines, and the thermal gradient -VT were plotted as green streamlines. Since there are no heat

spreader or heat conduit structures adjacent the stacked heat sources, heat flux lines near the hot resistors

were packed tightly within the xy-plane and were forced to dive straight down towards the heat sink (see

Figure 5-5), passing through an SiO2 ILD layer that's thermally resistive (k = 1.4 W/m-k [34]). In essence,

the Heat equation equilibrium

-k(Tv + T + T) ume (5.8)

was heavily biased towards the z-direction because heat flow in the x-y directions were suppressed by the

low thermal conductivity of the ILD 4

4In a close system (5 adiabatic sidewalls and one Dirichlet heat sink constraint), the power generation density (W/m 3 ) was con-
served. Thus, the total heat flow -V.(kVT) must also be conserved, and the isotherms T(x,y,z) are forced to accomodate this flux
conservation according to the Heat equation. Therefore, if T(x,x,z) scales in the x-y direction, there has to be a proportional isotherm
scaling in the z-direction due to energy conservation
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Figure 5-2: Reference FEM simulation # 1: One-level, unbonded SOI heaters. Colorbar temperatures are in
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5.3 Simulation Comparisons: Adding Cu Planes vs. Cu Thermal Vias

to the Referenc Structure

In lieu of the previous discussion on the direction of heat flow and conservation of energy in a closed

system, one can try to reduce the z-axis temperature gradient by increasing the heat flow along both the

x-and-y axes with flux spreaders. The first-order solution to achieve this was to use the Cu bonding plane

as the flux diffuser, and as a "thermal profile cleanup" procedure, a second-order solution to reducing the

topside temperature was to insert thru-SOI thermal vias. Figure 5-6 displays the cross-sectional and topside

views of the reference, 6000 A Cu-bonded with no vias, and 6000 A Cu-bonded with vias structures, and

Figure 5-7 shows a direct comparison of FEM simulation results among all three structures. Again, to

accentuate the results within the SOI/Cu/ILD/SOI quad layers, the z-axis of each plot was truncated at z

= -4 ym, which is located inside the base Si substrate 0.6 ym from the BOX-substrate interface of the lower

tier devices.
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Discussion - to - Figure Guideline:

Figure 5-7 is an aggregate plot of simulated results for the reference SOl structure, the 6000 A Cu-bonded

(no vias) structure, and the 6000 A Cu-bonded (with thermal vias) structure, where the x-y-z, x-y, x-z, and y­

z perspectives for each structure were all placed within a given column. Although the discussion of results

will mainly be based on the bird's eye-view plot, the reader may wish to resort to the following magnified

plots for more details:

• For COLUMN A: See Figure 5-4

• For COLUMN B: See Figure 5-8

• For COLUMN C: See Figure 5-9

X-Y-Z PLOTS:

To start with, from the x-y-z isotherm plot in Figure 5-7 (x-y-z in Columns A, B, and C), the maximum

temperature of our double-layer heating structure has decreased from 155 DC to 130.84 DC just by the addi­

tion of a single layer of Cu flux diffuser. The inclusion of a thermal via with the Cu plane actually raised

the maximum temperature by 1.77 DC, but this was probably a mesh-related artifact of the FEM simulation

and for the time being, we will consider Tmax between the non-via and via structures to be equal.

X-YPLOTS:

Next, observations from the x-y plots of Figure 5-7 (x-y in Columns A, B, and C), clearly show the

decrease in maximum temperature and the overall broadening of the isotherm in the x-y directions when

the Cu diffuser plane was added to the reference model. This was also a direct evidence that the addition

of the Cu plane has lightened the heat flux burden (referring to Equation 5.8) on the z-axis and transferred

some of the heat flow burden onto the x-y axes. As a consequence, the z-axis - \7T has been reduced, and

this was why the overall maximum temperature has been reduced by more than 24 DC when compared

between reference structure to both the Cu-no-via and Cu-with-via structures.

Next, with the addition of thermal vias, the x-y plot of Figure 5-7 - Column C show that warm purple

regions between the two heaters have decreased at least 20 DC (outside of the colobar range) due to the

via's heat flux siphoning ability. Unfortunately, this did very little to the overall surface isotherm profile

and it suggests that thermal vias are probably useful for "heat profile cosmetic surgeries," where random

hotspots can be quickly eliminated by placing an adjacent via.

X-ZPLOTS:

Furthermore, focusing on the x-z isotherm plots of Figure 5-7 (x-z in Columns A, B, and C), the spacing

between the z-axis isotherms grew when the the Cu diffuser plane was added onto the reference structure

and the overall magnitude of the z-axis thermal gradient measuring from the top surface down to the Si

substrate has decreased (compare Column A to Column B to see this). This decrease in thermal gradient

also signifies a shift of flux balance from z-axis-dominant to a milder z-dependence and stronger x-y de­

pendence. However, an isotherm anomaly occured within the bottom SOl / ILD section when thermal vias
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were added to the Cu-bonded model. Although I - \IT I continues to decrease slightly, the ILD / Bottom

SOl regions below the Cu-Cu bonding layer has become much more isothermal altogether (broader red

regions in Column C when compared to Column B), and on average. this region became a bit hotter when

compared to the non-thermal via model. This was a major penalty associated with using Cu thermal vias:

The walls of the vias have become a thermal Faraday cage. and all regions normal and adjacent to the via

sidewalls were forced to reach a common thermal equilibrium that's dictated by the temperature of the Cu

via 5. Since we have already determined that there are no such things as perfect "thermal ground" wires,

the Cu via's ambient temperature will be directly proportional to how much heat flux it has siphoned from

hot surfaces near the top of the structure. Unfortunately. the more effective the via is in removing surface

heat, the hotter it becomes and the negative effects of the Faraday cage becomes worse and worse - regions

in the ILD / Bottom SOl can then become hotter than it should.

Y-ZPLOTS:

The Faraday cage effect can also be seen in the plots within y-z plane. When thermal vias were added

to the system, one can observe that all local heat flux lines were siphoned into the via, thus creating a

flux bundle (Column C) that extends all teh way down to the lower SOl tiers. If the thermal vias were

overloaded with heat flux. then a hotter isothermal cage will develop.

Conclusion: Cu thermal planes can be used as heat flux diffusers and decrease the overall magnitude of

the temperature gradient profile by at least 15%. Cu thermal vias can be used to fine-tune the surface

temperature profile and to construct a cold-wall barrier around a hotspot, but care must be taken such

that the steady-state via temperature does not interfere with pre-designed cold regions along its major

axis.

5Mathematically. this is like haVing an internal isothennal boundary (Dirichlet) condition
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Figure 5-7: Bird's eye view plot: Simulated isotherm comparisons for the reference, the 6000 A Cu-bonded
with no vias, and the 6000 A Cu-bonded with thermal vias structures.
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Figure 5-8: Simulated isotherms of 6000 A Cu-bonded structure, with no vias. These four graphs are the mag-
nified versions of those from COLUMB (B) of Figure 5-7. The simulated results suggests that the Cu thermal
plane does spreads out the heat flux and reduces the z-axis thermal gradient when compared to the refer-
ence, non-Cu structure. DISCLAIMER: The outlines of the satellite diodes do not readily show up on the
isothermal plots because their neighboring inter-subdomain temperature gradients were small.
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5.4 Measured Results from Real Heat Structures

5.4.1 Reference Measurement and Thermal Calibration: Cu-bonded SOI Heaters, Ex-

cluding Thermal Vias

Structure Schematics

In an attempt to verify the simulated results, an aligned triple SOI heater structure was fabricated us-

ing face-face Cu bonding. The original design called for highly-doped SOI resistors inside the three long

trenches depicted in the layout within Figure 5-10(b) and also seen in the cross-sectional view in (c), but

those 10 Q resistors did not absorb enough power to create an observable self-heating effect because the

device current exceed the 100 mA compliance of the measurement equipment. Instead, the SOI trenches

were kept intrinsic and the resulting Schottky diodes were used as self-heating power generators operating

in constant current mode, as depicted in Figure 5-10(a). Since the Schottky devices were quite resistive, self-

heating was observable up to either the 2-W equipment power compliance or the 40 V voltage compliance,

where measurements were stopped upon hitting either of the compliance points. Figure 5-10(a) also shows

the two groups of satellite diodes measured; obviously, one would expect the "Near" diodes to be hotter

than the "Far" diodes solely based on distance from the Schottky heaters alone.

Method of Temperature Extration from Measured Current from Satellite Diode

For each input current forced into the Schottky heaters, a certain power level is being dissipated into the

test structure. To extract the on-chip temperature at a particular position, a satellite diode I-V first has to

be measured. Theoretically, the temperature of that diode can be found by finding the slope q/kT of the

resultant line when one plots In(subthreshold diode current) vs. the input voltage. Unfortunately, since

the Schottky heaters did not heat up to an appreciable temperature, the q/kT slope variation was barely

distinguishable as one varies the Schottky power dissipation level. On the other hand, it was found that

the reverse saturation current Io in the ideal diode equation:

Id = Io . (eqV/ kT - 1) (5.9)

exhibited an observable upshift as the Schottky forcing current increase. Therefore, the temperature extrac-

tion from the measured diode I-V will be based on the shift in Io. Specifically, the extraction routine was as

follows:

1. Stabilize the measurement chuck temperature Tchuck to a value

2. With no current forcing in the Schottky diode, measure the satellite diode I-V and plot the data as

ln(Id) vs. V on the 4155C.
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3. Now, varying the Schottky forcing current, re-measure the satellite diodes and superimpose the I-V

curves within the same screen

4. The aggregate data of step # 2 step # 3, plotted as In(Id) vs. V, shows a gradual vertical shift in ln(I,) as

the Schottky heater's power dissipation increases. Since this vertical shift was a constant for a wide

range of V's in the subthreshold regime, we took the Id values at different Schottky power dissipation

levels for V = 600 mV only. When this data set was plotted against the Schottky input power at Tchuck

= 25 OC, one would get either the '0' or 'X' dark blue curve in Figure 5-11.

5. Repeat steps 1-4 for a different Tchck

After the data collection was completed (ie. The entire dataset is within Figure 5-11) , the rest of the task

will purely consist of number-crunching. First, since ordinates of Figure 5-11 was exponentially related

to the abscissa, Figure 5-11 will be re-plotted in semilog ordinates and the result is shown in Figure 5-12.

Now, our task will be to try to use the current data at different Tchuck values at Power = 0 W (denoted by

"Region # 1") as the absolute correspondence between Id vs. TchLck, and also, pick a higher higher Schottky

power (denoted by "Region # 2") and also use the data at different Tchuck as a correspondence between Id

vs. 6T, where 5T = T - Tchuck. Using least-square fits for both Regions # 1 and # 2 (and remembering that

the resuting slope and y-intercept are exponentiated because of the semilog ordinates), and then combining

the Results from Regions 1 and 2, we get two identities that relates to the measured Id for a given chuck

temperature at either the "Near" or "Far" diode positions:

Tnear = (Region2cuibratio) + (Regionl2bridge) + Tchuck

1 +,fQ 1 • meaaIn(ma, + In("e) + T.hck0.056 io2 0.0615 io T

= n[(2'"e )17.-85 (Zmeas )16.26] + Tchuck (5.10)
to 2  t. 1

and

Tfyr = (Region2calibration) + (Regionl2 bridge) + Tchck

1 t
meas 1 . m,( )

1 In( ) + 1 In( me) + Tchuck0.0533 io2 0.0621 ol(

= In[(t ea )18.76 . Tmeash)16.1 ck (5.11)
to2 %ol

where

* Tchuck = The refence chuck temperature in Celsius



* io2 = The measured diode current at the lowest input power to the Schottky heater in Region # 2, in

amps

* iol = The measured diode current when the Schottky heaters are off, in amps

* imeasured = The measured diode current, in amps

" Tnear = The extrapolated temperature for "Near" diodes, in Celsius

* Tf ,, = The extrapolated temperature for "Far" diodes, in Celsius

Finally, one can directly use the above equations and convert the measured currents in Figure 5-11 into

the absolute temperature in Figure 5-13

A temperature difference of less than 5 oC exists between the "Near" and "Far" diodes when the Cu-

bonded Schottky heater was dissipating power ranging from 0 to 2 W - an obvious deviation from the

simulated results in previous sections because our on-chip heaters were Schottky diodes, not doped re-

sistors. Also, one can only conjecture that areas adjacent to the heaters, whether near or far, were fairly

isothermal in nature, which was consistent with the simulated results for Cu-bonded strucutures in Figure

5-7. Also, the satellite diodes may not be as hot as those from simulations because we have neither adia-

batic boundaries nor arrayed heaters on our chip to act as thermal insulators. So, as of now, this result can

only be taken as a reference point because we did not have any devices that were of the SiO 2-SiO 2 bonded

variety.

