Development and Implementation of a Flexible
Reporting Software Application

by

Enrique R. Siaca
B.S. Electrical Engineering, Massachusetts Institute of Technology, 1988

Submitted to the Department of Electrical Engineering and Computer Science
and the Sloan School of Management in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
and
MASTER OF SCIENCE IN MANAGEMENT

In conjunction with the Leaders for Manufacturing Program at the
Massachusetts Institute of Technology
May, 1994

© 1994 Massachusetts Institute of Technology
All rights reserved

Signature of Author - ‘
Department of Electrical Engineering & Computer Science
Sloan School of Management
N May, 1994

Certified by = - - -
Steven B. Leeb, Assistant Professor of Electrical Engineering
Department of Electrical Engineering, Thesis Supervisor

Certified by e o
James U}erack Professor of Management and Engmeermg

Slean Scho -@f\Management Thesis Supervisor

Accepted by . I
N Fred®w® R. Morgenthaler
Chairman, Committee on Graduate Students

Accepted by
Jeffrey A. Barks
Associate Dean, Sloan Master's and Bachelor's Programs

1

Development and Implementation of a Flexible
Reporting Software Application
by

Enrique R. Siaca
B.S. Electrical Engineering, Massachusetts Institute of Technology, 1988

Submitted to the Department of Electrical Engineering and Computer Science
and the Sloan School of Management in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
and
MASTER OF SCIENCE IN MANAGEMENT

Abstract

The high-capacity 3 1/2” disk drive market provides suppliers with the
opportunity to achieve differentiation through better service. Periodic
product performance reports may help to improve service in three distinct
ways. They can provide customers with commonly requested information,
trigger feedback on the various reported metrics, and guide efforts to identify
and solve specific customer problems.

This document discusses the development and implementation of a flexible
software application capable of providing periodic, product performance
reports to Digital Equipment Corporation’s disk drive customers. The
software application was eventually able to customize the reports, generate
new reports, perform data updates, and handle new data sources. It was also
flexible enough to accommodate organizational changes that could affect the
report generation activities.

Thesis Supervisors:

Steven Leeb, Assistant Professor of Electrical Engineering
James Utterback, Professor of Management & Engineering

Acknowledgements

I wish to acknowledge the Leaders for Manufacturing Program for its support
of this work. Special thanks go to the people at Digital’s Small Form Factor
organization who put up with me for the six and a half months of the
internship and gracefully answered all of my questions.

Thanks also go to my advisors, Dr. Jim Utterback and Dr. Steven Leeb for
their guidance both during the internship and during the preparation of this
document.

I also wish to acknowledge my manufacturing philosophy classmates for
discussing their own experiences and helping me to better understand the
total picture of the manufacturing enterprise. Their advise throughout the
year has allowed me to distill from my internship experience a much better
document than it would have been otherwise.

Finally, I would like to thank my mother Dina and my father Ramén for
their unwavering support and encouragement. Without them I would not
have made it this far.

Table of Contents

ADSETACE....cvvverererienrcictctetetencsenen s s s s s asaesesasassssssssssssssssssasssssssssessssnsassans 3
AcknOWIedZements.........ccocvmrrnrnrniienerernresiresseesisiassesesn s asasssasssssesssens 5
Table Of COMEENLSc.ccoverrernrererrerrerenerenessssissesesassssessinersessssssssssssssssersssssssscsssscssssens 7
LiSt Of FIGUIES....coceneeeeeteeeetetetsten i tntesccsesisensasssasssissssssssssssssssasssassonsasasssasssasnns 9
LiSt Of TADIES.......cvreeereerirneresnninereeinesississessnssssissssssissmsssssssssssssssasssssssssssssssassssasess 11
Ch. 1 Industry and Project OVEIVIEWcucecencirenseisiesccssssusssencsssscssssasesens 13
1.1 Industry environment and supplier/customer
COMMUNICALIONS cvrereretererereeeeeeeeeesesssssesssesssreasasasasassssisssssssssssssssessssnanses 13
1.2 Improving communications between suppliers and '
CUSEOIMETS. ...c..ueceecreenesseesesnecsensnesessassaesnsssessssesssonsasasasssasssssasssssasssssssssssssssessessessses 16
Ch. 2 Report Definition and Development..........cccoceeereeremrucrcrnenennererensicnsuenens 19
2.1 The information needs of the customer satisfaction group............. 21
2.2 Definition of the customer product performance reports................ 26
2.3 Development of the customer product performance reports.......... 30
2.3.1 Initial throw-away prototypes...........cccceeceeuuevunerrenscusecusessenaen 30
2.3.2 Report prototypes with real data...............cccevvccrurunernnenne. 33
2.3.3 Towards the final repOrts..........ccceeurviniurcurcninccrsasinsesnssseenennes 36
2.4 Contents of the customer product performance reports................... 4
2.4.1 Cover page and header informationcccocoeeureecuruecsennes 45
2.4.2 Delivery performance SeCtON...........cocouueereeucarcesersarssasenrersens 45
2.4.3 Delivered quality SECHON........coceurrcrnirinnrsiirinninersasicnsasecsenses 46
2.4.4 Reliability performance Section.............ccoccevemneerennncninscaenees 48
- Ch. 3 Definition and Development of the Software Application..................... 51
3.1 Data collection and processing............cecouueccuseeseuscnsieensenscnsassessassssssnens 52
3.1.1 Searching for the data SOUTCeS.............ccoouriuvevsuncrecrcurunemeeacnrenes 53
3.1.2 Evaluating the data collection and processing
MECRANISINS....veeretecrtcreenesesesescaeisssesssssssnssssssessssessssssansesssnn 55
3.2 The data maintenance application............cecueeucueniuscuncuneissenncecsanennens 56
3.3 Report generation and distribution............cccccucusrcacineisscnsscnceonnns 64
3.4 The reporting appliCationcoecovuceeesenscsecesensesessssssssssesessessessenes 65
Ch. 4 Definition and Implementation of Process Activities..........ccooeesreerrennn. 71
4.1 Definition of the activities associated with the new reports............ 71
4.2 Development of the data gathering and reporting activities........... 78
4.2.1 Initial implementation problems.............cccccocvviuvirvurcuccunnee. 78
4.2.2 Remaining problems............umiuniviirsusecssnssscsessassscssesssssnnes 79
4.2.3 Implementation of the activities...........covueurecuiriuncrensuececunancs 80
4.3 Final location of the collected data.........cccoecvuucuiuisensurcrseneeenscerennennnnns 81
4.4 Comments on the implementation of the reporting activities.......83
Ch. 5 Description of the Developed Software...........c.coececureurenresesessesneasssersesens 85
5.1 SOftWare OVEIVIEWcuiiericrinresissancnsessssesssssssssassssssnssssssssessasssssssasns 85
5.2 Data maintenance application description............cececuvceueensiscuscascnnens 86
5.2.1 User interface.............eeriineienisisnisccssssisissssussscssssssscssssenns 87

5.2.2 Update architecture..............cccovviinieivnininecccccnincecneeneneacs 90

5.3 Reporting application description...........ccouviiiiiiicevnccniiniccnnnes 92

5.3.1 Report architecture.............cmiiiiiiccccnncrennnneecseccnss 93

5.3.2 User interface...........cooceernieriniincinicircncncnsincseiscncnnne 95

5.4 Integration into the network environment...........cocoeuviiuviiiuiincnnas 96

5.4.1 The PC and the network..........ccocouveiurrucnviiinnincnicnciincecanne 96

5.4.2 Using network drives to transfer data...........ccccoeueverevnnnncce. 98

5.4.3 Obtaining Rdb data from the network................ccuccuuc.c... 98
Ch. 6 Description of the Data Gathering & Report Generating Process.......... 101
6.1 Execution of the data gathering and reporting activities.................. 101
6.2 Problems with the execution of the activities...........cceoenernnnnnnnce. 102
Ch. 7 Impact and Reactions to the Projectccceueemveuerereeeernieeenceienece 105
7.1 Review of the main project deciSions.......c..cceuveeueernieeeinnineneninn, 105
7.2 Feedback and reactions to the product performance reports............ 107
7.3 Suggestions for a better development approach..............cccuuuueeeee. 108
7.4 Suggestions for further research..........ccoocoevnninninineniieceeecinn, 111
REfETEINCES.ouvvitiriiitisit s sebss et e e b s b sa b s sns s 113
APPENAICES.......urnricrinititctinteec ettt st e s 115

List of Figures

Figure 1.1: Internship Project Activities.......ccocoueemrevreiererevnrneceitcinc, 17
Figure 2.1: Communication Path to Customers.........cccocevervrverennvevennnirnrnnenen. 20
Figure 2.2: Barriers between Data and Useful Information.............................. 24
Figure 2.3: From Current Practice to an Ideal Report............cccoocevereuernrnnnnenne. 29
Figure 2.4: Initial Throw-away Report Prototype........ccocecoevuveverernerirennrininnnnne. 32
Figure 2.5: Throw-away Prototype Report with Real Data...............c.cccoerueccec.. 34
Figure 2.6: Final Customer Product Performance Report...........ccccoeuvvcuiunncnce. 37
Figure 3.1: Flow of Data and Associated Tasksccecoeumueencmeueurencncnscnrencncncnces 52
Figure 3.2: Initial Concept for Maintenance Application............ccc.cccvrvrvnnneees 57
Figure 3.3: Main Menu of Data Maintenance Application............ccceceuevuunccce. 59
Figure 3.4: Opening the Update Windows............cccoovreiiicenirirencrcnenninns 60
Figure 3.5: Sample Update QUETYcccovmmerntriririrriiniiiiiiiieensscscscscreaensenes 60
Figure 3.6: Revised Data Maintenance Application Concept...........cccoeuuucueueee. 62
Figure 3.7: Initial Concept for Reporting Application...........ccouevinivrvrvevrvcnenecs 66
Figure 3.8: Main Menu for Reporting Application..........cccococvvuviiererincncunnnnce 67
Figure 3.9: Examples of Report Windowseviiininincceccncernnnccnenes 68
Figure 3.10: Customization Windowiiiinccnssceneensisscans 69
Figure 4.1: Initial Concept for Reporting Activities...........cocoevueuvervcurincunnneee 74
Figure 4.2: Revised Approach to Reporting Activities.........ccccoeeueururerruvencunnnee. 77
Figure 5.1: Data Maintenance and Reporting Applications..............cccccvuuueece. 86
Figure 5.2: Relationship between Update Form and Update Macro................ 88
Figure 5.3: ACCESS BASIC Update Procedure............cocecvcueerivenruncrencveeuneennenenne 90
Figure 5.4: Viewing Information on Update Queries..............ccccoecuvucururcenncnecs 92
Figure 5.5: Structure of Product Performance Reportscccocovuruvuiniinnnee. 94
Figure 5.6: Digital’s Small Form Factor Computer Networkcccc...... 96
Figure 5.7: Getting Rdb Data through ODBC.............cccovuruvrvirrcirincrriirinicnne 99

10

Table 2.1:
Table 2.2:
Table 2.3:
Table 3.1:
Table 5.1:

List of Tables

Delivery Performance Metricscccouvueveenecrrmnmnncecinicccecnicanes 46
Delivered Quality Metrics.......ccocovuviererirnriririniicsininininiincserennsecsisnensanes 47
Reliability Performance Metricsccecvvueurercunuecncrcsucnscncnceserencnnenene 48
Examples of Required Data for Reportscocecevuevvevenienecncucuecnencnns 55
Calls to an Update Procedurecccurueueurueneeurcncecncennencreueesssnsessns 89

11

12

CHAPTER 1
Industry and Project Overview

This document describes the implementation of a flexible software
application developed to generate a series of product performance reports
addressing internal and external information needs within a manufacturing
organization. The work was performed during a 6 1/2 month internship at
Digital Equipment Corporation’s disk drive manufacturing facility in |
Colorado Springs, Colorado. In particular, it involved work within the Small
Form Factor organization which assembled and tested 3 1/2” hard disk drives

for internal and external customers.

This chapter briefly introduces the relevant competitive aspects of the high-
capacity disk drive industry that served to motivate the internship project.
An overview of the research project then follows. The various stages and
results of the project are then discussed in more detail in the subsequent

chapters.

1.1 Industry environment and supplier/customer communications

In the 1970°s, IBM built the first of what are known today as Winchester disk
drives. These original drives were 14" in diameter and their primary
characteristic was an assembly of read /write heads and disks enclosed in a
clean cavity. Over the years, Winchester disk drives have gradually decreased

in diameter from 14" to 8" to 5 1/4" to the current industry leader, the 3 1/2"

13

drive. At the same time, their market has spread from mainframe storage

applications to include personal computers and laptops.

Today, the high-capacity disk drive OEM! business generates over two billion
dollars in yearly revenues? by supplying drives to high-end systems including
microcomputers, workstations, and RAID3 systems. It is characterized by
constant product innovations focused on increasing areal density and
improving product performance characteristics such as how quickly a drive
can find, read, and write data. These improvements must come without
sacrificing the lower prices, better product quality, and higher reliability

demanded by the market.

“[Areal density has] been rising at about 60% per year.”>

- Peter Franklin, business manager of OEM storage at Digital Equipment Corp.

“Traditionally, hard-drive prices drop between 5% and 6% per
quarter.”®

- Peter Knight, senior vice president of systems development at Conner Peripherals Inc.

Within this fast paced environment, drive manufacturers fiercely compete to
supply a limited number of OEM customers. The competition has turned the
industry into one where both technological innovation and commodity

pricing are necessary for a manufacturer to succeed.

10riginal Equipment Manufacturer; customer that integrates the product into a larger system.
2Computer Industry Forecasts, January 15, 1993.

3Redundant Arrays of Independent Disks.

4 Areal density refers to the amount of data that can be stored on recording media per unit area.
5Computer Reseller News, December 20, 1993.

6IBID

14

The suppliers that are first to reach the market with new products have a
distinct competitive advantage. Products must initially go through an
expensive qualification process with OEM customers that might last several
weeks and involve hundreds of evaluation drives. Therefore, many
customers will only qualify two or three suppliers and ignore those that don’t
have a product available on time. Unless qualified suppliers perform poorly,
latecomers then face a very uphill battle. They must convince customers that
they can offer enough of a better product and service to warrant spending

more money on additional qualifications.

Nevertheless, winners of a qualification cycle are faced with several other
cycles during the year, forcing established suppliers to remain alert to changes
in customer demands. These demands might include hardware as well as
software changes to the drives, new bus interfaces for the drives, and more
stringent labeling and packaging requirements. Manufacturers who are not
able to quickly adapt to their customers’ demands risk losing their customer

base.

“The technology continues to move at a frantic pace. There’s no
question life cycles for products are shorter.””

- Greg Brashier, director of Storage Dimensions’ LANStor Unit.

In particular, the level of required communication between supplier and
customer is becoming particularly high in this business. Customers who put

their brand names on the drives or install them in their systems want to be

7C0mputer Reseller News, December 20, 1993.

15

notified about how the drives are performing. For example, information on
manufacturing yields and the percentage of drives that fail during and after
installation is increasingly being requested by customers. The causes of drive
failures and corresponding corrective action plans are also important to

customers.

The internship project was undertaken with the belief that a supplier that
could establish a broad communication channel with its customers, and had a
strong commitment to customer satisfaction, would develop a definite edge
over its competitors. Such a supplier would be able to maintain strong links
with its existing customers, react faster to their changing needs, and convince

potential customers to consider it over other suppliers.

1.2 Improving communications between suppliers and customers

In an attempt to broaden the communications between Digital and its OEM
customers, the internship project introduced a series of monthly product
performance reports for the different hard drive models purchased by
Digital’s customers. These reports were eventually made available to the
people working directly with customers. The new information was expected
to generate questions that would improve communication between the Small
Form Factor organization, the customer contacts, and the customers, as well

as within different functional areas of the Small Form Factor organization.

The general progress of the project consisted of three distinct definition
activities starting with the creation of a sample product performance report.

This activity was followed by the development of the software tools necessary

16

for the periodic generation of the reports, and the definition of the steps

required for using the software and generating the reports.

Figure 1.1 shows the overlap of these three definition activities over time.
The triangular shapes are intended to represent a move from the initial broad

definitions to the more concrete ones that were later implemented.

PROJECT ACTIVITIES
Report definition

,75’

oftware development

is definition

time

Figure 1.1: Internship Project Activities

The next three chapters will discuss these activities in order and the effect of
their interactions on the various development efforts. First, Chapter 2
includes the development of the product performance reports from initial
concept to final implementation. Chapter 3 describes the construction of the
software tools that enabled the generation of the reports, while Chapter 4
follows the development of the activities related to the periodic generation of

the reports.

17

Afterwards, Chapter 5 gives a more detailed description of the main features
of the software applications that were developed, while Chapter 6 describes
the final sequence of activities required to generate the reports. Finally,
Chapter 7 provides the opportunity to step back and analyze the effects and
impact of the product performance reports. Some comments will be provided
on the events that followed the end of the internship and suggestions will be
given for improving the development and implementation methodology of

similar future projects.

18

CHAPTER 2
Report Definition and Development

This chapter will review the process by which a given information need and a
series of reports to satisfy this need were identified during the internship. In
particular, the chapter will show how a development approach using quick
iterations followed by requests for feedback can integrate new information

processing innovations quickly and effectively into an organization.

Before describing the information need that was addressed by the reports,
some additional background on Digital’s Small Form Factor organization is
required. This manufacturing group belonged to a larger storage organization
operating out of Massachusetts and having a business office that dealt directly
with customers. Under this arrangement, Small Form Factor operated such
that exposure to customers was mostly limited to receiving drive orders,
returned drives, and occasional customer visits (usually by new customers
that were thinking of qualifying a new product). As the organization moved
to serve more and more external customers, the need for better
communication became apparent. For example, many customers changed
order quantities and requested delivery dates and a lot of rescheduling effort
was needed to accommodate these changes. Demands for modifications to
the disk drives and for more and/or different drive tests were also being

voiced by multiple customers.

To attend to customer needs, a customer satisfaction group operated within

the Small Form Factor organization. This group served as a link to a series of

19

account teams working directly with the customers. These account teams
operated out of the separate storage business office and usually consisted of a
sales representative, a manager for the account, and an applications engineer.
The customer satisfaction group, in its role as a communication link, would
bring feedback from the customers into the manufacturing decision making
process, and provide information on the manufacturing operations to the
account teams. Figure 2.1 illustrates the position of the customer satisfaction
group along the communication path between Small Form Factor

manufacturing and the customers.

DIGITAL'S STORAGE BUSINESS

([SMALL FORM FACTOR |
MANUFACTURING Communication

ié ath

Customer |<§ * Account

Satisfaction Teams

it

CUSTOMERS

Figure 2.1: Communication Path to Customers

Note again how the account teams belonged to an organization separate from
Small Form Factor. This surfaced as a problem later on in that the
expectations on how the product performance reports would be used turned

out to be inconsistent between customer satisfaction and the account teams.

20

With this in mind, an explanation will now be given of how poor access to
information was a major hurdle to improved communications with
customers. Afterwards, discussion will center around the evolution of the
product performance reports that were eventually created to address this
communication need, from their initial conception to the actual final

product.

2.1 The information needs of the customer satisfaction group

As a starting point, I would like to present an initial problem statement as it
was posed by the customer satisfaction group. This initial problem definition
will be explored in further detail, and the information obstacles that were

found will then be discussed.

In brief, the problem faced by the customer satisfaction group can be stated as

follows:

Increasingly, customers demand more information on product and
process performance metrics and there is no way to easily gather and

communicate this information in a periodic, cohesive fashion.

In addition, the perception by the customer satisfaction group was that more
customers would be demanding this information in the future, and that
more detailed information would be demanded. Therefore, the mechanisms
to gather data and generate reports including databases, software applications,
and the activities related to their use needed to be in place to handle these

new requests.

21

During the early part of the internship, the customer satisfaction group
provided a description of a variety customer information needs. In addition,
memorandums, contracts, and other documents were provided to support
the anecdotal information. The following signals pointed to a growing

customer need for product information:

- Several customers were asking for product performance information: There
were information requests as part of the product qualification process,
negotiated access to product and process information as part of new
contracts, and direct requests to account teams and customer satisfaction for

product performance information.

- Account teams were asking for periodic information on product
performance: There were memorandums from account team members
asking for this information in order to work out customer complaints more
effectively. In particular, some customers were generating their own
product performance information, and account team members did not have

any internally provided information for comparison purposes.

