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Fast Polyhedral Adaptive Conjoint Estimation 

Abstract 

 
We propose and test a new adaptive conjoint analysis method that draws on recent polyhedral 

“interior-point” developments in mathematical programming. The method is designed to offer accurate 

estimates after relatively few questions in problems involving many parameters.  Each respondent’s ques-

tions are adapted based upon prior answers by that respondent. The method requires computer support but 

can operate in both Internet and off-line environments with no noticeable delay between questions.  

We use Monte Carlo simulations to compare the performance of the method against a broad array 

of relevant benchmarks. While no method dominates in all situations, polyhedral algorithms appear to 

hold significant potential when (a) metric profile comparisons are more accurate than the self-explicated 

importance measures used in benchmark methods, (b) when respondent wear out is a concern, and (c) 

when product development and/or marketing teams wish to screen many features quickly.  We also test 

hybrid methods that combine polyhedral algorithms with existing conjoint analysis methods.  We close 

with suggestions on how polyhedral methods can be used to address other marketing problems. 
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 Polyhedral Methods for Conjoint Analysis 

In this paper we propose and test a new adaptive conjoint data collection and estimation method 

that attempts to reduce respondent burden while simultaneously improving accuracy. For each respondent 

the method dynamically adapts the design of the next question using that respondent’s answers to previ-

ous questions. Because the method makes full use of high-speed computations and adaptive, customized 

local web pages, it is ideally suited for Internet panels. We interpret the problem of selecting questions 

and estimating parameters as a mathematical program and estimate the solution to the program using re-

cent developments based on the interior points of polyhedra. These techniques provide the potential for 

accurate estimates of partial utilities from fewer questions than required by extant methods. 

Adapting question design within a respondent, using that respondent’s answers to previous ques-

tions, is a difficult dynamic optimization problem.  Adaptation within respondents should be distinguished 

from techniques that adapt across respondents. Sawtooth Software’s Adaptive Conjoint Analysis (ACA) 

is the only published method of which we know that attempts to solve this problem (Johnson 1987, 1991).  

In contrast, aggregate customization methods, such as the Huber and Zwerina (1996), Arora and Huber 

(2001), and Sandor and Wedel (2001) algorithms, adapt designs across respondents based on either pre-

tests or Bayesian priors. 

Our goals are two-fold.  First, we investigate whether polyhedral methods have the potential to 

enhance the effectiveness of existing conjoint methods.  We do not propose to replace the existing meth-

ods, but, rather, to provide new capabilities that complement these methods.  Second, by focusing on 

widely studied marketing problems we hope to illustrate the recent advances in mathematical program-

ming and encourage their applications in the marketing literature.  

Because the method is new and adopts a different estimation philosophy, we use Monte Carlo ex-

periments to explore the properties of the proposed polyhedral methods.  The Monte Carlo experiments 

explore the conditions under which polyhedral methods are likely to do better or worse than extant meth-

ods.  We have reason for optimism.  Conjoint analysis methods such as Linmap (Srinivasan and Shocker 

1973a, 1973b) successfully use classical linear programming to obtain estimates by placing constraints on 

the feasible set of parameters.  The Monte Carlo analysis explores seven issues:  

1. Accuracy vs. the number of questions  

Because web-based conjoint surveys place a premium on a small number of questions, we inves-
tigate how rapidly the estimates converge to their true values as the number of questions in-
creases.  The simulations highlight situations in which the polyhedral methods obtain the same 
accuracy with fewer questions than some benchmark methods. Reasonable estimates with smaller 
numbers of questions are important for the new, highly iterative product development processes.  
These dispersed processes gather information on customer preferences more often, require feed-
back more quickly, and often deal with large numbers of product features. 
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2. Self-explicated questions   

While the polyhedral method does not depend upon self-explicated questions, some benchmark 
methods do. We explore how the relative performance of these benchmarks depends on the accu-
racy of the self-explicated answers.  

 
3. Biases  

We explore whether the polyhedral algorithm and/or the benchmarks introduce biases into the es-
timates. 

 
4. Question selection vs. partworth estimation   

Because polyhedral methods can be used for both question selection and partworth estimation, we 
test each component (question selection and estimation) versus traditional procedures.  

 
5. Hybrid methods  

One of our goals is to investigate whether polyhedral methods have the potential to enhance exist-
ing conjoint methods. To explore this issue we evaluate several hybrid methods in which we 
combine polyhedral question selection or estimation with existing techniques. 

 
6. Respondent wear out or learning   

We explore what happens if responses either degrade (wear out) or improve (learning) as the 
number of questions increases. 

 
7. Individual vs. population estimates   

The polyhedral method (and many conjoint analysis methods) seek to provide estimates of cus-
tomer preferences that vary by respondent.  However, such heterogeneous estimates should not 
compromise the accuracy of population estimates.  We compare the methods on their abilities to 
estimate population averages.  
 

The paper is structured as follows.  We begin by distinguishing two types of conjoint tasks: met-

ric-paired-comparison tasks and stated-choice tasks.  We then describe a polyhedral method for metric 

paired-comparison tasks. In later discussion we describe how this method can be adapted to accommodate 

stated-choice tasks.  Detailed mathematics are provided in the Appendix. We follow this description of 

the methods with the design and results from the Monte Carlo experiments.  We then briefly describe an 

empirical field test and close with a discussion of the applicability of polyhedral methods to conjoint 

analysis and other marketing problems. 

Alternative Data-Collection Formats for Conjoint Analysis 

Polyhedral methods are new to conjoint analysis and show potential for many of the varied for-

mats of data collection (respondent tasks) that are used in conjoint analysis.  To date, we have found that 

polyhedral methods show particular promise for two well-studied respondent tasks. 
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In the first task subjects are presented with two product profiles and asked to provide a metric rat-

ing of the extent to which they prefer one product over the other (“metric-paired comparison” questions).  

In the second task subjects are presented with multiple product profiles and asked to pick which product 

profile they prefer (“stated-choice” questions, sometimes also called “Choice Based Conjoint” or “CBC”).  

We illustrate these two tasks in Figure 1, which is a modification of a commercial web-based conjoint 

questionnaire that was used to design a new version of Polaroid’s I-Zone camera.  The metric-paired 

comparison task is depicted in Figure 1a and the stated-choice task is illustrated in Figure 1b.1   

Figure 1   
Examples of Two Question Formats for I-Zone Camera Redesign 

    
      (a) Metric Paired Comparison    (b) Stated Choice 

Adaptive Conjoint Analysis (ACA) uses metric-paired-comparison questions.  Given ACA is the 

only other published method (of which we know) for adapting questions within a respondent; we also fo-

cus on metric paired-comparison tasks for an initial exploration of the potential of polyhedral methods.  

Metric paired-comparison questions (1) are common in computer-aided interviewing, (2) have proven 

reliable in previous studies (Reibstein, Bateson, and Boulding 1988; Urban and Katz 1983), (3) have been 

shown to provide interval-scaled paired-comparison data that has strong transitivity properties (Hauser 

and Shugan 1980), and (4) enjoy wide use in practice and in the literature that is exceeded only by the full 

profile task (see Cattin and Wittink 1982; and Wittink and Cattin 1989 for applications surveys).  Further, 

there is growing evidence that carefully collected metric data provide valid and reliable parameter esti-

mates (Carmone, Green, and Jain 1978; Currim, Weinberg, and Wittink 1981; Hauser and Shugan 1980; 

Hauser and Urban 1979; Huber 1975; Leigh, MacKay, and Summers 1984; Malhotra 1986; Srinivasan 

and Park 1997; and Wittink and Cattin 1981).  

                                                           
1 The I-Zone application was based on metric paired-comparison data.  Figure 1b is an adaptation, in the I-Zone 
format, of the stated-choice questions on pages 260 and 284 of Louviere, Hensher, and Swait (2000). 
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Stated-choice conjoint tasks have also achieved widespread acceptance in both the academic lit-

erature and industry practice (cf. Louviere, Hensher and Swait 2000).  For this reason, we briefly describe 

how polyhedral methods can be adapted to address stated-choice conjoint tasks.  We suggest one feasible 

algorithm as a prototype. (Code is available on our website).  Although the polyhedral algorithms share 

many features, there are important differences between the metric-paired comparison and stated-choice 

tasks.  Many interesting challenges have yet to be resolved, hence research on polyhedral algorithms for 

stated-choice tasks must be considered on-going. A complete treatment of the use of polyhedral methods 

in stated-choice tasks is beyond the scope of the current paper.  However, our initial simulations suggest 

that the prototype algorithm is feasible in the sense that it can adapt stated-choice questions within re-

spondents with no noticeable delay between questions.  Initial simulations suggest that, like for the met-

ric-paired comparison algorithm, adaptive polyhedral question selection and estimation improves extant 

choice-based methods (e.g., multinomial logit, Hierarchical Bayes) in some situations, but not in others. 

Information and Polyhedral Feasible Sets 

 We now describe the polyhedral question selection and partworth estimation procedures for met-

ric-paired-comparison questions.  We begin with a conceptual description that highlights the geometry of 

the parameter space and then introduce the interior-point methods based on the “analytic center” of a 

polyhedron.  We illustrate the concepts with a 3-parameter problem because 3-dimensional spaces are 

easy to visualize and explain.  The methods generalize easily to realistic problems that contain ten, 

twenty, or even one hundred parameters.  Indeed, relative to existing methods, the polyhedral methods are 

most useful for large numbers of parameters.  By a parameter, we refer to a partworth that needs to be 

estimated.  For example, twenty features with two levels each require twenty parameters because we can 

set to zero the partworth of the least preferred feature.2  Similarly, ten three-level features also require 

twenty parameters.  Interactions among features require still more parameters. 

  Suppose that we have three features of an instant camera – picture quality (illustrated with two 

options viewable on the web), picture taking (2-step vs. 1-step), and styling covers (changeable vs. per-

manent).  If we scale the least desirable level of each feature to zero we have three non-negative parame-

ters to estimate, u1, u2, and u3, reflecting the additional utility (partworth) associated with the most desir-

able level of each feature.3  In Figure 1a the sum of the partworths of Camera A minus the sum of the 

partworths of Camera B can be at most equal to the maximum scale difference – in this case the value of 
                                                           
2 Technically, we lose a degree of freedom because the utility of a fully-featured product can be set arbitrarily.  
However, when we use metric data we regain that degree of freedom when we rescale utility to the implicit scale of 
the respondents’ answers. 
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nine scale points.  Thus, without loss of generality, in order to visualize the algorithm, we impose a con-

straint that the sum of the parameters does not exceed some large number.  In this case, prior to any data 

collection, the feasible region for the parameters is the 3-dimensional bounded polyhedron in Figure 2a.  