5.4.2 Comparison: Cu-bonded SOI Heaters, with and without Thermal Vias

Our next task is to see whether an addition of thermal vias can lower the local temperature at a point

surrounded by heat sources. A Cu-bonded structure with Cu thermal vias was constructed on the same

face-face bonded sample, and its layout was presented in Figure 5-14(a). A direct temperature comparison

between the "Near" diodes in Figure 5-14 (b) and in Figure 5-10(a) was valid because they were identical in

film composition, positional coordinates, and their zero-power subthreshold i-V curves. Thus, the current-

to-temperature conversion was performed with the same parameters as in Equation 5.10 and the results

were plotted in Figure 5-14(c). Hence, despite that the "Near" diode was surrounded by heat sources on

two sides, the addition of a nearby thermal via has decreased the diode temperature by about 12 °C, or

in relative terms, a linear -16.6 % temperature decrease at input power ranging from 0.2 W to 1.2 W. The

percentage change was very similar to what was simulated in x-y isotherm plots of Figure 5-7, where the

insertion of a thermal via has led to at least a 20 OC reduction in adjacent areas that was about 90 oC (or

-22.2 %) to begin with. 6

6Again, the purple isotherm disappeared because its temperature was below the colorbar minimum.



5.5 Summary of Thermal Results

In the end, the main conclusion from FEM simulation is that 3-D structures built with Cu planes have

an inherent advantage over Si02 -Si02 bonded (or polymer-bonded) analogues because one obtains a free

metal layer in which heat flux from the top device tiers could be diffused over a larger area. In addition,

that same Cu thermal diffuser plane doubles as a possible backbias plane to control the Vt's of top-tier

SOl devices. thus further increasing the value of Cu-3D integration. If the effectiveness of the Cu heat flux

spreader was locally maximized within small cluser of intense 3-D heat generators. thermal vias could then

be used to selectively target undesirable hotspots and decrease the thermal gradient around those pinpoint

locations. Cu thermal vias, however. will never be more efficient than Cu thermal planes in heat removal in

3D-Ie's, and the main reason is the cost of via real estate. Since these vias will not even electrically active.

the value of adding thermal vias will only be worth it if it really decreases the local temperature gradient by

a substantial amount.

Next are some comments about the validity of the simulated and experimental results presented in this

chapter. Comparing the FEM simulations to the rudimentary temperature extraction of a fabricated 3-D

SOl heating circuit. we have some experimental proof that thermal vias can drastically decrease the local

isotherm gradients by as much as 16 % when Cu flux diffuser planes were also present in the 3-D stack,

although consistency of the experimental data remains in question. Any fabrication mishaps, Cu-Cu via

misalignments, inadequate Cu grain growth during bonding. and the quality of the satellite / Schottky

diodes themselves could possibly change the effective thermal resistance of the entire structure, thus caus­

ing a basal shift in the measured diode current and making the subsequent current-temperature conversion

inaccurate. Since we also did not have a reference Si02 -Si02 3-D stack for measurement comparisons be­

cuase of fabrication mishaps in the lab, it was unclear how much improvement did the Cu-plane-only

reference structure offered to begin with.

Furthermore. one has to be wary when comparing FEM thermal simulation results from different pub­

lications because heat transfer characterstics of a chip are highly dependent layout. film compositions, and

where the Neumann / Dirichlet conditions are located in the model. For example, referring to simulation

results between the oxide-oxide reference model and Cu-plane-only structure. our simulation result of a

-15 % decrease in the overall Tmax from FEMLAB seemed to be much more optimistic than the results pre­

sented by Banerjee et.al.[32]. where the introduction of a copper plane only reduced Tmax from 385°C to

380 °C (-1.3 %) when compared to a polymer-bonded 3-D stack (kpolyimide/koxide ::= 0.1). However, upon

closer examination. their FEM structure differ greatly in that their model contained:

• A 10 J-tm-thick ILD versus our 2 J-tm

• A 1.4 J-tm-thick Cu diffuser versus the course of action for the past 10 years has been to push scaling

to its limits. The benefits of high devour 0.6 J-tm

• A pre-set temperature of 320°C at the lower tier Si-ILD interface to simulate a power dissipation of
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0.615 W/mm2 on the lower device layer. and then they added another 0.615 W/mm2 of input power

on the top tier surface and let the FEM simulation determine the steady-state maximum temperature.

In our simulations. the lower tier Si-ILD temperature of around 80°C was simulated based on a power

dissipation of 100 mW from each SOl resistor located in different (x.y.z) coordinates and a Dirichlet

condition ofTref at the bottom surface of our 650 pm-thick Si substrate

• Their adiabatic boundaries were macro-scaled (more than 500 mm2 of chip area). whereas our adi­

abatic boundaries were micro-scaled (6.25xlO-2 mm2) because we wanted to closely examine how

layout can influence heat transfer in more detail.

In the end. it is very difficult to compare our simulation results to theirs (or to most other 3-D thermal

papers, for that matter) unless all FEM parameters were fully reported and were scalable from one model to

another. Therefore. while our thermal model may not necessarily follow the trend of others, the fact that

we were able to show and match an approximate 16-20 % decrease in local temperature using Cu thermal

vias should give some credence to our model's validity.
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Chapter 6

RF Sprial Inductor Integration and

Magnetic Shielding Studies

6.1 Introduction

In the age of modern telecommunication, no battle have been more fierce than the evolution of the cell

phone, because whichever telecommunication corporation that can back up their claim, "We produce the

smallest, most powerful, and most energy-efficient cell phone" rules the wireless world. As the minitur-

ization of cell phones continues, the RF components on and off-chip inside the casing also has to scale

accordingly, both in size and in power efficiency. In terms of size reduction, one of the most stubborn

passive component on the RF chip that resists dimensional scaling is the monolithic RF spiral inductor.

In modern RF circuits, spiral inductors are routinely used in RF tank circuits in voltage-controlled oscilla-

tors (VCO) and as impedance-matching components in both low-noise amplfiers (LNA) and passive filters

[35, 36]. Since the typical inductance used in these applications are usually around 1 - 20 nH, the size of a

spiral can vary from a 3 nH, 5-loop, 150 /zm x 150 ym inductor, to a giant 20 nH, 8-loop, 530 tm x 530 ym

inductor [37]. The bulkiness in their lateral dimensions stems from the fact that magnetic coupling between

multiple loops are needed to create an appreciable amount of inductance, and winding arms of opposing

currents needs to be separated with an adequate distance (i.e. the air core region in the center of the spiral)

to reduce negative coupling within the inductor. Moreover, the metal trace widths needs to be wide enough

to decrease series resistance, I and at the same time, there is a finite lower limit for the wire pitch because

the internal parasitic capacitance could degrade device performance [38, 39, 40] The shear size of spiral

inductors can be seen from a sample RF chip photo in Figure 6-1, where the 5 inductors cover at least 15 %

of the left cell's area.

1 The overall inductance, however, is not a strong function of metal width because magnetic coupling depends on the pitch between
wires.



RF Spiral Inductors

Figure 6-1: Sample RF chip photo, showing five real estate-consuming RF spiral inductors. Photo taken
from http://www.techonline.com

Furthermore, in addition to bulky lateral dimensions, the vertical dimension constraints of spiral induc-

tors result in significant Si real estate occupation. Although spiral inductors are usually fabricated on the

two uppermost interconnect layers of a chip, RF layout rules prohibit device cell placement underneath

any spirals because the substrate eddy currents induced by the inductor's magnetic field can be deleteri-

ous to any underlying circuits. Therefore, when one places an inductor on a layout, a substantial chunk of

valuable Si area (and volume) is usually sacrificed just for the sake of temporary magnetic energy storage.

Taking into account all the spatial constraints associated with monolithic spiral inductor, could one invent

a more efficent way to integrate these passives onto a chip ? A passive-on-active 3-D stack immediately

comes to mind, and various research groups have approached this problem not out of area concerns, but

their initial goal was to increase the Q of the inductor.

Although many articles have been written about the use of patterned ground shields (PGS) to reduce the

eddy current losses due to Lenz's Law, [35, 41, 42], the Q of a monolithic RF spirals implemented on Si rarely

exceeds 10, and this is a major limiting factor in certain RF applicaitons, such as maximizing the transducer

power gain (Gt)in current bipolar LNA design [36]. To push the inductor's Q to over 10, radical innovations

such as double-level spirals operating in differetial mode [43], free-standing MEMS meandering inductors

[44], suspended MEMS spiral bridges, [45], 3-D air core solenoids [46], spirals built on silicon-on-sapphire

substrates [47], and much more are being persued. With the exception of the double-level spiral, all other

aforementioned alternative inductors will require some form of integration to go along with an existing

RF bipolar or RF-LDMOS circuitry [48]. Natually, 3-D can be the answer to these integration challenges,

where a high-Q inductor can be fabricated separately from the main circuit and the two could then be

integrated using Cu-Cu wafer or die-level bonding. Even then, the main circuitry still has to be magnetically



decoupled from the inductor or spurrious eddy currents can wreack havoc on the entire RF system. Thus,

the last chapter of this thesis work will focus on finding an IC-compatible magnetic shielding configuration

that can potentially be used in both 2-D and 3-D applications - with hopes that one can someday integrate

magnetically-active components on top of existing circuity with ease and be able to save layout area on the

main chip. The material of choice for the EMI (electromagnetic interference) shield is cobalt (Co), and it

was chosen due its high permeability (p (initial) = 110, p,(max) = 600) [49] and its acceptance as a CMOS-

compatible metal.

6.2 Cobalt Magnetic Shielding Measurements

6.2.1 Reference Stucture: Al Spiral, No Shielding

The fabrication and testing of cobalt magnetic shielding reported below are for detecting RF substrate

crosstalk between neighboring inductors. The base structure to be simulated was a 4.5 turn, 2.6 nH in-

ductor (approximate value taken from [37]) with these flowing characteristics:

* Spiral lateral dimensions: 270 pm x 270 pm

* Spiral wire width = 10 pm, height = 1 pm, material = Al

* Spiral winding pitch = 10 pm

* Spiral underpass via depth = 1 pm

* Underpass metal height = 1 pm

The inductor was fabricated on a 650 pm Si subtrate with an 0.5 pm of top surface thermal oxide. The

main crosstalk test structure consists of two side-by-side inductors with their GSG (ground-signal-ground)

terminals facing opposite directions to minimize any air flux linkage of the two signal pads during RF test.

The layout of the reference structure with no Co shielding is shown in Figure 6-2. Upon SOLT (short-open-

load-thru) calibration, an input RF power of +4 dBm (2.51 mW) was swept from 500 MHz to 20 GHz at

the GSG terminal of one inductor, and any power transfer to the neighboring inductor through substrate

crosstalk was observed by measuring the value of IS211 at the other GSG probe. In this setup, the dynamic

range of the power measurements was already at its maximum because the PNA-L's RF generators became

unbalanced if one attemps to increase the output power beyone +4 dBm.