- Competitors were already providing some information to customers: Some
account team members had seen samples of product performance reports
provided by competitors. From the interviews performed, it appears that
the competitor’s reports contained general information on quality and
reliability of the disk drives.

At the root of the problem with reporting the requested information was the
way the information systems were organized and the data were shared within
the manufacturing plant. The information systems within the plant could be
characterized as isolated pockets of functional information. Different data
was controlled and used by different groups, and there was no overall data
architecture or translation mechanisms to tie the various systems together.
More specifically, in collecting the data for the product performance reports,

the following problems were encountered.

- Access: Data contained in multiple computer systems required separate user
accounts to become accessible. For an employee, this meant going to
different system administrators to get the accounts, get approvals from a
manager for each one, then get access to the data sources from the groups
that managed the data, and finally, learn to use the different available

interfaces to access the data.

- Interpretation: The meaning of the data was often unclear or misleading.
There was some documentation available but it was frequently inadequate
in providing a meaningful interpretation of the data. The best sources for
gaining an understanding of what the data meant were the people who
actually captured and maintained it through data-entry, execution of
periodic file updates, etc. Even here, individual employees were often

familiar with only portions of these activities and processes.

- Integrity: There were sources of errors from the data-entry process as well as
timing problems in accessing the data. The timing problems, in particular,

required knowledge of how often the data was entered, and how the

23

different files were updated. Changes in data collection procedures also

introduced changes to the meaning of the data.

Figure 2.2 provides a graphical representation of how the occurrence of any of

these three problems prevented the extraction of useful information from the

available data.

Interpretation Barrier

Barrier \

DATA

Figure 2.2: Barriers between Data and Useful Information
Examples of symptoms associated with these barriers included the following:

- Data was shared through electronic reports: Typically, users would receive
periodic reports from other functional groups through electronic mail. Ad
hoc querying of databases to answer specific questions was the exception

rather than the norm.

- Data that seemed the same was not the same in different systems: For
example, production and financial systems had fields to denote the
shipment date of drives. In the case of the production database, shipment

24

date meant the date when the product left the end of the production line
(not necessarily the shipment date). In the case of the financial database,
shipment date meant the date of a particular stockroom transaction and an
extensive understanding of all the transaction types was required to

determine which ones were shipments.

- Information systems suffered both major and minor changes that affected
the integrity of the data: Major changes occurred when new information
systems were introduced and the data from the older system was transferred
to them. Minor changes within an information system developed over
time as the existing system was adapted to new business needs8. These
changes jeopardized the integrity of the data in the eyes of those not familiar

with them.

As evidenced by these symptoms, a division existed between the people who
maintained and used the data often, and the people who didn’t use the data as
frequently and therefore did not have the necessary knowledge to correctly

interpret it.

This situation proved problematic because the customers were asking for data
that cut across functional boundaries. Typically, a member of the customer
satisfaction group would collect internal memos and reports and either
incorporated them directly into a customer report or included a retyped and

revised version of these with the following results:

8For example, in one system a text field called REQUESTER was reassingned to capture
customer request dates since no locations were originally set up to store this information.

25

- The presentation was not consistent across sections of a report.

- The reports used a lot of internal “lingo” that was hard for customers to
understand.

- The reports had to be assembled individually.

- Data not available from internal memos or reports had to be obtained and

interpreted by the customer satisfaction representative.

2.2 Definition of the customer product performance reports

From the original conversations with members of the customer satisfaction
group, they expressed a desire for solving the above problems by providing a
series of easy to generate customized reports to customers. These reports
would contain a variety of information with different detail levels that could
be included or excluded depending on the needs of each customer. These first
conversations formed the basis for an initial broad description of the reports

that would help address the varying information requirements of customers:

Periodic customer reports with product and process information that

could be customized to incorporate specific customer requests.

These new reports would help the customer satisfaction group to classify
product information by customer since each customer had its own assigned
part numbers. The reports would also provide factual rather than anecdotal
information to manufacturing on specific customer problems, and would

lead to better efforts to solve these problems.

As justification for the reports, the customer satisfaction group observed that:

26

- Customers were becoming more demanding over time in their information

requirements and it was believed that this trend would continue.

- An expanding customer base would mean that more customers would

eventually be asking for the same type of information.

- Providing reports now would allow for the reporting of standardized
product metrics whereas if customers were left to ask for the information,

they would each be asking for a different set of metrics to be reported.

- Providing the reports before customers asked for them would reflect a
willingness on the part of Digital to anticipate customer demands that

would otherwise be lost if customers had to ask for the information.

- There were communication breakdowns with customers where the
perceived level of performance within Digital did not match the customer’s
perceptions and these breakdowns could be discovered through the use of
the reports. Delivery performance was cited as an example here since
Digital measured to a scheduled shipment date and assumed that the carrier
would deliver as promised while the reality at the customer site could be

different.
- There were customer specific issues that would be revealed by the

information and could then be addressed on a customer by customer basis.

For example, differences in the handling of the drives at the customer sites

27

could be checked when the defective drives returned from one site greatly

outnumbered those from another.

The initial concept for the new customer product performance reports was a
broad definition of an ideal way to provide information to account teams and
customers. The definition provided a long term vision that served as a
reference point, and gave a broader context to the more limited scope of the

internship project.

The internship project only targeted a “minimum requirements” or baseline
report while laying the groundwork for later improvements through an
appropriate report structure and flexibility features. The work incorporated
the core tasks that had to be accomplished in order for the baseline report
introduction to be successfully implemented. Future report features beyond
the minimum requirements would increase the attractiveness of the product
performance reports, and allow for their evolution and adaptability to
changing customer needs. Figure 2.3 describes the relationship between
current practice (ad hoc reporting), a minimum requirements customer

report, and an ideal report.

Continuum of

acceptable reports
Ideal report e

Either reach minimum
requirements or revert
to current practices

Figure 2.3: From Current Practice to an Ideal Report

The minimum requirements for introducing a new product performance
report to customers were developed as follows. First, an examination was
performed covering the various internal memos requesting and offering
product information, ad hoc reports that had been prepared already, and
customer grade reports®. After reviewing this information, I asked the
customer satisfaction manager what were the requirements for offering a first

cut report to the account teams in order to get their feedback.

- Information must be complete: The first cut report needed to include
delivery performance, delivered quality, and reliability performance

information for each drive part number.

- Information must be valid: Any report presented to account teams for
feedback had to contain real data. That is, “Do not offer a sample report for

feedback with information that you are not sure you can provide.”

9Some customers provided Digital with evaluations on its performance as a supplier.

29

- Information must be available: Any report presented to customers needed
to be maintainable (i.e. could be generated periodically). In other words, “Do
not ask for feedback on a report that you can not provide on a consistent

basis.”

These were somewhat generic requirements, but it must be remembered that
no benchmark product performance reports existed at the time, and that the
final reports would be dependent on the available information and the
capabilities of the software that would create them. In addition, customer
contacts would have some say on how the reports would look and fulfilling

unnecessary requirements would only waste development effort.

2.3 Development of the customer product performance reports

Given that no benchmark report existed, and that information requirements
would eventually be affected by feedback from account teams and customers,
a prototyping strategy was used for developing the new reports. The basic
strategy consisted of iterating through a series of report contents and formats
in order to converge towards a final report. These iteration cycles will be

discussed next.

2.3.1 Initial throw-away prototypes

The initial iteration cycles occurred when a throw-away report prototype was
created to discuss the formatting of the data. First, talks with customer
satisfaction group members provided a sense of how the data would be
presented and a preliminary sketch of what a report should look like. Then,

30

based on the information above, I created a sample report format. One
iteration was performed on this sample, and very little feedback was obtained

from customer satisfaction.

This initial prototype report is shown in Figure 2.4. It contained simple
metric information as well as time charts to show trends. Individual
shipments were also shown as it was felt that customers would also want to
look at this information (particularly when orders were late). All was
arranged on a single page for ease of distribution. Note that the algorithms
for generating the metric information were not defined at this stage.

31

[i[e]ife]a]t]

Customer: Oem Inc.

Delivery Performance

6 month average on-time delivery

98.7%

Missed Order Information

Customer P.O#/Line # Ordered/Shipped Requested/Actual Receipt Date # Days Off
133-0457 1 100 100 06-18-93 06-21-93 +3
2 100 50 06-18-93 06-21-93 +3
50 06-18-93 07-01-93est. +13
Delivered Quality 3 'Weath eurvival A alies shipment
6 month average early life
experience
99.4%
Reliability Performance WTEE for' shigped naits
hundreds
000.00
6 month average MTBF
248,000hrs
Figure 2.4 (a): Initial Throw-away Report Prototype

Performance Report

Date: June, 1993

DSP310S
% On time deliveries

1.00

0.%0

32

The value of the first prototype was not in the feedback it generated, instead it
served two important purposes. First, it communicated to customer
satisfaction the kind of data and the presentation capabilities that would be
developed. Second, the template served as a basis for judging the adequacy of
the reporting capabilities of the various software development tools that were

later examined.

2.3.2 Report prototypes with real data

A second set of iterations was performed on throw-away prototype reports
with actual data. These reports were generated using the chosen software
development platform (see next chapter) so as to demonstrate their feasibility.
The customer satisfaction group showed significant interest and provided
considerable feedback on these prototypes. Selected account team members
also saw the reports and gave feedback on them.

Figure 2.5 shows a sample report during this stage. The data requirements
and algorithms necessary to generate the performance metrics were already
defined for this report. Note also how the amount of information included
grew from that of the initial prototype.

Digital Equipment Corp. Product DSP3105] el

06-Sep-93 Customer Part
Customer Name Part Number Customer ID
RH27A -AA
Delivery Performance % Gstimated on time delivery
3-month rolling average
88.2%

Customer Request Date Est. days ate (sarly) P.O Number LimeNe. Order Quantity Shipment variance

09-Ang-93 0 7978CM3I9% 1 20 0
16-Aug-93 0 7978CW3IS4 1 %0 0
23-Aug-93 0 7973CM3194 1 A0 0
30-Aug-93 0 7978CW3194 1 240 0

Figure 2.5 (a): Throw-away Prototype Report with Real Data

34

Digital Equipment Corp. Product DSP3105 Ensansn

06-Sep-93 Customer Part
Customer Name Part Number Customer [D
RH27A -AA
Delivered Quality
. % Trouble free, first 60 days
3-month rolling average
99.7%
Defects per million - DPM:
93.03 0
93-04 V]
93-05 (/]
93-06 1269
93-07 0 3-03 93-04 $3-08 93-08 $3-07 93-08
93-08 7.292
RellabiiRy, (MTBF)
Installed population
12,263

300000
280000
200000
150000
100000 -
50000
0

Figure 2.5 (b): Throw-away Prototype Report with Real Data

35

The customer satisfaction group used this prototyping stage to evaluate and
decide whether to accept the reports. Several modifications were made to the
product performance reports during this stage but a particular report structure
was not cemented and enough flexibility was maintained to accommodate the
later feedback from account teams. Also, since most feedback was obtained
during meetings of the customer satisfaction group, this evaluation stage
allowed the customer satisfaction group members to confront their different

ideas of how the reports should look.

Additional feedback was then obtained from a selected account team
members (as identified by the customer satisfaction group) which validated
the general thrust of the reports. In addition, this feedback pointed to a need
for more detailed information on product failures to direct improvement

efforts based on the report data.

2.3.3 Towards the final reports

The final prototyping iteration cycles were performed on ‘an evolutionary
report prototype that became the final product performance report. Figures
2.6 (a) thru (g) show an example of the product performance reports that were
finally selected for distribution to account teams.

Product Performance Report

Delmonico Inc.

For the month of: 93-11

Products included:
DSP3108
DSP3210

Figure 2.6 (a): Final Customer Product Performance Report (Cover)

37

DIGITAL EQUIPMENT CORPORATION

Customer Name
Delmonico Inc.

PRODUCT PERFORMANCE REPORT FOR:

Internal Part No.
RH27A -PW

Sales Part No. Customer Part No.
DSP3105

93-11

Capacity
1.05 GB

Delivery Performance
3-month rolling average

| 100.0%

Delivery Performance is estimated by comparing
the actual ship date and expected transit time to the

customer request date. A detailed description of the
algorithm used is available upon request.

Units shipped during the month of : 93-11

Customer Request Date
02-Nov-93

04-Nov-93
04-Nov-93

09-Nov-93

11-Nov-93
16-Nov-93
16-Nov-93

16-Nov-93
17-Nov-93
19-Nov-93
22-Nov-93
23-Nov-93

29-Nov-93

Digital Coafidential

Est. days early (late)

(=]

COCOoO O OO OCOOOCOOOOOCOOCOO

% Estimated on time delivery

9307 9308 93-09 93-10

P.O Number Shipped Quantity
29012574 43
29012603 120
28008330 28
28008462 12
28090345 160
20071166 120
20071180 210
20071166 120
20071166 80
20071166 20
0
200
20071166 20
20071166 120
29012644 6
20071166 120
20071166 120
25989811 200
20071166 120

93-11

Figure 2.6 (b): Final Customer Product Performance Report (Delivery)

38

DIGITAL EQUIPMENT CORPORATION PRODUCT PERFORMANCE REPORT FOR: 93-11

Customer Name Internal Part No. Sales Part No. Customer Part No. Capacity
Delmonico Inc. RH27A -PW DSP3108 1.0 GB
Delivered Quality Delivered Quallty in Defects Per Million
3-month rolling average

[6,364 DPM

9308 9307 9308 9300 9310 9311

Delivered Quality is based on field returns
and is an assessment of the performance of the

mir m 60 days, primarily in our Dalivered Quallty for Entire Customer Base
DPM = (Lmo_o@mmmm) 4000
[shipments for month} 3000
Where quality returns are units returned within =~ 2500
60 days of shipment. A description of the §°°°
detailed algorithm used is available upon 1000
request. 00 4
04

9306 93407 9308 309 N-10 9311

Digital Coafidential 2

Figure 2.6 (c): Final Customer Product Performance Report (Quality)

39

DIGITAL EQUIPMENT CORPORATION PRODUCT PERFORMANCE REPORT FOR: 93-11

Customer Name Internal Part No. Sales Part No. Customer Part No. Capacity
Deimonico Inc. RH27A -PW’ DSP3105 1.05 GB
Reliability Performance Rellability, (M TBF)
Customer's
Installed population ~—e
14,122
Customer's
Total units shipped 9308 9307 9308 9308 9310 9311
19,394 Rellability for Entire Customer Base

::::T—&ﬁ¢+o——+—

Relisbility Performance s an estimate of 150000
field performance at end-user applications, 100000
based on quantity of units shipped and field 50000
returns. A detailed description of the

algorithm used is available upon request. 0

9306 9307 9308 9309 93-10 93-11

Digital Coafidestial 3

Figure 2.6 (d): Final Customer Product Performance Report (Reliability)

40

DIGITAL EQUIPMENT CORPORATION PRODUCT PERFORMANCE REPORT FOR: 93-11

Customer Name Internai Part No. Sales PartNo. Customer Part No. Capacity
Delmonico Inc. RH2E -PW DSP3210 NONE 210 GB

Delivery Performance
3-month rolling average

Delivery Performance is estimated by comparing
the actual ship date and expected transit time to the
customer request date. A detailed description of the

% Estimated on time delivery

algorithm used is available upon request.
9309 93-10 93.11
Units shipped during the month of : 93-11
Customer Request Date Est. days early (late) P.O Number Shipped Quantity
02-Nov-93 0 29012602 2
0 29012603 10
0 20945693 10
0 29807676 30
Digital Confidential 4

Figure 2.6 (e): Final Customer Product Performance Report (Delivery)

41

DIGITAL EQUIPMENT CORPORATION PRODUCT PERFORMANCE REPORT FOR: 93-11

Customer Name Internal PartNo. SalesPartNo. Customer Part No. Capacity
Deimonico Inc. RH20E -PW’ DSP3210 NONE 210GB
Delivered Quality Delivared Quallty In Defects Per Million
3-month rolling average
3000 ——
f 0 DPM | 2500 \ ¢
2000
1500
1000
500
0 +- +
) 9300 93-10 9311
Delivered Quality is based on field returns
and is an assessment of the performance of the
product f"s' m 60 days, primarily in our Defivered Quallty for Entire Customer Base
DPM = (M_My_mfﬂmﬂ) 3800
[shipments for month] 3000 {—@- e >——
2500
Where quality returns are units returned within -~ 2000
60 days of shipment. A description of the 1500
detailed algorithm used is available upon 1000
request. 500
04
9308 9307 9308 9300 3310 9311
Digital Confidential L

Figure 2.6 (f): Final Customer Product Performance Report (Quality)

42

DIGITAL EQUIPMENT CORPORATION PRODUCT PERFORMANCE REPORT FOR: 93-11

Customer Name Internal Part No. Sales Part No. Customer Part No. Capacity
Deimonico Inc. RH2E -PW DSP3210 NONE 210 GB
Reliability Performance Rellability, (MTBF)
Customer's $00000 -
Installed population 400000
300000
30
200000
04
Total units shipped 3.11
182 Rellabiity for Entire Customer Base
500000 L 4 4 4 ¢ —
400000
Reliability Performance isan estimate of 300000
field performance at end-user applications, 200000
based on quantity of units shipped and field 100000
returns. A detailed description of the .
algorithm used is available upon request. + + s310 a1t
Digital Confidential 6

Figure 2.6 (g): Final-Customer Product Performance Report (Reliability)

43

From the customer satisfaction group’§ perspective, this stage did not
represent significant changes to the content of the reports. On the other hand,
this stage signaled that a report architecture and a report generation process
were now in place and that availability of the product performance reports

would not be a problem.

Additional feedback was obtained at this stage from other account team
members. This new round of feedback uncovered the fact that certain
account team members (particularly those involved in sales) were looking at
the reports as a marketing tool and wished to report only “benign”
information to customers. Taking different cuts of the data (by application,
customer type, etc.) was suggested as a way to better achieve the marketing
potential of the reports, but customer satisfaction did not view the reports as a

product marketing tool.

Finally, during this stage some account team members suggested that other
storage products (i.e. tapes) should be included with the reports since
customers would want to have information for them too. This issue reached
beyond the Small Form Factor organization and was not resolved by the end

of the internship.

2.4 Contents of the customer product performance reports

A product performance report consists of a cover page and a page each for the
delivery performance, delivered quality, and reliability performance of every

disk drive part number included in the report.

2.4.1 Cover page and header information

The cover page (Figure 2.6 (a)) includes the name of the customer that
purchased the drives, the month covered by the report information, and a list
of the drive sales part numbers that will be covered in the report. Inside the
report, the page headers also contain the customer name, and month
information. In addition, the headers provide the capacity of the
corresponding drive for that page plus a box with the part numbers that
designate the drive at the customer’s organization, at Digital’s sales
organization, and at the Small Form Factor organization. This box therefore
serves as a translation mechanism when people from different organizations

refer to the same disk drive model.

2.4.2 Delivery performance section

The delivery performance section (Figure 2.6 (b) & (e)) contains a column
graph with up to six months worth of delivery performance information, a
three-month aggregate delivery metric, as well as information on individual
shipping transactions. Table 2.1 shows the equations used for generating the

delivery performance metrics.

METRIC EQUATION

Delivery performance |(#on time shipments during the month)*
expressed as % (for the (#shipments during the month)
graph)

3-month aggregate (#on time shipments during last 3 months)
delivery performance (#shipments during last 3 months)
expressed as %

* i.e. #on time shipments = Number of on time shipments based on scheduled ship date.

Table 2.1: Delivery Performance Metrics

The graph serves to show delivery trends for a given customer while the
shipment information provides the volume of drives requested by the
customer as well as of the how large and how late or early were the missed

orders.

Note also that on time shipments are based on meeting a scheduled ship date
so that variations in transit time are not taken into consideration.
Information on when the order actually was received by the customer is not
available for inclusion in the reports. Also, delayed orders sometimes
shipped via a faster carrier to make up the time and the original scheduled
ship dates were left unchanged so that these orders would be counted late

when in fact they were on time.

2.4.3 Delivered quality section

The delivered quality section (Figure 2.6 (c) & (f)) contains two column graphs
with up to six months worth of delivered quality information for a specific
customer’s part number and for the total population of drives of that capacity

46

and size. It also contains a three month aggregate quality metric expressed as
defective units per million (DPM). Table 2.2 shows the equations used to
generate the delivered quality metrics.