 Figure 2  
Respondent’s Answers Affect the Feasible Region 
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(a) Metric rating without error           (b) Metric rating with error  

Suppose that we ask the respondent to evaluate a pair of profiles that vary on one or more features 

and the respondent says (without error) (1) that he or she prefers profile C1 to profile C2 and (2) provides 

a rating, a, to indicate the strength of his or her preference.  This introduces an equality constraint that the 

utility associated with profile C1 exceeds the utility of C2 by an amount equal to the rating.  If we define 
Tuuuu ),,( 321=r as the 3×1 vector of parameters, l

rz  as the 1×3 vector of product features for the left 

profile, and as the 1×3 vector of product features for the right profile, then, for additive utility, this 

equality constraint can be written as 

rzr

auzuz r =− rrrr
l . We can use geometry to characterize what we have 

learned from this question and answer.    

Specifically, we define rzzx rrr
l −=  such that xr  is a 1×3 vector describing the difference between 

the two profiles in the question. Then, aux =rr  defines a hyperplane through the polyhedron in Figure 2a.   

The only feasible values of ur  are those that are in the intersection of this hyperplane and the polyhedron. 

The new feasible set is also a polyhedron, but it is reduced by one dimension (2-dimensions rather than 3-
                                                                                                                                                                                           
3 In this example, we assume preferential independence which implies an additive utility function.  We can handle 
interactions by relabeling features.  For example, a 2x2 interaction between two features is equivalent to one four-
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dimensions).  Because smaller polyhedra mean fewer parameter values are feasible, questions that reduce 

the size of the initial polyhedron as fast as possible lead to more precise estimates of the parameters.  

 However, in any real problem we expect the respondent’s answer to contain error.  We can model 

this error as a probability density function over the parameter space (as in standard statistical inference).  

Alternatively, we can incorporate imprecision in a response by treating the equality constraint aux =rr as a 

set of two inequality constraints: δδ +≤≤− auxa rr
.  In this case, the hyperplane defined by the question-

answer pair has “width.”  The intersection of the initial polyhedron and the “fat” hyperplane is now a 

three-dimensional polyhedron as illustrated in Figure 2b.   

When we ask more questions we constrain the parameter space further.  Each question, if asked 

carefully, will result in a hyperplane that intersects a polyhedron resulting in a smaller polyhedron – a 

“thin” region in Figure 2a or a “fat” region in Figure 2b.  Each new question-answer pair slices the poly-

hedron in Figure 2a or 2b yielding more precise estimates of the parameter vector .  ur

 We incorporate prior information about the parameters by imposing constraints on the parameter 

space.  For example, if um and uh are the medium and high levels, respectively, of a feature, then we im-

pose the constraint um ≤ uh on the polyhedron.  Previous research suggests that these types of constraints 

enhance estimation (Johnson 1999; Srinivasan and Shocker 1973a, 1973b).  We now examine question 

selection for metric paired-comparison data by dealing first with the case in which subjects respond with-

out error (Figure 2a). We then describe how to modify the algorithm to handle error (e.g., Figure 2b). 

Question Selection 

 The question selection task describes the design of the profiles that respondents are asked to 

compare. Questions are more informative if the answers allow us to identify more quickly the correct an-

swer.  For this reason, we select the respondent’s next question in a manner that is likely to reduce the 

size of the feasible set (for that respondent) as fast as possible. 

 Consider for a moment a 20-dimensional problem (without errors in the answers).  As in Figure 

2a, a question-based constraint reduces the dimensionality by one.  That is, the first question reduces a 20-

dimensional set to a 19-dimensional set; the next question reduces this set to an 18-dimensional set and so 

on until the twelfth question which reduces a 9-dimensional set to an 8-dimensional set (8 dimensions = 

20 parameters – 12 questions).  Without further restriction, the feasible parameters are generally not 

unique – any point in the 8-dimensional polyhedron is still feasible.  However, the 8-dimensional set 

might be quite small and we might have a very good idea of the partworths.  For example, the first twelve 

questions might be enough to tell us that some features, say picture quality, styling covers, and battery 

                                                                                                                                                                                           
level feature.  We hold this convention throughout the paper.  We simplified Figure 1a to illustrate the problem in 
three dimensions.  The I-Zone application included price and three other features as in Figure 1b. 

  6



FAST POLYHEDRAL ADAPTIVE CONJOINT ESTIMATION  

life, have large partworths and some features, say folding capability, light selection, and film ejection 

method, have very small partworths.  If this holds across respondents then, during an early phase of a 

product development process, the product development team might feel they have enough information to 

focus on the key features.   

Although the polyhedral algorithm is most effective in high dimensional spaces, it is hard to visu-

alize 20-dimensional polyhedra.  Instead, we illustrate the polyhedral question-selection criteria in a situa-

tion where the remaining feasible set is easy to visualize.  Specifically, by generalizing our notation 

slightly to q questions and p parameters, we define  as the q×1 vector of answers and X as the q×p ma-

trix with rows equal to

ar

xr for each question.  (Recall that xr  is a 1×p vector.)  Then the respondent’s an-

swers to the first q questions define a (p-q)-dimensional hyperplane given by the equation auX rr
= .  This 

hyperplane intersects the initial p-dimensional polyhedron to give us a (p-q)-dimensional polyhedron.  In 

the example of p=20 parameters and q=18 questions, the result is a 2-dimensional polyhedron that is easy 

to visualize.  One such 2-dimensional polyhedron is illustrated in Figure 3a. 

Figure 3   
Choice of Question (2-dimensional slice) 
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axr(   ,    )

a ′′(   ,     )xr

axr(   ,    )

x ′r a′(   ,    )x ′r a′(   ,    )

axr(   ,    )axr(   ,    )

a ′′(   ,     )xr a ′′(   ,     )xr

axr(   ,    )axr(   ,    )

 

(a)  Two question-answer pairs   (b)  One question, two potential answers  

Our task is to select questions such that we reduce the 2-dimensional polyhedron as fast as possi-

ble.  Mathematically, we select a new question vector, xr , and the respondent answers this question with a 
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new rating, a.  We add the new question vector as the last row of the question matrix and we add the new 

answer as the last row of the answer vector.  While everything is really happening in p-dimensional space, 

the net result is that the new hyperplane will intersect the 2-dimensional polyhedron in a line segment 

(i.e., a 1-dimensional polyhedron).  The slope of the line will be determined by xr  and the intercept by a.  

We illustrate two potential question-answer pairs in Figure 3a.  The slope of the line is determined by the 

question, the specific line by the answer, and the remaining feasible set by the line segment within the 

polyhedron.  In  Figure 3a one of the question-answer pairs ( , ) reduces the feasible set more rapidly 

than the other question-answer pair ( , ).  Figure 3b repeats a question-answer pair (

xr a

xr′ a′ xr , a ) and illus-

trates an alternative answer to the same question ( xr , ). a ′′

xr′

If the polyhedron is elongated as in Figure 3, then, in most cases, questions that imply line seg-

ments perpendicular to the longest “axis” of the polyhedron are questions that result in the smallest re-

maining feasible sets.  Also, because the longest “axis” is in some sense a bigger target, it is more likely 

that the respondent’s answer will select a hyperplane that intersects the polyhedron.  From analytic ge-

ometry we know that hyperplanes (line segments in Figure 3) are perpendicular to their defining vectors 

( ), thus, we can reduce the feasible set as fast as possible (and make it more likely that answers are fea-

sible) if we choose question vectors that are parallel to the longest “axis” of the polyhedron.  For example, 

both line segments based on  in Figure 3b are shorter than the line segment based on

xr

xr in Figure 3a. 

If we can develop an algorithm that works in any p-dimensional space, then we can generalize 

this intuition to any question, q, such that q≤p.  (We address later the cases where the respondent’s an-

swers contain error and where q>p.)  After receiving answers to the first q questions, we could find the 

longest vector of the (p-q)-dimensional polyhedron of feasible parameter values.  We could then ask the 

question based on a vector that is parallel to this “axis.” The respondent’s answer creates a hyperplane 

that intersects the polyhedron to produce a new polyhedron.  Later in the paper we use Monte Carlo simu-

lation to determine if and when this question-selection method produces reasonable estimates of the un-

known parameters.  We then review an empirical study based on this polyhedral method. 

Intermediate Estimates of Partworths and Updates to those Estimates 

 Polyhedral geometry also gives us a means to estimate the parameter vector, ur , when q≤p.  Re-

call that, after question q, any point in the remaining polyhedron is consistent with the answers the re-

spondent has provided.  If we impose a diffuse prior that any feasible point is equally likely, then we 

would like to select the point that minimizes the expected absolute error.  This point is the center of the 

feasible polyhedron, or more precisely, the polyhedron’s center of gravity. The smaller the feasible set, 

either due to better question selection or more questions (higher q), the more precise the estimate.  If there 

were no respondent errors, then the estimate would converge to its true value when q=p (the feasible set 
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becomes a single point, with zero dimensionality). For q>p the same point would remain feasible.  (As we 

discuss below, this changes when responses contain error.) This technique of estimating partworths from 

the center of a feasible polyhedron is related to that proposed by Srinivasan and Shocker (1973b, p. 350) 

who suggest using a linear program to find the “innermost” point that maximizes the minimum distance 

from the hyperplanes that bound the feasible set. 

Philosophically, the proposed polyhedral method makes maximum use of the information in the 

constraints and then takes a central estimate based on what is still feasible. Carefully chosen questions 

shrink the feasible set rapidly. We then use a centrality estimate that has proven to be a surprisingly good 

approximation in a variety of engineering problems including, for example, finding the center of gravity 

of a solid.  More generally, the centrality estimate is similar in some respects to the proven robustness of 

linear models, and in some cases, to the robustness of equally-weighted models (Dawes and Corrigan 

1974; Einhorn 1971, Huber 1975; Moore and Semenik 1988; Srinivasan and Park 1997).   

Interior-point Algorithms and the Analytic Center of a Polyhedron 

To select questions and obtain intermediate estimates the proposed heuristics require that we 

solve two non-trivial mathematical programs.  First, we must find the longest “axis” of a polyhedron (to 

select the next question) and second, we must find the polyhedron’s center of gravity (to provide a current 

estimate).  If we were to define the longest “axis” of a polyhedron as the longest line segment in the poly-

hedron, then one method to find the longest “axis” would be to enumerate the vertices of the polyhedron 

and compute the distances between the vertices.  However, solving this problem requires checking every 

extreme point, which is computationally intractable (Gritzmann and Klee 1993).  In practice, solving the 

problem would impose noticeable delays between questions.  Also, the longest line segment in a polyhe-

dron may not capture the concept of a longest “axis.” Finding the center of gravity of the polyhedron is 

even more difficult and computationally demanding. 

Fortunately, recent work in the mathematical programming literature has led to extremely fast al-

gorithms based on projections within the interior of polyhedrons (much of this work started with Kar-

markar 1984).  Interior-point algorithms are now used routinely to solve large problems and have 

spawned many theoretical and applied generalizations.  One such generalization uses bounding ellipsoids. 

In 1985, Sonnevend demonstrated that the shape of a bounded polyhedron can be approximated by pro-

portional ellipsoids, centered at the “analytic center” of the polyhedron.  The analytic center is the point in 

the polyhedron that maximizes the geometric mean of the distances to the boundaries of the polyhedron.  