Since the load-side terminal of each inductors was shorted to ground, we expect to see a high ISl11

and IS221 because of full reflections off of the loads, and if there were any substrate crosstalk, one would

see some IS211 or IS121 signals, although they should remain low because the Si substrate was only doped

to 1015 cm- 3 . We also expect that as the RF input frequency increases, the substrate crosstalk will grow

because the capacitive coupling through the 5000 A thermal oxide becomes a dominating factor over the
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inductance. Even though the inductor is a linear and symmetric element (Port 1 response should be identi-

cal if applied to Port 2), the layout of a spiral inductor is inherently asymmetrical due to the Al underpass.

Therefore, we ought to see some parity in the reflected powers of IS111 and IS221 because power reflections

are directly related to the position of impedance mismatches. Specifically, there will be more capactive

coupling among the substrate, underpass, and the main spiral at Port 2's entrance instead of Port 1. How-

ever, this asymmetry should not affect the thru values S12 and S21, though, because power transfer for

thru-waves are independent of the position of impedance changes 2

In summary, if one gazes at the measured results in Figure 6-2 and 6-3, we see all of the expected results

mentioned above.

2
This statement is true here because the total spiral length of 3.7 mm was still only at A/2, and the skin depth for the lim-thick Al

spirals is about 0.58 pm at 20 GHz (A = 7.59 mm with c, = 3.9 for SiO 2). Therefore, propagation loss within the metal and the dielectric
was negligible. For the case when length >> A, as in the case for long microstrip lines operating at 50 GHz or more, then this statement
would be false because ohmic loss due to both length and skin effect during wave propagation will no longer be negligible
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6.2.2 Comparison of Refence Structure to Solid Co Shields

Next, the effects of a rudimentary solid Co shield was tested by adding a 4000 A sputtered Co plane in

between the spiral and the Si subtrate, shown as the green layer in the layout within Figure 6-4 3. With a

relative permeability that varies between 100 to 600, one would expect the Co film to block most B-field-

induced substrate currents in lieu of Lenz's Law; and instead of power dissipation occuring in the substrate,

the image current will dissipate onto the top surface of the Co shield with a skin depth of around (taking

Y, = 350 as an average, and a,,o = 1.66x107 S/m) [50]:

1

= 93.2nm (6.1)

at 5 GHz. Comparing this skin depth with our 400 nm-thick Co film, one can be confident that these Co

shields should provide ample magnetic isolation between both spirals and the substrate. Indeed, the IS211

thru-measurements in Figure 6-4 show that the Co shields, compared with respect to the aformentioned

reference structure (fabricated on the same wafer), provided an isolation of around -10 dB at frequencies

lower than 5 GHz. As input frequency increases past 6 GHz, the isolation improves steadily until it peaks

at 13 GHz with a -24 dB of isolation. Even though the isolation diminishes as the frequency ramps up above

13 GHz, a respectable isolation of around -10 dB still exists at 20 GHz. This gradual degradation of isolation

exists in any shielding materials at frequencies of 20 GHz (and above) because induced currents within the

shield are unable to respond to the switching speed of external magnetic fields. Nevertheless, in common

RF applications where the frequency of operation seldomly passes 20 GHz, these Co shields seem to be a

promising tool for on-chip EMI protection.

Finally, an important item to note in the IS211 plot of Figure 6-4 is the common dip of the isolation curve

at 5 GHz for both the reference and the solid cobalt shield structures. This dip is probably due to an overall

structural resonance where (most probably) a parasitic capacitance was offset by the inductance of both

inductors at that frequency, thus temporarily deleting the substrate crosstalk path and hence contributing

to the observed increase in isolation.

3 The choice of 4000 A Co was based on numerous experimental failues, in which Co layers thicker than 0.4 pm exhibited too much
stress and will generally peel off even with an adhesion layer present. In fact, thicker Co will be a waste of metal anyways because the
skin depth at frequencies higher than 5 GHz will be on the order of 100 nm or less.
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6.2.3 Comparison of Solid Co Shielding to Solid Al Shielding

Since we have established that Co shieldings do in fact work, one can now compare the effectiveness of

Co shields to shields made from other materials. By default, since the RF sprials themselves were made of

Al, a 2 pm layer of Al was used in place of the 400 nm Co as the new shield. The Al shield thickness was

made to be 5 times the thickness of 400 nm Co shields because we would like to match the situation where

the metal thickness was substantially higher than the skin depth at 5 GHz (1.16 pm for Al). Comparing the

IS211 values between the 2 pm Al shield and a new SiO 2 reference structure fabricated on that same wafer,

the isolation provided by the Al shield was surprisingly low. As seen from Figure 6-5, even though the

thick Al shield offered very good isolation below 4 GHz, at frequencies above 6 GHz, the isolation effects

became spurrious at best, with a mid-range frequency peak of only -8.75 dB and a high-range frequency

peak of -17.5 dB. Therefore, it appears that when the shields under investigation were compared with

the same reference structure built on their own respective substrates, the thin 400 nm Co magnetic shield

outperforms the 2 pm Al ohmic shield at mid-range RF frequencies between 6 GHz to 20 GHz.

With regards to the measurements made in the Al shielded wafers in Figure 6-5, one should note that

the reference structure's isolation was already about -10 dB better than the reference isolation in Figure 6-4.

One could argue that we underestimated the Al shield's isolation because the IS211 measurements could

be approaching the noise floor of the setup. This notion can be disproved by the fact that during SOLT

calibrations, the "open" isolation values were on the order of -100 dB or more at low frequencies and about

-85 dB at 20 GHz, and these calibrations were done with the same reference 0 dB level being the +4 dBm

of input power. In all, the dynamic range of these measurements should have been more than adequate to

detect small changes in power levels within structures of high thru-atteneuation.
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6.2.4 Comparison between Different Co Shield Configurations

Once we have established that the Co shields were even more effective than an Al shield 5 times as thick.

one can now vary the Co shield configurations and see which shield geometrty will

• Have the best isolation performance

• Have the least power dissipation in order to maintain a good "Q."

There are three main groups of shields within the test matrix. and their layouts are shown in Figure 6-6.

To begin with, we will take the data from the already-tested solid cobalt shield (which was electrically

grounded) and the non-shielded reference structures and use them as the first and secondary standards for

comparison, respectively. Next, since it is generally accepted that a patterned-ground-shield (peS) can im­

prove the Q of an inductor by both creating a low-resistance bypass of the substrate capacitance / resistance

and lowering the power dissipation within the shield by creating discontinuties in the circularly-induced

current. Co pes of two different linewidths were included in the test matrix. Futhermore, according to re­

search done by Chang, et. al [51], a distrbuted network of floating shields can further decrease the amount

of power dissipation within the shield due to perimeter restriction in induced loop currents. By creating

these floating shields, though, one pays a penalty of increasing the effective spiral-substrate capacitance.

We also decided to include three types of distributed floating shields within our test matrix. each with

different Co particle sizes.

Figure 6-7 shows that the solid cobalt shield gives the best magnetic shielding configuration almost

within the entire 500 MHz - 20 eHz spectrum. This was expected because the shield did not contain cav­

ities through which B-field penetration could occur. In descending order of isolation effectiveness. the 5

pm-wide and 10 pm-wide Co pes's provided adequate isolation up to 12 eHz, but all of the distributed

floating Co shields offered very little or no isolation in comparison to the non-shielded reference struc­

ture. Focusing our discussion on the Co pes results first. even though magnetic fields penetrated these

cavity-filled pes's with relative ease, good shielding characterics were actually obtained at low-to-medium

frequencies because the magnitude of the induced currents 4 was still large enough to generate a sizable

opposing magnetic field. At higher frequencies, however, each leg of the Co pes probably became very

resistive due to the skin effect, and thus beyond 12 eHz, one can see that both Co pes's did not function

function as effective magnetic shields.

As the input frequency approaches 20 eHz, an anomaly occured where both co-pes samples some­

how initiated a highly effective crosstalk pathway that propelled the IS211 values above the values of the

reference structures. Taking into account the following passive parasitic in these devices:

• Capacitive coupling between top spiral - underpass and spiral - pes

• Capacitive coupling between underpass - pes

4 Because of the perpendicular slots within the PGS. these current loops are now elongated ellipses that trace each leg of the PGS.
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• Capacitive coupling between underpass - Si substrate

• Resistive coupling beteewn substrate underneath both inductors.

there were no indications as to why any of these parameters would suddenly change and provide a + 16 dB

increase in crosstalk when compared with the reference structure at 20 GHz. However. when one considers

active RF processes. then an explanation for the increase in crosstalk could be provided. In short. since

our spiral inductor lies only 3 pm above the PGS (most inductors fabricated in the industry have a spiral­

PGS separation of at least twice that. if not more), the capacitve coupling can become so dominant such

that the entire inductor-PGS structure looks like a transmission line dipole. And at the end of that dipole.

RF radiation can occur from charge oscillations between the spiral and PGS terminals. In essence, our

double-inductor crosstalk detector have evolved into two antennae [50. 521 that can transmit and receive

RF energy by pathways independent of the substrate parastics. Again, playing devil's advocate, one can

argue that this phenomenon should also be happening in the case of a solid cobalt shield. and indeed it

could. However. since the metal-metal surface overlap between the spiral and a solid shield is much larger

than the overlap between a spiral-PGS pair, the radiation efficiency in the spiral-solid shield structure could

have been suppressed to nominal levels because the total power dissipated on the metal surfaces is higher.

This scenario is very similar to that of the microstrip patch antennas, where the broadside transmission /

reception efficiencies are inherently low because the metal surface overlap betwen the antenna patch and

the ground plane consumes too much RF power [521.

Finally, turning our attention to the floating cobalt structures. these distributed shields did very little in

isolating the substrate from the RF magnetic fields. The reason for this could be that the effective area for

induced currents to flow was reduced so much that shielding failed because the induced B-field was not

strong enough to counteract the forcing B-fields.
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Figure 6-6: A schematic list of all the Co shield configurations tested. The rectangular and square "patched"

Co shields were electrically floating, while in all other shield configurations the Co metal was shorted to

the ground test pads. This list is in the same order as the legend in Figure 6-7.
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Figure 6-7: S21 measurement of reference Si and various configurations of cobalt shields. The solid cobalt
shield again offered superior magnetic isolation when compared to all other Co shield configurations when
considering the entire span of frequency range.

144

I. I I:

-26 dB

... ,............... . ....... ........... ,.

1

L

y) ý fra
i i i i

l



6.3 Summary of Inductor Results

In summary, we have shown that Co magnetic shielding do function as advertised, and when compared

to a solid Al ohmic shield with 5 times the thickness, the solid Co shield was still the superior B-field

isolator. From the surface, one could say that Co magnetic shields are indeed feasible tools for future

applications such as providing EMI beween an integrated, high-Q MEMS-based RF components stacked

on top of RF CMOS circuitry using 3-D. In reality, though, there are some remaining questions that needs to

be tackled before any of these dream structurs could be realized. To start with, even though the theoretical

permeability of Co is around 100 - 600, we were not certain of its exact value for our 400 nm sputtered Co

films. Also, these Co wafers actually underwent an annealing step at 400 OC for 1 hr in forming gas (normal

sintering recipe for MOSFETs) in attempt to improve the metallurgical junction quality between the Co and

the T'/Al contacts. We do not yet know if this also affected its magnetic properties, but on the first order,

the effects from this anneal was probably minimal since the Curie temperature of solid Co metal is about

1115 oC, one of highest known in nature [53]. The most it could have done was probably to increase the

overall grain size and the electrical conductivity of the film.