METRIC EQUATION

Delivered quality (#shipped - #quality returns during month)(1M)*
expressed as DPM (for (#shipped during month)

the graph)

3-month aggregate #shi - #quality r in last 3 months)(1IM
delivered quality (#shipped during last 3 months)
expressed as DPM

*Quality returns are defined as those that occur within 60 days of shipment.

Table 2.2: Delivered Quality Metrics

The graphs serve to show quality trends for a given customer and to compare
the performance of the customer’s drive with the total population of similar
drives (i.e. same capacity and size). The constant line through each graph
represents the quality goal for the product.

The delivered quality metric is designed to catch drive problems that occur at
the OEM customer’s manufacturing facility. As such, this is the metric that
would reflect problems with the handling of the drives.

Note also that the delivered quality metric is susceptible to wide swings due
to changes in shipment volumes. For example, a customer that receives 100
drives in a given month and returns 10 drives from a much larger shipment

the previous month will show 100,000 DPM for that month which is

47

misleading (i.e. the customer is not necessarily returning 10% of all drives).

This effect is less pronounced when viewing the 3-month aggregate metric.

2,44 Reliability performance section

Finally, the reliability performance section (Figure 2.6 (d) & (g)) contains two
column graphs with up to six months worth of reliability information for a
specific customer’s disk drives and the total population of drives of that
capacity and size. It also contains an estimate of the installed population of
the customer’s drives and the total drives shipped up to date. Table 2.3 shows

the equations used to generate the reliability performance metrics.

'METRIC EQUATION

Reliability performance | (5-months of run hours for installed population)*
expressed as MTBF** (#reliability returns in last 5 months)***
(for the graph)

Installed population (#drives shipped up to two months earlier)
expressed as number of |- (#returned drives up to two months earlier)
drives

(Total units shipped (#drives shipped up to current report month)
expressed as number of
drives

*Run hours are calculated as 730/month for each drive starting after 60 days of shipment.
**MTBF or mean time between failures is a standard measure of product reliability.
**Reliability returns are defined as those that occur after 60 days of shipment.

Table 2.3: Reliability Performance Metrics

As in the delivered quality case, the graphs here serve to show trends for a
given customer and to compare the performance of the customer’s drive with
the total population of similar drives. The constant line through each graph
represents the reliability specification for the product.

48

The installed population number tries to capture the number of drives that
have left the OEM manufacturing site and are installed in working systems.
It serves as a guideline to how stable the reliability metric is because reliability
performance tends to jump significantly while the installed population is
small. Total units shipped can be used to determine whether additional
drives will soon be installed and how much of an effect they will have on

near term reliability performance.

49

CHAPTER 3
Definition and Development of the Software Applications

This chapter contains a detailed description of how the project’s two
complementary software applications were conceptually defined, as well as
how they were developed. The discussion will show how organizational
constraints influenced the many design decisions required to create the

software applications that generated the product performance reports.

This development work was started immediately after the definition of the
minimum requirements report and began with an analysis of the various
tasks that would be required to provide periodic product performance reports.
These tasks can be divided into four steps.

- Data Collection - Getting the required data from the various sources.
- Data Processing - Operating on the collected data.
- Report Generation - Creating multiple reports from the processed data.

- Report Distribution - Making the reports available to their audience.

Figure 3.1 illustrates the sequential rélationship between these four steps.

51

All Data

& & - Data Collection: Queries,
Desired Data data entry, text file imports

= Data Processing: Aggregate
Report Data queries, metric calculations

} = Report Generation:
Reports _®| Data combined with format

rt Distribution: Email
Customers % K % S _%

Figure 3.1: Flow of Data and Associated Tasks

As the most complex steps, data collection and processing are discussed first
along with the software application that was developed to perform them.
Then, the discussion will shift to the report generation and distribution steps

and to their corresponding software application.

3.1 Data collection and processing

Data collection can be defined as the tasks required to extract the desired data
from the various sources within the manufacturing plant’s computer
network. Data processing can be defined as the additional tasks required to
transform the collected data into a form that could be used to generate reports.
Before the development of the software to execute these tasks could begin, the
data sources for the reports had to first be identified. After this was done,

52

several mechanisms to extract the desired data were then explored and the

best ones selected.

3.1.1 Searching for the data sources

The obvious starting places for identifying the required data sources were
Small Form Factor's internal reports and memos that were already being
generated and shared with the account teams and customers. A list of the
required data and its possible sources was then identified after informal
interviews with the originators of the internal reports and memos. This data

included:

- Shipped and returned drives information kept on VMS/Rdbl? relational
databases.

- Shipping transaction information on flat files!! belonging to the
financial /inventory system.

- Customer and part number information being transferred into a Microsoft
ACCESS2 database.

- Other data on part numbers and customers that was not kept in an

organized fashion anywhere within the plant.

Selecting the final data sources from the original list required answers to
additional questions. In some instances, the data were not available while in
others the data were available from multiple sources. In these cases, several
considerations were involved in determining which data would be used to

generate the product performance reports. Questions included:

10Relational database management system for Digital’s VAX/VMS architecture.
11Fjles containing unformatted data and used by older record management systems.
12Relational database management system for Microsoft Windows.

53

- Which source was original and which was a copy?

- Which source was most readily available?

- Which data approximated most closely the desired data?

- When did the data become available at each source?

- How closely did the data match that currently used for internal metrics?

Selection of the right data sources was not a static decision making process.
The changing business practices and systems brought up the possibility that a
given data source might need to be dropped in favor of another. In particular,
changes to the order administration system and the database for returned
drives were being considered but had not been implemented at the end of the
internship. Nevertheless, the data sources selected to generate the product

performance reports were:

- Warranty Returns Database: This Rdb relational database was picked as the

source for information on disk drives returned from customers.

- Inventory/Financial Database: This transaction system was selected as the

source of aggregate as well as individual order shipping information!3.

- Drive Configuration Database: This Microsoft ACCESS database was picked
as the source of information on new disk drive familiesl4, as well as

customer specific part numbers.

131t is interesting to note here that the aggregate information did not match the individual
order information.

14pjsk drive families were grouped according to capacity and the external dimensions of the
drives.

54

- Customer satisfaction group: The group was selected to provide and
maintain customer names & sites, drive storage capacity for each part
number, and quality/reliability specifications for each disk drive family

since this data was not available from existing data sources.

Table 3.1 shows a description of the various data needed to generate the
reports. Each description is followed by a sample value and the name of the

corresponding data source.

SAMPLE DATA AND SOURCE

Data Description Sample Value Data Source
Customer Name Crossbow Intl. Customer Sat.
Part Number (Digital) RH27A-AA Drive Config.
Customer Specific Part No. Crossbow-1 Drive Config.
Capadity 1.05 GB Customer Sat.
Quality/Reliability Specs 3K DPM/500K MTBF Customer Sat.
Requested Shipment Date 02-JAN-1993 Inventory Sys.
Actual Shipment Date 02-JAN-1993 Inventory Sys.
Returned Date 10-FEB-1994 Warr. Returns

Table 3.1: Examples of Required Data for Reports

3.1.2 Evaluating the data collection and processing mechanisms
The work of creating the mechanisms for data collection and reporting was
started while the definition of the data sources was still in progress. Several

software tools were evaluated and the best ones were then selected.

The evaluation stage was an effort to establish the capabilities of the various

software tools that could perform data collection and processing. It was

conducted through communication with users of the software, observation of
how these software tools were already being used, and through the actual use

of the tools. Evaluations were performed on:

- Structured query language (SQL5) embedded in command files

- Network server data querying/reporting applications

- PC data querying/reporting applications

- Network server special query files to generate reports (inventory system)

- Network server spreadsheet applications

As a self-imposed constraint, the evaluations were limited to software tools
known within the Small Form Factor organization and available on the
manufacturing plant’s computer network. These tools were abundant, and
locally available know-how would be able to support them if necessary. At
the end of the evaluation stage, Microsoft ACCESS SQL queries, along with
some command files, were the mechanisms selected to execute the data
collection and processing tasks. This final selection was a result of the
maintenance application concept that will be discussed in the next section.

3.2 The data maintenance application

Two main alternatives were considered for performing the data collection
and processing tasks; decentralized and centralized. A decentralized approach
would allow different individuals within the customer satisfaction group to

get the portion of the required data they were most familiar with, and would

156QL (Structured Query Language) is a standard data definition and data manipulation
language for relational databases.

require less effort of each individual. A centralized approach would simplify
the process and the coordination necessary for these activities, but would
place all the data collection burden on a single person. This person might be

unfamiliar with some of the data and unable to check for inconsistencies.

A centralized PC based data maintenance application was only pursued after
an individual with the necessary PC hardware was assigned to collect the data
and generate the reports. As envisioned, the software application would
serve as the sole interface to all the data maintenance (collection &
processing) tasks. This single interface would hide from the user the details
of the many and diverse tasks necessary for the generation of the report data.
Figure 3.2 provides a simple schematic of this data maintenance application

concept.

Data Maintenance
Application

Report Data

Data Sources\)& >
/

A user operates this
application to obtain
all the data for the
reports.

Figure 3.2: Initial Concept for Maintenance Application

The maintenance application would have a main menu listing all the data
updates to be performed, as well as customized windows for each update
requesting specific information. Ideally, the person performing the data

57

collection and processing would only need to step through the menu of
updates once a month in order to obtain all the necessary data for the reports.
In addition, help features allowing modification and addition of updates
would be in place to help the user to adapt to future data requirements.

Microsoft ACCESS was chosen as the software development platform for this
application because of its report generating capabilities, as well as its ability to

access Rdb databases on the network. The software development took the
form of two distinct steps:

- Integration of data updates into a single user interface.

- Development of help/flexibility enhancing features.

The first step was implemented through the use of a main menu screen with
a sequential list of the various update steps necessary to obtain the report data.
The complexity behind the updates was captured within the data
maintenance application so that the update logic and network connections
were hidden from the user. The user needed only to click on the menu
buttons in sequence in order to perform the updates. Figure 3.3 shows the
main menu window that the user saw when using the data maintenance

application.

Figure 3.3: Main Menu of Data Maintenance Application

Because different updates could take different forms, a second customized
update window was introduced to carry the update parameters and other
information necessary to perform a specific update. For example, if the
update needed to generate three month aggregate data, the user would open
the update window from the main menu and enter the desired month for the
update (user defined parameter). A second month would then be derived
during the execution of the update (derived parameter) to frame the three-
month window. If an update required access to a text file, the path and file
name would also appear on the customized update window. Figure 3.4
shows how a user, by clicking on a particular update button could open the

corresponding update window.

59

Figure 3.4: Opening the Update Windows

The updates themselves were executed after the user entered the required
parameters and clicked on the Update button. In general, they consisted of a
series of SQL queries performed as part of the Microsoft ACCESS code, or as
part of an external command file. An example of what an update query

looked like is shown on Figure 3.5.

SAMPLE UPDATE QUERY (SOL

Select “93-11”, Part_Number, Count(*) from RETURN_DATA
Into TEMP_1

Where Return_Date Between 01-NOV-1993 And 30-NOV-1993
Group by Part_Number;

This query counts the number of returned drives for each part number for the month of
November and creates a new table TEMP_1 with three columns containing the string “93-
117, the part number, and the total returns for the month respectively.

Figure 3.5: Sample Update Query

The data collection and processing mechanisms were integrated into the data

maintenance application as follows:

- The Warranty Returns Database was accessed by the maintenance
application through Microsoft ACCESS SQL queries and a database
connectivity protocol to Rdb.

- The Financial /Inventory system was accessed by a command file to produce
output text files with the desired data. The maintenance application could
execute the command file, and then import the resulting output files for
further processing. Some user editing was required for the macro files that
generated the output data, and for the output files themselves to insure that

the imports would not generate an error.

- The Drive Configuration Database data was updated by an automatic batch
process that copied the file across the network from a public directory to a
local one. Through the use of pointers, the maintenance application
automatically knew where to search for the required information within
this database.

- The information required from the customer satisfaction group was set up
as two text files in a special group area. These two files could then be
accessed and edited by the group using a simple text editor. The files where
then copied periodically to a PC accessible directory to allow importing into

the maintenance application.

61

In addition, a Microsoft ACCESS local PC database was created to keep the
aggregate monthly data for the performance metrics. There were two reasons
for this approach. First, the computation of the metrics was performed using
the latest month's data from the original sources and the previous month's
data from the local PC database. Getting all the data every month from the
original sources was not practical because the data was not always available,
there would be longer processing times, and higher use of the network could
lead to more update failures. Second, a local PC database allowed speedy ad
hoc querying of the aggregate information that would otherwise be

unavailable or very slow.

Figure 3.6 shows the revised concept for the maintenance application. Note
that it now allowed external data collection mechanisms through the
execution of command files, and it also included the local PC database.

Textfile with desired data obtained from an external
collection mechanism (Possibly activated from

mamtena7 application)
- r ata Maintenance A
\ o . - Rewrt
—»{Data

Data Sources

—

Data flow *
Local ACCESS
NETWORK L PC)

Figure 3.6: Revised Data Maintenance Application Concept

62

If needed, the user could change a particular update to point to a new data
source and still run the update. On the other hand, changing a data source

required some knowledge of the network environment and software.

The features that were included to add flexibility to the software application

included:

- Ability to add new updates and update windows to the menu. This feature

addressed the evolving information requirements of customers.

- Ability to “run” updates in descriptive mode where the logic of the steps
could be followed without actually running the update. This capability
allowed modification of updates by non-programmers.

- Ability to create a new update using the Microsoft ACCESS graphic querying
interface and then document its logic. This feature also addressed the
limited programming support available within the manufacturing plant.

- Ability to execute external command files in batch mode. This feature
enabled SQL experts to create data update routines separate from the
maintenance application. The user of the maintenance application could

then integrate and execute these routines from the main menu.

- Ability to read external text files from the update menu. This capability
particularly helped when automatic updates were executed via a periodic
batch job. As one of the update steps, the user could be reminded to scan the
batch job’s log file to verify that the job’s last execution was error free.

63

- Ability to document updates and data sources from relational databases.
This feature kept the documentation current on changes to update logic and
data sources. Unfortunately, the documentation of the source text files to
create a complete picture of all data sources was not implemented by the end

of the internship.

These features will be dealt with in more detail in Chapter 5. Meanwhile,
focus will now shift to the report generation and distribution tasks.

3.3 Report generation and distribution

The report generation activities dealt with the creation of the product
performance reports for multiple customers and disk drive types. The report
distribution activity involved making the reports available to the intended

audience.

The software application that would execute these tasks would be used
monthly and had to be able to:

- Generate many reports (40+) across all customers and disk drive models.
- Generate multiple report formats (i.e. different presentations of the data).
- Include graphs and tables on the reports to show trends.

- Expand on the reports (Add new sections).

- Distribute the reports to a large audience (40+).

- Distribute the reports to different sites (10+).

The need to provide flexibility in the report formats was evident from the
initial round of feedback interviews. There was a strong indication from
account team members that detailed information would be needed on drive
failures. There was also a possibility that different report formats might be
required for different customers. One account team member described the
problem of providing a complete report as “The spiral of chasing data”. Data
would be presented to a customer who would then ask for more data.
Because of this situation, presenting a complete picture that included the

detailed data was seen as important.

3.4 The reporting application

Because of the requirement to produce scores ot sophisticated reports on a
monthly basis, the selection of an appropriate software platform was critical to
shortening the development time of the reporting application. The reporting
application concept, in this case, followed the software development
platform’s selection. As a result, the concept definition and development
work was focused on exploiting the underlying capabilities of the chosen
software platform in an organized way that would hide some of the

programming complexity from the user.

The reporting application was defined under the assumption that the report
data was available. It would provide a single user interface that allowed for
multiple ways of formatting and presenting the report data. Figure 3.7 shows

a simple diagram of the concept.

Report 1
Reporting version A
Application

Report 1
> > version B

Report Data

port 2
(etc.)

Figure 3.7: Initial Concept for Reporting Application

An early evaluation of the various available tools attempted to find a
software development platform with the best report generation capabilities.
Using this guideline, Microsoft ACCESS was selected as the development
platform. This PC software tool, complete with its own database management
system, had the ability to generate multiple reports quickly in a wide range of
formats, and also enabled customization of the reports. Since none of these
tasks required procedural programming, the use of this tool saved a lot of
development efforts and allowed experienced ACCESS users to modify the
maintenance and reporting applications without the help of programmers.

The reporting application would be independent of the data maintenance
application to the extent that once the data updates were performed, copies of
the reporting application’s executable file could be distributed to allow for

generation of the customer performance reports as needed.

To maintain a consistent interface across applications, the reporting
application would have a main menu listing all the available reports, as well
as customized windows for each report that would allow viewing, printing,
and other report-specific commands. To avoid confusion between the
applications, a color coding scheme was implemented with tones of green for
the maintenance application windows, and tones of red for the reporting

application windows.

For the reporting application, the menu incorporated two existing internal
reports that used the same data as the customer product performance reports.
The generation of these reports, previously prepared by a person within the
customer satisfaction group, was now included as part of the tasks performed
by the reporting application. In this way, the data that was looked at
internally was consistent with the data reported to customers. Figure 3.8

shows how similar the reporting menu was to the maintenance menu.

Figure 3.8: Main Menu for Reporting Application

67

Again, as in the case of the maintenance application, a second report specific

window was introduced that could be customized to have options that were

particular to a given report. Standard options for each report window would
be “View” and “Print”. Figure 3.9 shows two examples of these report

windows.

Figure 3.9: Examples of Report Windows

The organization of the reports themselves followed a hierarchical model. A
main report contained the basic organization of the data, as well as
information on page headers and footers. Sub reports containing different
information would then be linked to the main report. This structure, due to
time constraints, was fully exploited only for the customer product

performance reports.

For these reports, a customization window was created that allowed up to six
sub reports to be linked to the main report. This window was easily accessible

from the Customer Reports window as seen in Figure 3.10.

Figure 3.10: Customization Window

The user of the reporting application could exploit this customization feature
in several ways. First, (s)he could easily delete or rearrange sections within
the main report by deleting and reordering the names of the linked sub
reports. Second, a given sub report could be modified (using Microsoft
ACCESS) and saved with another name. The user could then rename the
linked sub report to use the new version. Finally, if a new sub report was
created, it could be easily be added to the list of linked sub reports. The

customization feature will be discussed in more detail in Chapter 5.

For distribution of the reports, electronic mail was chosen as the fastest and

easiest way to perform this task. Postscript files were created for all the

69

customer reports by the reporting application through a Print All button.
File names were created automatically based on the part numbering scheme.
For example, if a customer’s part numbers ended with the suffix “-AA”, its
product performance report file would be named AA.EPS. The files could
then be electronically mailed to account team members through the
execution of a command file (external to the reporting application). The
question of whether the account teams would take the time to print the
postscript files, or whether it was too much of an inconvenience was raised

but remained unanswered at the end of the internship.

70

CHAPTER 4
Definition and Implementation of Process Activities

This chapter describes the development and implementation of the data
gathering and report generating activities associated with the product
performance reports and related software applications. Of concern here are
the actual steps that individuals had to execute to produce the monthly

reports, from data collection to report distribution.

4.1 Definition of the activities associated with the new reports

During the course of the project, the definition of a sequence of activities that
would allow periodic generation and distribution of the product performance
reports was very much linked to the development of the related software
applications. An obvious goal in establishing such a process was to minimize
the incremental burden the reporting activities would place on the customer

satisfaction group.

An additional goal, which surfaced during the project, was that these
activities should be able to withstand changes to the Small Form Factor
organization with minimum modifications. There were several signs of

organizational fluidity that emphasized the need for this additional goal.

- Three people joined, and one person left the customer satisfaction group

during the course of the internship.

71

- There was a reorganization of the Small Form Factor groups during the

internship, and further changes after I left the site.

- The role of the customer satisfaction group was not rigidly defined in that
there was no group charter with a specific description of the group’s

responsibilities.

These signs cautioned against data gathering and reporting activities that
relied on too much coordination within the customer satisfaction group and
the Small Form Factor organization. Instead, they suggested a more
centralized approach with one person having most of the responsibility for
the reporting activities. An individual outside the customer satisfaction
group was eventually assigned with these tasks, and the initial goal of

minimum additional work became dominant once again.

The new activities necessary to generate the product performance reports

were classified as follows.

In terms of the additional burden they generated vs. existing and related

activities:

- New activities generating additional work: The collection of monthly

delivery data was an example as this was not previously done.