It is a central point that approximates the center of gravity of the polyhedron, and finds practical use in 

engineering and optimization.  Furthermore, the axes of the ellipsoids are well-defined and intuitively 
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capture the concept of an “axis” of a polyhedron.  For more details see Freund (1993), Nesterov and Ne-

mirovskii (1994), Sonnevend (1985a, 1985b), and Vaidja (1989).  

We illustrate the proposed process in Figure 4, using the same two-dimensional polyhedron de-

picted in Figure 3.  The algorithm proceeds in four steps.  The mathematics are in the Appendix; we pro-

vide the intuition here. We first find a point in the interior of the polyhedron.  This is a simple linear pro-

gramming (LP) problem and runs quickly.  Then, following Freund (1993) we use Newton’s method to 

make the point more central.  This is a well-formed problem and converges quickly to yield the analytic 

center as illustrated by the black dot in Figure 4.  We next find a bounding ellipsoid based on a formula 

that depends on the analytic center and the question-matrix, X. We then find the longest axis of the ellip-

soid (diagonal line in Figure 4) with a quadratic program that has a closed-form solution.  The next ques-

tion, xr , is based on the vector most nearly parallel to this axis. 

Figure 4   
Bounding Ellipsoid and the Analytic Center (2-dimensions) 

 

Analytically, this algorithm works well in higher dimensional spaces. For example, Figure 5 illus-

trates the algorithm when (p – q) = 3, that is, when we are trying to reduce a 3-dimensional feasible set to 

a 2-dimensional feasible set.  Figure 5a illustrates a polyhedron based on the first q questions.  Figure 5b 

illustrates a bounding 3-dimensional ellipsoid, the longest axis of that ellipsoid, and the analytic center.  

The longest axis defines the question that is asked next which, in turn, defines the slope of the hyper-

planes that intersect the polyhedron.  One such hyperplane is shown in Figure 5c.  The respondent’s an-
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swer selects the specific hyperplane; the intersection of the selected hyperplane and the 3-dimensional 

polyhedron is a new 2-dimensional polyhedron, such as that in Figure 4.  This process applies (in higher 

dimensions) from the first question to the pth question.  For example, the first question implies a hyper-

plane that cuts the first p-dimensional polyhedron such that the intersection yields a (p – 1)-dimensional 

polyhedron.  

Figure 5 
Question Selection with a 3-Dimensional Polyhedron 

       
(a) Polyhedron in 3 dimensions       (b) Bounding ellipsoid, analytic center, and longest axis 

 
(c) Example hyperplane determined by question vector and respondent’s answer 

The polyhedral algorithm runs extremely fast.  We have implemented the algorithm to select 

questions for a web-based conjoint analysis application.  Based on an example with ten two-level fea-
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tures, respondents notice no delay in question selection nor any difference in speed versus a fixed design.  

For a demonstration see the website listed in the acknowledgements section of this paper.  Because there 

is no guarantee that the polyhedral algorithm will work well with the conjoint task, we use Monte Carlo 

simulation to examine how well the analytic center approximates the true parameters and how quickly 

ellipsoid-based questions reduce the feasible set of parameters.  

Inconsistent Responses and Error-modeling with Polyhedral Estimation 

Figures 2, 3, 4, and 5 illustrate the geometry when respondents answer without error.  However, 

real respondents are unlikely to be perfectly consistent.  It is more likely that, for some q < p, the respon-

dent’s answers will be inconsistent and the polyhedron will become empty.  That is, we will no longer be 

able to find any parameters, u , that satisfy the equations that define the polyhedron,
r auX rr= .  Thus, for 

real applications, we extend the polyhedral algorithm to address response errors.  Specifically, we adjust 

the polyhedron in a minimal way to ensure that some parameter values are still feasible.  We do this by 

modeling errors, , in the respondent’s answers such that δ
r

δδ
rrrrr +≤≤− auXa .  Review Figure 2b.  We 

then choose the minimum errors such that these constraints are satisfied.  The Appendix provides the 

mathematical program (OPT4) that we use to estimate u
r and .  The algorithm is easily modified to in-

corporate alternative error formulations, such as least-squares or minimum sum of absolute deviations, 

rather than this “minimax” criterion.

δ
r

4  Exploratory simulations suggest that algorithm is robust with re-

spect to the choice of error criterion. This same modification covers estimation for the case of q > p.   

To implement this policy we use a two-stage algorithm.  In the first stage we treat the responses 

as if they occurred without error – the feasible polyhedron shrinks rapidly and the analytic center is a 

working estimate of the true parameters.  However, as soon as the feasible set becomes empty, we adjust 

the constraints by adding or subtracting “errors,” where we choose the minimum errors, δ
r

, for which 

the feasible set is non-empty.  The analytic center of the new polyhedron becomes the working estimate 

and  becomes an index of response error.  As with all of our heuristics, the accuracy of our error-

modeling method is tested with simulation. 

δ
r

Addressing Other Practical Implementation Issues 

 In order to apply polyhedral estimation to metric paired-comparison data we have to address sev-

eral implementation issues.  We note that other solutions to these problems may yield more or less accu-

                                                           
4 Technically, the minimax criterion is called the “∞-norm.” To handle least-squares errors we use the “2-norm” and 
to handle average absolute errors we use the “1-norm.”  Either is a simple modification to OPT4 in the Appendix. 
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rate parameter estimates, and so the performance of the polyhedral method in the Monte Carlo simula-

tions is a lower bound on the performance of this class of polyhedral methods.  

 Product profiles with discrete features.  In most conjoint analysis problems, the features are speci-

fied at discrete levels as in Figure 1.  This constrains the elements of the xr  vector to be 1, –1, or 0, de-

pending on whether the left profile, the right profile, neither profile, or both profiles have the “high” fea-

ture.  In this case we choose the vector that is most nearly parallel to the longest axis of the ellipsoid.  Be-

cause we can always recode multi-level features or interacting features as binary features, the geometric 

insights still hold even if we otherwise simplify the algorithm. 

 Restrictions on question design. Experience suggests that for a p-dimensional problem we may 

wish to vary fewer than p features in any paired-comparison question. For example, Sawtooth Software 

(1996, p. 7) suggests that: “Most respondents can handle three attributes after they’ve become familiar 

with the task.  Experience tells us that there does not seem to be much benefit from using more than three 

attributes.”  We incorporate this constraint by restricting the set of questions over which we search when 

finding a question-vector that is parallel to the longest axis of the ellipse.  

 First question.  Unless we have prior information before any question is asked, the initial polyhe-

dron of feasible utilities is defined by the boundary constraints.  Because the boundary constraints are 

symmetric, the polyhedron is also symmetric and the polyhedral method offers little guidance in the 

choice of a respondent’s first question.  We choose the first question for each respondent so that it helps 

improve estimates of the population means by balancing the frequency with which each attribute level 

appears in the set of questions answered by all respondents.  In particular, for the first question presented 

to each respondent we choose feature levels that appeared infrequently in the questions answered by pre-

vious respondents.  

 Question selection when the parameter set becomes infeasible.  Polyhedral parameter estimation 

is well-defined when the parameter set becomes infeasible, but question selection is not.  Thus, we use the 

ACA question-selection heuristic when the parameter set is infeasible.5 This provides a lower bound on 

what might be achieved with improved infeasible-set question selection.   

   Programming.  The optimization algorithms used for the simulations are written in MatLab and 

are available at the website listed in the acknowledgements section of this paper.  We also provide the 

simulation code and demonstrations of web-based applications.  All code is open-source. 

Polyhedral Methods for Stated-Choice Tasks (CBC) 

 Recall that we earlier distinguished between two types of conjoint tasks: metric-paired-

comparison and stated-choice tasks (see Figure 1).  In this paper we focus on the application of polyhedral 

                                                           
5 We describe the ACA question-selection heuristic in a later section. 
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methods to metric-paired-comparison tasks.  However, because the stated-choice task has also received 

considerable attention in the literature and is widely used in practice, it is helpful to describe how the 

polyhedral methods may be applied to this task. We present here one prototype algorithm. Many chal-

lenges remain, so we delay a complete treatment of this topic to a subsequent paper. One challenge will 

be to identify appropriate benchmarks against which to compare a polyhedral stated-choice method. Al-

though ACA offers an established benchmark for adapting the design of metric-paired comparison ques-

tions within respondents, there is no such adaptive benchmark available for stated-choice questions.  Sev-

eral methods have been proposed for adapting choice questions across respondents (e.g., Anonymous 

2001; Arora and Huber 2001; Huber and Zwerina 1996, Sandor and Wedel 2001) and could offer appro-

priate benchmarks.   

 There is an important difference between metric-paired-comparison tasks and stated-choice tasks.  

Responses to a metric-paired-comparison question yield an equality constraint ( auX rr
= ) on the feasible 

region, by describing how much the subject prefers one profile to another.  In contrast, when responding 

to a stated-choice question, subjects describe which profile they prefer, but they do not describe how 

much they prefer one profile to the others.  This response defines a set of inequality constraints, under 

which the utility of the chosen profile is higher than the utility of the profiles that were not chosen.   

Modifying the earlier notation, we define jzr as the vector of feature levels for the jth profile in the choice 

set.  In the case where there are only two profiles, j=1 and j=2, if a subject chooses profile j=1 this choice 

implies the following inequality constraint: uzu rrrzr 21 ≥  (assuming no response error and ignoring the null 

option).  With metric data, each question reduces the dimensionality of the feasible parameter space; with 

stated choice data the inequality constraints exclude sections of the space but the dimensionality is un-

changed.  If customers choose from J product profiles, then it is possible to design the profiles so that the 

subject’s answer reduces the feasible region to one of J mutually exclusive, fully-exhaustive, unique sub-

spaces.   Intuitively, this means that the feasible region is reduced in size by each answer to a sub-space 

that is, on average, 1/J the size of the previous feasible region.  Although algorithms can be developed for 

any number of profiles in the choice set (including null options), we illustrate the method for four non-

null profiles.  Extensions are covered in the Appendix. 

 Suppose that the respondent has already answered a number of stated-choice questions and sup-

pose we want to select the next choice set of four profiles such that the respondent’s answer will shrink 

the feasible polyhedron rapidly.  In two dimensions, the current polyhedron might look like that in Figure 

6.  We begin by finding extreme estimates of the parameters, ju
r .  To do this, we again approximate the 

polyhedron with an ellipse and find the two longest axes.  The longest axes identify feasible parameter 

values that are maximally different. The intersection of these axes and the polyhedron gives the extreme 
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values of the parameters that can be used to select profiles.  Following Elrod, Louviere, and Davey 

(1992), Green, Helsen and Shandler (1988), and Johnson, Meyer and Ghosh (1989), we select representa-

tive Pareto profiles corresponding to each u j
r .  This assures that we select profiles such that the respon-

dent’s stated choice indicates a region of the polyhedron. Specifically, for each j, we select the profile the 

respondent would have chosen, subject to an imposed budget constraint, had u j
r been that respondent’s 

partworths. This is a “knapsack” problem that is easily solved with a dynamic program.  Inequality con-

straints (not shown in Figure 6) define the set of parameters consistent with each choice.  Notice that 

unlike the metric paired-comparison polyhedral algorithm, there are always parameter values consistent 

with the respondent’s stated choices.  Thus, the feasible parameter space shrinks rapidly, but never van-

ishes. 