Furthermore, since Co is inherently magnetically hard (the coercive force H, is very large), it may or

may not be suitable for extremely high-frequency applications where the shield will be asked to respond to

ultra-rapid changes in B-field. Conversely, this apparent deficiency may possibly become an advantage in

some cases, for example, if one wishes to shield a low-frequency parasitic carrier signals from areas with

high-frequency circuitry. Last, but not least, any usage of shields in conjunction with RF spiral inductors

should involve some discussion on the shield's impact on the value of Q. With cobalt being more resistive

than Al or Cu, the ohmic loss within the shield could be of major concern if one places the shield too

close to the spiral inductor. This ohmic loss can be exacerbated if one uses a high-permeability material

that decreases the skin depth, and hence increasing the effective RF resistance of the metal. Also, in terms

of maximizing Q, a solid cobalt shield is worse than a PGS because the induced circular currents are not

physically impeded by integrated perpendicular slots. With that in mind, Co magnetic shields could have

great potentials as an EMI shield and area-saving gadget for RF appliacations if they are:

* with low - Q RF spiral inductors, similar to those used in matching the BJT's base impedance in LNA's

* with high -Q RF MEMS spiral or solenoid inductors, with 3-D integration as an enabling technology

* as an on-chip low-frequency or DC B-field shield



Chapter 7

Concluding Remarks

7.1 Summary of Accomplishments and General Conclusions

In conclusion, the salient features of this thesis work encompass the following:

1. Demonstrating the feasiblity of wafer-level 3-D integation by utilizing Cu-Cu bonding with a face-face

configuration

2. Demonstrating the feasiblity of die-level, mutli-layer 3-D integation by utilizing Cu-Cu bonding in

both face-face and face-back configurations

3. Successful implemenation of two varieties of 3-D CMOS ring oscillators, thereby demonstrating the

feasiblity of the Cu 3-D process flow

4. Thermal modeling and rudimentary experimentation on utilizing Cu thermal planes and vias as heat-

managing components in 3-D integrated circuits

5. Experimentation on utilizing thin-film cobalt as an inter-layer magnetic shield in RF 3-D integration.

While 3-D is conceptually an enticing technology for future microprocessors, the dicussions throughout

this thesis work (expressed in the sole opinion of the author !) suggest that there are still major technological

roadblocks that need to be resolved before 3-D becomes a viable technology. Fundamentally, however, this

thesis work has shown that Cu-Cu bonding, whether on a wafer-level or on a die-level, can be a feasible

technology if one is not limited by equipment limitations. The success of the 43-stage CMOS ring oscillator

demonstrates that if every on-chip component was working properly and if all fabrication processes flow

according to plan prior-to and during bonding, then there are no theoretical reasons why Cu-Cu 3-D integra-

tion would physically ever fail. Thus, the choice of whether or not 3-D should in one's design toolbox will

purely be application-driven. And if 3-D was determined to be benefical for the application under con-

sideration, then it is in the author's opinion that 3-D integration with Cu bonding should be the definitive

chioce over all other existing 3-D technologies.



"Why," one may ask. Consider the following: First of all. by using thermal FEM simulations and a

subsequent quick test using SOl Schottky heaters. and combining the successful implementation of the 3­

D ring oscillator. we have shown that Cu 3-D integration has an inherent advantage over all existing 3-D

techniques (oxide-based, polymer-based. TFT-based) because one receives a free metal layer that can be

utilized:

• As an free interconnect layer that can be used in routing. as demonstrated by the Cu-Cu input-output

local interconnects between neighboring inverters within the CMOS ring oscillators

• As a psedudo-backgate for Vt - adjustment in 3-D SOl devices, which was also demonstrated by the

ring oscillators

• As a RF or DC ground or Vdd planes

• As a an effective heat flux diffuser

Furthermore. if the face-back MTI 3-D flow was used. it can offer the highest level of 3-D integration

when the metric is the vertical via density 1 This is because a shallower inter-level via, created after a

handle-bond / substrate etchback combination prior to bonding, will inherently have a smaller aspect ratio

than a deeper inter-level via created after the completion of of a 3-D bond 2. Hence, a smaller aspect-ratio

via's width can be scaled more aggressively, and when combined with an an accurate wafer or die aligner

with sub-micron registration accuracy. one can pack more vertical vias per unit area with our process flow

than any other integration schemes.

Finally. Cu-Cu 3-D integration is superior to that of polymer or oxide-based integration because of the

ease in which Cu fil~s can bond to each other. Though in-situ sputter cleans can improve the theoretical

quality of the Cu-Cu bond, the neglible Cu-Cu series resistance extracted from our face-face bonded MOS­

FETs showed that barring from equipment-related limitations. a well-bonded Cu-Cu interface can be made

without any special surface cleaning treatments. Combined this with the fact that Cu deposition and film

adhesion can be easily be performed on many different types of substrates (the same cannot be said for

either oxide nor polymers), heterogeneous integration between devices fabricated from different technolo­

gies can be realized without too much material compatibility issues. Last, but not least. if one chooses to

perform hybrid MEMS or CMOS RF components onto pre-existing B]T or CMOS circuitry. the thesis work

have also shown that cobalt magnetic shielding can be used an effective inter-layer EMI shield.

1Theoretically. TIT epitaxy-based 3-D circuit would have the highest inter-level via density becasue direct contact between source
/ drains from different level can be made with a front-end process. However. such structures have yet to be integrated into any kind
of real circuitry. like those of a ring oscillator.

2such as the case in both polymer and OXide-based bonding.
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7.2 Future Work

7.2.1 Handle Wafer Release Optimization

From experimentations involving wafer-level 3-D integration. it was determined that the limiting factor in

the process flow was the efficacy and effiency of the handle wafer release. The proposed method in this

thesis work - utilizing acid-encroachment to destroy the handle-SOl lamniate structure, was obviously sub­

optimal in terms of efficiency. but above all, it just didn't work very well. If one was to approach the handle

wafer release problem using chemical corrosion of interlaced films as a basis for the solution, then it is in

the author's opinion (and the opinion of everyone that've been investigating this problem) that integrated

microfludic channels must be used to facilitate the release process. By drilling holes through the handle

substrate or creating pre-existing micro-channel grooves within the handle-SOl laminate structure, one can

enhance mass transport of the releasing reagent and speed up the overall erosion of the desired layers

between the handle wafer and its bonded SOl counterpart.

The choice of the releasing reagent. whether it be an aqueous acid / base solution or an acid / base vapor

(HF vapor. XeF2 gas. etc.). depends on the material selection of the to-be-eroded film. Even though a thick

layer of Al was chosen as the release layer in this thesis work, it is easily conceivable that one can use Si02 ,

polysilicon. or other metallic or organic film systems as the release layer of choice. However, most of these

proposed materials often resists corrosion unless HF or TMAH was used. and this can be a problem because

most ILD materials (like oxide. BCE. etc.) or Si-based materials (the Si substrate itself. gate-poly, etc.) will

also quickly succomb to aqueous / vapor-phase fluoride or aquesous hydroxide attack. Therefore, the

solution to this problem cannot be solved overnight. and most likely it'll require a comprehensive chemical

corrosion analysis before one can optimize the choices between:

• The designated material to be corroded

• The corrosion reagent and its compatiblity with pre-existing films on chip

• Additional on-chip physical structures required to facilitate proper and timely corrosion

On the other hand. one does not have to limit him/herself in a corrosion-based release process. Wafer

delamination methods such as SmartCut. or sublimation films such as poly-formaldehyde (in Prof. Karen

Gleason's lab). laser ablation of other polymer films [261. or any other un-perceived methods can also be

used as a release mechanism. Or. if one chooses not to release the handle wafer at all. then one can always

resort to the old-fashioned method ofSi grindback / TMAH etchback of the handle wafer. This is probably

possible if the 3-D stack was no more than 3 deVice-layer thick. If more than 3 or 4 handle grindback /

etchbacks were performed on a growing 3-D stack (as in the case of a face-face bonded seed stack). then the

overall structural integrity of the base Si substrate will be an issue.
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7.2.2 Die-Die Bonding and Alignment: Equipment Optimization

In Chapter 3, we have examined how one can get around some of the equipment-related issues in die-

die bonding by building home-made jigs that improved the quality of the Cu-Cu die bond. However, in

order to maximize the potential of die-die bonding, one needs a reliable setup that can provide a good die-

die alignment accuracy. In short, it is suffice to say that one cannot guarantee a post-bonding alignment

accuracy on the order of 0.5 am between two substrates without some kind of real-time verification of the

alignment prior to bonding. The easiest method to realize this capability is to acquire an IR aligner with a

complete set of IR-transparent bond chucks. Thus, one would have definitive proof that the substrates are

indeed aligned prior to both substate clamping and substrate bonding.

Furthermore, a good quality die-die bonding setup should also have the capability to bond and align

small dies with dimensions around 5 x 5 mm2 . For an university research environment, this could be of

great help because in most graduate circuit design projects, the tape-out chip size from TMSC, UMC, or

National are usually on the order of 0.6 x 0.6 cm 2. If an university fab can obtain a reliable die aligner /

bonder that can handle these chip sizes, then one can create great synergy between the circuit design and

fab research groups - and in the long run, it will hopefully energize and propel microelectronics research

in a university to the next level. In my opinion, this can be especially beneficial at MIT, where MTL have a

world-class faculty in both circuit design and in device physics.



Appendix A

The 3-D Process Flow: Detailed

Explanations

In this section, we will go through each bullet depicted in Figures A-1 and A-2 slowly and describe the

processes in detail.

Sacrificial Bond
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1. Cu patterning on SOI
device wafer
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2. Bond to handle wafer
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Figure A-1: MIT 3-D process flow, part 1
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Figure A-2: MIT 3-D process flow, part 2

1. Cu patterning on top surface

The first step, as denoted in Figure A-1, was to create the necessary Cu bonding pads for future

bonding steps. Using standard lift-off techniques, a bilayer of 500 A Ta and 3000 A Cu was deposited

by e-beam evaporation and then patterned. For the thesis device wafers, the SOI thickness was 2000

A and the buried oxide thickness (BOX) was also 2000 A. Note: Step 1's Cu patterning was eliminated

entirely in the thesis device wafers because we had no plans to bond a "Device Layer 3" onto our 3-D stack.

2. Handle wafer bonding

To prepare the device wafer for Si backside thinning, one must attach a support wafer to the non-

grinding side of the device substrate in order to provide mecahnical stability during grindback. First,

the entire surface of the SOI device substrate was passivated by a thick PECVD oxide (about 5 Am, and

then the top surface has to be globally planarized by CMP. Since the underlying MOSFET / Metal-i

topography combines to about +/- 1.5 /m, a 5 Am oxide overlayer should provide an ample amount

of sacrificial material for a smooth finish. After CMP, the target distance between the top surface of

the top-most metal layer and the air-PECVD oxide interface should be about 1.5 Am.

Next, a combination of layers dubbed the laminate structure (the term used in our patents, denoted by

the purple layer in Figure A-1) has to be deposited on the bonding surface of the device and dummy

handle wafers. The laminate structure serves two functions:

* Facilitates a temporary bond between the SOI and the handle wafer that is stable enough to

withstand mechanical grindback (shear stress), aqueous alkaline attack, and heat stress.

* Facilitates a pre-determined weak point such that when attacked by a selective reagent other

than the aforementioned stress factors, the laminate structure will be destroyed.



Foreshadowing to material discussed later in the thesis, the current laminate structure was composed

of a penta-layer sandwich of 20 pm Al, a bilayer 500 / 3000 A of Ta/Cu bonded to a mirror-image

bilayer of Cu/Ta, and yet another 20 pm of Al. The thick Al layers were completely covered by the

Ta/Cu bilayers for protection against subsequent aqueous hydroxide attack.

3. Backside substrate thinning

Once the SOI device wafer has been secured to the handle by the laminate structure, backside Si

removal can then proceed. First of all, the bulk of the 6" Si substrate can be removed by mechanically

grinding away approximately 500 pm from the backside. The remaining 125-150 pm of the leftover

Si can be removed by either wet or dry etching. The preferred wet etching method is to use a 1:1

volumetic mixture of wafer and 25% wt tetramethylammonium hydroxide (1.79 M TMAH final) at

900C, and the etch time varied from 3 hours to 4 hours depending on the water evaporation rate

(higher hydroxide content yields a slower etch). Since this mixture has a 20,000:1 selectivity to SiO2 ,

the SOI wafer's BOX is a natural etch stop for TMAH. Moreover, a 25% wt potassium hydroxide

solution (5.84 M KOH) at 8000C will also suffice as a substitute, albeit its selectivity to oxide is only

around 800:1.