- New activities reducing the overall work: The collection of monthly

quality/reliability data by part number allowed for the automatic generation

72

of metrics by customer type (i.e. OEMs vs. distributors) that were previously

performed by an individual in customer satisfaction.

- New activities modifying the existing work: The generation of internal
product quality and reliability reports based on field data was incorporated
into the new reporting tasks because these reports used the same data as the

customer product performance reports.

In terms of the additional burden they generated as a function of time:

- Initial one time activities: These include the installation of the software,
placing the files in the appropriate directories, and establishing the pointers

to the databases and files.

- Additional training and learning activities: These refer to the time spent in
learning to perform an update, as well as fixing minor data, software, or

network problems.

- Steady state process activities: These refer to the time an experienced
operator requires to execute all the data collection and report generation

tasks assuming no problems occur.

Given that no dedicated individuals were originally available to generate the
product performance reports, I considered the following approach. The data

collection and processing would be performed by individual members of the
customer satisfaction group into a group database. The product performance
reports could then be generated with the reporting application as required by

73

having a PC connected to the network and available to the group. Figure 4.1
provides a graphical representation of this approach.

Customer Satisfaction

First: Independent updates
by different individuals into
a common database.

Followed by: Independent
report generation by different
individuals as required.

Customer Satisfaction
Figure 4.1: Initial Concept for Reporting Activities

Note that a PC based, centralized data maintenance application had not been
considered at this point. The following logic supported the decentralized
approach instead.

- Members of the customer satisfaction group had access to different network
nodes and had access to different applications. A decentralized data
collection approach would allow customized mechanisms for collecting data

suited to each individual’s knowledge and environment.

- A common database could be set up for the group so that the collected data

would be shared among the various members. An underlying assumption

74

was that the data collected to generate the reports was useful for other

purposes also.

- Dividing the update task among the customer satisfaction group members
would minimize the impact of the incremental work necessary to generate

the product performance reports.

The idea here was that if the information used for the reports was relevant to
the work of the customer satisfaction group, this approach would prove

feasible.

To test this idea an Rdb database with the relevant information was put in
place and made accessible to the customer satis{action group. The observed
behavior was that use of the collected data was minimal after the data became
available. There were various factors that could have contributed to the

observed behavior.

- The customer satisfaction group preferred to obtain information from the
people closest to the data for accountability. That is, the people who
provided the data would be accountable for interpretation and integrity of
the data. On the other hand, data maintained by the customer satisfaction

group might not have this accountability.

- The available database server applications were not user friendly, accessible,
or fast enough to provide easy access to the data. A survey of the customer
satisfaction group indicated that these applications were either unknown or
infrequently used by the group.

75

In essence, the underlying assumption about the usefulness of the data was
wrong. Either making the information available didn’t provide additional
value, or the availability was not high enough for the data to be useful.
During this time, other problems associated with a decentralized approach

also became apparent.

- The coordination needs would require that one person have an
understanding of all the activities necessary to update the reports. This

would place a considerable burden on that individual.

- It would be harder to adapt/document the reporting activities to
accommodate changes to the Small Form Factor organization (since a

different set of coordination requirements might surface).

- Also, the use of customized mechanisms for each data collection task would
be too inflexible to adapt to changes in the data sources (i.e. reprogramming
would be needed to adapt to the new sources).

Because of these factors, introducing updates to the group to show
maintainability turned out to be an impossible task for the available time
frame. The transfer of these responsibilities to a single individual outside the
group led to the centralized approach and the creation of the data

maintenance application that helped to solve these problems.

Under the new approach, activities would be totally performed by one person

who would operate the data maintenance and reporting applications once a

76

month and step through menus of update and report generation tasks. This
person would have an overall perspective of the process, would be able to
pinpoint specific activities that failed, and could then contact the people

responsible for fixing them.

Support would still be needed from the customer satisfaction group in
providing additional product information required for the product
performance reports, as well as the information necessary for the electronic
distribution of the reports. Separate shared text files were created so that the
customer satisfaction group could update this required data. Nevertheless,
these update tasks would now be peripheral and independent of the main
data gathering and reporting activities. Figure 4.2 provides a graphical

representation of the revised approach.

Customer Satisfaction | MONTHLY REPORTING
ACTIVITIES

First: Responsible individual

updates the PC database and

report data from the

data maintenance = [DATABASE |
application.

Independent updates by Then:
customer satisfaction into persc;nTgT:\es:::s
:;’:r{itlhes throughout the the reports with

the reporting
application.

Figure 4.2: Revised Approach to Reporting Activities

4.2 Development of the data gathering and reporting activities

The development of the data gathering and reporting activities attempted to
bridge the existing obstacles to a centralized updating process. As will be seen,
some of these obstacles were better addressed than others. Additional
problems were found during the implementation stage but feedback was
obtained and improvements were made to correct them and simplify the

various activities.

4.2.1 Initial implementation problems
There were strong initial factors that impeded centralization of the data
updating process and these had to be addressed once the centralized approach

was chosen. Some of these factors were as follows:

- It was hard for one person to gain access to the data across various systems.
This was evidenced by the multiplicity of accounts, passwords, and
clearances that had to be obtained to access all the pertinent data sources.

- Considerable learning was required to understand how to obtain data from
different sources. It was my experience that an understanding of data
interpretation and integrity was necessary in order to obtain the right data.

- The data gathering and reporting process had too many steps for one person
to execute it reliably. Too many disparate tasks were required, and
considerable improvements were needed to allow one person to execute all

the steps and minimize the opportunities for errors.

78

The sequential menu interface that was provided with the maintenance and
reporting applications enabled an organized and simple update and report
generation process that could be ideally performed by a single individual in
less than two hours. The complexity of the access to the data was enclosed
within the maintenance application and was hidden behind the simple menu
interface. The application knew where to look for the data whether a database
or textfile, based on a series of pointers and descriptions of the sources. The
setting up of the various pointers was an initial activity that was performed
once during the installation of the software tools. The single interface also
made the sequence of activities considerably easier to document, but some

problems persisted.

4.2.2 Remaining problems

If the responsibility for the activities were transferred to a different person,
the change would require reestablishing all the data connections for the new
individual. This would involve getting accounts in all the relevant network
nodes, gaining access to the appropriate directories, as well as establishing
network drives on the PC environment. In other words, while the
complexity of data access was hidden from the chosen individual, it would
resurface if the process had to be transferred to another person. |

Also remaining was the problem of capturing the knowledge that was
required to interpret the data and analyze its integrity. Text files with
information on the various sources of the report data, as well as the
algorithms used to compute the metrics, were left in a common directory

accessible to the customer satisfaction group to communicate some of the data

integrity and interpretation findings. It was unclear at the end of the project
whether these files provided an acceptable way to capture this knowledge.

4.2.3 Implementation of the activities

As the data gathering and reporting activities were taking shape, the data
maintenance and reporting software applications were being developed and
refined on a test PC. Later, these files were transferred to the PC of the
individual responsible for the data gathering and reporting activities. The
transfer occurred in three distinct process runs spanning three consecutive

months.

1st run, “on line” help: For the first run, the data maintenance and reporting

applications were installed along with the local database on the

user's PC. The responsible person was then able to perform the

monthly updates with some help and instructions. The transfer of
report generation activities was not attempted during this run. On
the other hand, the run allowed significant feedback to be obtained
on the user friendliness of the maintenance application's interface
and improvements were then made to the software tool's menus

and options.

2nd run, execution with on site support: The revised software applications
were installed and the responsible person executed the updates with
minimal assistance (given by phone). The report generation steps
were included as part of the activities for the first time. Additional
fine tuning of the maintenance and reporting applications was
performed after this run.

3rd run, unaided execution: The final revisions to the software applications
were left installed before the end of the internship and
documentation was created for the software tools and the update
process. The responsible person was able to execute the updates and
generate and distribute the reports with aid from the documentation

only.

4.3 Final location of the collected data

Some space should now be dedicated to the decision of where to store the
monthly data collected for reporting purposes as this was one of the last
decisions made before the end of the internship. Centralization of the process
could still allow the collected data to reside in an Rdb relational database that
would be accessible to the customer satisfaction group if needed. The other
option was to store this data on the PC accessible only to the person

responsible for the updates. There were tradeoffs involved in each approach.

A PC database was more attractive because:

- Queries of Rdb databases using the data maintenance application did not
allow the deletion of records.

- Queries of Rdb databases from the data maintenance application ran

considerably slower than comparable queries of PC based Microsoft ACCESS
databases.

81

- Updates of Rdb databases from the data maintenance application were not
very robust (connections would hang frequently), as they depended on the

settings and traffic on the network servers.

- Setting up the security for an Rdb database was a complex task (particularly
for people who wanted access from other nodes) and required additional

maintenance of access lists.
A network database was more attractive because:

- The data would be accessible for ad hoc queries by the customer satisfaction

group.

- The data on Rdb databases could be easily edited by members of the customer
satisfaction group through the use of Rdb user applications whereas editing

textfiles required more care.

As discussed before, the final decision was to put the delivery, quality, and
reliability data in a PC based Microsoft ACCESS database, and keep the data
that needed updating by customer satisfaction on textfiles in a common

directory. The decision was taken because:
- In particular, delivery, quality, and reliability data would not be accessed on a

regular basis by the customer satisfaction group based on the experience
with the test Rdb group database.

82

- Everyone in the customer satisfaction group knew how to edit textfiles
while not everyone knew how to operate the Rdb applications. This was
evidenced from the responses of the customer satisfaction group to an

administered survey.

4.4 Comments on the implementation of the reporting activities

In retrospect, it seems obvious that the centralized approach should have
been pursued from the start of the project. The level of coordination,
particularly in an environment of constant organizational changes, proved to
be too high for a decentralized approach to succeed. On the other hand, it did
not become clear until later that all the data gathering steps could be brought
together to be executed by a single person.

The selection of a key individual to coordinate and perform the data
collection was an important milestone of the project. I believe that this
selection could have been done earlier and it would have speeded process
development and implementation. At the very least, more emphasis should
have been placed on exploring possible staffing arrangements and
hardware/software availability for the data maintenance and reporting

activities earlier in the project.

Customer satisfaction's rejection of the group database also caused delays in
the development and implementation of the data gathering activities. As
mentioned before, it is my belief that the lack of acceptance was due to both
the requirement for proper accountability of the data, as well as the
inadequacy of the available user applications to access the data. Maintenance

83

of the group database also would have required additional work (i.e. database
security) that the PC database approach avoided. Nevertheless, this
exploration proved useful in discovering how the newly collected data fit into
a set of broader information needs within the customer satisfaction group.

CHAPTER 5
Description of the Developed Software

This chapter contains a more detailed description of the developed software’s
structure and interaction with the manufacturing plant’s computer network.
Emphasis will be placed on the flexible features that were incorporated into
the software to allow it to adapt to evolving business needs.

5.1 Software overview

The software package that was developed consists of two Microsoft ACCESS
executable files that perform distinct functions. These two applications
execute most of the data maintenance and reporting activities mentioned
earlier. They will be discussed in some detail as this was where most of the
software development effort was directed.

Both of these files reside on a 486 PC16 with 8MB of RAMY’ and a 1.05GB hard
drivel8. In addition to DOS!? and WINDOWS2), the associated installed

software necessary to run these files includes:

Microsoft ACCESS V1.1
Microsoft ODBC Administrator V1.0

16personal computer with having an Intel 80486 microprocessor.
17Eight thousand bytes of random access memory (RAM).
18105 million bytes of storage capacity.

19Standard PC operating system.

2Microsoft’s PC graphic user interface (GUI).

85

Digital ODBC Rdb Driver V1.0
Digital PATHWORKS V4.1

Microsoft ACCESS is required to execute the applications while the other
software is needed in order to obtain Rdb relational data and text data across
the network. More will be said about this other software in the section on
network integration. Figure 5.1 illustrates the data flow between the two
applications, the local PC database, and the network.

Report 1
Data flow (typ.) | [version A
f I N
Maintenance
~._ Application icati
Report 1
Data Sources > version B
/ e maint.mdb
‘ Report 2
Local ACCESS \CCESS fetc)
\ / Database executable files \ /
source.mdb
NETWORK | PC) NETWORK

Figure 5.1: Data Maintenance and Reporting Applications

5.2 Data maintenance application description

The data maintenance application is a Microsoft ACCESS executable file called
MAINT.MDB. This is a menu driven software application that collects every
month, the data for the product performance reports from the various data

86

sources across the network. Additionally, it manipulates this data into the
format required by the reporting application (report data). The data that need
to be stored for future reference is sent to a local Microsoft ACCESS database
file.

The maintenance application file does not store any data. Instead, it uses
pointers to relational database tables2! and text files to access and manipulate
data from several network locations. The ODBC2 protocol is specifically used
to obtain data from Rdb tables. There are two main parts to the way the
maintenance application is organized, the user interface and the update

architecture.

5.2.1 User interface

The user interface includes those components of the software that allow a
user to execute the update code, as well as add or delete existing updates to the
menu?3. Its main components are a main menu form in conjunction with
up to eight update specific forms (Update_1 to 8) and macros (Macro_1 to 8).
A form in this context can be described as a window with displayed data and
possibly buttons that execute certain actions. These actions are contained in
macros which are nothing but saved sequences of user commands. Finally, a
macro usually executes an update procedure written in ACCESS BASIC (see
below).

21Relational data depository organized as data fields (columns) and records (rows).
2Microsoft's open database connectivity protocol to access relational databases.
23Each item on the menu is considered a separate update.

87

The main menu form is the one initially displayed by the application and
serves as a common interface to the various updates. The update specific

forms and macros are opened from this main form.

By clicking on a button and following a series of prompts, the user can
immediately create a new update form and macro. If the user has created a
procedure (i.e. UPDT) that executes a given update, (s)he would only need to
open the newly created macro for editing and insert a command to run the
procedure in order to incorporate the new update into the menu. Figure 5.2
shows the relationship between the form (Update_1) and the macro

(Macro_1) for the first update.

1 Run Code UPDT(0)
Note: This is the

d function that executes
the update

Figure 5.2: Relationship between Update Form and Update Macro

Update routines developed outside of Microsoft ACCESS can still be called or

monitored from within the maintenance application. These routines can be

88

used to execute automatic updates by making use of a server's batch facility, or
to provide greater speed over the ACCESS based updates by eliminating some
of the network overhead. In these cases the update macro would contain a

command to run a batch file.

For the update procedures developed within the maintenance application, a
special debugging feature is included allowing the user to follow the logic
behind a given update. Each update procedure is structured so as to receive a
numeric argument that corresponds to different ways of execution. The
argument can be equal to zero, one, or two and the execution occurs as
described on Table 5.1 (Note: Here we continue to use UPDT as the name of

our sample update procedure).

Function Call: | Description:

UPDT(0) Runs the actual update.

UPDT(1) Shows the SQL statements for the various
queries in appropriate sequence.

UPDT(2) Shows the description associated with the

various queries and thus conveys the logic
behind the queries in narrative form.

Table 5.1: Calls to an Update Procedure

To make use of either of the debug modes (i.e. one or two), the user need only
to change the argument of the update procedure in the appropriate macro and
then run the update as usual. Instead of the regular update, a series of text

windows will appear describing the progression of the update.

89

5.2.2 Update architecture

Data updates can be viewed as a sequence of queries or data manipulation
commands in SQL that are a function of a number of parameters or variables
that are subject to change (i.e. monthly). The updates access source database
tables that provide the needed data, and destination tables that receive the
collected and processed data. Source text files are treated in a similar fashion
to relational table data. They are first imported into a temporary ACCESS
database table, then are manipulated through the use of SQL, and are deleted
afterwards.

As mentioned above, the sequence of data manipulation steps is contained in
an ACCESS BASIC procedure. This procedure contains the source code with
the necessary commands to perform an update. The sample structure of an

update procedure is shown on Figure 5.3 below.

Define Function UPDT(n) ‘Name of the update function
Update form = Update_1 ‘Name of the form used for the update
month2 = monthl - 6 months ‘Parameter month2 is derived

SuperéueryMaster (“Updt_Make_1”,n) ‘The rest of the module is
SuperQueryMaster (“Updt_Make_2",n) ‘a series of queries that
SuperQueryMaster ("Updt_Alter_1",n) ‘are executed in order.
EmptyTable (“DELIVERIES”,n)
etc.

End Function

Note: See the previous section for an explanation of the argument n.

Figure 5.3: ACCESS BASIC Update Procedure

90

The first part of the update procedure defines the name of the update form,
file pointers, and parameters corresponding to the desired update. The
update form, in particular, contains the values for the pointers to any
required text files and the user specified and derived parameters. For
example, if data must be obtained within a six-month window, the user
might specify the last month of the search window (month1) by typing it on
the update form. The procedure would then derive the other required

month (month2) by subtracting six from the user supplied month.

The second part of the update procedure is nothing but a sequential execution
of the queries that make up the update. There are two types of these query

commands, standard generic queries, and queries that are particular to a given

update.

A standard query is one that executes essentially the same way except for a few
parameters that can be changed. An example of a standard query is
EmptyTable("tablename”,n). This standard query receives the name of a
database table as an argument and proceeds to delete all the records of that
table.

Queries that need to refer to a number of fields of specific tables must be
custom created for a given update and executed through the use of the
SuperQueryMaster("queryname”,n) function. This function accesses a table
of stored query definitions that contains three fields; name of the query,
query description, and SQL code. It references the table by query name in
order to execute the appropriate SQL code (or display the description of the
query depending on the value of the argument n). Figure 5.4 shows how

91

queries called from a procedure can be viewed on a special form that displays
the information of each query entry.

UPDATE
PROCEDURE
Define fn UPDT(n) QUERIES FORM
] (Displays information
on queries table)
Supex.QueryMaster &
(u query_l 3 ,rl)

Figure 5.4: Viewing Information on Update Queries

Both the update procedure, as well as the query information can be printed to
generate the documentation for a given update. If a particular query is
modified, it can be printed and substituted for the older version to keep the

documentation up to date.

5.3 Reporting application description

The reporting application is a Microsoft ACCESS executable file called
NEWDB.MDB. This is a menu driven software application that generates,
every month, the customer product performance reports along with other

internal reports.

92

This reporting application stores its own data to generate the reports.
Therefore, once the report data is updated by the maintenance application, the
reporting file can be copied or mailed electronically to multiple people who
could then generate the reports that they needed?4. There are two main parts
to the way this software tool is organized, the report architecture and the user

interface.

5.3.1 Report architecture

To create an appropriate level of flexibility for the customer product
performance reports and simplify some of the complexity surrounding their
creation the following architecture was used. A given report would be
composed of a main report, and a series of sub reports folléwing a hierarchical
arrangement. The main report would be created based on an audience and
topic, and would consist of a particular data organization, and page
header/footer information. The sections of this main report would be added
as sub reports and linked to the main report through appropriate data fields as
determined by the data organization of the main report. As an example, the
final organization of the product performance reports is shown on Figure 5.5
below.

24Assuming they had a PC with Microsoft ACCESS installed.

93

Main Report Organization*

[Customer #1] Cover Page Sub Report
[Drive model #1] Delivery Sub Report
Quality Sub Report
Reliability Sub Report
[Drive model #2] Delivery Sub Report
Quality Sub Report
Reliability Sub Report
etc.
[Customer #2] Cover Page Sub Report
[Drive model #1] Delivery Sub Report
etc.

*Refer to Figure 2.6 to view the actual report.
Figure 5.5: Structure of Product Performance Reports

A link between the main report and a sub report refers to both the location of
the sub report within the main report organization, and to the sub report data
that is to be displayed. The link between the Delivery Sub Report above and
the main report consists of the sub report location; the first performance
metric to appear for each drive model, and the displayed data; the delivery

metric only for a given drive model and customer.

The advantages that this arrangement provides over having a single complex
report are many. First of all, if the user wants to modify the presentation of
the delivery data, (s)he only needs to modify the Delivery Sub Report. If the

user wants to create a new sub report variant, then (s)he can edit the sub
report and then save the modifications as Delivery Sub Report #2 and change
the main report link to point to the new sub report (i.e. #2). Also, the order of

94

the sub reports can be easily rearranged, and up to 3 additional sub reports can
be added to the main report. Again, all this can be done by changing the links
to the main report using the customization window described in Chapter 3.
With a single complex report, determining where to make the changes and

how to make them would be much more difficult.