Figure 6 
One Polyhedral Method for Choice-Based Conjoint Analysis 

 
 

Estimation proceeds as in the metric paired-comparison algorithm.  The analytic center of the re-

gion indicated by the respondent’s choice provides an estimate of the partworths.  Detailed issues such as 

discrete features, first-question selection, external constraints, and programming are handled in an analo-

gous manner to the metric paired-comparison algorithm.  We have generated code for this adaptive poly-

hedral CBC algorithm.  It is feasible and adapts questions with no noticeable delay.  Estimates are similar 

to those obtained by logit analysis and by Hierarchical Bayes analysis when either is based on fixed de-

signs or the swapping/relabeling designs of Arora and Huber (2001) and Huber and Zwerina (1996).  
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However, we caution the reader that these polyhedral CBC algorithms are still under development and 

require significant testing and improvement before we can identify the situations where they complement 

existing question-selection and estimation methods and where they do not.   

Monte Carlo Experiments 

The polyhedral methods for question selection and partworth estimation are new and untested.  

Although interior-point algorithms and the centrality criterion have been successful in many engineering 

problems, we are unaware of any other application to conjoint analysis (or any other marketing problem).  

Thus, we turn to Monte Carlo experiments to identify circumstances in which polyhedral methods may 

contribute to the effectiveness of current conjoint methods.  

When evaluating new methods there are at least four validity criteria: estimation accuracy, inter-

nal validity, convergent validity, and external validity.  In estimation accuracy, we want to know that the 

method itself, when faced with data that contains errors, can recover true parameters.  In some cases, in-

cluding OLS or logit, this is examined analytically by showing that if the errors satisfy certain distribu-

tional assumptions then the parameter estimates are consistent (McFadden 1974).  In more complex cases, 

when analytic derivations are infeasible, Monte Carlo simulation demonstrates the ability of the method 

to recover true parameters.  Internal validity refers to the ability of the method to predict respondent an-

swers to new profiles, but with the same question format.  Methods based on metric paired-comparisons 

and stated choice routinely do well on this measure. 6  Convergent validity refers to the ability of two or 

more methods to provide the same estimates.  For example, Louviere, Hensher and Swait (2000) review 

sixteen empirical studies in marketing, transportation, and environmental valuation in which stated-choice 

models (CBC) provide estimates similar to those obtained by revealed preference choice models.  Exter-

nal validity refers to the ability of conjoint models to predict actual behavior.  For example, McFadden 

(2000) cites a case study for the Bay Area Rapid Transit in which a revealed preference models predicted 

market shares well; Tybout and Hauser (1981) report a quasi-experiment testing revealed-preference pre-

dictions for bus service improvements by the town of Evanston, IL.  Leigh, MacKay and Summers 

(1984), Montgomery and Wittink (1980); Wittink and Montgomery (1979), and Wright and Kriewall 

                                                           
6 Examples (and related tests) include Acito and Jain (1980), Akaah and Korgaonkar (1983), Bateson, Reibstein and 
Boulding (1987), Bucklin and Srinivasan (1991), Carmon, Green, and Jain (1978), Cattin, Hermet and Pioche 
(1982), Elrod, Louviere and Davey (1992), Green, Goldberg and Wiley (1982), Green, Goldberg and Montemayor 
(1981), Green and Helsen (1989), Green, Helsen and Shandler (1988), Green and Krieger (1985), Green, Krieger 
and Agarwal (1991), Green, Krieger and Bansal (1988), Haaijer, Wedel, Vriens and Wansbeek (1998), Hagerty 
(1985), Huber (1975), Huber, Wittink, Fiedler and Miller (1993), Hauser and Koppelman (1979), Hauser and Urban 
(1977), Hauser, Tybout and Koppelman (1981), Jain, Acito, Malhotra and Mahajan (1979), Johnson, Meyer and 
Ghosh (1989), Johnson (1999), Lenk, DeSarbo, Green and Young (1996), Louviere, Hensher, and Swait (2000), 
Malhotra (1986), Moore (1980), Moore, Louviere, and Verma (1999),  Moore and Semenik (1988), Orme, Alpert 
and Christensen (1998), Parker and Srinivasan (1976), Reibstein, Bateson and Boulding (1988), Segal (1982), Srini-
vasan (1988), Srinivasan and Park (1997), and Tybout and Hauser (1981).  
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(1980) demonstrate external validity for full-profile conjoint analysis, Srinivasan (1988) for a form based 

on self-explicated importances, and Srinivasan and Park (1997) for a hybrid. 

Monte Carlo simulations offer at least two advantages for the initial test of a new method.  First, 

they can be repeated readily by other researchers.  This facilitates comparison of different techniques in a 

range of contexts.  By varying parameters we can evaluate modifications of the techniques and hybrid 

combinations.  We can also evaluate performance based on the varying characteristics of the respondents, 

including the heterogeneity and reliability of their responses.  Second, simulations resolve the issue of 

identifying the correct answer.  In studies involving actual customers, the true partial utilities are unob-

served.  In simulations the true partial utilities are constructed so that we can compare how well alterna-

tive methods identify the true utilities from noisy responses. In this manner, Monte Carlo simulations 

provide a baseline from which to explore a wide range of behavioral responses to survey questions.  We 

illustrate the use of baselines by examining both wear out and learning.  Such baselines can also be gener-

ated to study order effects, routinization, carry-over effects, preference reversals, and correlated errors 

(Alreck and Settle 1995; Bickart 1993; Feldman and Lynch 1988; Nowlis and Simonson 1997; Simmons, 

Bickart and Lynch 1993; Tourangeau, Rips and Rasinski 2000).  

Many papers have used the relative strengths of Monte Carlo experiments to study conjoint tech-

niques, providing insights on interactions, robustness, continuity, attribute correlation, segmentation, new 

estimation methods, new data collection methods, post analysis with Hierarchical Bayes methods, and 

comparisons of ACA, CBC, and other conjoint methods.7 Although we focus on specific benchmarks, 

there are many comparisons in the literature of these methods to other methods. (See reviews and cita-

tions in Green 1984; Green and Srinivasan 1978, 1990.) 

We test the metric-paired-comparison algorithm against several benchmarks and focus on the 

seven issues identified in the introduction to this paper: (1) relative accuracy vs. the number of questions, 

(2) relative performance as the accuracy of self-explicated and paired-comparison data vary, (3) biases, 

(4) question selection vs. estimation, (5) hybrid methods, (6) respondent wear out and learning, and (7) 

relative performance on individual vs. population estimates. We begin by describing the design of the 

Monte Carlo experiments and then provide the results and interpretations.  

Design of the Experiments for Metric-Paired Comparison Conjoint Analysis Methods 

We focus on a design problem involving ten features, where a product development team is inter-

ested in learning the incremental utility contributed by each feature.  We follow convention and scale to 

zero the partworth of the low level of a feature and, without loss of generality, bound it by 100.  This re-

                                                           
7 See Carmone and Green (1981), Carmone, Green, and Jain (1978), Cattin and Punj (1984), Jedidi, Kohli, and De-
Sarbo (1996), Johnson (1987), Johnson, Meyer, and Ghose (1989), Lenk, DeSarbo, Green, and Young (1996), Mal-
hotra (1986), Pekelman and Sen (1979), Vriens, Wedel, and Wilms (1996), and Wittink and Cattin (1981). 
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sults in a total of ten parameters to estimate (p = 10). We feel that this p is sufficient to illustrate the quali-

tative comparisons. We anticipate that the polyhedral methods are particularly well-suited to solving 

problems in which there are a large number of parameters to estimate relative to the number of responses 

from each individual (q < p).  However, we would also like to investigate how well the methods perform 

under typical situations when the number of questions exceeds the number of parameters (q > p). In par-

ticular, when implementing ACA, Sawtooth Software (1996, p. 3) recommends that the total number of 

questions be approximately three times the number of parameters. For p = 10, this means 10 self-

explicated and 20 paired-comparison questions. (We describe ACA’s self-explicated questions in the next 

subsection.) Thus, we examine estimates of partworths for all q up to and including 20 paired-comparison 

questions. 

We simulate each respondent’s partworths by drawing independently and randomly from a uni-

form distribution ranging from zero to 100. We explored the sensitivity of the findings to this specifica-

tion by testing different methods of drawing partworths, including beta distributions that tend to yield 

more similar partworths (inverted-U shape distributions) or more diverse partworths (U-shaped distribu-

tions).  This sensitivity analysis yielded similar patterns of results, suggesting that the qualitative insights 

are not sensitive to the choice of partworth distribution. 

To simulate the response to each paired-comparison question, we calculate the true utility differ-

ence between each pair of product profiles by multiplying the design vector by the vector of true part-

worths: .  We assume that the respondents’ answers to the metric-paired-comparison questions equal 

the true utility difference plus a zero-mean normal response error with variance .  The assumption of 

normally distributed error is common in the literature and appears to be a reasonable assumption about 

response errors. (Wittink and Cattin 1981 report no systematic effects due to the type of error distribution 

assumed.)  For each comparison, we simulate 1,000 respondents. 

ux rr

2
pcσ

Benchmark Methods for Metric-Paired Comparison Question Selection  

 We compare the metric-paired-comparison polyhedral method against four benchmarks – 

Sawtooth Software’s Adaptive Conjoint Analysis algorithm (ACA) and three Fixed algorithms that use 

the same design for every respondent.  The industry and academic standard for within-respondent adap-

tive questioning is Adaptive Conjoint Analysis (ACA).  Indeed, this appears to be the appropriate bench-

mark for adapting conjoint questions for each respondent based on that respondent’s answers to previous 

questions. For example, in 1991 Green, Krieger and Agarwal (p. 215) stated that “in the short span of five 

years, Sawtooth Software’s Adaptive Conjoint Analysis has become one of the industry’s most popular 

software packages for collecting and analyzing conjoint data,” and go on to cite a number of academic 
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papers on ACA.  Although accuracy claims vary, ACA appears to predict reasonably well in many situa-

tions (Johnson 1991; Orme 1999).   

The benchmark ACA algorithm includes five sections: 

1.  Unacceptability task  

The respondent is asked to indicate unacceptable levels, which are subsequently deleted from the 
survey tasks.  However, this step is often skipped because respondents can be too quick to elimi-
nate levels (Sawtooth 1996). 

 
2.  Ranking of levels within attributes   

If the rank-order preference for levels of a feature is unknown a priori (e.g., color), the respondent 
ranks the levels of a feature.   

 
3.  Self-explicated task   

The respondent states the relative importance (on a 4-point scale) of improving the product from 
one feature level to another (e.g., adding automatic film ejection to an instant camera). 