On the other hand, if one wishes not to use hot alkaline solutions for whatever reason, the remaining

125-150 pm of Si can also be removed using a non-passivating SF6 recipe at 600 W forward RF power

in an inductive-coupled plama (ICP) etcher. The blanket Si etch rate in MTL's STS etcher is around 2.5

pm per minute - quite fast indeed, but it has minimal, or if any, selectivity to oxide. If one wishes to

achieve a full-stop on the BOX, you would have to switch to a etch/passivation multiplex mode on

the STS. Only then can you achieve the 150:1 Si:oxide selectivity that the Bosch process guarantees,

albeit with an overall slower Si etch rate.

Last, but not least, one can choose to remove the Si by using XeF 2 gas - the most selective and the

softest thin-film Si removal method available to date. Since it contains no ion bombardment and is a

passive vapor etch based on mass transport only, XeF2 gas theoretically has an infinite selectivity to

SiO 2 and for almost all metals, provided that the water vapor content is minimized during etching.

The penalty for such selectivity is its slow and vapor pressure-dependent etch rate.

4. Backside via etch

After completing the backside substrate removal, inter-layer vias were then etched from the backside.

The via positions were designed so that they lie directly within the LOCOS field oxide regions and

were placed directly below the Metal-1 Al contact pads. Theoretically, these oxide vias should be

plasma etched to retain its rectangular fidelity, but MTL does not have a 6" Au-contaminated plasma

etcher that's plumbed with CF4 or CHF 3. Instead, the thesis device wafers' inter-layer vias were

wet etched in Silox Vapox III, which is a mixture of acetic acid (CH 3COOH) and hydrofluoric acid

(HF) that has a limited selectivity between oxide and Al provided that the water content inside the



acid solution was kept to a minimum. Visual cue for etch completion is the roughened Al-Si surface

created by acid corrosion during DI water rinse, and the resulting via profile is an top-overblown

cylinder with a depth of approximately 1.1 /m and width of about 5 - 10 um.

5. Backside via Fill

The backside vias can be filled by a variety of methods, the most conformal being W CVD, interme-

diate conformality with sputtering, and the least conformal with e-beam evaporation. Cu sputtering

was chosen to be the filling method because W CVD was unavailable and e-beam evaporation had

a throughput problem. To be specific, since the vias were around 1 jim deep, an adhesion layer of

500 A Ti and the main 2 !m Cu film were sputtered in order to provide the usual 1.5 - 2x overfill

height needed for Cu CMP. Also, since a 2 ym layer of Cu exhibits a very high tensile stress, wafer-

bow compensation was done by sputtering a bilayer of 500 A T'i / 1 14m Cu on the other side of the

handle wafer. Without it, the tensile waferbow is too much for the Cu CMP-head's vacuum ports to

compensate. Finally, the filled inter-layer vias were damascened using Cu CMP to create a flush back

surface. The quality of this damascene step can make or break the quality final Cu-Cu 3-D bond, and

the unforseen importance of this was actually quite surprising. More on this topic later.

6. Backside Cu pad patterning

Upon Cu CMP, the backside BOX surface needs to be prepared for the permanent Cu-Cu bond. In the

thesis device wafers, the dimensions of the electrically-active Cu pads (those that sit directly on top

of inter-layer vias) were maximized to avoid wafer-wafer alignment troubles. The most important

dimension here, however, is the air-gap distance between the electrically active vs. inactive Cu pads.

If the air moat was too narrow, then any significant wafer-wafer misalignment will cause a global

electrical short across the entire wafer, but too big of a gap will decrease the bond strength of the

overall structure. Thus, any electrically-active Cu pads in our wafers will have at least a 10 spm airgap

moat surrounding it.

7. Wafer-wafer alignment and the permanent Cu-Cu bond

After Step 6, the thinned-down SOI device layer will be ready for the final Cu-Cu bond. One would

first take a desired base wafer from the production lot and pattern Cu bond pads that are mirror

images of the ones from Step 6. Next, the base wafer was aligned to the SOI-handle complex inside a

non-infrared optical aligner. Assuming a gross alignment tolerance of +/- 3 pm, the 10 pm air moat

around each electrically-active Cu pads offer more than ample protection from mis-alignment shorts.

Once aligned, the wafers were bonded by Cu-Cu thermocompression for 30 min at 4000C, 10- 3 torr

vacuum, and with the piston down-force at 10,000 N for 6" wafers. Afterwards, a post-bonding at

400 °C for 30 min in an N2 purged furnace gives the pair extra bonding strength by promoting larger

grain growth.



8. Handle wafer release

Upon completion of the permanent Cu-Cu bond, the handle wafer needs to be released from the

multi-layer structure if one wishes to bond additional layers on top. Handle-wafer release was per-

formed by soaking the entire wafer stack in hydrocholoric (HC1) acid, in which it dissolving the Al

cladding layers in the SOI-handle laminate and hastens the destruction of the entire laminate struc-

ture. Then, the handle wafer simply floats off from the 3-D structure, and further bonding can be

continued since the the resulting substrate can be seen as our new "base wafer." In essence, once a

two-layer base is built, a n-layer stack can be constructed by merely repeating Steps 7 and 8, but each

time bonding with a different pre-made SOI-handle complex.

As one can imagine, there are serveral obstacles that need to be surmounted if this process flow were

to be successful. Techniques and the accuracy of wafer-wafer alignment is a major one, as well as

how exactly can one make a laminate structure that can withstand numerous stress patterns and yet be

targeted for destruction by a single stress method. And what about the overall quality and uniformity

of the Cu-Cu bond ? These are some of the question that this thesis will address in the following

sections. Once we've introduced the pertinent variables associated with wafer-level bonding, we will

revisit those same variables in the context of die-die bonding - with much less introductory material

and more direct report of results.



Appendix B

Handle Wafer Release Mechanism

Once the laminate structure survives grindback, etchback, CMP, and the permanent Cu-Cu bonding steps,

it will be ready for destruction with the application of our release reagent, the hot HC1. The basic concepts

behind the wafer release mechanism are simple: One has to expose the edges of the wafer so that acid can

start to attack the Al release layer. Then, if the Al release layer thickness was large enough to overcome

surface tension effects, the hot acid solution can continue to encroach deeper and deeperinto the release

layer, dissolving away the Al along the way and leaving all other structures intact; in essence, the hot acid

solution behaves just like a drill at an oil well - the deeper it goes, the more difficult it is to drill because

mass tranport and surface tension effects within the liquid column will become ever-growing problems.

For more details about surface tension, interfacial phenomenon, and some miscellaneous experiements on

liquid penetrance, I invite the reader to browse through some excellent literature on these subjects [54, 55,

56, 57, 58].
But for now, let's take a real brief look at what's happening during acid release. Figure B-1 represents

the simplest perspective in the release process, and the story only has three parts: Chemical dissolution of

the release layer, mechanical agitation to assist mass transport of debris, and finally the separation of the

substrates.

Well, if only life can be that simple. The second-order effects that accompany Figure B-1 are the real

show-stoppers in the effectiveness of our acid release scheme. With brevity, it will suffice to say that as

the HCl solution enters deeper into the release cavity, it becomes more and more difficult to transport the

by-products of Al corrosion, the H2 bubbles, and the reactants (acids from the bulk solution) in or out of

the liquid column. A cartoon of this can be seen in Figure B-2.

Why do we have a bubble traffic jam anyways? There are actually 3 second-order variables that can

affect the system's mass transport characteristics.

1. Ionic Strength of Solution: A solution with high acid concentrations (or more accurately, a higher

ionic strength) will generally increase the surface tension between the air-liquid inteface to a value
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Figure B-1: Extremely simplified overview of the handle wafer release process: Dissolution, agitation, and
separation

higher than the normal 72 mN/m value between pure water and air at 25 oC.

2. Temperature: In general, elevated temperatures will decrease the surface tension between a liquid-

gas interface because the inter-molecular hydrogen bonds between water molecules are disrupted

by an increase of their kinetic energy. An increase in temperature will also elevate the rate of Al

dissolution in HC1, therefore also controlling the generation rate of H2 bubbles and it's the first knob

in controlling the transient response of the acid encroachment rate.

3. Wetting Angle: In addition, the local surface roughness and surface chemistry among the acid-Al-Ta-

Cu interfaces can change the wetting angle at the liquid-gas-solid intersection points, thereby influ-

encing the effects of surface tension by changing the direction of the tension vector.

The end results from the combination of these factors are the following: If the gas-liquid surface tension

is too high and the capillary sidewall wetting is too low, a H2 bubble can get "stuck" on the sidwall and

cause partial blockage to the entire capillary. This will hinder the mass transport of liquid from the bulk

solution to the reaction site located deep within the column -the place where HCl liquid front is dissolving

more Al metal and creating more H2 bubbles. Now, two things will then happen: These newly created H2

bubbles from the reaction site have nowhere else to go but to coalesce with the old H2 bubble blockage,

thereby creating an even bigger bubble traffic jam. Also, the acid concentration at the reaction site will

gradually decrease to a level where the Al corrosion rate becomes very slow. The final result is that the

traffic jam will stop the acid encroachment altogether.
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Figure B-2: An extremely simplified overview of the liquid penetrance problem: A traffic jam of trapped
H2 bubbles henders mass transport of acid and the bubbles to and from the capillary

If one really wants to complicate the situation, one can add surfactants to the acid solution in order to

tailor the wetting angle and the surface tension within the entire system. It sounds like a great idea, but

now we're introducing a tertiary system parameter - phase transformation of the bulk, which is directly

related to the viscosity of the bulk solution 1

And if one is keen in fluid mechanics, viscosity is directly related to shear force and fluid velocity; or

in other words, a tertiary effect of changing surfactant concentration in acid soluions is to induce a phase

transformation, which in turn induces a change in viscosity, which in turn serves as a second knob in

controlling the transient response of the acid encroachment rate 2

1 In general, the phase of the bulk solution is an implicit function of two variables: Surfactant concentration (at phase-transformation
boundaries associtaed with breakpoints such as the critical micelle concentration, the Krafft eutectic point, etc.) and temperature. Also,
viscosity within a particular phase is usually constant, and only when a phase transformation occurs (due to temperature or surfactant
concentration variations) do bulk viscosities change.

2It is actually very difficult to predict the exact transient behavior of surfactant solutions as a function of viscosity (or equivalently
within a particular phase). This is because in most cases, the bulk solution will exhibit a non-Newtonian viscoelastic response; that is,
mass transport of the acid-surfactant solution involves both a non-linear dissipative shear force and an elastic deformation restoring
force that's difficult to model (ie. It cannot be modeled as a simple RC equivalent).



Appendix C

Die-Level Jig Improvements: A Detailed

Description

C.1 Fix # 1: The Homemade Die-Bonding Chuck

To begin with, the 4 mm diameter vacuum hole at the center of the die-bonding chuck (see Figure 3-2)

seemed to create havoc on bonding uniformity near the center of either a lxl cm2 or a lx1 in 2 Cu die pair.

More specifically, as the Si subtrate decreases in size, the extra pressure exerted by the piston (assuming

downforce was kept constant) now has less area for energy dispersion, and theoretically this is good be-

cause the Cu-Cu bonding inteface can now absorb more energy and a better bond should be the result.