5.3.2 User interface

The user interface includes those components of the software that allow the
user to view, print, and print to file the various reports, as well as add or
delete existing reports from the menu. Its main components are a main
menu form along with up to eight report specific forms (Report_1 to 8) and

macros (Macro_1 to 8).

The main menu form is displayed initially by the application and serves as a
common interface to the various reports. It looks very similar to the main
menu form of the maintenance application (except for the colors and some of
the wording) in order to maintain a uniform interface across the two
applications. The report specific forms and macros are opened from this
main form and are related in the same way that the maintenance

application’s update forms and macros are related.

The report specific forms are similar to the update forms except there are
buttons for viewing and printing instead of updating. The macro for the
reports also operates like the update macros except it contains commands for
viewing and printing that must be specified when a new report is added to

the menu. Similarly to the maintenance application, new reports can be

95

added to the main menu by selecting a New Report menu option and
following a sequence of dialog boxes.

5.4 Integration into the network environment

This section describes how the PC application files interact with the computer
network at the manufacturing plant. First, a brief description will be given on
the plant’s computer network and how the PC containing the two
applicaﬁons is connected and interacts with the network. Then, the various

data interactions will be described in more detail.

5.4.1 The PC and the network
Figure 5.6 is a schematic representation of Digital's computer network
showing the existing arrangement where different network nodes contain

different kinds of information.

Users at terminals,PCs,
Workstations, etc. (typ.)

Note: Access to different areas requires separate
accounts

Figure 5.6: Digital’s Small Form Factor Computer Network

96

Each network node has a different system administrator in charge of
installing and updating software as well as setting up user accounts and
granting file storage space. Users typically operate out of a main account but

will have accounts on other nodes if necessary.

The PC running the Microsoft ACCESS applications is connected to the
plant’s DECNET? network to gather the data from the various network nodes
and to distribute the reports via electronic mail?6. Digital PATHWORKS
client server software connects the PC based software to the network. To
establish the connections, the user of the PC software must have accounts on

the various nodes and access to the directories and data sources.

Once the data connections are set up, the client server and ODBC software
become mostly transparent to the user of the maintenance and reporting
applications. Directories on network nodes look like PC directories, and
network database tables look like local ACCESS tables. In the maintenance
application, changing a data source only requires minimal modifications to
the relevant update procedures (although changing the source is not trivial).
This is a very important flexibility requirement for the maintenance
application since the sources of the required data can change over time as

mentioned earlier.

BDigital's networking software that runs on server and client nodes in both local area and wide
area networks.
26Remote digital sites were connected to Colorado's network and could receive email.

97

5.4.2 Using network drives to transfer data

PATHWORKS allows a user’s network directory to become a network drive
on the PC. DOS commands can then be performed on the files contained in
this directory. These network directories are exploited in two distinct ways.

From a data gathering perspective, text files located on such a directory can be
imported into the maintenance application as if they were regular DOS files.
From a report distribution perspective, output postscript files can be sent to
the network directory and then a command file executed to distribute the

postscript files via electronic mail.

5.4.3 Obtaining Rdb data from the network

Data requests sent across the network operate in the following manner. First,
ACCESS generates a request for Rdb data. This request is passed to the ODBC
Administrator residing on the PC. The administrator makes use of Digital's
ODBC Rdb Driver to reformulate the request in a format that can be sent over
to a network server with an SQL/Services facility. This facility manages the
Rdb data requests that travel across the network. SQL/Services gathers the
requested information from the node where the data resides and returns it to

the PC. The process is illustrated in Figure 5.7 below.

98

GETTING RDB DATA THROUGH
ODBC

User

User wants access
to this data Data accessedd Clicks button
r N

vy c
Rdb database ACCESS application
node ACCESS{taad gpACCESS reqpest

Rdb data ODBC administrator
SQL requ DECNET
Rdb#ian} ¢ODBC reqw*

#P1 PATHWORKS

* ODBC request t

SQL/Services Rdb data
server node

Figure 5.7: Getting Rdb Data through ODBC

The ODBC approach allows access to a variety of data sources provided that an
ODBC driver exists for them. On the other hand, there are various drawbacks
to ODBC used with Rdb. First, the driver does not have full capabilities for
data manipulations. In particular, the ODBC driver cannot delete rows from
remote Rdb tables at present. Also, attempted connections will fail when the
SQL/Services facility is busy, and the connection is sensitive to the settings of
both SQL/Services, and of Rdb at the remote data source. On the other hand,
Digital supports this approach and it is expected that most of these problems

will be eliminated over time.

100

CHAPTER 6

Description of the Data Gathering & Report Generating
Process

This chapter will provide a description of how the implemented data
gathering and report generating process worked at the end of the internship.
Some problems and issues that arose both during and after implementation

will also be discussed to show why automation was not taken any further.

6.1 Execution of the data gathering and reporting activities

The process of data gathering and report generation worked as two sets of
distinct activities after implementation. There were activities performed by
the customer satisfaction group, as well as those performed by the person

responsible for generating the reports.

During the course of the month, the customer satisfaction group updated two
text files with information on customers and part numbers. Judging from the
rate of change of this data, these updates would be infrequent (1 or 2 lines of
text might change every month). Also, customer satisfaction maintained the

electronic mail distribution list for each customer’s account team.

At the end of the month, the person running the updates generated two
output text files from the financial/inventory database to be used for the data
updates. The monthly updates were then executed sequentially by stepping

through the menu selections within the maintenance application. The end

101

result of this work was to ready the report data before generating the reports.
Note that the time required for these tasks would ideally be less than an hour
and that constant attention to the maintenance application would not be

required during the whole time.

The individual performing the updates then switched to the reporting
application’s main menu by clicking a button that automatically invoked this
application from the data maintenance application. Following the reporting
main menu, the user then generated and electronically mailed two internal
reports (postscript files) with aggregate product metrics that were to be
reviewed at the next staff meeting of the Small Form Factor organization.
The user then generated and printed one report containing the performance
metrics of all customer part numbers, and gave it to the customer satisfaction
manager. Finally, individual postscript files of the customer reports were
generated and mailed to the account teams through the execution of a
command file that referenced the distribution lists maintained by the
customer satisfaction group. Copies of the postscript files were also left in a

directory accessible to the customer satisfaction group.

6.2 Problems with the execution of the activities

The real data gathering and report generating process was somewhat more
problematic than the simple description above. As a result, more
coordination was needed to generate the reports. The following issues
required additional coordination and flexibility in the execution of the

updates:

102

- Data on returned drives for a given month was not fully entered until a few
days after the end of the month: The number of days would vary
depending on how many drives were returned near the end of the month.
Therefore, the person running the updates had to confirm with the group
entering the returns data that all returned drives had been entered into the
warranty/returns database before running the updates.

- The files containing the shipment information were updated at the end of
the fiscal month: If the fiscal month ended before the calendar month,
then the last few days of shipments would be missed?’. This data collection
activity was altered to get the shipments information and the returns for the
fiscal month instead of the calendar month even though the reports didn't

indicate this.

- New part numbers could appear in the configuration database before being
updated by customer satisfaction: In this case, an error occurred during the
report generation activity and the updates and reports had to be rerun after

customer satisfaction had made the necessary changes.

Because of the different times at which data became available, the person
responsible for data maintenance and report generation had to first verify that
the data was good before proceeding with an update. It is primarily because of

this limitation that the data maintenance activities were not fully automated.

Other issues that surfaced during and after implementation included:

27Unless they were looked-up in a different file with the current month information.

103

- The scheduled shipment date for an order was sometimes not updated to
reflect the change to a faster shipping method: Many times, this change
allowed an order to get to the customer on time but this would not be
recognized during the delivery performance calculations. The result was
that some orders that shipped on time based on the estimated transit time,
appeared as late orders on the reports. In rare instances, the scheduled ship
date was not entered for a given shipment but an inspection and editing of
the output file containing the shipping transactions would permit the

correction of this error.

- Problems with the SQL/Services facility sometimes caused an update to
crash: This situation led to multiple update attempts. It was apparently a
result of increased use of the facility (i.e. the SQL/Services were shared
across multiple users). A dedicated SQL/Services facility on a different

network node was being considered to avoid this problem.

- Changes to the PC configuration sometimes caused errors: The individual
responsible for the reports frequently upgraded both PC software and
hardware and these activities sometimes resulted in unexpected errors

during the operation of the maintenance and reporting applications.

These examples illustrate some of the difficulties in automating the set of
data gathering and report generating activities to produce reliable reports. On
the other hand, the need for periodic data gathering and reporting activities
served to sustain a higher awareness of the existing data integrity and

accessibility problems.

104

CHAPTER 7
Impact and Reactions to the Project

This chapter will first provide a summary of the main decision points
affecting the direction of the internship project. It will then discuss
subsequent events and feedback obtained after the introduction of the product
performance reports. From the discussion, a better approach to similar
projects will be proposed. Finally, some areas will be pointed out that should

receive further research emphasis in the future.

7.1 Review of the main project decisions

Among the many internship activities, certain decisions were of particular
importance during the course of the internship project as they significantly
affected the direction of the development work. In chronological order, these

were:

- The initial definition of the report concepts, in particular the “minimum
requirements” report and its corresponding data and format: These |
definitions provided a clear set of requirements for the internship project,
bounded the scope of the project, and guided the selection of the software
platform that would be used to develop the maintenance and reporting

applications.

105

- The selection of Microsoft ACCESS as the platform for creating the product
performance reports: This selection launched the software development

efforts to create the maintenance and reporting applications.

- The selection of a centralized approach to the various data maintenance and
reporting tasks: The selection of a single individual to perform these tasks
guided the development of both the data maintenance application and the
data collection and processing activities. It also narrowed down the
available approaches to dealing with data accessibility, integrity, and

interpretation problems.

- The selection of the locations for data residence: The selection of a PC based
ACCESS database to hold the aggregate monthly data for the product
performance reports greatly limited the accessibility to the data at the same
time that it simplified the security necessary to protect this data. This was
the last significant decision that was taken. Afterwards, efforts concentrated
on improving and debugging of the software applications, and simplifying

and documenting the data gathering and reporting activities.

Even though these decisions led to the successful implementation of the
customer product performance reports, questions remained. First, it was
unclear at the end of the internship how successful the reports would be in
improving relations with customers. Second, it was hard to tell how
successful was the sequence and timing of the decisions compared to other

possible approaches.

106

7.2 Feedback and reactions to the product performance reports

Beginning two months after the end of the internship and the introduction of
the reports, feedback was sought from both the manufacturing site as well as
from account teams on the impact and reactions to the reports. This feedback
was only obtained from a limited number of individuals through loosely

structured phone interviews.

Because the interviews were limited and some of the statements were
contradicting, a comprehensive assessment of the reactions to the product
performance reports could not be made. However, it seemed that the

following had occurred:

- The customer satisfaction group was beginning to ask more questions as its

members became more familiar with the data contained in the reports.

- An internally generated pareto of drive failures was being matched to the
overall quality and reliability metrics reported to customers.

- Changes were made to the counted returned drives to eliminate those thét

were only returned for upgrades and therefore were not field failures.

- At least some account team members were using part of the information
provided on the reports but it was not clear if they were using just the
aggregate information for a given drive capacity and size or the customer

specific information provided in the product performance reports.

107

- At least some account team members wanted additional information that

was not included with the reports.

- The automatic distribution of the product performance reports was stopped

and customers were not being shown the reports.

Though sketchy at best, these observations called into question both the
development approach chosen to create the product performance reports, as

well as the effectiveness of the reports themselves, at least in the short term.

7.3 Suggestions for a better development approach

Based on the internship experience, and on the perceptions of what
transpired afterwards, the following recommendations are made for

improving the development approach to a similar project:

- From the beginning, work with the direct customer contacts to find out
which information is needed by them and by customers, and why it is

needed.

Sufficient feedback from account teams was not obtained early enough during
the project. This earlier feedback would have helped the customer
satisfaction group to better anticipate the account team and customer

responses to the reports later on.

Instead, the approach taken was to involve first the key account team

members that were already pushing for the information on product

108

performance. The logic behind this approach was that these people would be
more receptive to the reports and more willing to provide constructive
feedback. Others, who could be going through a period of strained relations
with manufacturing, might have a negative or indifferent reaction towards

the reports if these were not sufficiently accurate or helpful.

Therefore, the account team members were exposed to the reports following a
loose order of who should see them first. Feedback was implemented along
the way so that the account team members who got to see the reports later on
were exposed to more polished and rigid versions. In the end, differences
between those who viewed the reports as a marketing tool, and those who
viewed them as a quality improvement tool could not be properly addressed
when they surfaced.

- Establish early on what goals will be set and what improvement actions will
be taken within manufacturing and by customer contacts based on the

reported information.

There wasn’t enough searching early on for answers to questions about how
the data would be used and acted upon. In other words, people tended to
agree that it was good to have the data but the mechanisms needed for

improving it were not made clear.

Also, only two members of the satisfaction team took a leadership role in
pushing for the development of these reports. The involvement of the other
(newer) members was far less and would have helped in identifying possible

mechanisms for improving the performance metrics.

109

- Establish what additional information would be needed internally to guide

the improvement efforts.

Without concrete improvement targets, the ability to correctly interpret the
data did not become a priority. Therefore, the missing information that
would be needed to lead improvement efforts was not identified.

- Establish responsibilities early on for data gathering, report generation, and

corrective actions.

Not discussing earlier what human, hardware, and software resources would
be available to implement the data gathering and reporting activities was an
oversight that ultimately delayed the implementation of the product
performance reports. An earlier assessment of the available resources would
have allowed a faster development and hand-off of the data gathering and
reporting activities to the responsible individual. This would have allowed
the reports to become available to account teams earlier and would have
allowed for feedback on the product performance reports to be requested

earlier.

- Develop a set of reports for internal use in parallel with those developed for

the customers.

The customer product performance reports were too bulky to use internally.
Customer satisfaction group members and account team members would

have to refer to data across many customers and needed a report that would

110

provide the information for all their customers in a more condensed
manner. This way, the difference in product performance metrics across

customers would become explicit.

- Leave a responsible person, and an action plan in place for the further

development and improvement of the product performance reports.

At the end of the internship, it was clear that more sections would have to be
added to the product performance reports to provide additional information
that was being requested by account team members. Also, the customization
capabilities of the reporting applications needed further development and a
strategy for their implementation. No person was identified as being in

charge of any of these tasks.

7.4 Suggestions for further research

In addition to the project specific recommendations, additional topics were
identified that could provide challenging research opportunities. These

topics include:

- Achieving a better understanding of the requirements associated with the
successful introduction of new bottom-up information system innovations

in multiple stages across different groups.

- Developing guidelines for the analysis and selection of software
development platforms to satisfy evolving information needs in a

distributed computing environment.

111

- Developing analysis tools for achieving a better understanding of the
relationship between a given manufacturing organization and its

information systems infrastructure.

These of course, are only a few examples of additional research topics

suggested by this project.

112

References

Anagnostopoulos, Paul C., VAX/VMS Writing Real Programs in DCL, Digital

1989.

Avison, D., Kendall, J.E., DeGross, J.,, Human, Organizational, and Social

Dimensions of Information Systems Development, North Holland . 4
1993.

Date, C.]. , An Introduction to Database Systems Vol.1 5th edt., Addison-
Wesley 1990.

Digital manual, VAX Rdb/VMS Guide to Using SOL /Services, Digital (Int)

1990.

Digital manual, VAX Rdb/VMS Guide to Using SOL, Digital (Int) 1990.

Heeg, G., Magnusson, B., Meyer, B., Technol f Obj iented Languages
and Systems, Tools 7, Prentice Hall 1992.

Massiglia, Paul , Digital Large System Mass Storage Handbook, Digital 1986.

Meyer, Marc H., Innovation in Large Organizations: A Study of the Diffusion
of Decision Support Technology, MIT Masters Thesis, 1980.

Microsoft manual, Microsoft ACCESS User's Guide, Microsoft 1992.

113

Perkinson, Richard C., Data Analysis, The Key to Data Base Design, QED 1984.

Rogers, Everett M., Diffusion of Innovations, 3rd edt., New York Free Press
1986.

St. John Bate, Joseph, Vadhia, Dinesh B., Fourth-Generation Languages under
DOS and UNIX, BSP Professional Books, 1987.

Trimble, J.H. , Chappell, D., A Visual Inroduction to SOL, Wiley 1989.

Tsichritzis, Dionysios C., Lochovsky, Frederick H., Data Models, Prentice-Hall
1982.

114

Appendix A

DATA MAINTENANCE
AND

REPORTING APPLICATION
SER’ IDE

115

INTROD ION

This software package is designed to let you easily access data from various
sources and incorporated into a variety of customized reports. It is composed
of two distinct modules:

Maintenance module - This module takes care of all the data update and
maintenance routines. It leaves the data in an appropriate format for
generating the reports.

Reporting module - This module generates various reports from the

available data and includes capabilities for customizing, altering, or
generating new reports.

116

EMENT

Hardware:

Personal Computer:

Intel 386, 486 microprocessor recommended.
8 MB of RAM, 16 MB recommended.
Network card

Software:

Microsoft Windows (Application developed using 3.1)
PATHWORKS/DECNET Software for attaching Rdb tables, connecting
network drives, and running remote updates.

Microsoft ACCESS (Application developed using version 1.1)

ODBC Administrator for attaching Rdb tables

Digital's Rdb Driver for communicating with Rdb tables (Application
developed using version T1.1).

Network Installation:

VMS/Rdb 4.1 or greater for remote databases.

An accessible network node running SQL/Services 4.1 or greater for
communication with Rdb tables.

References:
For a user: Introduction to Microsoft ACCESS.

For development work: A Visual Introduction to SQL.

Microsoft ACCESS User's Guide
Microsoft ACCESS Introduction to Programming

117

INSTALLATION
Copy the following files to your C:\ACCESS directory:

SOURCE.MDB Data Module: Holds local updated data.
MAINT.MDB Maintenance Module: Performs data updates.
NEWDB.MDB Reporting Module: Generates reports.

Notes:
- If you have attached tables from an SQL database, you will have to reattach

them. Make sure you delete each table before reattaching the new one.

- PATHWORKS has to know the nodes where the SQL server and the
database reside. You can type "C:\decnet\list known nodes" from the DOS
prompt to verify this and "C:\decnet\define node address name
nodename" to add a new node.

- You must open each update window in the Maintenance Module

(MAINT.MDB) and change the file paths where applicable (by selecting
[Editl[Design View] while viewing the update window).

118

IN N I

I- Get information from MAXCIM.

Shipments and delivery information is obtained from the MAXCIM
inventory transaction system. Queries to this system are performed using FIS
reports that generate output text files with the requested data. The FIS reports
specify the data to be obtained, the output format, and the name of the output
file for the requested data. The common file extension for these reports is
.FCF.

For the monthly product performance updates, two of these FIS reports are
used to obtain data on shipping transactions and total shipments for the
month. They have corresponding output files that store the requested data
once it is obtained from MAXCIM.

FIS Report Output File
MTBF.FCF SHIPS.TXT

OEM_LOAD.FCF LOAD_OUT.DAT

To use these FIS reports, you first need to edit them so that the output data
will be for the correct month. The lines that need to be edited are marked
with an (*). Example:

A:TRANSACTION DATE >= "100193"V !*Selection Expression 1
(change the date above)_/ _(asterix indicates lines to
edit)

1- To get the total shipments for the month, edit MTBF.FCF as follows:
- Transaction Date must be equal or greater than the first day of the
update month (fiscal).
- Transaction Date must be equal or less than the last day of the update
month (fiscal).
- Edit the Break Logic Section so that the update month appears as YY-
MM.

Note: This file gets its data from the INHIS data file in MAXCIM.
INHIS gets new data on the first Monday after the end of a fiscal
month. You might have to run MTBF.FCF an additional time to get
the last few days from the calendar month by having it call INTRS
instead of INHIS. You can then edit the output file SHIPS.TXT to add
the missing shipments.

2- Shipping transactions for the month. Edit OEM_LOAD.FCF as follows:

- Date Last Shipment must be equal or greater than the first day of the
update month (calendar).

119

- Date Last Shipment must be equal or less than the last day of the
update month (calendar).

II- Enter the Maintenance Module

You can enter the Maintenance Module by double-clicking on the file
MAINT.MDB or opening this file from MSACCESS. When you enter this
module, you will see a window (General Menu) with a list of update options.
The options are arranged to be run in sequence since later updates depend on
data gathered by previous ones.