 
4.  Paired-comparison task   

The respondent states his or her preference for pairs of partial profiles in which two or three fea-
tures vary (and all else is assumed equal).  This is the adaptive stage because the specific pairs are 
chosen by an heuristic algorithm designed to increase the incremental information yielded by the 
next response.  In particular, based on “current” estimates of partworths, the respondent is shown 
pairs of profiles that are nearly equal in utility.  Constraints ensure the overall design is nearly or-
thogonal (features and levels are presented independently) and balanced (features and levels ap-
pear with near equal frequency). 

 
5.  Calibration concepts   

Full profiles are presented to the respondents who evaluate them on a purchase intention scale. 
 

For ACA we use the self-explicated (SE) and paired-comparison (PC) stages in the algorithm 

(Sawtooth Software 1996).  (We assume rankings of levels within attributes are known without error.) 

Estimates of the partworths are obtained after each paired-comparison question by minimizing a least 

squares criterion.  Specifically, an ordinary-least-squares (OLS) criterion is used in which the updated 

partworths are selected to minimize two sum-of-squares components – one based on the self-explicated 

partworths and one based on the paired-comparison questions. The code was written using Sawtooth 

Software’s documentation together with e-mail interactions with the company’s representatives.  We then 

confirmed the accuracy of the code by asking Sawtooth Software to re-estimate partworths for a small 

sample of data.   

Over time Sawtooth Software has modified the ACA estimation procedures.  For example, recent 

versions of ACA allow for Hierarchical Bayes estimation. Hierarchical Bayes estimation uses data from 

the population to constrain the distribution of partworths across respondents and, in doing so, estimates 

  19



FAST POLYHEDRAL ADAPTIVE CONJOINT ESTIMATION  

the posterior mean of respondent-level partworths with an algorithm based on Gibbs sampling and the 

Metropolis Hastings Algorithm (Allenby and Rossi 1999; Arora, Allenby and Ginter 1998; Johnson 1999; 

Lenk, et. al. 1996; Liechty, Ramaswamy and Cohen 2001; Sawtooth Software 1999).  In separate analyses 

later in the paper we compare the accuracy of ACA’s Hierarchical Bayes estimation with the standard 

ACA estimates and the estimates from the polyhedral algorithm. 

To simulate the SE data we assume that respondents’ answers are unbiased but imprecise.  In par-

ticular, we simulate response error in the SE questions by adding to the vector of true partworths, , a 

vector of independent identically-distributed normal error terms with variance .   

ur

2
seσ

We report three non-adaptive (fixed) question selection benchmarks. The benchmark we expect 

to perform best is a fixed-efficient-design algorithm, where, for a given q, we select the design with the 

highest D-efficiency (Kuhfield 1999; Kuhfield, Tobias, and Garratt 1994; Sawtooth 1999).  This selection 

is as if the designer knew a priori how many questions would be asked.  Because the questions are cus-

tomized based on the total number of questions, we call this the “Custom Fixed” benchmark. Following 

Lenk, et. al. (1996) we also evaluate a benchmark in which questions are selected randomly for each re-

spondent from a twenty-question D-efficient design. Because the questions are all drawn from the same 

fixed design, we call this the “Single Fixed” benchmark. Our third non-adaptive benchmark is a design in 

which the questions are chosen randomly subject to the constraints that at most three features vary, that 

neither of the pairs dominates, and that the design matrix is full rank. We call this the “Random” bench-

mark. We estimate the partworths for all three fixed designs using least-squares, hence we report results 

for these benchmarks only for q ≥ p.  

 All benchmark methods use the PC questions, but ACA requires additional SE questions.  If the 

SE questions are extremely accurate, then little information will be added by PC questions and ACA will 

dominate.  Indeed, accuracy might even degrade for ACA as the number of PC questions grows (Johnson 

1987).  On the other hand, if the SE questions are very noisy, then, as q increases, ACA’s accuracy will 

depend primarily on the PC questions.  These two situations bound empirical experience, thus we report 

results for two conditions – highly accurate SE questions and noisy SE questions.  To facilitate compari-

sons among methods, we hold constant the noise in the PC questions.  

To test relative performance we plot the mean absolute accuracy of the parameter estimates (true 

vs. estimated values averaged across parameters and respondents).  We chose to report mean absolute er-

ror (MAE) rather than root mean squared error (RMSE) because the former is less sensitive to outliers 

and is more robust over a variety of induced error distributions (Hoaglin, Mosteller and Tukey 1983; 

Tukey 1960). However, as a practical matter, the qualitative implications of our simulations are the same 

for both error measures.  Indeed, except for a scale change, Figure 7 (and other figures) are almost identi-
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cal for both MAE and RMSE.8  Because both MAE and RMSE measure the combined impact of bias and 

reliability, we examine bias separately. 

Results of the Monte Carlo Experiments for Metric-Paired-Comparison Data 

Our goal is to illustrate the potential of the polyhedral methods and, in particular, to find situa-

tions where they add incremental value to the suite of conjoint analysis methods.  We also seek to identify 

situations where extant methods are superior.  As in any simulation analysis we cannot vary all parame-

ters of the problem, thus, in these simulations we vary those parameters that best illustrate the differences 

among the methods.  The simulation code is available on our website so that other researchers might in-

vestigate other parameters. 

We select a moderate error in the paired-comparison questions.  In particular, we select σpc = 30.  

This is 5% of the range of the answers to the PC questions and 30% of their maximum standard deviation 

(9% of their variance).9 We compared several of the findings under more extreme errors and observed 

similar qualitative insights. 

Figure 7a compares the polyhedral algorithm to our three non-adaptive benchmarks.  Consider 

first the benchmark (“Custom Fixed”) that chooses a different efficient design for every q.  For q < 15 the 

polyhedral algorithm yields lower estimation error than these efficient fixed designs.  However, as more 

degrees of freedom are added to the least-squares estimates, about 50% more than the number of parame-

ters (p=10), we begin to see the advantage of orthogonality and balance in question design – the goal of 

efficiency.  However, even after twenty questions the performance of the polyhedral algorithm is almost 

as effective as the most efficient fixed design. This is reassuring, indicating that the polyhedral algo-

rithm’s focus on rapid estimates from relatively few questions comes at little loss in accuracy when re-

spondents answer more questions.  Another way to look at Figure 7a is horizontally; in many cases of 

moderate q, the polyhedral algorithm can achieve the same accuracy as the most efficient fixed design, 

but with fewer questions. This is particularly relevant in a web-based context.  In Figure 7a we also see 

the advantage of choosing a different efficient design for each q (Custom Fixed vs. Single Fixed).  Fi-

nally, both the polyhedral algorithm and the efficient designs outperform randomly selected questions.10  

                                                           
8 For a standard normal distribution, MAE = (2/π)1/2 RMSE. 
9 The maximum standard deviation is 100 because the PC responses are a sum of at most three features (±) each uni-
formly distributed on [0,100]. Our review of the conjoint simulation literature suggests that the median error per-
centage reported in that literature is 29%.  Johnson (1987, p. 4) suggests that, with a 25% simulated error, ACA es-
timation error “increases only moderately” relative to estimates based on no response error.  Some interpretations 
depend on the choice of error percentage – for example, all methods do uniformly better for low error variances than 
for high error variances.  We leave to future papers the complete investigation of error-variance sensitivity. 
10 For each of comparison with the benchmarks in Figure 7b we maintain a consistent scale. For q=10 the MAEs are 
58.6 for Single Fixed and 59.3 for Random.  
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Figure 7  
Comparison of Polyhedral Methods to ACA and Fixed Designs 
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Figure 7b compares the polyhedral algorithm to the two ACA benchmarks. In one benchmark we 

add very little error ( 10=seσ ) to the SE responses making them three times as accurate as the PC ques-

tions ( 30=pcσ ).  In the second benchmark we make the SE questions relatively noisy ( 50=seσ ).  We 

expect that these benchmarks should bound empirical situations. We label the benchmark methods: “ACA 

(accurate priors)” and “ACA (noisy priors).” 

As expected, the accuracy of the SE responses determines the precision of the ACA predictions. 

The polyhedral algorithm outperforms the ACA method when the SE responses are noisy but does not 

perform as well when respondents are able to give highly accurate self-explicated responses.  Interest-

ingly, the accuracy of the ACA method initially worsens when the priors are highly accurate (see also 

Johnson 1987).  Not until q exceeds p does the efficiency of least-squares estimation begin to reduce this 

error.  Once sufficient questions are asked, the information in the PC responses begins to outweigh meas-

urement error and the overall accuracy of ACA improves.  However, despite ACA’s ability to exploit ac-

curate SE responses, the polyhedral algorithm (without SE questions) begins to approach ACA’s accuracy 

soon after q exceeds p. This ability to eliminate SE questions can be important in web-based interviewing 

if the SE questions add significantly to respondent wear out.  

For noisy SE responses, ACA’s accuracy never approaches that of the polyhedral algorithm, even 

when q=2p, the number of questions suggested by Sawtooth.  Summarizing, Figure 7b suggests that ACA 

is the better choice if the SE responses are highly accurate (and easy to obtain).  The polyhedral algorithm 

is likely a better choice when SE responses are noisy or difficult to obtain.  The selection of algorithms 

depends upon the researcher’s expectations about the context of the application.  For example, for product 

categories in which customers often make purchasing decisions about features separately, perhaps by pur-

chasing from a menu of features, we might expect more accurate SE responses.  In contrast, if the features 
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are typically bundled together, so that customers have little experience in evaluating the importance of the 

individual features, the accuracy of the SE responses may be lower.  Relative accuracy of the two sets of 

questions may also be affected by the frequency with which customers purchase in the category and their 

consequent familiarity with product features.  

Exploration of Potential Biases in the Estimates 

We consider two types of bias: relative bias and scale bias.  Relative bias describes a situation in 

which the bias for one or more coefficients is systematically different than the bias for other coefficients.  

Relative bias is important from a managerial perspective; if the partworth estimates for one set of attrib-

utes are systematically higher than the estimates for another set of attributes, then managers may misallo-

cate resources towards the first set of attributes.  On the other hand, if all coefficients are biased by the 

same amount then the managerial recommendations will often be unaffected (Louviere, Hensher and 

Swait 2000, p. 360).  In our simulations the attributes are simulated in an identical fashion, and so sys-

tematic differences in bias across types of attributes cannot arise.11   

  Scale bias focuses on the presence of bias in any coefficient estimate.  We measure scale bias by 

calculating the average difference between the estimated and true coefficients.  The absence of relative 

bias allows us to average across all of the coefficients.  For Fixed designs in which OLS is used for pa-

rameter estimation, the estimates are unbiased, hence, we expect no scale bias (Judge, et. al. 1985, p. 14).  

Indeed, for the Fixed designs, after 20 questions there is no significant difference between the sum of the 

true parameters and the sum of the estimated parameters (t = 0.3).12  However, for adaptive designs the 

question matrix, X, is endogenous because each row of X depends upon the respondent’s prior answers, 

including any errors in those answers.  This is a classic econometric endogeneity problem and OLS esti-

mates under such conditions are, in general, biased (Judge, et. al. 1985, p. 571).  This turns out to be the 

case for ACA when its estimates are based on OLS.  As q grows, the biases grow.  For example, there are 

significant positive biases for q = 10 (t = 12.8), q = 15 (t = 16.8), and q = 20 (t = 21.2).  At q = 20, en-

dogeneity leads to approximately an 8% scale bias.  