Unfortunately, the Si die is compliant enough such that the extra external energy applied at the center of

the die is now transferred into local deformation of the substrate at the interface between the bottom Si

die and the bonding chuck near the vacuum port. The result of this was that in all dies bonded with the

mesa chuck, the center Cu regions had subpar contact with each other. Figure C-1 shows the progression

as one changes from the mesa chuck to a home-made die-bonding chuck made by bonding two 4" Si wafer

together, with the top wafer having a pre-etched square hole in the middle. No bond glass was used here

because we wanted to isolate each mechanical problem separately; hence, each die pair was grossly aligned

by eye and was bonded with the regular 400 oC Cu recipe. Then, the handle die was subsequently released

in hot HCl in 6 hrs, thereby also showing the feasibility of acid encroachment release on the die-level. As

seen from the photos, by switching from the mesa chuck to the homemade chuck, the improvement of the

bonding quality was unmistakable.
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(a) (b)

Mesa chuck Home-made chuck Home-made chuck
+

3.9mm quartz fragment
Figure C-1: The effecs of chuck flatness on the die-bonding quality. (a) Left photo shows the mesa chuck
result, (b) middle photo shows the home-made chuck result, and (c) right phot shows the combination of
home-made chuck and a 3.9 mm quartz fragment used as a makeshift bond glass.

C.2 Fix # 2: Bond Glass Bow Reduction by Overpressing

As mentioned previously, when two Si dies were clamped by the bond glass, there is a natural bow that

forms right over the substrates due to its 4 rigid support points - two of them were located at the bond glass

clamps, and the other two are located at the contact points between the glass and the outer corners of the

top die. Theoretically, one can calculate the air gap distance between the top die surface and the natural

bow's vertex, both depicted in Figure C-2, using a combination of geometry and the material parameters

of the quartz glass. Once we know the theoretical bow curvature, all one needs is to dial in the necessary

overpress distance on the piston backstop collar and we're done.. right?

Unfortunately that's probably the most inefficient way to solve this problem because a robust theoretical

bow calculation has to take into account a not-so-tiny lateral variation of the support points, and if either

die had an offset from the geometric center of the bond glass (could easily be a millimeter off or more

laterally in any given run), then the entire calculation becomes invalid because the bow geometry is now

asymmetrical and the load point (piston coordinate) is now off-axis. Furthremore, the more one uses the

quartz glass, the more it deforms because of stress buildup from mutliple thermal cycles.

Therefore, the entire problem was solved empirically by bonding numerous die pairs varying only the

piston backstop collar height and the piston downforce. The starting points for the test matrix were the

"theoretical limits of the jig" given by the machine manufacturers, of which at those values the dies didn't

bond very well to begin with (see photo (a) in Figure C-3):

* Backstop collar height = Total stack height, where the stack include the base wafer thickness of the

home-made chuck, the thickness of the two to-be-bonded dies, the of the quartz bond glass in the

non-flexed state, and the graphite insert.

&MMM4 6MEW4



Graphite insert

Home-made VUUartz bond glass I Si die,

Air gap

L ---

Piston axis
at geometric center of chuck

Figure C-2: Bond glass bow: The setup and its corresponding force diagram

* Piston downforce = 300 N, where we were warned that the risk of cracking the quartz bond glass was

high if this force value was surpassed.

The litmus test for the experiments were the quality of the Cu-Cu bond upon wafer release and checking

for signs of bond glass fatigue after each bonding run. Instead of reporting every possible force / distance

combinations used in this study, a bond quality comparison between an un-optimized and optimized pa-

rameters was shown in Figure C-3 below. For our die-bonding system, the optimized mechanical parameter

values which eliminated the quartz plate's bow were:

* Backstop collar height = (Total stack height) - (500 bm)

* Piston downforce = 1500 N.

C.3 Fix # 3: Plateau Dies and Post-alignment Check

One of the many lacking aspects of the MIT 3-D integration flow is the following: When the laminate struc-

ture's layer stack was composed of un-patterned Al, Ta, and Cu layers, IR microscopy cannot be used in

rQ s



(b)

Figure C-3: The left photo (a) displays the bonding quality before backstop collar and downforce opti-
mization, and the right photo (b) displays the optimized force parameters. For both cases, the home-made
chuck elevation was hchuk = 0.46 mm, the 2-die combination thickness was hadi = 1.24 mm, the quartz bond
glass was 2.303 mm, and a new graphite insert thickness was 1.0 mm. Each ruler tick mark in the photos
correspond to 1 mm.

either the wafer-wafer or the die-die alignment process because the laminate is impervious to IR penetra-

tion. On the same token, once the two dies were aligned and clamped by the quartz bond glass, visual

verification of the alignment accuracy is very difficult because patterns on at the Cu-Cu interface will be

buried. In theory, this issue would be moot if one can guarantee the double- sided registration alignment

on the base die and the actual die-die alignment procedures were both perfect. But in reality, without post-

alignment verification, all bonded dies tend to have at least a +/- 20 ,m in both x and y-directions and with

at least 1 degree or more off in 0. The presumed enemy here is the inherent difficulty in squaring-up the

two dies inside the aligner. And the reason: Bad angular alignment.

To begin with, although the wide angle objective provided a wide enough field of view so that one

could see the center of a die, the objective could only traverse 25% past that center point before the eyepiece

is stopped by an internal safeguard. This created a major problem: To have accurate alignment between

two substrates in the 0 direction, the apparent arc length-per-angular deviation ratio has to be maximized;

moreover, if one cannot optically observe the arc length deviation from opposite sides of the die, then the

effective die-die alignment accuracy will decrease significantly. To quickly explain this, let's take a look at

Figure C-4.

In cartoon (a), if two substrates that were misaligned by a given angle 0, one can visually detect this by

looking at the apparent arc length displacement S1 or S2 of an alignment mark placed initially placed at a

distance rl or r2 away from the pivot point. In other words, an imperceptible error in 0 can be made into an

optically observable distance S provided that the "magnification factor r" is large enough. Obviously, one

would like to maximize the S per 0 ratio because it's easier to correct for the larger error S2 as opposed to S1,

and the ubiquitous fab trick of maximizing the moment arm r is to place at least 2 wafer or die alignment

marks as far away from the geometric center of the substrate as possible. This was the situation depicted in
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Figure C-4: Essence of die-die 0-misalignments. In (a), given an angular misalignment of 0 between the
two substrates, the size of the projected misalignment arc lengths S1 and S2 ar related to the moment arm
dimensions ri and r2 by the equation S = rO. In (b), the larger r-value on a 6" wafer registration set creates
a larger S. In (c), a small r-value on an 1" die results in an imperceptiable value of S.

cartoons (b) and (c). Now, problems with this theory arise when:

1. The moment arm r for die-die alignment is only 1 cm long, and

2. When your microscope objective can only travel a distance 75% of 2r.

Thus, the two factors mentioned above create a fatal flaw in our die-die alignment system: It is impos-

sible to properly orthogonalize an lxl in2 die because the wide-angle objective can only see past a distance

of 0.5r past the geometric center of the die. As seen from Figure C-5, a dark zone exist between the two

microscope objectives because the wide-angle scope cannot travel too far beyond the meridian of the bond

chuck. This means the maximum effective r has been reduced from 1.2 cm to about 0.6 cm, 1 and if we

consider r = 0.6 cm as our system's metric, then a 0.5 degree (8.73x10 - 3 radians) misalignment in 9 corre-

sponds to a small-angle approximation arc of s = rO = 52.36 tm, which is equivalent to an 1 ym shift in one

orthogonal direction and a 52 pm shift in the other orthogonal direction. It should be clear to the reader that

the alignment tolerance is not sufficiently accurate enough for implemting high-density 3-D integration.

In tackling the entire alignment issue, our current solution involves a repeated, brute-force alignment

verification that sacrifices some Si area on one of the two dies, and the highlights of this can be seen from

Figure C-6.

First, the dies were rotated 900 such that the alignment marks were not truncated by the microscope

dark zones. Next, the second die to be inserted into the aligner has to have an area smaller than the first

die. By cleaving away some Si area directly near the alignment mark positions, we have created an exposed

plateau region where alignment marks from both substrates can be seen simultaneously, albeit it required

a bit of re-focusing during the die alignment procedures. An additional benefit to the Si plateau scheme is

1
Please remember that maxiumum r can be only considered from the mechanical pivot point of the system, not just the mere

midpoint between 2 opposing alignment marks.
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Figure C-5: Mechanical travel limits of the microscope objective and their small field of views both createa
dark zone that limits the accuracy of die-to-die 0-alignment. The dimension of the outer "wafer-like" outline
was not drawn to scale.

that once the dies were aligned and clamped by the quartz bond glass, a non-IR visual confirmation of the

alignment can be performed by placing the entire bond chuck setup under a normal microscope 2. If the

alignment was off, then the entire aligning process was repeated. This solution actually worked quite well

and was indeed a repeatable process.

2In reality, we actually took apart the mask holder / wafer chuck combination on KS2 aligner in TRL, placed the entire bond chuck
assembly onto its sliding loader, and used the KS2's microscope setup for visual examination of the die alignment. This was done
because the vertical travelling distance of every stand-alone microscope in TRL was too short



Bond glass (z-cut quartz plate)

w (wide-angle
i objective)

1. Insert top wafer,
circuit-side down
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2 Insert bottom wafer,
circuit - side up.

1st Si

3. Align bottom wafer
to computer marks

Dark zone

......... Aligned, bonded,
Si plateau region where and acid-released

both die surfaces were observable die pair

Figure C-6: Sacrificing some die area, the plateau region created by area reduction of the second die in-
creases the accuracy of die-die alignment and faciliates a easy method of post-alignment verification.

C.4 Fix # 4: Graphite Insert Monitoring and Pyrex Wafer Substitution

As previously alluded to, one can try to calculate and compensate for the bond glass bow, check and double-

check the alignment prior to bonding, making sure the quartz bond glass's condition is optimal, and etc,

and you can still get a bad quality die bond. Out of all available die-bonding variables, this thesis has not

touched much on the mysterious graphite insert and its role in bonding. Simply put, the physical condition

of the graphite insert is the most important factor in determining whether or not the top PMOS-SOI film will

delaminate from the NMOS base die after acid-encroachment handle wafer release.

To start the discussion, after placing the aligned dies inside the bonder, an 1"xl" graphite insert was

placed on top of the quartz bond glass. Since this insert material was extremely compliant, theory suggests

that the graphite cutout will absorb the energy from the piston and re-distribute it evenly onto the quartz

glass plate, thus achieving a more uniform bond. Using the mechanical parameters listed on page 160, six
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die pairs were consecutively bonded over a course of 2 days during mid-April 2006 3. After each run, the

quartz bond glass was also checked for signs of fatigue after cool-down, and although the graphite insert

thickness remained 1 mm after each run, the insert material itself became much harder with each run. In

fact, it almsot looked like if the graphite was being carbonized, but since all other mechanical parameters

stayed constant during each run, the graphite insert was re-used in trying to match each bonding condi-

tions. Figure C-7 shows the bonding result after each die pair underwent approximately 5 hrs of passive

(no-ultrasonic agitation) acid release 4

(b) (C)

(e) (t)

Figure C-7: A set of 6 die-bonding pairs made in mid-April, 2006. The released dies in (a)-(0 were bonded
in succession with identical mechanical bonding parameters indicated within the main text. The thickness
of the die stack prior to bonding matches those mentioned in the captions for C-3, and each ruler tick in the
photos correspond to 1 mm in length.

As one can see from Figure C-7, the first two 1" dies in (a)-(c) bonded extremely well and only exhibited

a few apparent "wrinkles" on the PMOS SOI surface. These wrinkles represent regions where the Cu-Cu

bond delaminated after some amounts hot HCI encroached into pre-existing defects and corroded away

the Al pads / interconnects, the Ti adhesion layer of the Cu damascene vias, and oxidized portions of the

Cu metal itself. Nevertheless, the important data to note is that overall bond quality grew progressively

worse as the bond sessions continued, as dies (d) and (f) both have about a 99% bonding area failure. As

previously mentioned, every mechanical parameter stayed constant after each bond with the exception of

the graphite insert's hardness.