When you click on the update number, a second screen will appear with
information for that specific update. Verify that the correct month for the
update and correct input file names are displayed, then click the [Run Update]
or [Execute Batch] button to execute the update routine.

1- Select and run update #1 from the General Menu.

- This update will ask you to edit the FIS files if you haven't done so
yet. Once it runs, it will also ask you to open the output files to verify
and edit the data. Expect to wait a few minutes before you are able to
look at the output files.

- You should eliminate the last line of the file indicating the number of
records selected, as well as any empty lines. Also, you will see 2
consecutive date fields in each row of LOAD_OUT.DAT. If the first
one reads "00-XXX-0000", you should edit it to match the second field,
and replace the characters that follow the second field with a zero.
Example:

Before editing: "00-XXX-0000", "23-OCT-1993", %3429,
After editing: "23-0OCT-1993", "23-OCT-1993", 0,

Note: The strange string "00-XXX-0000" means that there was no
scheduled ship date entered to ship the units. The number after the
two dates is supposed to be the variance between scheduled and
actual ship date in days and therefore is meaningless when there is
no scheduled ship date. The above example presumes that the units
shipped on time.

2- Select and run update #2 from the General Menu.

- This update gets the monthly ships and returns by part number for
the month. It puts the information into a temporary table, and then
will prompt you to continue if you want to update (Do you want to
update? append? delete?). You should select yes for these prompts to
continue, or select no if you want to cancel the update.

120

Note: This update takes the longest to run because it gets its return
data from the RATS warranty database across the network. If you get
an ODBC call failed message during this update, it might mean:

1)Either the SQL server, or database node (DEATER) is not
working. Contact the system manager to verify.

2)No processes are available at the SQL server. Try again later.
Also, if the PC hangs while executing an ODBC call, you might
want to reconnect to the network to insure that old processes
that were not killed are making the SQL server unavailable.

3- Select and run update #3 from the General Menu.

- This update gets the individual shipping transactions for each part
number for the month and uses this data to generate the delivery
performance metrics. Again, you will see messages that will ask you
if you want to update/append/delete.

- In addition, this update will have messages indicating that errors
have been encountered and you should proceed in the following
manner:

1)If the error indicates that fields were deleted, it should be
ignored. This update tries to convert information in a text
field to a date format and it is just informing you that the text
field did not contain a valid date.

2)If the error indicates that records were deleted, the update will
create a table called "Import Errors - yourname". You should
check this table after the update is finished (Select
[Viewl[Database], click on the tables icon, and double-click on
the table name). The table will indicate the text file line
numbers that were not imported. If the line number contained
valid data, you must edit it and rerun the update (See
instructions for editing the MAXCIM output files in section 1
above).

4- Select and run update #4 from the General Menu:

- This update generates the 5-month window MTBF by part number for
the month. It puts the information into a temporary table, and then
will prompt you to continue if you want to update (Do you want to
update? append? delete?). You should select yes for these prompts to
continue, or select no if you want to cancel the update.

5- Select and run update #5 from the General Menu:

121

- This update copies the necessary information to generate reports for a
given month to the Reporting Module (NEWDB.MDB) tables. It
should run without prompting you.

- If you get an import error, you should verify that the CUST_ACC.TXT
and PART_INF.TXT are formatted correctly, and then rerun the

update.

Note: If you want to generate reports for a month that you already
updated, you can rerun this update for that month (don't run the
other updates), and you can then generate the reports.

6- Click on the [To Reports] button on General Menu to go to the Reporting
Module.

122

INSTR NS F
REPORTS

I. Enter the Reporting Module

You can enter the Reporting Module by double-clicking on the file
NEWDB.MDB or opening this file from MSACCESS. When you enter this
module, you will see a window (General Menu) with a list of report options.

When you click on the report number, a second screen will appear with
information for that specific report. Verify that the correct month for the
report is displayed.

1- The following two options are standard for all reports:

- [View] will open a window displaying the report in Print Preview
mode. You can proceed to print the report by selecting [Filel[Print]
from the top menu, or you can return to the report window by
closing this window.

- [Print] will send the report directly to the printer. In addition, there is
an option of printing to a file by selecting the Print To File box. If you
choose this option, you will then be prompted for an output file
name.

2- Options for the customer reports:

- With the customer reports you have an additional option of
specifying the customer id for viewing or printing. This option is
initially set up to "-*" meaning that all the customer ids (suffixes) will
be included (The asterix acts as a wild card). You can edit this box to
get information for certain customers only. Examples:

Entering "-AB" will generate a report only for the customer with
the "-AB" customer id.

Entering "-A*" will generate a report for all customers with a
customer id starting with "-A".

- [Print Individual Files] will print all the customer reports to
individual files. You will be prompted for the file path that will
contain the files. The individual files will be created with the
customer id as the name and .EPS as the extension. Example:

AB.EPS will be the file created for the customer with the "-AB"
id.

- [Customize] will open a window showing the links between the main
report and its subreports. From this window, you can rearrange the
order in which sections are reported, use different section variants, or

123

add new sections to the main report. See the
MODIFYING/CREATING NEW REPORTS section for more

information on this feature.

124

N TING NEW

I - Setting up Data Sources/Recipients
1- Determine the sources of the data to be updated.

- The sources of the update data can be Rdb tables, MAXCIM output
text, other text, MSACCESS tables, etc.

- You can use [View][Tables] to check if the data you need already exists
in a table. Each table will have a description of the data and will tell
you whether it is original, aggregate, or formatted for reports. You
should use an original or aggregate table as a data source.

2- Determine where you will store the updated data.

- You can update the data directly to a report formatted table, or you can
set up a new SOURCE.MDB table to accumulate the historical
information, and pass along only the relevant information to the
report table.

- If you want to have a historical table, you must create it first in
SOURCE.MDB (double-click the file or open from within
MSACCESS). Select [FilelINewl[Table] to create a new table, and then
save it after you enter its field names and data types. Then select
[Filel(Exit] and reopen MAINT.MDB.

- To add a new report formatted table, you must first go to the
Reporting Module ([File][To Reports]), and then select [Sources][New
Table]. Save this table after you enter the field names and data types
and return to the Maintenance Module ([File][To Maintenance]).

3- Attach all the tables to the maintenance module MAINT.MDB
- Any new table must then be attached to the Maintenance Module.
Within MAINT.MDB, select [Sources]{Attach Table] to do this.
Finally, select [View][Tables] (update table info? YES) and enter the
source, type, and description for your new table.

4- Create a new import format if necessary to import an input table.

- If you will be importing text as part of an update, you will need to
specify the format of the imported data. Within the Maintenance
Module, select [Sources][Imp/Exp Specs] to view the existing import
export formats.

- You can create new delimited or fixed width formats if the existing
ones are not appropriate. If you want to import text with the first row
containing field names, make sure you include the suffix "WF" at the
end of your new specification name.

II - Creating and debugging an update
1- Create a new update window.

125

- To create a new update, you must first create a window for it. Push
the [New Update] button in General Menu to create a new window.
You will be asked for an update title that will appear on the top of the
update window, for an update description that will appear on the
General Menu (after the "Update_#:" characters), and for the
template window to use.

- You can chose from one of the following template windows for your
update:

1)No text file. This window comes with the predefined
parameters monthl, month2, month3, month4, month5,
firstday, lastday, newday, and oldday.

2)Text file. This window comes with predefined parameters
monthl, month2, month3, firstday, lastday, and import_file.
The parameter import_file should contain the name of the text
file you want to import.

3)Monitor log. This window allows you to view the current log
file of an externally running update. It uses the parameter
log_file to store the DOS directory path and file name of the
file to be viewed.

4)Run batch. This window allows vou to execute an external
VMS batch job. It uses the parameter batch_file to store the
full VMS name of the file to be viewed. You do not need to
include username and password as part of the file description
as this update will ask you for them when it executes.

2- Assign values to the parameters in the new update window.

- The parameter monthl will automatically default to the previous
month (YY-MM). You can use this value to get other months that
you might need for your update. For example, if you need the
product returns for the last five months, you can define month2 as
follows:

month2 = GetNewMonth([month1],-4)

Note: In this example, month2 is 4 months before monthl. You
can use the macro command SetValue to assign the value to
month2.

Then, you can use these parameters in a query that will look for
returns between month2 and monthl inclusive (a five month
window).

- If you selected the textfile, monitor log, or run batch option, you can
edit the filename by opening the update window and selecting
[Editl{Design View]. Double-click the box that should contain the file
name and enter the desired name using the following format:

126

="D:\PATH\FILENAME.TXT"

Where D is the drive letter, PATH is the directory path, and
FILENAME.TXT is the filename. For a VMS file specification, the
name should look like this:

="NODE::DISK:[DIRECTORYIFILENAME.COM"

Where NODE::DISK:[DIRECTORY] is the VMS path to the command
file, and FILENAME.COM is the name of the command file to run as
a batch.

- You can also create new parameters within design view. Select
[Viewl[Toolbox] from the top menu and drag a text box (top left of
toolbox) into the form. You should reference the Microsoft ACCESS
User's Guide for information on unbound text boxes for additional
help.

3- Create the queries and data imports/exports necessary to create an update:
- Data updates consist of a series of queries and data import/export
operations executing in sequence. To create a new query, select the
[Updatesl[New Query] option from General Menu. You can have
queries that create new tables, and queries that append records, delete
records, or update record fields in existing tables.

- In creating new queries, I use the convention XXXXTYPE# for the
query name where XXXX is a four character code for the update, TYPE
is the type of action query (Delete/Insert/Make/Update), and # is a
digit or character to order the queries.

- You can use the following macro commands to execute queries and
text import/exports from the macro associated with the update:

OprnQuery - Executes the specified query.
TransferText - Performs the text transfer action.

- In addition, the following functions can be called with the RunCode
macro command:

EmptyTable(tablename,0) - Deletes all records from a table.
DeleteTable(tablename,0) - Deletes a table.

NullsToZeroes(tablename,fieldname,0) - Changes field null
values to 0.

127

Note: tablename is a string with a database table name. DeleteTable
only detaches attached tables, it does not actually delete them.

III - Final debugging and implementation.
1- Organize and document your queries.

- Once you have tested the queries, you can select [Viewl[SQL codel
from General Menu to organize and document them. A window will
appear with query records containing the query name, sql code, and
description.

- To add your new queries, scroll past the last record until you get one
with blank fields. Then, proceed as follows:
1)Under query name, type the name of one of your update
queries.
2)Use the [Get SQL] button to fill the sql code field with the
information contained in your query.
3)Type a description of what your query does in the description
field. The record will be saved automatically when you scroll
in either direction, or if you close the window.
4)After you enter all your queries, close this window. Select
[View][Database] from the General Menu, click on the queries
icon, and then delete all your queries by clicking on the query
name and selecting [Editl[Delete] from the menu.

3- Create a new module and invoke the queries from a master function in
this module.

- To create a new module, select [Updates][New Module] from General
Menu. You can then define a master function that will be called to
execute the update. I name the master function using the four
character code for the update. Following is the sample syntax for a
function created to execute the TEST update:

Function TEST (way)

Dim a, upform as Form

'—- Set Values --—

upform = [Forms][Update_3]

upform("month2") = GetNewMonth(upform("month1",-4)

'~—- Run the Update —-
a = EmptyTable("TestTable",way)
a = SuperQueryMaster("TestInsert1",way)

End Function

128

- The SuperQueryMaster function is used to execute the queries records
that you entered using the [View][SQL code] option. It is called using
the following syntax:

a = SuperQueryMaster(queryname,way)
Where a is a dummy variable, queryname is the name of the query as
it appears in the View SQL code form, and way is one of the following

integer values.

way =0 - Execute the SQL code associated with queryname.
=1 - Show a message displaying the SQL code associated with

queryname.
=2 - Show a message displaying a description of what
queryname does.
=3 - Create a new query called queryname (it does not get

executed).

- The GetImportDelim and GetImportFixed functions are used for
importing text into an MSACCESS table. You can invoke them with
the following syntax:

a = GetImportDelim(filename, tablename, formatspec, way)
a = GetImportFixed(filename, tablename, formatspec, way)

Where a is a dummy variable, filename is the name of the text file to
be imported, tablename is the name of the table to be created,
formatspec is the Import/Export specification, and way is one of the
following:

way = 0 - Execute the text import operation.
= other - Show a message displaying a description of what the
function
does.

4- Change the update macro so it calls the master function.

- From the General Menu, select the view macro button for the new
update. Edit the macro to leave only the command RunCode to run
your master function. To follow the logic of your update before
running it, give the master function an argument value of 2.(i.e.
TEST (way) and set way=2 to test the logic of your update.

5- After you test the update, call the function with way=0 to run the actual
update.

129

IV- Documentation
You can print the module containing the main function, as well as the
queries associated with the update to document your update.

To print the module, select [View][Database], click on the modules icon, open
the desired module, and select [File][Print]. To print the queries, select
[View][SQL code] and then click on the [Print] button to print the desired

pages.

V- Menu Commands
Following is a list of available menu options to help you create, maintain and
document data updates and sources/recipients within Maintenance Module:

General_Menu:

[File] Exit from the Maintenance Module and start the

[To Reports] Reporting Module.

[File] Close the General_Menu window and show the tool bar.
[Close] Use this option to exit to the regular MSACCESS mode.
[Eile] Exit the Maintenance Module and return to the operating
[Exit] system.

130

[View]
[SQL Code]

This option opens a window that allows you to see all the
query information used for the different updates. In each
query record you will see the following fields:

- Query Name: The query name is used when invoking
query execution from ACCESS BASIC with the
SuperQueryMaster function.

- Sql Code: This is the actual SQL code that gets executed
by SuperQueryMaster. You may edit this field to change
the characteristics of the query and use <CNTL>ENTER
to insert lines and make the code more readable.

- Description: This is the description that appears when
updates are called with 2 as their argument. By giving
descriptions to your queries and calling the update with
the argument 2, you can follow the update logic without
executing it.

Available buttons

[<<] & [>>] These buttons will let you scroll 5 records at a
time in either direction.

[Print] This button will let you print some or all of the
query records.

[Repl] This button will let you replace a given string
sequence with a new one. For example, if you move an
update from position 4 to 5, you can change all instances
of Update_4 to be Update_5 for the corresponding query
records.

[Make Query] This option will let you create a query out
of the information in the query record. The query will be
given the same name as the query name of the record.
You can then edit this query by opening it to design view,
and avoid making explicit changes to the SQL.

NOTE: You cannot make a query that calls a table that
doesn't exist. You will need to create the table before
executing this command.

[Get SQL] Once you are done creating or editing a query,
you can import its SQL code by first typing the query
name on the corresponding field and then hitting this
button. Once the SQL appears on the sql code field, you
can edit it for readability, add a description of what the
query does, and print the record.

131

[View]
[Tables]

This option will let you view all the currently attached
tables. It offers to run a query on the tables to refresh the
table information. There are three ways in which this
information will be displayed:

- The table name, table source, and description appear on
the screen, but the table field names do not show up. On
an SQL server table, this might mean that the ODBC
connection failed when it tried to get the table fields
information. Also, tables that were previously attached
but have been deleted will also show up in this manner
and you will need to delete them.

- The table name and field names appear on the screen,
but the table source and description do not show up.

This signals a newly attached table. You should enter the
table source and description on the screen to document
this table.

- The table name, source, description, and fields, all

appear on the screen. All tables should be displayed this
way unless recent deletions/additions have occurred.

132

[View]
[Databasel

Using this command, you can select the appropriate icon
and view all the various system objects:

Icon
Tables - Will list local and attached tables.

SYS_ denotes tables with system information.

TMP_ denotes temporary tables.

=> (Black Arrow) denotes attached tables.
Queries - Will list any queries that you have created for
editing or

for a new update.

Forms - Will list the various forms used by the

application.

Update_# - Denotes the form associated with a
particular
update.
TEMPLATE#_ - Denotes a template form for an
update.
Other forms are used by the application in various
ways.

Reports - There are no reports associated with this

module.

Macros - Will list system and update macros.
General_Update_Macro - General Menu commands.
General_Tables_Queries_Macro - View SQL

code/Tables

commands.
General_Help_Macro - Help messages for the
interactive help
screen.
Menu_ - Macros containing the customized menu
commands.
Macro_# - Macro associated with a given update.
TEMPLATE#_ - Macro associated with a given
template form.

Modules - Will have ACCESS BASIC functions and

update

routines.

Analyzer_ - Functions used to get attached table
information.

SYS_ - Modules containing functions used by the
system.

Update_ - Modules containing specific update
routines.

133

[Updates]
[New Query]

[Updates]
[New Module]

[Sources]
[Attach Table]

[Sources]
[Imp/Exp Specs]

[Sources]
[ODBC Specs]

This option will let you create a new query for your
update.

This option will create a new module to allow you to
code your update.

This option will guide you through the steps of attaching
a new table to the Maintenance Module. You can attach
other MSACCESS tables, SQL Server tables, and others.

Make sure you first delete a table that you are trying to
reattach, or else it will be attached with a "1" appended at -
the end of its name and all your queries will still refer to
the old table. For example, if you have an attached table
"CUSTOMERS" and you reattach without deleting it first,
MSACCESS will keep the old table and give the new
attachment the name "CUSTOMERS1".

This option will let you view the list of defined
import/export formats for both, fixed width, and
delimited text files. You can add/delete or modify
formats with this selection.

If the name of the import/export specification ends with
the characters "WF" (with fields), these functions will
import the first row of the text file as the field names for
the table. -

When you try to attach a table from an SQL Database,
MSACCESS will ask you for an ODBC Data Source. This
Data Source is a pointer to the type and location of the
SQL database.

When you select this option, you will see a window with
the names of the defined data sources and the installed
ODBC drivers. You can create a data source to an Rdb
Database by clicking on the RdbDriver and then clicking
on the Add Name button.

You can modify an existing data source by first clicking
on its name and then clicking the configure button.

134

MODIFYING/CREATING NEW REPORTS

I- Determine/create a data source

You can generate a report using one of the following data sources:

1)Use an existing table or query. Select [View][Database] and click on the tables
or queries icon to view the available sources. Double-click on the query or
table name to view its contents.

2)Create a new query. You can reformat the data from existing tables into a
new query and use the query as the data source for your report. To do this,
select [Sources][New Query] from the General Menu.

3)Create a new table. If you need information that is not currently available,
you can select [Sources][New Table] to create a new source for the data you
need. If you need to update the new table's information from outside
sources, you should attach it to the Maintenance Module (see instructions
above).

II- Create the reports
1- Creating a main report.

- You can use the [Reports][New Main] option to create a new report
once you determine the source of the report data. Select the fields
you are going to use to organize your main report, and then push the
[Create] button to create the main report. This option automatically
adds the prefix "Rep_" to the report name you specify.

Note: This option uses the TEMPLATE1_Rep report as a template for
the main report. You can modify this template if you want to change
the default format for the main report.

2- Creating a subreport.
You can use the [Reports][New Sub] option to create a new subreport.
Select the fields and headings you are going to display on your
subreport, and then push the [Create] button to create the subreport.
This option automatically adds the prefix "Sub_" to the report name

you specify.

Note: This option uses the TEMPLATE1_Sub report as a template for
the subreport. You can modify this template if you want to change
the default format for the subreport.

3- Using the Report Wizard.
- Microsoft ACCESS also offers a Report Wizard utility that will step
you through the creation of a new report.

III- Link the main report with its sub reports.
1- Add the subreport to the main report.

135

- To link a subreport to a main report, you must first open the main
report to design view. To open the main report, select
[View][Database] from General Menu, click on the reports icon, select
the desired main report, and click the [Design] button. You can then
select the database window ([Window][Database]), and drag and drop
the subreport into the desired main report section.

2- Link the subreport to the main report.
- Consult the Microsoft ACCESS User's Guide to link the subreport to

the main report.

- The [Customize] button in the Customer Product Performance
Reports lets you view the different subreports that are linked to the

- main report. You can select a different subreport from the drop down
list to customize this report. Up to six report sections are available for
each part number. If you need to change a report section, save the
currently linked subreport under a different name. Then make the
modifications to the copy. Finally, change the name of the linked
subreport to the new name and view the report.