We do not have a formal theory of endogeneity for analytic-center estimation, but we can explore 

potential scale biases in the simulation data. To do so, we examine the polyhedral estimates that are based 

only on analytic-center question-selection and estimation.  That is, we examine polyhedral estimates ob-

tained just before the polyhedron becomes empty.  For such estimates there is no significant bias (t = 1.2).  

For the full algorithm, which reverts to the ACA question design heuristics when the feasible set is empty, 

the scale bias grows to approximately 6% at q = 20.  In summary, there are no observed scale biases for 

                                                           
11 In practice product features carry extrinsic characteristics, such as ethereal vs. concrete, that distinguish one fea-
ture from another – future empirical tests might explore the differential impact of such extrinsic characteristics. 
12 Note that the Standard Fixed and Custom Fixed designs are the same when q=20. 
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analytic-center question-selection and estimation, but for ACA question selection, endogeneity introduces 

a scale bias to the estimates. 

Question Selection vs. Estimation with Alternative Methods 

 We now examine whether the polyhedral algorithm and/or the benchmarks can be improved.  For 

example, Figure 7b suggests that if SE responses can be obtained easily and accurately, then they have the 

potential to improve the accuracy of adaptive conjoint methods.  This is consistent with the conjoint lit-

erature, which suggests that both SE and PC questions add incremental information (Green, Goldberg, 

and Montemayor 1981; Griffin and Hauser 1993; Huber, et. al. 1993, Johnson 1999; Leigh, MacKay, and 

Summers 1984).  This evidence raises the possibility that the precision of polyhedral methods can also be 

improved by incorporating SE responses.   

To examine the effectiveness of including SE responses in polyhedral algorithms and to isolate 

the polyhedral question-selection method, we test a hybrid method that combines the polyhedral question 

selection method with the ACA OLS estimation method.  That is, we use ACA’s estimation procedure to 

incorporate self-explicated responses, but replace ACA’s question-selection procedure (for the metric-

paired-comparison questions) with polyhedral question selection.  Figure 8a compares the two question-

selection methods holding constant the estimation procedures (and the noise level of the priors).  This fig-

ure suggests that polyhedral question selection has the potential to improve ACA.  We observe a similar 

pattern of results when comparing the methods under more accurate priors.   

Figure 8 
Including Self-Explicated Responses in Polyhedral Algorithms 
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(a) Comparison of algorithms, noisy priors  (b) Alternative Estimation Methods  

Figure 8b compares polyhedral estimates without priors (black line from Figure 7b) to estimates 

based on accurate and noisy priors (holding the noise in the PC responses constant). This comparison 

holds the question design constant and varies the estimation method.  As in Figure 7b, the choice of 

method depends upon the accuracy of the SE responses. We see that the polyhedral method without priors 

  24



FAST POLYHEDRAL ADAPTIVE CONJOINT ESTIMATION  

dominates the polyhedral method with noisy priors, although just slightly for large q. However, if SE re-

sponses are accurate and easy to obtain, then combining ACA estimation with polyhedral question selec-

tion yields more accurate forecasts than either ACA alone or the polyhedral algorithm alone.  As the SE 

responses become noisy, then the hybrid method becomes increasingly less accurate until, at a moderate 

noise level, it is better to ignore the SE responses altogether and use polyhedral question selection with 

analytic-center estimation. 

Hierarchical Bayes Estimation 

We now explore an alternative estimation technique for ACA, Hierarchical Bayes estimation.  

This estimation technique has attracted widespread interest in the academic literature in recent years (e.g., 

Allenby and Rossi 1999; Arora, Allenby and Ginter 1998; Johnson 1999; Lenk, et. al. 1996; Liechty, 

Ramaswamy and Cohen 2001; Sawtooth Software 1999) and is now available for applications of ACA.  

Recall that Hierarchical Bayes estimation uses information from the population of respondents in an effort 

to improve the estimates for each individual. In Figure 9 we evaluate the accuracy of this modification by 

comparing it to estimates from the ACA estimates in Figure 7b.13  In both cases we use noisy estimates 

for the self-explicated priors.  As a basis for comparison we also include the polyhedral estimates from 

earlier figures. 

Figure 9 
ACA Hierarchical Bayes 
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Hierarchical Bayes improves the accuracy of the ACA estimates for low q.  As the number of 

questions increases, the standard ACA estimates outperform the Hierarchical Bayes measures.  We inter-

pret this finding as evidence that Hierarchical Bayes’ use of population data is an effective means of 

                                                           
13 Due to the intensive computational and computer-memory demands of Hierarchical Bayes estimation, we  simu-
late 200 respondents (rather than 1,000) for each of q = 1 to 20.  The smaller sample size causes the Hierarchical 
Bayes curve to be less smooth. 
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moderating the error in the individual responses.  However, once there are sufficient individual responses, 

so that the information in these responses outweighs the error, there is less need to moderate the individ-

ual responses.  As with Figure 7 and 8, the absolute accuracy of Hierarchical Bayes ACA depends upon 

the accuracy of the SE responses. 

Modeling Respondent Wear Out and/or Learning 

The literature includes a broad range of potential variations in response errors reflecting differ-

ences in the way that human subjects interact with research instruments.  Monte Carlo experiments pro-

vide an ideal mechanism for investigating the impact of these variations.  Space restrictions limit our in-

vestigation in this paper to just two sources of variation: wear out and learning.  We encourage readers 

interested in investigating other sources of variation to download code from the website listed in the ac-

knowledgments to this paper.   

Wear out may lead to increased response errors if respondents tire as q increases, causing them to 

pay less attention to later PC questions. The literature offers some support for this prediction (see for ex-

ample, Alreck and Settle 1995; Black, et. al. 2000; Couper 2000; De Angelis 2001; and Lenk et. al. 1996 

at 173).  Alternatively, other researchers have observed a learning or priming phenomenon, in which the 

initial questions help respondents clarify their values, increasing the accuracy of the later questions 

(Green, Krieger and Agarwal 1991; Huber, et. al. 1993; Johnson 1991). The literature advances several 

theories that support this training hypothesis, including task learning, self-preference learning, memory 

accessibility, and context effects (Bickart 1993; Feldman and Lynch 1988; Nowlis and Simonson 1997; 

Simmons, Bickart and Lynch 1993; Tourangeau, Rips and Rasinski 2000).  While the magnitude and di-

rection of wear out and/or learning is an empirical question, simulation can assess the impact of each, 

should either occur. Our goal is to demonstrate the phenomenon and to investigate how it affects each 

method.  We hope also to motivate empirical investigations into the shape of the wear out and/or learning 

functions.  

We could find little precedent for quantification of the wear out or learning functions in the litera-

ture, so we assume simple linear growth and decay functions. In particular, if ε denotes a draw of normal 

measurement error for the PC questions, then, in our wear-out analysis, we select ΕW(q)= εq/10. Dividing 

by 10 matches the wear out error to the prior analysis at q = p yielding an average error that is roughly 

equivalent.  To model learning, we reverse the function and select ΕL(q)= ε(20-q)/10.  For ease of com-

parison we leave the variance of the error terms unchanged from the previous figures and assume that the 

variance of response error in the SE questions is constant for all questions.   

Figure 10a summarizes the simulation of respondent wear out.  Initially, as more PC questions are 

answered, estimation accuracy improves.  The new information improves the estimates even though the 

  26



FAST POLYHEDRAL ADAPTIVE CONJOINT ESTIMATION  

information becomes increasingly noisy. After approximately 10-12 questions the added noise over-

whelms the added information and the estimates begin to degrade yielding a U-shaped function of q.  The 

rate of degradation for the ACA benchmarks is slower –  the U-shape begins to appear around question 

18. The slower degradation can be explained, in part, because ACA uses the SE responses to reduce reli-

ance on the increasingly inaccurate PC questions.  The hybrid method of Figure 8 declines at a rate simi-

lar to ACA, reflecting the inclusion of SE responses in the hybrid method.  This interpretation is sup-

ported by the results of further simulations not reported in Figure 10a.  Efficient fixed designs, which do 

not use SE responses, decline at a rate similar to the polyhedral method.14 
Figure 10 

Modeling Respondent Wear Out and/or Learning 
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(a) Effect of Wear Out    (b) Effect of Learning 

Figure 10b summarizes the simulation of respondent learning.  In this case the initial questions 

are less accurate so, for low q, MAE is higher.  However, MAE declines as the respondents learn and re-

sponse error decreases.  The exact amount and direction of wear out and/or learning and rate at which it 

grows or decays is an empirical question.  Indeed, more complex respondent reactions are also possible. 

For example, respondents might learn for low q and then begin to wear out as q gets large.  In either case, 

analyses such as those in Figure 10 suggest that wear out and learning can have important impacts on the 

accuracy of question-selection and estimation methods.  Initial experience with web-based conjoint analy-

sis methods suggests that wear out appears to occur for large q (Chan 1999; and McArdle 2000) and that 

learning appears to occur for small q (Anonymous 2002).  

Estimates of Mean Partworths for the Population  

One advantage of the polyhedral method is that it can estimate partworths for each respondent 

with a relatively few questions per respondent.  Such respondent-specific partworths are valuable for 
                                                           
14 We invite the reader to explore this wear out phenomenon with alternative levels of noise in the SE responses.  
We have found that the results vary with noise level in a manner analogous to the discussions of Figure 7 and 8.  As 
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product-line decisions and/or segmentation.15  However, if the population is homogeneous, then the prod-

uct development team may seek to estimate average partworths to represent the population’s preferences. 

If this is the case, aggregate methods can obtain excellent estimates with few questions per respondent.   

To investigate this issue we draw ten sets of population means and simulate 200 respondents for 

each set of population means.  Data are pooled within each population of 200 respondents and OLS is 

used to estimate a representative set of partworths for that population. We first draw the partworth means 

for each population from independent uniform distributions on [25, 75].  We then simulate the partworths 

for each of 200 respondents in the population by adding heterogeneity terms to the vector of population 

means. In separate simulations we compare uniform and triangle distributions for these heterogeneity 

terms and for each distribution we consider two ranges: a relatively homogeneous range of [-10, 10] and a 

relatively heterogeneous range of [-25, 25].  Given the vectors of partworths for each individual, we pro-

ceed as before, adding measurement error to construct the PC and SE responses. We report the average 

MAE in the forecast population means, averaged across ten parameters times ten populations. The find-

ings after twenty questions for each individual are summarized in Table 1 below.  (Both efficient Fixed 

algorithms use the same designs for q = 20.) 

As expected all methods perform well. The magnitudes of the MAE are lower for population-

level estimates than for all respondent-level estimates reported above, reflecting the larger sample of data 

used to estimate the partworths. Although we might improve all methods by selecting questions that vary 

optimally across respondents, it is reassuring that even without such modifications, all of the techniques 

yield accurate estimates of the population partworths, especially for relatively homogeneous populations.   