3 Samples were bonded with the usual recipe of 400 OC for 30 min in vacuum. Also, in-between each run, the piston backstop
collar was re-zeroed by testing the waferbow pin's contact to the surface of a wafer-less, standard 6" teflon chuck used in Si-Si direct
bonding.

4 For reference, the bottom dies in (a) and (b) were made of blanket Cu films (the top dies had circuitry), while in pairs (c)-(f), both
bottom and top dies had real NMOS / PMOS devices on its surface.

•b• 
(c)



To verify that the graphite insert's hardened condition was indeed the bad-bond culprit, a second set

of die bonds was performed two weeks after the ones from Figure C-7. Again, the mechanical bonding

parameters remained the same, and a fresh graphite insert was provided for the first bond pair only. Figure

C-8 shows the result of the second round of bonding. Once again, Figure C-8 shows the degradation of

Quartz bond glass

°

(a) (b) (c)

.....................() ........................................... ...................... ................... (t ..........................

Pyrex bond glass

(g)

Figure C-8: A second set of 7 die-bonding pairs made two weeks after the first set. Upon breaking the
quartz bonding glass after pair (f), a 2.00 mm pyrex glass subsitute was used in pair (g), in which the pyrex
glass also broke.

bond quality as one continues to use the same graphite insert, but this time the quality of the initial pair,

seen in (a), was much worse than that of (b) or (c) in Figure C-7. Nevertheless, the southwest quadrant

of pair (a) exhibited a pristine PMOS surface after acid release, thereby showing the possibility that the

center of the die was probably shifted from the geometric center of the chuck during aligning. After the

6th die pair bond, however, the manufacturer's quartz plate finally succombed to fatigue and split into two

after chamber cool-down. In place of the quartz glass, a 2.00 mm pyrex wafer was used as the new bond

°



glass with the graphite insert remaining in its place 5. Although the pyrex wafer combination was known

to have worked before, it also shattered after the 7th die bond. Hence, a new die pair was immediately

bonded with a new pyrex wafer and with a new 1 mm graphite insert was used on top of the pyrex glass.

The result immediately reverted back to the likes of (a) in Figure C-7. Thus, these two expensive mishaps

were testaments proving that the condition of the graphite insert can make or break the die bonding

quality.

5 Since the pyrex wafer contains no vacuum grooves, the die was kept stationary during the alignment process from stiction pro-
duced by a partially-dried pool of 2-propanol sprayed on the pyrex surface. This stiction was stable enough to last 3 rounds of die-die
re-alignment, if necessary.



Appendix D

Supplemental Results and Graphs from

the Ring Oscillators

D.1 Unbonded Single NMOS Devices
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Figure D-1: Unbonded NMOS Id-Vd plots. The width/length ratio in microns for each NMOS were: (a)
80/1, (b) 60/1, (c) 20/1, (d) 10/1, (e) 5/1, (f) 60/3.
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Figure D-2: Unbonded NMOS Id-Vg plots, with subthreshold slope extraction. The width/length ratio in
microns for each NMOS were: (a) 80/1, (b) 60/1, (c) 20/1, (d) 10/1, (e) 5/1, (1) 60/3. As seen from the
subthreshold slope, these devices do not turn off a 3bell as they should. We probably have some serious
edge leakage problems as well as a double-Vt hump due to the much-smaller Vt caused by our layout's
poly gate extension.
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D.2 Unbonded Single PMOS Devices
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D.3 Face-Face, 21-Stage CMOS Ring Oscillators, Floating-body
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Figure D-7: 21-Stage CMOS, L = 3 /m: Vdd = 1 thru 2.5 V. Left-column plots are the signals from the 9x
output buffer and the tiny traces from probing the floating Ti backgate and the "useless" Cu-Al plane's pad;
right-column plots are zoomed-in traces of the aformentioned floating pads.
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21-st•e CMOS flealng bls, Slu43 Vdd = 3 0 V
87 i oslor output

U- TAnum Body votag, pad
6 Al fass ped

5
4

2

1
0
-1i
-2-

0 200 400 600 800 1000
Time (nsec)

21-slage CMOS floatig bias. SE~e60/3 .Vdcl 3 . V

Os"or •cs olut Ik
Til•ituwi Body voltge pd
A ita pad

4 i .. ... . .. . . .. . ... . i .i
3

02!I
-i

0 200 400 600 800 1000
Time (nsec)

21-stage CMOS bating bin, Sza=60W3 ,Vdd = 4.0 V

Close-up the floang ppd vo•lsVdd - 3 0 V

0,9
0.8
07
o0.6

0.3
0.2

- TOeaTmn dyvlag pad
- Al alas pad

H40a f i

200 400 600
Time (nsec)

800 1000

Clobup or the fiain pa& volevdd = 3. V

0,9 B odyUa
0.

o P I

021

0 200 400 600 800 1000
Time (nsec)

Oschaor OulpI
-Tantmnm n y volta pad
Al Bias pad

0 200 400 600 800 10
Time (nsec)

21-stage CMOS afloing bim. S~iehS .Vdd w 4.5 V

* Osclialor OulpuL
- Tituum Body voa pad

A- l Bias pad

0 200 400 600
Time (nsec)

800 1000

- Tfa Body vog ped
A Bias W

0 200 400 600
Time (nsec)

Time (nsec)
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21-stag CMOS flaling bias. Stn*A/3 .Vdd l- SOV
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Figure D-9: 21-Stage CMOS, L = 3 pm: Vdd = 5 thru 6.5 V.
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21-slage CMOS floating bias, Sm-60/3 .Vdd - 7.0 V
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Figure D-10: 21-Stage CMOS, L = 3 pm: The plot at Vdd = 7.0 is in (a). In (b), the frequency and the peak-
to-peak voltage Vpp of the output was plotted as a fuction of Vdd. Note the saturation of the oscillation
frequency at high Vdd's.
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Floating Ti pad average DC offset and RMS as function of Vdd
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Figure D-11: 21-Stage CMOS, L = 3 pm: The DC offset and the RMS voltage of the fast oscillations coming
off of the floating Ti bckgate and the useless Cu floating pads



D.4 Face-Face, 21-Stage CMOS Ring Oscillator, with Backbiasing
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Figure D-12: 21-Stage CMOS, L = 3 ym, Vdd = +5V, with: (a) Grounded backgate, (b) +5 V backbias, (c) +6.5
V backbias, (d) +7.5 V backbias, (e) -15 V backbias. Note that as the positive backbias increases, the V- and
V+ values crawls back within the bound ground and +Vdd rails, and at Vdd = +5 V, V-/V+ almost resided
on the rails themselves, albeit with some voltage drop3from internal series resistance.
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21-s1age CMOS, size 60/3; Vdd = 4.0 V
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Figure D-13: 21-Stage CMOS, L = 3 /m, Vdd = +4V, with: (a) Grounded backgate, (b) +5 V backbias, (c) +6.5
V backbias, (d) +7.5 V backbias, (e) -15 V backbias. Note that as the positive backbias increases, the V- and
V+ values crawls back within the bound ground and +Vdd rails.
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21-stage CMOS, size 60/3: Vdd = 3.0 V
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Figure D-14: 21-Stage CMOS, L = 3 pm, Vdd = +3V, with: (a) Grounded backgate, (b) +5 V backbias, (c) +6.5
V backbias, (d) -15 V backbias. Note that at Vdd = +3 V, the PMOS devices can no longer tolerate a backbias
of more than 6.5 V without severe degradation to the output signal.
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D.5 Face-Face, 43-Stage CMOS Ring Oscillators, Floating-body
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Figure D-15: 43-Stage CMOS, L = 3 pm: Vdd = 1 thru 2.5 V. Left-column plots are the signals from the 9x
output buffer and the tiny traces from probing the floating Ti backgate and the "useless" Cu-Al plane's pad;
right-column plots are zoomed-in traces of the aformentioned floating pads. Notice now that the 'i and Al
pads were now electrically separated, thus supportl8 the previously mentioned notion that the 21-stage
oscillator's shorted pads were probably from leftover stringers.
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43-stoge CMOS ftating bils. Stie=03 V•d = 3A0 V
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Figure D-17: 43-Stage CMOS, L = 3 pm: Vdd = 3 thru 4.5 V.
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43-stage CMOS floating bas. SiteS=0/3 ,Vdd = 7.0 V
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Figure D-18: 43-Stage CMOS, L = 3 pm: The plot at Vdd = 7.0 is in (a). In (b), the frequency and the
peak-to-peak voltage Vpp of the output was plotted as a fuction of Vdd. Note the saturation of the oscil-
lation frequency at high Vdd's. Also note this oscillator rang approximately half the speed of the 21-stage
oscillator data shown on 81. 190
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Floating Ti pad average DC offset and RMS as function of Vdd
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Figure D-19: 43-Stage CMOS, L = 3 pm: The DC offset and the RMS voltage of the fast oscillations coming
off of the floating Ti bckgate and the useless Cu floating pads



D.6 Face-Face, 43-Stage CMOS Ring Oscillator, with Backbiasing
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Figure D-20: 43-Stage CMOS, L = 3 im, Vdd = +5V, with: (a) Grounded backgate, (b) +5 V backbias, (c) +10
V backbias, (d) +13 V backbias, (e) +14 V backbias, and (f) -10 V backbias. Note that as the positive backbias
increases, the V- and V+ values crawls back within the bound ground and +Vdd rails. However, unlike the
21-stage variety, it tkea +13 V of backbias to regain c19trol of the V+/V- extrema.
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Figure D-21: 43-Stage CMOS, L = 3 /m, Vdd = +4V, with: (a) Grounded backgate, (b) +5 V backbias, (c) +10
V backbias, (d) +12 V backbias, and (e) -10 V backbias.
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43-stage CMOS, sie 60/3: Vdd = 3.0 V
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Figure D-22: 43-Stage CMOS, L = 3 /m, Vdd = +3V, with: (a) Grounded backgate, (b) +5 V backbias, (c) +10
V backbias, and (d) -10 V backbias.
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D.7 2-D NMOS-only Ring Oscillators

D.7.1 Table of Results

Figure D-23: A complete table of results for teh 2-D NMOS-only oscillator biased at Vdd = +3, +4, and +5 V.