- Existing linkages are as follows:

Menu Selection Main Report Sub Reports
(1) Rep_METR _by_capacity Sub_QUAZ2_1

Sub REL2 1
2 Rep_METR_by_type Sub_QUA3_1
_Sub REL3 1
3 Rep_CUST_by_part_no Sub_COV1_1
Sub_DEL1_1

Tny_ORD1_1

Sub_QUAI1_1

_Sub REL1 1

@ Rep_Trends_by_capacity NONE

IV- Add a new report option within General Menu

1- Add a new window for the report.

While in the General Menu window, push the [New Report] button to add a
new report option to the menu. The application will ask you for a title and a
description of the report information. Once the new menu option appears,
you will need to modify the corresponding macro to View/Print the new
report.

2- Link the macro to the main report.

In General Menu, push the view macro button for the macro corresponding
to your new report option. The macro will have instructions on how you

136

should modify its commands to point to your new report. Modify the
commands accordingly and then save the macro.

3- Test the new report option.

After you are done modifying the macro, you should test the new report
option by opening the report window from General Menu and attempting to
View/Print the report.

V- Menu Commands
Following is a list of available menu options to help you create, maintain and
modify the reports within the Reporting Module:

General_Menu:
[File] Exit from the Maintenance Module and start the
[To Reports] Reporting Module.

[File] Close the General Menu window and show the tool bar.
[Close] Use this option to exit to the regular MSACCESS mode.
[File] Exit the Maintenance Module and return to the operating
[Exit] system.
[Reports] This option will let you generate a new report with page
[New Main] header and footer information.

~ [Reports] This option will let you generate a sub report.
[New Sub]
[Reports] This option will call the Microsoft ACCESS Report
[Wizards] Wizard utility that will take you through the necessary

steps for generating a sample report.

137

Wiew]
[Database]

[Sources]
[New Tablel

[Sources]

[New Query]

[Help]
[General Menu]

Using this command, you can select the appropriate icon
and view all the various system objects:
Icon
Tables - Will list local and attached tables.

SYS_ denotes tables with system information.

TMP_ denotes temporary tables.

=> (Black Arrow) denotes attached tables.
Queries - Will list any queries that you have created for
editing or

for a new update.
Forms - Will list the various forms used by the
application.

Update_# denotes the form associated with a
particular update.

TEMPLATE#_update denotes a template form for an
update.

Other forms are used by the application in various
ways.
Reports - There are no reports associated with this
module.
Macros - List system and report macros
Macro_# - Macro associated with a report option.
General_Menu_macro - General menu commands.
General_Help_macro - Help messages for the interactive
help screen.
Make_New_Report_macro - New Main/Sub
commands.
Modules - Lists system modules.
SYS_ - Prefix for system modules.
CUST_ - Special module for the CUST_by_part_no
report.

Create a new table to serve as a data source for a new
report.

Create a new query to serve as a data source for a new
report.

On line help information for the General Menu options.

138

Appendix B

Documentation for Updates
Shipping Transactions
Aggregate Shipments and Returns

MTBF Calculations
Report Data Updates

139

140

Option Compare Database 'Use database order for string comparisons
Option Explicit

' MODULE FOR UPDATING THE MONTHLY DELIVERY
INFORMATION
' USING THE SHIPPING TRANSACTIONS DATA FROM MAXCIM

SOURCE TABLES: LOAD_OUT.DAT (Text File)

TEMPORARY TABLES: ShipDetsl (Local)
ShipDets2 (Local)

UPDATED TABLES: SHIPMENTS (SOURCE.MDB)
MTBF_5MTH (SOURCE.MDB)

Function SHPS (way)
Dim a, infile As String, upform As Form
Dim templ As String, temp2 As String

Set upform = [Forms]![Update_3]
infile = upform("import_file")
templ = "ShipDetsl": temp2 = "ShipDets2"

"1== [Set the first and last days for the desired update month] ==

e e e e e e e S St S i e s e e S S ST e SO S S St S S S s S D S S S S S S S S S S S A ST St S S AP i S S S e S e S e S Sl e S
e i o o . s o s e s e s o S . . o e e o e S . S S S S S S S S S S S S S S S S LU S s S S Y S S S S T S PSP S St S e o S

upform("firstday”) = GetFirstDay(upform("month1"))
upform("lastday") = GetLastDay(upform("month1"))
upform("message”) = "Starting update”: DoCmd RepaintObject

'2== [Empty ShipDets1 and ShipDets2 tables to receive new information] ==

a = EmptyTable(templ, way) 'Delete Entries from ShipDets1 Table.
a = EmptyTable(temp2, way) 'Delete Entries from ShipDets2 Table.

'3== [Put the new information into the ShipDets2 Table] ==

a = GetImportDelim(infile, temp1, "loader_format", way)
'Add latest month Entries to ShipDets1 Table.
a = SuperQueryMaster("ShpsInsert1”, way)

141

'‘Convert request date from ShipDetsl to ShipDets2.

'4== [Update the SHIPMENTS and DELV_MTH tables] ==

upform("message") = "Updating SHIPMENTS": DoCmd RepaintObiject
a = SuperQueryMaster("ShpsUpdatel", way)
'Update latest month Entries to SHIPMENTS Table.
a = SuperQueryMaster("ShpsDeletel", way)
'Delete records from ShipDets2 that are already in SHIPMENTS.
a = SuperQueryMaster("ShpsInsert2", way)

'Add remaining records from ShipDets2 to SHIPMENTS.
upform("message”) = "Updating DELV_MTH": DoCmd RepaintObject
a = SuperQueryMaster("ShpsDelete2", way)

'Delete month Aggregates in DELV_MTH Table.

a = SuperQueryMaster("ShpsInsert3", way)

'Add new info for the month to DELV_MTH Table.

upform("message") = "Update completed": DoCmd RepaintObject

End Function

142

Query Name: [ShpsDelete1 |

Query Description:

S ode:
a.c <CNTL>ENTER=Newiine

Deletes the records from the ShipDets2 table that
were aiready updated in SHIPMENTS.

DELETE DISTINCTROW ShipDets2.*
FROM ShipDets2, SHIPMENTS,

ShipDets2 INNER JOIN SHIPMENTS ON
ShipDets2.s0_number =
SHIPMENTS.SO_NUMBER,

ShipDets2 INNER JOIN SHIPMENTS ON
ShipDets2.line_no = SHIPMENTS.SO_LINE
WITH OWNERACCESS OPTION;

Query Nama: |ShpsDelete2 |

Query Description:

Deletas the records from DELV_MTH for the update
month.

saL - <CNTL>ENTER=Newiine

DELETE DISTINCTROW DELV_MTH.*
FROM DELV_MTH

'WHERE ((DELV_MTH.month =
[Forms)![Update_3]![month1])) -

WITH OWNERACCESS OPTION;

143

Query Name: [Shpsinsertt]

Query Description:

Franslorms the imported text fieid
{customer_request_date] into a date fleid. it moves

data from ShipDets1 to ShipDets2 to accompiish this.

SQL Code: '
<CNTL>ENTER=Newiine

INSERT INTO ShipDets2 (so_number, kne_no,
part_no, cust_id, order_gqty, ship_qty, var_gty,
sched_date, ship_date, var_days, po_no, iste_flag,
req_date)

SELECT DISTINCTROW ShipDets1.s0_number,
ShipOets1.line_no, ShipDets1.part_no,
ShipDets1.cust_id, ShipDets1.order_qty,
ShipDets1.ship_qty, ShipDets1.var_qty,
ShipDets1.sched_date, ShipDets1.ship_date,
ShipDets1.var_days, ShipDets1.po_no,

ShipDets1 late_flag, ShipDets1.req_date

FROM ShipDets1

WHERE ((ShipDets1.so_number is Not Null) AND

(ShipDets1.line_no Is Not Null) AND

(ShipDets1.part_no Is Not Null))
WITH OWNERACCESS OPTION;

Query Name: [Shpsinser2 |

Query Description:

@mmmwm
SHIPMENTS that were not aiready updated.

Code:
sa <CNTL>ENTER=Newiine

INSERT INTO SHIPMENTS (SO_NUMBER,
SO_LINE, PART_NO, CUST_ID, ORDER_QTY,
SHIP_QTY, VAR_QTY, SCHED_DATE, SHIP_DATE,
VAR_DAYS, PO_NO, LATE_FLAG, REQ_DATE)
SELECT DISTINCTROW ShipDets2.80_number,

ShipDets2 ship_gty, ShipDets2 var_gty,
sched_date, ShipDets2.ship_date,

ShipDets2
WITH OWNERACCESS OPTION;

144

QueryName: [ShpsUpdatef l

Query Description:

Updates existing records in SHIPMENTS with the
updated shipping information on ShipDets2.

SQL Code:
a <CNTL>ENTER=Newiine

UPDATE DISTINCTROW ShipDets2, SHIPMENTS,
ShipDets2 INNER JOIN SHIPMENTS ON
ShipDets2.so_number = SHIPMENTS.SO_NUMBER,
ShipDets2 INNER JOIN SHIPMENTS ON
ShipDets2.line_no = SHIPMENTS.SO_LINE

SET SHIPMENTS.SO_NUMBER =
[ShipDets2].{so_number], SHIPMENTS.SO_LINE =
(ShipDets2].fline_no], SHIPMENTS.PART_NO =
(ShipDets2].(part_no}, SHIPMENTS.CUST_ID =
(ShipDets2] [cust_id], SHIPMENTS.ORDER_QTY =
[ShipDets2] [order_aty], SHIPMENTS SHIP_QTY =
[ShipDets2].{ship_qty], SHIPMENTS.VAR_QTY =
[ShipDets2}.{var_gty), SHIPMENTS.SCHED_DATE =
[ShipDets2].{sched_date], SHIPMENTS.SHIP_DATE =
[ShipDets2].{ship_date}, SHIPMENTS.VAR_DAYS =
{ShipDets2].[var_days], SHIPMENTS.PO_NO =
[ShipDets2].[po_nc), SHIPMENTS.LATE_FLAG =
[ShipDets2).[iate_fiag), SHIPMENTS.REQ_DATE =
[ShipDets2].[req_date]

WITH OWNERACCESS OPTION;

Query Name: |Shpsinsert3

Query Description:

SQl. Code:
<CNTL>ENTER=Newiing

INSERT INTO DELV_MTH (part_number,
customer_id, month, total_orders, iate_orders,
On_time_percentage)

SELECT DISTINCTROW SHIPMENTS.PART_NO,
SHIPMENTS.CUST_ID, (Forms}i{Update_3]![month1]
IAS month, Count(SHIPMENTS.SO_NUMBER) AS

(Inserts updated records for the month into the
DELV_MTH table.

CountOfSO_NUMBER,
SUM(SHIPMENTS.LATE_FLAG) AS
SUMONLATE_FLAG, 1-

Sum(LATE_FLAG]/Count([SO_NUMBER]) AS
On_time

SHIPMENTS.CUST_ID
OWNERACCESS OPTION;

145

146

Option Compare Database 'Use database order for string comparison

e e e et e st S D e e e e) S P A S S S S ST i S S s S S S S S S S LS S Sy S e S i PSP s S S PR ‘e e S S S Sl S i S S S S S S S

' MODULE FOR UPDATING THE MONTHLY SHIPS/RETURNS
INFORMATION
' USING DATA FROM MAXCIM AND RATS

SOURCE TABLES: SHIPS.TXT (Text File)
RETURN_DATA (RATS.RDB)
PART_NUMBER_DATA (RATS.RDB)

TEMPORARY TABLES: TMP_Shp
TMP_Ret
TMP_Ret2

UPDATED TABLES: SHIPS_RETS_DATA (SOURCE.MDB)
QUAL_MTH (SOURCE.MDB)

- - - - - - - - - - -

Function SHRT (way)

Dim a, upform As Form

Dim templ As String, temp2 As String, temp3 As String
Dim infile As String

Set upform = [Forms]![Update_2]
infile = upform("import_file")
templ = "TMP_Shp": temp2 = "TMP_Ret": temp3 = "TMP_Ret2"

"1== [Set the first and last days for the desired update month] ==

upform("firstday") = GetFirstDay(upform("month1"))
upform(“lastday") = GetLastDay(upform("month1"))
upform("message") = "Starting update": DoCmd RepaintObject
DoCmd SetWarnings False

'2== [Set up temporary TMP_Shp Table to contain the updated information]

a = SuperQueryMaster("ShrtMakel", way)
'Create the TMP_Shp Table from SHIPS_RETS_DATA.

147

a = GetImportFixed(infile, temp1, "ships_loader_format", way)
‘Transfer text from maxcim fis into TMP_Shp
upform("message”") = "Got shipments": DoCmd RepaintObject

'3== [The temporary TMP_Ret and TMP_Ret2 Tables will contain returns

a = SuperQueryMaster("ShrtMake2", way)

"Put all the returns from the desired month into the TMP_Ret Table.
upform("message") = "Got returns": DoCmd RepaintObject
a = SuperQueryMaster("ShrtMake3", way)

'Put the reliability returns from the desired month into the TMP_Ret2

Table.
upform("message") = "Got reliability returns": DoCmd RepaintObject

'4== [First, add the return data to existing records on TMP_Shp] ==

a = SuperQueryMaster("ShrtUpdatel", way)

'Update the return information of existing records in TMP_Shp.
a = SuperQueryMaster("ShrtDeletel", way)

'Delete records from TMP_Ret that are already in TMP_Shp.
a = SuperQueryMaster("ShrtDelete2", way)

'Delete records from TMP_Ret2 that are already in TMP_Shp.

'5== [Then, add new records with return data for part numbers that didn't
ship] 1

a = SuperQueryMaster("ShrtInsert1", way)
'Insert return information into TMP_Shp for product that didn't ship
during the month.

'6== [Now TMP_Shp is updated and we can delete the temporary tables] ==

a = DeleteTable(temp2, way)
a = DeleteTable(temp3, way)

'7== [Finally, Set null values within TMP_Shp to zeroes] ==

a = NullsToZeroes(temp1, "SHIPPED", way)

a = NullsToZeroes(temp1, "RETURNED", way)

a = NullsToZeroes(temp1, "REL_2MTH_RETURNS", way)
upform("message”) = "Ready to update": DoCmd RepaintObject

148

DoCmd SetWarnings True

'8== [Now put the TMP_Shp info into SHIPS_RETS_DATA and delete
TMP_Shp] ==

a = SuperQueryMaster("ShrtUpdate2", way)
'Update SHIPS_RETS_DATA with values from TMP_Shp.
a = SuperQueryMaster("ShrtDelete3", way)
'Delete records from TMP_Shp that already were updated in
SHIPS_RETS_DATA.
a = SuperQueryMaster("ShrtInsert2", way)
'Instert records from TMP_Shp that were not already present in
SHIPS_RETS_DATA.
a = DeleteTable(temp1, way)

'9== [Update QUAL_MTH from the SHIPS_RETS_DATA information] ==

a = SuperQueryMaster("ShrtDelete4", way)
'Delete update month records from QUAL_MTH.
a = SuperQueryMaster("ShrtInsert3", way)
'Append updated information to QUAL_MTH from
SHIPS_RETS_DATA.
a = SuperQueryMaster("ShrtUpdate3", way)
'Set Quality = 0% where quality returns >= shipped.
upform("message") = "Update completed": DoCmd RepaintObject

End Function

149

Query Name: [ShrtDelete1 |

Query Description:

Code:
SQL Code <CNTL>ENTER=Newline

DELETE DISTINCTROW TMP_Ret.*

FROM TMP_Ret, TMP_Shp,
TMP_Shp INNER JOIN TMP_Ret ON
TMP_Shp.PART_NO = TMP_Ret.part_no,
TMP_Shp INNER JOIN TMP_Ret ON
TMP_Shp.CUST_ID = TMP_Ret.customer_id,

Detete records in TMP_Ret that were already updated
in TMP_Shp.

TMP_Shp INNER JOIN TMP_Ret ON
TMP_Shp.SHIP_MTH = TMP_Ret.month
WITH OWNERACCESS OPTION;

Query Name: [ShrtDelete2]

Query Description:

Delete records in TMP_Ret2 that were aiready
updated in TMP_Shp.

SQL Code: <CNTL>ENTER=Newline

DELETE DISTINCTROW TMP_Ret2.*

FROM TMP_Shp, TMP_Ret2,

TMP_Shp INNER JOIN TMP_Ret2 ON
TMP_Shp.PART_NO = TMP "Ret2.part_no,
TMP_Shp INNER JOIN TMP_Ret2 ON
TMP_Shp.CUST_ID = TMP_| Ret2.customer_id,
TMP_Shp INNER JOIN TMP_Re2 ON
TMP_Shp.SHIP_| MTH = TMP_Ret2.month
WITH OWNERACCESS OPTION;

150

]

Query Name: [ShrtDelete3

Query Description:

Delete records in TMP_Shp that were aiready updated
in SHIPS_RETS_DATA.

Code:
sa. <CNTL>ENTER=Newline

DELETE DISTINCTROW TMP_Shp.*

FROM TMP_Shp, SHIPS_RETS_DATA,
TMP_Shp INNER JOIN SHIPS_RETS_DATA ON
TMP_Shp.PART_NO =
SHIPS_RETS_DATA.PART_NO,
TMP_Shp INNER JOIN SHIPS_RETS_DATA ON
TMP_Shp.CUST_ID =
SHIPS_RETS_DATA.CUST_ID,
TMP_Shp INNER JOIN SHIPS_RETS_DATA ON
TMP_Shp.SHIP_MTH =
SHIPS_RETS_DATA.SHIP_MTH

WITH OWNERACCESS OPTION;

Query Name: [ShrtDelete4

-

Query Description:

Delete records for the update month in the
QUAL_MTH table.

SQL Code:
<CNTL>ENTER=Newiine

DELETE DISTINCTROW QUAL_MTH.*
FROM QUAL_MTH
ERE ((QUAL_MTH.month =
[Forms]!{Update_2)!{month1])
WITH OWNERACCESS OPTION;

151

Query Name: [Shrtinsertt |

Query Description:

Insert retumn information into TMP_Shp for parts that
did not ship for the month.

sQL Code:
<CNTL>ENTER=Newiine

INSERT INTO TMP_Shp

(PART_NO, CUST_ID, SHIP_MTH, RETURNED,
REL_2MTH_RETURNS))

SELECT DISTINCTROW TMP_Ret.part_no,
TMP_Ret.customer_id, TMP_Ret.month,
TMP_Ret.retuned, TMP_Ret2.rel_2mth_retums
FROM TMP_Ret, TMP_Ret2,

TMP_Ret LEFT JOIN TMP_Ret2 ON
TMP_Ret.part_no = TMP_Ret2.part_no,
TMP_Ret LEFT JOIN TMP_Ret2 ON
TMP_Ret.customer_id = TMP_Ret2.customer_id,
TMP_Ret LEFT JOIN TMP_Ret2 ON
TMP_Ret.month = TMP_Ret2.month

WITH OWNERACCESS OPTION;

Query Name: [Shetinsert2 |

Query Description:

Insert update information from TMP_Shp into the
SHIPS_RETS_DATA table.

SQL Code:
<CNTL>ENTER=Newiine

INSERT INTO SHIPS_RETS_DATA (PART_NO,
CUST_ID, SHIP_MTR, SHIFPED, RETURNED,
REL_ZMTH_RETURNS)

SELECT DISTINCTROW TMP_Shp.PART_NO,
TMP_Shp.CUST_ID, TMP_Shp.SHIP_MTH,
TMP_Shp.SHIPPED, TMP_Shp.RETURNED,
TMP_Shp.REL_2MTH_RETURNS

FROM TMP_Shp

WHERE ((TMP_Shp.SHIP_MTH =

{Forms]{{Update_2]!{month1D)

WITH OWNERACCESS OPTION;

152

Query Name: |Shrinsent

Query Description:

[insert aggregate quaiity information for the month from
SHIPS_RETS_DATA into QUAL_MTH.

SQL Code:
aL <CNTL>ENTER=Newiine

INSERT INTO QUAL_MTH

(part_number, customer_id, month, shipped,

qual_retums, quality

SELECT DISTINCTROW
SHIPS_RETS_DATA.PART_NO,
SHIPS_RETS_DATA.CUST_ID,
SHIPS_RETS_DATA.SHIP_MTH,
SHIPS_RETS_DATA.SHIPPED,
[RETURNEDHREL_2MTH_RETURNS] AS
QUAL_RETURNS,
1-JQUAL_RETURNSJISHIPPED] AS QUALITY

FROM SHIPS_RETS_DATA

WHERE ((SHIPS_RETS_DATA.SHIP_MTH =

[Forms]i{Update_2]l[month1])

WITH OWNERACCESS OPTION;

Query Name: {ShetMake1 |

Query Description:

Make a table TMP_Shp with the same
structure as the SHIPS_RETS_DATA tabie &t will iater

update.