When the partworths are relatively homogeneous within a population, the polyhedral and fixed 

methods yield slightly more accurate parameter estimates than ACA, but all perform well.  When the 

partworths are relatively heterogeneous, the efficient fixed design, which is optimized to OLS, outper-

forms both adaptive methods.  However, in this latter case, population means have relatively less manage-

rial meaning. 

                                                                                                                                                                                           
the SE responses become more accurate, ACA and the hybrid method perform relatively better. 
15 Currim (1981), Green and Helsen (1989), Green and Krieger (1989), Hagerty (1985), Hauser and Gaskin (1984), 
Page and Rosenbaum (1987), Vriens, Wedel, and Wilms (1996), and Zufryden (1979) all provide examples of using 
respondent-specific partworths to identify segments with managerial meaning.  Furthermore, Green and Helsen 
(1989), Moore (1980), Moore and Semenik (1988), and Wittink and Montgomery (1979) all provide evidence that 
respondent-specific partworths predict better than population means. 
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Table 1  
MAE of Population Mean Estimates 

 

Individual Heterogeneity Mean Absolute Error 
Distribution Range Polyhedral ACA Fixed 

Relatively homogeneous    

Uniform [-10, 10] 0.94 1.22 0.82 

Triangle [-10, 10] 0.76 0.88 0.78 

Relatively heterogeneous    

Uniform [-25, 25] 4.30 6.88 0.84 

Triangle [-25, 25] 2.54 3.70 0.78 

 

Summary of the Results of the Monte Carlo Experiments  

 Our simulations suggest that no method dominates in all situations, but that there are a range of 

relevant situations where the polyhedral algorithm or the ACA-polyhedral hybrid is a useful addition to 

the suite of conjoint analysis methods available to a product developer or a market researcher.  If SE re-

sponses can be obtained accurately (relative to PC responses) and with little respondent wear out, then 

either ACA or the ACA-polyhedral hybrid method is likely to be most accurate.  If new PC question for-

mats can be developed that engage respondents with visual, interactive media, such that respondents are 

willing and able to answer sufficient questions (q > 1.5p in Figure 7a), then customized efficient fixed 

designs might perform better than adaptive methods such as ACA, the polyhedral algorithm, or a hybrid. 

 The real advantage of the polyhedral methods for metric paired-comparison data comes when the 

researcher is seeking respondent-level partworths and is limited to relatively few questions (q < p), when 

wear out is a significant concern, and/or when SE responses are noisy relative to PC responses.  We be-

lieve that these situations are becoming increasingly relevant to conjoint analysis applications, especially 

in the context of web-based conjoint analysis and for applications in which the product-development team 

cycles through iterative designs many times before the product is launched (Black, et. al. 2000; Buckman 

2000; Cusumano and Yoffie 1998; Cusumano and Selby 1995; Dahan and Hauser 2002; Dahan and 

Srinivasan 2000; Marketing News 2000; McGrath 1996; Smith and Reinertsen 1998; Ulrich and Eppinger 

2000). 

 Finally, the relative accuracy of SE vs. PC responses, and hence the choice of conjoint analysis 

method, is likely to depend upon context.  For complex products, for products where industrial design is 
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important, or for products with a high emotional content, it might be easier for a respondent to make a 

holistic judgment by providing metric evaluations of pairs of products than it would be for the respondent 

to evaluate the products feature by feature.  Web-based methods in which realistic, but virtual, products 

are presented to respondents, might also enhance the ability of respondents to make holistic judgments.16  

An Initial Empirical Test of Metric Paired-Comparison Polyhedral Methods 

 In a separate paper we (and our colleagues) report the results of a field test investigating the pre-

dictive accuracy of the polyhedral method in an actual purchase situation (Anonymous 2002).  In particu-

lar, we compare how well different conjoint methods predicted demand for an innovative “messenger-

style” laptop computer bag that was under development by Timbuk2, Inc (www.Timbuk2.com).  The fea-

tures of the bag included size, color, type of sleeve closure, and whether or not it had a logo, handle, PDA 

holder, cell phone holder, mesh pocket, and protective boot.  These features plus price represented a 10-

parameter conjoint problem.  The 330 respondents were randomly assigned to one of three question-

selection methods, corresponding to the polyhedral method, ACA, and an efficient Fixed design.  Each 

respondent answered sixteen metric-paired-comparison questions and, in the ACA cell, ten self-explicated 

questions.  After the sixteen pairs, they answered four hold-out pairs – an internal validity test.  Following 

a filler task designed to cleanse short-term memory, each respondent was presented with a choice among 

five laptop computer bags – an external validity task.  The choice was real – the respondents received the 

bag plus any change (in cash) from $100.17  The five bags were randomly chosen from an efficient design 

of sixteen bags and the price was chosen so that all choice sets were Pareto. 

Table 2 reports the results for both the holdout pairs and the choice of actual bags (plus cash).  

These results are consistent with the simulations in Figure 7 and suggest that the metric-paired-

comparison polyhedral algorithm has the potential to do at least as well as the benchmarks for metric 

paired-comparison data. 

                                                           
16 The website listed in the acknowledgements section of this paper provides links to web-based conjoint analysis 
demonstrations for cameras, laptop computer bags, cross-over vehicles, ski resorts, bicycle pumps, and copying ma-
chines. 
17 In addition, respondents’ ranked the five bags based on the premise that their first choice might not be available 
and that they would be given their most preferred laptop bag (plus cash) from those that were manufactured.  Results 
were qualitatively the same for both first choice and rank order choice.  Table 2 reports the rank-order results, which 
have greater statistical power. 
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Table 2 
Initial Empirical Application of the Metric-Paired-Comparison Polyhedral Algorithm: 

Correlation Between Predicted and Observed Choices 

 ACA Fixed Polyhedral       

Internal Validity Task (Holdout Pairs) 

Estimates using 8 questions * 0.53 – 0.71 

Estimates using 16 questions *,+ 0.61 0.73 0.81 

External Validity Task (Bag Choice) 

Estimates using 8 questions * 0.45 – 0.59 

Estimates using 16 questions *,o 0.52 0.54 0.68 
* Significant difference (p<0.05) between the polyhedral algorithm and ACA. 
o Significant difference (p<0.05) between the polyhedral algorithm and Fixed. 
+ Significant difference (p<0.05) between Fixed and ACA. 
 

Summary, Conclusions, and Further Research 

 We have proposed a new conjoint analysis method for metric-paired-comparison questions.  The 

method is designed to identify, using relatively few questions, features that have the most influence on 

customer preferences.  The algorithm uses advanced interior-point mathematical programming methods to 

adaptively select questions that constrain the set of feasible parameters. The method uses centrality con-

cepts and ellipsoid shape approximations. We tested the method using a series of Monte Carlo simula-

tions.  The findings confirm that the polyhedral algorithm is particularly suited to contexts where re-

searchers are limited to asking relatively few questions compared to the number of parameters. By isolat-

ing the impact of the question design component, we found that the relative accuracy of the method is 

due, at least in part, to the design of the questions.  Our simulations suggest that hybrid polyhedral ques-

tion-selection methods could be used to enhance existing estimation methods.   

To evaluate the contribution of the proposed polyhedral methods we had to make several practical 

implementation decisions.  Examples include the choice of the first question and the procedures to design 

questions and estimate partworths when responses are inconsistent (the feasible set is empty).  Improve-

ments in the resolution of these issues could lead to improvements in the accuracy of the method.  There 

are several other issues that we would like to identify as topics for future research.  First, the choice of 

initial constraints may be important.  Tight constraints may be more accurate, but could introduce ceiling 

effects that affect the precision of the estimates. Second, the algorithm is myopic in the sense that it only 

looks one step ahead to choose the next question. Improvements may be obtained from less myopic algo-
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rithms that look more than one step ahead.  Third, the estimation procedures do not currently adjust for 

the impact that constraints have on the resulting estimates.  Alternative empty-feasible-set question-

selection algorithms could improve performance.  We anticipate that further research on these, and other 

as-yet-undiscovered issues, might yield more accurate predictions.  In this respect, the performance of the 

specific polyhedral methods evaluated in the Monte Carlo simulations should be interpreted as a lower 

bound on the potential performance of this class of methods. Like many new technologies, we expect its 

performance to improve with use and evolution (Bower and Christensen 1995; Christensen 1998). Under 

this interpretation, the performance of the current version of the method is gratifying and suggests that 

this class of methods is worth investigating.  

More generally, we believe that the polyhedral methods used in this study are just one of a range 

of recent developments in the mathematical programming and optimization literatures that can contribute 

to our understanding of marketing problems.  For example, we have proposed one feasible polyhedral 

algorithm for adaptive choice-based conjoint analysis using stated-choice data.  This algorithm obtains 

reasonable estimates rapidly, but requires further development before it is ready for simulation and field 

testing. In addition, we are aware of other researchers who are developing adaptive algorithms for full-

profile conjoint-analysis data collection using new methods in combinatorial optimization and we are 

aware of researchers exploring the use of support vector machines for conjoint estimation. 

Because the new mathematical programming methods obtain near optimal solutions extremely 

fast, they might be also used to select promotion variables dynamically as respondents navigate a website.  

Alternatively, they might be used to design ongoing experiments in which parameters of a website are 

varied in an optimal manner trading off current effectiveness for long-term improvement.  
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Appendix: Mathematics of Fast Polyhedral Adaptive Conjoint Estimations 
 Consider the case of p parameters and q questions where q ≤ p. Let uj be the jth parameter of the 
respondent’s partworth function and let u  be the p×1 vector of parameters.  Without loss of generality we 
assume binary features such that u

r

j is the high level of the jth feature.  For more levels we simply recode 
the u  vector and impose constraints such as u

r
m ≤ uh.  We handle such inequality constraints by adding 

slack variables, vhm ≥ 0, such that uh = um + vhm. Let r be the number of externally imposed constraints, of 
which r’≤r are inequality constraints. 