Face- Face-

Vdd 2-D NMOS Simulated Unbonded Face-face back, back,
(V) Rings (MHz) (MHz) (MHz) 10 pm Al 20 imAl

release (MHz)
(MHz)

80/1 - 5/1 49.77 5.263 5.319 5.376 5.682
80/1 -10/11 76.86 5.814 6.098 6.024 5.952

5.0 60/1- 10/1 91.32 8.929 9.259 8.928 X
60/1 - 20/1 130.03 10.00 10.00 10.00 X

80/1 - 5/1 39.06 5.154 5.682 5.434 5.882
80/1- 10/1 61.72 5.814 6.250 6.098 6.097

4.0 60/1 - 10/1 73.52 8.475 9.259 8.772 X
60/1 - 20/1 105.26 9.615 10.00 10.00 X

80/1 - 5/1 25.84 5.319 6.098 5.681 3.144
3.0 80/1 -10/1 41.56 6.024 6.250 6.250 6.329

60/1 - 10/1 49.87 8.620 9.259 8.772 X
60/1 - 20/1 74.23 9.615 10.20 10.00 X



D.7.2 2-D NMOS-only Ring Oscillators, Vdd = 3 V
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Figure D-24: 2-D NMOS-only, 80/1 - 5/1 ring oscillator powered at Vdd = +3 V. from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 &m Al released sample in (b), a face-back bonded, 20 /m Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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single NMOS ,801/101 face-back 10um Al
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Figure D-25: 2-D NMOS-only, 80/1 - 10/1 ring oscillator powered at Vdd = +3 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 ym Al released sample in (b), a face-back bonded, 20 pm Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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single NMOS ,601/101 unbonded
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Figure D-26: 2-D NMOS-only, 60/1 - 10/1 ring oscillator powered at Vdd = +3 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 14m Al released sample in (b), a face-back bonded, 20 pm Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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Figure D-27: 2-D NMOS-only, 60/1 - 20/1 ring oscillator powered at Vdd = +3 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 pm Al released sample in (b), a face-back bonded, 20 pm Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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D.7.3 2-D NMOS-only Ring Oscillators, Vdd = 4 V
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Figure D-28: 2-D NMOS-only, 80/1 - 5/1 ring oscillator powered at Vdd = +4 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 pm Al released sample in (b), a face-back bonded, 20 pm Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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Figure D-29: 2-D NMOS-only, 80/1 - 10/1 ring oscillator powered at Vdd = +4 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 pm Al released sample in (b), a face-back bonded, 20 pm Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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Figure D-30: 2-D NMOS-only, 60/1 - 10/1 ring oscillator powered at Vdd = +4 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 /m Al released sample in (b), a face-back bonded, 20 /m Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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Figure D-31: 2-D NMOS-only, 60/1 - 20/1 ring oscillator powered at Vdd = +4 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 /m Al released sample in (b), a face-back bonded, 20 /m Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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D.7.4 2-D NMOS-only Ring Oscillators, Vdd = 5 V
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Figure D-32: 2-D NMOS-only, 80/1 - 5/1 ring oscillator powered at Vdd = +5 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 ym Al released sample in (b), a face-back bonded, 20 ym Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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Figure D-33: 2-D NMOS-only, 80/1 - 10/1 ring oscillator powered at Vdd = +5 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 /m Al released sample in (b), a face-back bonded, 20 /m Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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Figure D-34: 2-D NMOS-only, 60/1 - 10/1 ring oscillator powered at Vdd = +5 V, from an unbonded NMOS-
SOI wafer (a), a face-back bonded, 10 pm Al released sample in (b), a face-back bonded, 20 pm Al released
sample in (c) that died during processing, and a face-face bonded sample in (d)
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Appendix E

A Heat Transfer Primer for EE's

E.1 Thermal-to-Electrical Duality: The Heat Equation vs. the Poisson

Equation

To gain a more in-depth understanding of the heat transfer discussions in later sections, it is important for

the reader (assuming an EE background) to get re-acquainted with the Heat Equation and the fundamentals

of heat transfer. The best way to approach this exercise is to appreciate the duality between the Heat

Equation and the Poisson Equation in EE. We will use Figure E-1 extensively in the discussions below.

VV

+1 V

VT

O V 100 °C 0 oC
Figure E-1: Duality between electricity and heat. The left cartoon shows a charge q moving through a slab
of material with electrical conduct under a potential difference of V. The right cartoon shows an unit of heat
Q moving through a slab with a thermal conductivity of k under a temperature difference of 100 OC.
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E.2 Ohm's Law and its Thermal Duality: Fourier's Law

To start with, the Poisson Equation can be built from Ohm's Law, or I = V/R. Removing the cross-sectional

and length dependence from from the left cartoon in Figure E-1, we can rewrite Ohm's law in the continuity

formulation:

Je = aE (E.1)

where bold-faced variables denote vectorized quantities, J, is the electric current density, a is the electrical

conductivity of the material, and E is the electric field. For pedagogical reasons, let's again rewrite and

rename the variables of this equation using E = -VV :

Je = -aVV (E.2)

where J, is now called the charge flux vector and VV is the electric potential gradient vector. The physical

interpretation of Equation E.2 is that an electric charge q will move if an electric potential difference V

is present somewhere in space, and in addition, the direction of movement will concide with the steepest

gradient of the potential difference 1. Furthermore, the magnitude of the charge movement depends on the

magnitude of the electrical conductivity a of the material and the magnitude of the gradient VV.

On the same token, heat transfer can also be explained in the same manner as in Ohm's Law, and the

corresponding equation in the thermal domain is called Fourier's Law. To begin, let's refer back to the right

cartoon in Figure E-1. If a block of material was to have a 100 0C difference between two opposing surfaces,

then units of heat "Q' (in Joules, not Watts) will travel in the direction of the steepest temperature gradient

with a magnitude proportional to both VT and the thermal conductivity of the material k. Therefore, Ohm's

Law in Eq. E.2 can be rewritten into Fourier's Law in the thermal domain:

JQ = -kVT (E.3)

where JQ is the heat current density (thermal energy rate per unit area, or [Joules/sec/area], or [Watts/m 2 ],

or properly known as the heat flux vector), k is thermal conductivity in [oC/W-m], and VT is the temperature

gradient in [oC/m]. By comparing Ohm's Law and Fourier's Law, the duality relationships between them

are:

1 This is true only if the electrical conductivity was constant for all directions. If a non-elementary conductivity tensor exists, then
the direction of charge travel will obvisously deviate from the direction of VV.
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q - Q,

i = q4 Q,
a - k,

Duality = +_ _

V - T,

E = -VV + -VT,

J J, JQ,

electric charge (Coulombs): heat (Joules)

charge flow (amps): heat flow (watts)

electrical conductivity tensor : thermal conductivity tensor

electrical resistance : thermal resistance

equipotential contours : isothermal contours

electric field lines : temperature gradient lines

charge flux lines : heat flux lines

E.3 Poisson equation and its duality: The Heat equation

To derive Poisson's Equation, we start from Gauss's Law - the governing equation that relates the electric

field to its source charge, and plug in the relationship E = -VV:

V.(EE) = p
V (-EVV) = p (E.4)

If the permitivity of the material is isotropic in nature, we can take E as a constant and move it outside of

the divergence operator. The resulting equation is Poisson's Equation:

-EV2V = p

= SourceDensityE-field (E.5)

For the Heat equation, one can do the same exercise starting from Fourier's Law:

V (JQ)
V. (-kVT)

= SourceDensityheat

= SourceDensityheat (E.6)

If the thermal conductivity of the material is isotropic in nature, we can take k as a constant and move it

outisde of the divergence operator. The resulting equation is the Heat equation at steady-state:

-kV 2T = SourceDensityheat (E.7)

where the heat source density is usually consist of work being done on the system, and in the case of mi-

croelectronic circuits, SourceDensityheat = Work density done on system = Power dissipation density from

Joule heating, or 12 R/(spatialmetric). Comparing the Heat equation and Poisson's equation, one can reaf-

firm that fact that if one was given a specific charge distribution p(r) in space and a geometrically identical

power source distribution q(r), then the resulting E-field lines derived from Poisson's equation should ge-



ometrically coincide with the heat flux lines kVT if E and k tensors were isomorphic. The significance here

is that we can solve a Heat equation problem with relative ease if we already know the Poisson solution of

a geometrically equivalent problem. An exaggerated case of this can be seen in Figure E-2.

Poisson's Equation

*100 V

ci

E-field across a capacitor

+100 V

60 V

Equipotential contours

Heat Equation

+100 "C

c

- b0b

Heat flux travelling through the BOX
and into the substrate heat sink

+100 C

680 'C
sothermal contou 60rs

Isothermal contours

Figure E-2: Equivalence between Poisson and Heat equations. If the dimensions a, b, and c were all equal,
then the electric field E and the heat flux lines kVT would be geometrically and numerically be identical if
k = a = 1. Moreover, the equipotential and isothermal contours would also be equal.

Now that we have introduced the duality between the Heat and Poisson's equations, it's time for us to

dive into an in-depth analysis into heat transfer design in microelectronic circuits.

E.4 Spreading Resistance

E.4.1 Mathematical Introduction and Physical Interpretation

Within the thermal engineering chapter of the thesis body, there was a lengthy dialogue (through FEM sim-

ulations) on convincing the reader that the insertion of a Cu thermal plane into a field of on-chip hotspots

will increase the divergence of the heat flux and thus reduce the magnitude of the thermal gradient. Ba-

sically, the action of spreading the heat flux has effectively increased the thermal cross-sectional area asso-

ciated with the flux lines, and because of it, the overall thermal resistance and the maximum temperature

gradient of the 3-D structure was decreased. The cause-and-effect of "heat flux spreading" and "thermal

resistance reduction" was collectively coined as the spreading resistance by thermal engineers as early as the

1970s [59]. Mathematically, following the treatment of Yovanovich, et. al. [60] and Ellison [61], consider the

situation in Figure E-3, where we have:
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* A heat source of arbitrary shape with a cross-sectional area of A, with zero thickness, a power density

generation ofq(x,y) [W/m 2 ], and a total power dissipation of Q(x,y) = 4A, [W]

* A material of conduction with thermal conductivity k, thickness of t, and a conduction cross-sectional

area of A = ab.

In lieu of Fourier's law, one can write a relationship between the total power dissipation Q and the total

system temperature gradient VT:

VT
Rtotal

Tsource(x,y,z)- Tsink(x,y,z) (E.8)
Rtotal

where the total thermal resistance Rtotai can be written as the sum of the 1-D rectangular resistance RiD

and the the spreading resistance R,:

Rtotal = R, + RiD (E.9)

where

R1D = (E.10)
kA

The physical interpretation here is that if the heat source can be made smal when compared to the area in

which heat conduction occurs (A, << A), then the total resistance Rtotal can be made small. Furthermore,

through FEM simulations, we saw that if one adds a Cu plane within the conduction region, then it has the

effect of drastically reducing the value of R, (by flux spreading) while adding only a tiny increase in R1D;

hence, by adding a Cu thermal plane, we decrease the overall thermal resistance Rtotal even further.

E.4.2 Further Mathematical Treatment

Now, continuing with our mathematical treatment, if the only input of the system were the heating element

area A, and the power generation density q, and also if the output variable was the spreading resistance

R,, then Equation E.8 can be rewritten as (for a simpler case where we set impose a Dirichiet condition on

the heat sink, or Taink (x,y,z) = To:

Tsource(x,y,z)- To( 4(x,y) . As - RD

where the spatial dependence of the source temperature isotherm Tour,, can be solved if the spatial de-

pendce of q(x,y) was plugged into the source-free heat equation (aka. Laplace's Eq):

2
2T 02T 092T-kV2T(x,y,z) = -+ + = 0 (E.12)OX2 iay2 .9Z2
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Figure E-3: Setup of the spreading resistance problem. Material of conduction has conductivity k, thickness
t, and cross-sectional area of A. Material of heating has cross-sectional area A,, effective thickness of zero,
power density generation of 4(x,y), and power dissipation generation of Q = c(x,y) -A,.

with an upper isoflux boundary condition of:

a&
k = -8(x,y) (E.13)

8z

So, Equation E.11 is the general form for the spreading resistance inside a rectangular block, composing

of a single material with an isothermal heat sink temperature of To 2 It may appear innocuous, but I assure

you it's not, for if the heat source shape is neither rectangular nor circular, in other words, if &(x,y) is a

complicated function, then both the Laplace equation solution for Tsourc, and the expression for R, will

be very nonlinear. Numerous literature have dealt with the thermal resistance when &(x,y) are of different

shapes [62], general shape factors within the contex of Laplace's Equation [63], and thermal resistance

where the conduction medium was multi-layered and the geometry of q(x,y) was complicated [60, 61, 64,

2 As a sanity check, if the heat source area As equals the entire cross-sectional area A, then As = A = ab, and the math will work out
such that R8 = 0, which is what we expect.
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65], and I invite the reader to indulge on this subject there. The basic notion gathered from all the references

was that if a system to be analyzed has more than three or more conduction layers and if 2 out of 3 degrees

of freedom were unbounded (i.e. 2 semi- infinite boundaries, as in the case for an isolated cell of self-heating

MOSFETs, located on top of a thick 3-D stack with no neighboring clusters), then a closed-form solution of

for the total thermal resistance, Rtatl, is impossible to obtain. This is precisely the reason why most thermal

engineering soluions in microelectronics are always solved based on a simulation-first approach, and the

nonlinear feedback due to self-heating only exacerbates the problem.
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