Notation for Adaptive Metric-Paired-Comparison Questions 

 Let l

r
iz  be the 1×p vector describing the left-hand profile in the ith paired-comparison question 

and let irzr  be the 1×p vector describing the right-hand profile.  The elements of these vectors are binary 
indicators taking on the values 0 or 1.  Let X be the q×p matrix of irii zzx rrr

l −=  for i = 1 to q.  Let ai be 
the respondent’s answer to the ith question and let a  be the q×1 vector of answers for i = 1 to q.  Then, if 
there were no errors, the respondent’s answers imply

r

auX rr= .  To handle additional constraints, we aug-
ment these equations such that X becomes a (q+r)x(p+r’) matrix, becomes a (q+r)x1 vector, and uar r

be-
comes a (p+r’)x1 vector.  These augmented relationships form a polyhedron, P = { ∈ℜur p+r’ | auX rr= , ur  
≥ 0}. We begin by assuming that P is non-empty, that X is full-rank, and that no j exists such that uj=0 for 
all  in P.  We later indicate how to handle these cases. ur

Finding an Interior Point of the Polyhedron 
 To begin the algorithm we first find a feasible interior point of P by solving a linear program, 
LP1 (Freund, Roundy and Todd 1985). Let er  be a (p+r’)×1 vector of 1’s and let 0

r
be a (p+r’)×1 vector 

of 0’s; the yj’s and θ are parameters of LP1 and yr  is the (p+r’)×1 vector of the yj’s. (When clear in con-
text, inequalities applied to vectors apply for each element.)  LP1 is given by: 

(LP1)  max ∑ ,  subject to:  
+

=

'

1

rp

j
jy auX rr θ= ,     θ ≥ 1,   0

rrr ≥≥ yu ,    ey rr ≤   

If ( ),, *** θyu rr
 solves LP1, then θ*-1 *ur  is an interior point of P whenever 0*

rr >y . If there are some yj’s 
equal to 0, then there are some j’s for which uj=0 for all u ∈ P.  If LP1 is infeasible, then P is empty. We 
address these cases later in this appendix.  

r

Finding the Analytic Center 
 The analytic center is the point in P that maximizes the geometric mean of the distances from the 
point to the faces of P.  We find the analytic center by solving OPT1. 

(OPT1)  max , subject to:   ∑
+

=

'

1
)(ln

rp

j
ju auX rr= ,     0

rr>u  

Freund (1993) proves with projective methods that a form of Newton’s method will converge rap-
idly for OPT1.  To implement Newton’s method we begin with the feasible point from LP1 and improve 
it with a scalar, α, and a direction, d

r
, such that du

rr α+  is close to the optimal solution of OPT1.  ( d
r

 is a 
(p+r’)×1 vector of dj’s.)  We then iterate subject to a stopping rule. 

We first approximate the objective function with a quadratic expansion in the neighborhood of u .  
r
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If we define U as a (p+r’)×(p+r’) diagonal matrix of the uj’s, then the optimal direction solves OPT2: 

(OPT2)  max dUddUe TT
rrrr 2

2
11 )( −− − ,  subject to:   0

rr
=dX  

Newton’s method solves OPT1 quickly by exploiting an analytic solution to OPT2.  To see this, 
consider first the Karush-Kuhn-Tucker (KKT) conditions for OPT2.  If zr  is a (p+r’)×1 vector parameter 
of the KKT conditions that is unconstrained in sign then the KKT conditions are written as: 

(A2)  zXeUdU T rrr
=− −− 12  

(A3)  0
rr

=dX  

Multiplying A2 on the left by XU2, gives zXXUeXUdX T rrr
2=− .  Applying A3 to this equation gives: 

zXXUeXU T rr 2=− .  Since U ue rr=  and since auX rr= , we have – a  = XU
r 2XT zr .  Because X is full rank 

and U is positive, we invert XU2XT to obtain zr  = -(XU2XT)-1 ar .  Now replace zr  in A2 by this expression 
and multiply by U2 to obtain d

r
 = u  – U

r 2XT(XU2XT)-1 ar . 
 According to Newton’s method, the new estimate of the analytic center, u ′r , is given by 

)( 1dUeUduu
rrrrr −+=+=′ αα .  There are two cases for α.  If 4

11 <− dU
r

, then we use α =1 because  is 

already close to optimal and 

ur

01
rrr >+ − dUe α . Otherwise, we compute α with a line search. 

Special Cases 
 If X is not full rank, XU2XT might not invert. We can either select questions such that X is full 
rank or we can make it so by removing redundant rows.  Suppose that kxr  is a row of X such that 

∑ +

≠=
= rq

kii
T
ii

T
k xx

,1

rr β .  Then if a , we remove ∑ +

≠=
= rq

kii iik a
,1

β kxr . If , then P is empty 

and we employ OPT4 described later in this appendix. 
∑ +

≠=

rq

kii ii aa
,1

β≠k

 If in LP1 we detect cases where some yj’s = 0, then there are some j’s for which uj=0 for all 
∈ P.  In the later case, we can still find the analytic center of the remaining polyhedron by removing 

those j’s and setting u
ur

j = 0 for those indices.  If P is empty we employ OPT4. 

Finding the Ellipsoid and its Longest Axis 

 If u
r

is the analytic center and U is the corresponding diagonal matrix, then Sonnevend (1985a, 

1985b) demonstrates that E ⊆  P ⊆  Ep+r’ where, E = {ur  | auX rr= , 1)()( 2 ≤−− − uuUuu T rrrr
}and Ep+r’ is 

constructed proportional to E by replacing 1 with (p+r’).  Because we are interested only in the direction 
of the longest axis of the ellipsoids we can work with the simpler of the proportional ellipsoids, E.  Let 

uug
rrr −= , then the longest axis will be a solution to OPT3. 

(OPT3)  max gg T rr
 subject to:  12 ≤− gUg T rr

,   0
rr =gX  

 OPT3 has an easy-to-compute solution based on the eigenstructure of a matrix.  To see this we 
begin with the KKT conditions (where φ and γ are parameters of the conditions). 
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(A4)  γφ rrr TXgUg += −2  

(A5)  0)1( 2 =−− gUg T rrφ  

(A6)  12 ≤− gUg T rr
,    0

rr =gX ,    φ  ≥ 0 

It is clear that 12 =− gUg T rr
at optimal, else we could multiply gr  by a scalar greater than 1 and still have 

gr  feasible. It is likewise clear that φ is strictly positive, else we obtain a contradiction by left-multiplying 

A4 by Tgr and using 0
rr =gX  to obtain 0=gg T rr

 which contradicts 12 =− gUg T rr
.  Thus, the solution to 

OPT3 must satisfy γφ rrr TXgg +U= −2 , 1=g2−Ug T rr
, 0

rr =gX , and φ > 0.  We rewrite A4-A6 by letting I 
be the identify matrix and defining η=1/φ and /ω γ φ= −

r r . 

(Α7)  ωη rr TXgIU =−− )( 2  

(Α8)  12 =− gUg T rr
 

(A9)  0
rr =gX ,    φ  > 0 

We left-multiply A7 by X and use A9 to obtain ωrr TXXgUX =−2 .  Since X is full rank, XXT is invertible 
and we obtain gUXXX T rr 21)( −−=ω which we substitute into A7 to obtain 

ggUXXXXU TT rr η=− −−− ))(( 212 .  Thus, the solution to OPT3 must be an eigenvector of the matrix, 
))(( 212 −−− −≡ UXXXXUM TT .  To find out which eigenvector, we left-multiply A7 by Tgr and use 

A8 and A9 to obtain 1=gg T rrη , or η/1=gg T rr
where η>0.  Thus, to solve OPT3 we maximize 1/η by 

selecting the smallest positive eigenvalue of M.  The direction of the longest axis is then given by the as-
sociated eigenvector of M.  We then choose the next question such that 1+qxr  is most nearly collinear to 
this eigenvector subject any constraints imposed by the questionnaire design.  (For example, in our simu-
lation we require that the elements of 1+qxr  be –1, 0, or 1.)  The answer to 1+qxr  defines a hyperplane or-

thogonal to 1+qxr . 
 We need only establish that the eigenvalues of M are real.  To do this we recognize that 

2−= UPM where P = (I – XT(XXT)-1X) is symmetric, i.e., P=PT.  Then if η is an eigenvalue of M, 
0) =− Iηdet( 2−UP , which implies that ])(det[ 111 −−− − UIUPUU η  = 0.  This implies that η is an 

eigenvalue of 1−U1− PU , which is symmetric.  Thus, η is real (Hadley 1961, 240). 

Adjusting the Polyhedron so that it is non-Empty 
P will remain non-empty as long as respondents’ answers are consistent. However, in any real 

situation there is likely to be q < p such that P is empty.  To continue the polyhedral algorithm, we adjust 
P so that it is non-empty.  We do this by replacing the equality constraint, auX rr= , with two inequality 

constraints, δ
rrr

+≤ auX and δ
rrr −≥ auX , where  is a q×1 vector of errors, δδ

r
i , defined only for the ques-

tion-answer imposed constraints.  We solve the following optimization problem.  Our current implemen-
tation uses the ∞-norm where we minimize the maximum δi, but other norms are possible. The advantage 
of using the ∞-norm is that (OPT 4) is solvable as a linear program. 

(OPT4)  min δ
r

 subject to:  δ
rrr

+≤ auX ,    δ
rrr −≥ auX ,   0

rr≥u ,    
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 At some point such that q > p, extant algorithms will outperform OPT4 and we can switch to 
those algorithms.  Alternatively, a researcher might choose to switch to constrained regression (norm-2) 
or mean-absolute error (norm-1) when q > p.  Other options include replacing some, but not all, of the 
equality constraints with inequality constraints. We leave these extensions to future research. 

Modifications for Stated-Choice Data (Adaptive Choice-Based Conjoint Analysis) 
 Redefine zij

r as the jth profile in the ith choice set where j=1 to 4.  Retain the notation of r exter-
nally imposed constraints of which r’ are inequality constraints.  Without loss of generality, define the 
index of the profile chosen by the respondent as 1, then the respondent’s choice implies three inequality 
constraints: 0)( 1 ≥uzi 2− zi

rrr , ( 0)31 ≥− uzz ii
rrr , 0)( 41 ≥− uzz ii

rrr . For every stated-choice question we gain 
three inequality constraints and need to add three slack variables, thus redefine the augmented ur to be a 
(p+3q+r’)x1 vector, the augmented X to be a (3q+r)x(p+3q+r’) matrix, and ar  to be a (3q+r)x1 vector of 
zeros.  We proceed as before to find an interior point of P, find its analytic center, approximate it with an 
ellipsoid, and find the two longest axes.  For the choice-based algorithm, we find it convenient to con-
straint the partworths so that they sum to 100. This does not constrain the conjoint problem since it is only 
the relative partworths that matter in choice. Let 1gr and 2gr be these longest axes and, as before, let u ′r be 
the analytic center. 
 To find the extreme estimates of the parameters, uij

r , we solve for the points where 

11guuij
rrr α+′= , 12 guuij

rrr α−′= , u 23 guij
rrr α+′= , and 24 guij u rrr α−′=  intersect P. For each α we do this 

by increasing α until the first constraint in P is violated.  To find the profiles in the choice set we select, 
as researcher determined parameters, feature costs, cr , and a budget, M.  Without such constraints, the 
best profile is trivially the profile will all features set to their high levels.  Subject to this budget con-
straint, we solve the following knapsack problem with dynamic programming. 
 
(OPT5)  max ijijuz rr  subject to:    Mczij ≤rr ,   elements of }1,0{∈ijzr  
 
In the algorithms we have implemented to date, we set uc ′= rr and draw M from a uniform distribution on 
[0, 50], redrawing M (up to thirty times) until all four profiles are distinct.  If distinct profiles cannot be 
identified, then it is likely that P has shrunk sufficiently for the managerial problem.  To extend the algo-
rithm to an even number of profiles (2n), select the n longest axes.  For an odd number of profiles simply 
drop the last selected profile.  For null profiles, extend the constraints accordingly. 
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