SQL Code:

SELECT DISTINCTROW SHIPS_RETS_DATA*
INTO TMP_Shp

FROM SHIPS_RETS_DATA

ERE ((SHIPS_RETS_DATA.PART_NO Is Nul)
AND (SHIPS_RETS_DATA.CUST_ID Is Null) AND
(SHIPS_RETS_DATA.SHIP_MTH is Null)

WITH OWNERACCESS OPTION;

153

Query Name: [Shrtmake2 |

Query Description:

insert the total retums for the month by part number
into a new table called TMP_Ret.

SQL Code:
<CNTL>ENTER=Newiine

SELECT DISTINCTROW
PART_NUMBER_DATA.PN_MAIN AS part_no,
*» & [PN_SUFFIX] AS customer_id,
(Forme}i[Update_2]i{month1] AS month,
Count(RETURN_DATA.RECORD_KEY) AS returned

INTO TMP_Ret

FROM RETURN_DATA, PART_NUMBER_DATA,
RETURN_DATA INNER JOIN
PART_NUMBER_DATA ON
RETURN_DATA.CUST_PART_NUMBER =
PART_NUMBER_DATA.CUST_PART_NUMBER

WHERE ((PART_NUMBER_DATA.PN_PREFIX Not
Like "B8**) AND
(RETURN_DATA.RETURNED_DATE Between
[Forma}{Update_2]i{firstday] And
(Forma]i{Update_2]ilastday]) AND
(PART_NUMBER_DATA.PN_SUFFIX Not Like "Z*))

GROUF BY PART_NUMBER_DATA.PN_MAIN, -~ &
[PN_SUFFIX)

WITH OWNERACCESS OPTION;

Query Name: [ShrtMaked]

Query Description:

insert the total refiabiity returns for the month by part
into a new table called TMP_Ret2. Reliabillty
are those where

(MTTF_HOURS] > {
(That is, retumned over two months after shipment).

SQL Code: <CNTL>ENTER=Newiine

SELECT DISTINCTROW
PART_NUMBER_DATA.PN_MAIN AS part_no,
=+ & [PN_SUFFIX] AS customer_id,
(Forma]i{Updste_2]!{month1] AS month,
Count(RETURN_DATA.MTTF_HOURS) AS
2mih_retums INTO TMP_Ret2
FROM RETURN_DATA, PART_NUMBER_DATA,
RETURN_DATA INNER JOIN
PART_NUMBER_DATA ON
RETURN_DATA.CUST_PART_NUMBER =
PART_NUMBER_DATA.CUST_PART_NUMBER
WHERE ((RETURN_DATA.RETURNED_DATE
Between [Forme]i{Update_2)![firsiday] And
[Forma]i{Updats_2]![lastday]) AND
(RETURN_DATAMTTF 1) AND
(PART_NUMBER_DATA.PN_PREFIX Not Like B*")
AND (PART_NUMBER_DATA.PN_SUFFIX Not Like

z)

GROUP BY PART_NUMBER_DATA.PN_MAIN,
*" & [PN_SUFFIX]

WITH OWNERACCESS OPTION;

154

Query Description:

Update the records in TMP_Shp with the information
from TMP_Ret and TMP_Ret2 for part numbers that
shipped during the month.

SQL Code:
<CNTL>ENTER=Newline

UPDATE DISTINCTROW TMP
vy _Shp, TMP_Ret,
TMP_Shp INNER JOIN TMP_Ret ON
TMP_Shp.PART_NO = TMP, denn no,
TMP_Ret LEFT JOIN TMP_Ret2 ON
T™P_| _Ret.part_no = TMP Rdzput no,
TMP_Shp INNER JOIN TMP_Ret ON
TMP_Shp.CUST_ID = TMP, Rdeuwom.r d,
TMP_Ret LEFT JOIN TMP_| ‘Ret2 ON
TMP Ret.custorner_id = TMP, _Ret2.customer_id,
T™MP_ _Shp INNER JOIN TMP_| "Ret ON
TMP_Shp.SHIP_MTH 2 TMP_ _Ret.month,
TMP_Ret LEFT JOIN TMP_Ret2 ON
TMP_Ret.month = TMP_Ret2.month

SET TMP _Shp. RETURNED = R
TMP_Shp.REL_2MTH RETU[;:J‘;- SHratumed.
[TMP_Ret2], (rd 2mth_retums}

WITH OWNERACCESS OPTION;

Query Name: [ShrtUpdate2]

Query Description:

Code:
saL <CNTL>ENTER=Newiine

Update existing records in SHIPS_RETS_DATA with
information from TMP_Shp.

UPDATE DISTINCTROW SHIPS_RETS_DATA,
TMP_Shp,

SHIPS_RETS_DATA INNER JOIN TMP_Shp ON
SHIPS_RETS_DATA.PART_NO =

T™P SmPART NO,

SHIPS_RETS_DATA INNER JOIN TMP_Shp ON
SHIPS_| _RETS._ _DATA.CUST_|D =

TMP, SN)CUST D,

SHIPS_RETS_DATA INNER JOIN TMP_Shp ON
SHIPS_RETS_DATA.SHIP_MTH =
TMP_Shp.SHIP_MTH

SET SHIPS_RETS_DATA.SHIPPED =

(TMP_Shp] [SHIPPED],
SHIPS_RETS_DATA.RETURNED =

[TMP_Shp).(RETURNED],

SHIPS_RETS_DATA.REL_2MTH_RETURNS =

[TMP_Shp).(REL_2MTH_RETURNS]

WHERE ((TMP_Shp.SHIP_MTH =
(Forms]i[Update_2]{{month1])

WITH OWNERACCESS OPTION;

155

Query Nama: [ShrtUpdate3

Query Description:

SQL Code:
<CNTL>ENTER=Newiine

Set quality = 0% In QUAL_MTH for those part
numbers where

[quality retums] >= [shipped]

during the month.

UPDATE DISTINCTROV/ QUAL_MTH
SET QUAL_MTH.quality = 0

WHERE ((QUAL_MTH.qual_retums >=
QUAL_MTH.shipped) AND (QUAL_MTH.month =
[Forms]i[Update_2]{month1]))

WITH OWNERACCESS OPTION;

156

Option Compare Database 'Use database order for string comparisons
Option Explicit

MODULE FOR UPDATING THE MONTHLY MTBF INFORMATION
USING THE 5-MONTH WINDOW OF RUN HOURS ALGORITHM

SOURCE TABLES: MTBF_5TMH
SHIPS_RETS_DATA

' TEMPORARY TABLES: TMP_Mtbf
' TMP_t1
' TMP_t2
' TMP_t3
' TMP_t4

UPDATED TABLES: MTBF_S5MTH

Function MTBF (way)

Dim a, upform As Form

Dim temp1 As String, temp2 As String, temp3 As String
Dim temp4 As String, temp5 As String

Set upform = [Forms]![Update_4]
templ = "TMP_t1": temp2 = "TMP_t2": temp3 = "TMP_t3"
temp4 = "TMP_t4": temp5 = "TMP_Mtbf"

== [Set values of relevant months for calculations] ==

upform("month2") = GetNewMonth(upform("month1"), -4)
'Set earliest month for returns.
upform("month3") = GetNewMonth(upform("month1"), -2)
'Set latest month for run hours.
upform("month4”) = GetNewMonth(upform("month1"), -6)
'Set earliest month for run hours.
upform("month5") = GetNewMonth(upform("month1"), -1)
'Set previous MTBF month.
upform("message") = "Starting update™: DoCmd RepaintObject
DoCmd SetWarnings False 'Turn off warnings.

'2== [Set up TMP_Mtbf Table to receive update totals] =

S e v e e e et e e e e e S e S e S i A S e S e A S St S s ST S A S e AR et Y S P S S S S St D S S S e e S P e S e S SO e e
Pl e e e e S e e S e

a = SuperQueryMaster("MtbfMakel", way)
'Create table TMP_Mtbf with previous month data from MTBF_S5MTH.

'3== [Get run hour totals for this month into TMP_Mtbf] ==

a = SuperQueryMaster("MtbfInsert1", way)

'Get 1-month run hrs for last 5-months of installed base into TMP_Mtbf.
a = SuperQueryMaster("MtbfMake2", way)

'Add run hours from previous MTBF and send total to TMP_t1 Table.
a = SuperQueryMaster("MtbfUpdatel”, way)

‘Update TMP_Mtbf run hours from TMP_t1 values for this month.
a = DeleteTable(temp1l, way) 'Select and delete the TMP_t1 Table.
upform("message”) = "Got run hours": DoCmd RepaintObject

'4== [Get reliability returns for this month into TMP_Mtbf] ==

a = SuperQueryMaster("MtbfMake3", way)
'Get 5-month returns from SHIPS_RETS_DATA into TMP_t2 Table.
a = SuperQueryMaster("MtbfUpdate2", way)
'Update TMP_Mtbf returns from TMP_t2 values for this month.
a = DeleteTable(temp2, way)
‘Select and delete the TMP_t2 Table.
upform("message") = "Got returns": DoCmd RepaintObject

a = SuperQueryMaster("MtbfUpdate3", way)

'Set MTBF = (run_hours)/(returns) where returns are greater than zero.
a = SuperQueryMaster("MtbfUpdate4", way)

'Set MTBF = 1,000,000 where returns=0 and run_hours>0.
upform("message") = "Calculated MTBF": DoCmd RepaintObject

'6== [Get installed population values into TMP_Mtbf Table] ==

a = SuperQueryMaster("MtbfMake4", way)

'Get installed population from SHIPS_RETS_DATA into TMP_t3 Table.
a = SuperQueryMaster("MtbfUpdate5", way)

'Update TMP_Mtbf installed population from TMP_t3 values.
a = DeleteTable(temp3, way)

'Select and delete the TMP_t3 Table.

'7== [Get total shipment values into TMP_Mtbf Table] ==

a = SuperQueryMaster("MtbfMake5", way)

158

'Get total shipments from SHIPS_RETS_DATA into TMP_t4 Table.
a = SuperQueryMaster("MtbfUpdate6”, way)

'Update TMP_Mtbf total shipments form TMP_t4 values.
a = DeleteTable(temp4, way) 'Select and delete the TMP_t4 Table.
DoCmd SetWarnings True ‘Turn on Warnings.

'8== [Put the TMP_Mtbf info into MTBF_SMTH and delete TMP_Mtbf] ==

upform("message") = "Updating MTBF_SMTH": DoCmd RepaintObject
a = SuperQueryMaster("MtbfUpdate7”, way)
'Update MTBF_SMTH with values from TMP_Mtbf.
a = SuperQueryMaster("MtbfDeletel", way)
'Delete records from TMP_Mtbf that already were updated in
MTBF_S5MTH.
a = SuperQueryMaster("MtbfInsert2", way)
'Instert records from TMP_Mtbf that were not already present in
MTBF_5MTH.
a = DeleteTable(temp5, way) 'Select and delete the TMP_Mtbf Table.
upform("message") = "Update completed”: DoCmd RepaintObject

End Function

159

Query Name: [MtbDelete |

Query Description:

Deletes records in TMP_Mtbf that are aiready updated
in MTBF_SMTH.

SQL Code:
<CNTL>ENTER=Newiine

DELETE DISTINCTROW TMP_Mtbf.*

FROM TMP_Mtbf, MTBF_SMTH,
TMP_Mibf INNER JOIN MTBF SMTH ON
T™P_ _MIb{.PART, NOIMTBF _SMTH.PART_NO,
TMP_ " Mtbf INNER JOIN MT8F SMTH ON
TMP_Mtb{.CUST, _I0 = MTBF SMTH CUST_ID,
TMP_Mtbf INNER JOIN MTBF. " _SMTH ON
TMP_MIbL.SHIP _MTH = MTBF_SMTH.SHIP_MTH

WITH OWNERACCESS OPTION;

Query Name: {Mtbfinsertt

Query Description:

Gats total drives for most recent 5 months of instailed
population from SHIPS_RETS_DATA. it then

mmwmmmmm-\d
inserts this information into new TMP_Mtbf records
for the update month.

SQL Code:

Pnssn'r INTO TMP_Mibf

(PART_NO, CUST_ID, RUN_HRS, SHIP_MTH)
SELECT DISTINGTROW
SHIPS_RETS_DATA.PART_NO,
SHIPS_RETS_DATA.CUST_ID,
730°Sum(SHIPPED] AS run_hvs,
{Forms}i[Update_4]i{month1] AS month

FROM SHIPS_RETS_DATA

WHERE ((SHIPS_RETS_DATA.SHIP_MTH Between
[Forme}![Update_4]i{month4] And
[Forms)!{Update_4}![month3)
GROUP BY SHIPS_RETS_DATA.PART_NO,
SHIPS_RETS_DATA.CUST_ID

WITH OWNERACCESS OPTION;

<CNTL>ENTER=Newiine

160

Query Name: [Mtbfinser2 |

Query Description:

Insert records in TMP_Mtbf for update month that
idon't aiready exist in MTBF_SMTH.

SQL Code:
<CNTL>ENTER=Newliine

INSERT INTO MTBF_SMTH

(PART_NO, CUST_ID, SHIP_MTH, RUN_HRS,
RETURNS, MTBF, INST_POP, TOT_SHIPS)
SELECT DISTINCTROW TMP_Mtbf.PART_NO,
TMP_Mtb{.CUST_ID, TMP_Mtbf.SHIP_MTH,
TMP_Mtb.RUN_HRS, TMP_Mtb!. RETURNS,
TMP_Mtb{. MTBF, TMP_MIbf.INST_POP,
TMP Mtbf.TOT_SHIPS

FROM" T™MP_| MUl

WHERE ((TMP _Mtb(.SHIP_MTH =
[Forms)!{Update_4]![month1]))

WITH OWNERACCESS OPTION;

Query Name:

Query Description:

Creates the temporary table TMP_Mtbf with previous
month MTBF information. Note: previous month run
hours are used as part of the update aigorithm.

SQL Code:
<CNTL>ENTER=Newiine

SELECT DISTINCTROW MTBF_SMTH.PART_NO,
MTBF_SMTH.CUST_ID, MTBF_SMTH.SHIP_MTH,
MTBF_SMTH.RUN_HRS, MTBF_SMTH.RETURNS,
MTBF_SMTH.MTBF, MTBF_SMTH.INST_POP,
MTBF_SMTH.TOT_SHIPS INTO TMP_Mib(

FROM MTBF_SMTH

WHERE ((MTBF_SMTH.SHIP_MTH =
[Forms}i[Update_4Ji{monthSD)

WITH OWNERACCESS OPTION;

161

. SQi. Code:
Query Name: [MtbMake2] at <CNTL>ENTER=Newiine
SELECT DISTINCTROW TMP_Mtb{.PART_NO,
TMP_Mtb!.CUST_ID, Sum(TMP_Mtbf.RUN_HRS)
AS SUMOfRUN_HRS, [Forms]!{Update_4]!{month1]
AS month INTO TMP_t1
Query Description: FROM TMP_Mtbf
WHERE ((TMP_M{.SHIP_MTH Between
Creates a temporary table with [Forms}!{Update_4]![mortth5] And
[update_month_runhrs] = [previous_month_runhrs] + {Forms]![Update_4}![month1]))
{one_month_runhre, fw_hﬂ.f’.ml Thisisthe | |GROUP BY TMP _Mtbf.PART_NO,
desired run hours total per the 5 month window TMP_MIbI.CUST_ID
aigorithm. WITH OWNERACCESS OPTION;
Query Name: {MtbMake3 1 SQL Code: <CNTL>ENTER=Newl
SELECT DISTINCTROW
SHIPS_RETS_DATA.PART_NO,
SHIPS_RETS_DATA.CUST_ID,
Sum(SHIPS_RETS_DATA.REL_2MTH_RETURNS)
Query Description: AS SUMOfREL_2MTH_RETURNS,
[Forms]i{Update_4]![month1] AS month
Creates a temporary table with the reliabillty returns INTO TMP_12

from the most recent S months by pert number.

FROM SHIPS_| RETS_DATA

WHERE ((SHIPS_RETS_DATA.SHIP_MTH Between
(Forme)![Update_4]Ji{month2] And
{Forme}i{Updats_4]!{month1]))

GROUP BY SHIPS_RETS_DATA.PART_NO,
SHIPS_RETS._| DATA.CUST 0

WITH OWNERACCESS OPTION;

162

Query Name: (MtbMake4

Query Description:

Creates a temporary table with [installed
Sum([shipped] - [retumns]) up to 2-months ago.

|_popuistion] =

SQL Code:
<CNTL>ENTER=Newiine

SELECT DISTINCTROW
SHIPS_RETS_DATA.PART_NO,
SHIPS_RETS_DATA.CUST_ID,
Sum(ISHIPPEDHRETURNEDY) AS inst_pop,
[Forms)!{Update_4]l[month1] AS month

INTO TMP_3

FROM SHIPS_RETS_DATA

WHERE ((SHIPS_RETS_DATA.SHIP_MTH <=
[Forms)!{Update_4]!{month3])

GROUP BY SHIPS_RETS_DATA.PART_NO,
SHIPS_RETS_DATA.CUST_ID

WITH OWNERACCESS OPTION;

SQL Code: <CNTL-ENTER=Newline

Crestss a tamporary table with ftotal shipped] =
Sum([shipped]) up to the update month.

SELECT DISTINCTROW
SHIPS_RETS_DATA.PART_NO,
SHIPS_RETS_DATA.CUST_ID,
Sum(SHIPS_RETS_DATA.SHIPPED) AS tot_ships,
[Forma]![Update_4]i[montn1] AS month

INTO TMP_t4

FROM SHIPS_RETS_DATA

WHERE ((SHIPS_RETS_DATA.SHIP_MTH <=
[Forms]!{Update_4]![month1])

GROUP BY SHIPS_RETS_DATA.PART_NO,
SHIPS_RETS_DATA.CUST_ID

WITH OWNERACCESS OPTION;

163

Query Nama: [MtbfUpdate1]

Query Description:

SQL Code:

<CNTL>ENTER=Newilne

UPDATE DISTINCTROW TMP_Mtbf, TMP_t1,
TMP_Mtbf INNER JOIN TMP_t1 ON
TMP_Mtbf.PART_NO = TMP_t1.PART_NO,
TMP_Mtbf INNER JOIN TMP_t1 ON
TMP_Mtbf.CUST_ID = TMP_t1.CUST_ID,
TMP_Mibf INNER JOIN TMP_t1 ON

Updates the update month run hours for ail part
numbers in TMP_Mtbf, with the correct values
contained in TMP_t1.

TMP_Mtbf.SHIP_MTH = TMP_t1.month
SET TMP_Mtbf RUN_HRS = [SumOfRUN_HRS]
WITH OWNERACCESS OPTION,;

Query Name: (MtbfUpdate2)

Query Description:

Update the reliabiity returns for the update month in
TTMP_MEDI, from the values In TMP_I2.

Code:
saL <CNTL>ENTER=Newiine

UPDATE DISTINCTROW TMP_Mtf, TMP_2,
TMP_Mb! INNER JOIN TMP_{2 ON
TMP_MUI.PART_NO = TMP_2.PART_NO,
TMP_Mtbf INNER JOIN TMP_2 ON
TMP_M{.CUST_ID = TMP_R2.CUST_ID,
TMP_M{ INNER JOIN TMP_t2 ON
TMP_Mb{.SHIP_MTH = TMP_t2. month

SET TMP_MW(.RETURNS =
[SumOREL_2MTH_RETURNS]

WITH OWNERACCESS OPTION;

164

Query Name: [MtbfUpdate3] SQL Code:

<CNTL>ENTER=Newline
UPDATE DISTINCTROW TMP_Mtbf
SET TMP_Mtbf MTBF = (RUN_HRSYIRETURNS]
WHERE (TMP_Mtbf.SHIP_MTH =
[Forms)i[Update_d}i{month1]) AND
Query Description: (TMP_Mtbf. RETURNS>0))
WITH OWNERACCESS OPTION;
Update MTBF in TMP_Mtbf to be
(run_hrs)/(returns)
for the current update month, where (retumns)>0.
Query Name: [MibrUpdates | 8QLCode: <CNTL>ENTER=Newine

[UPDATE DISTINCTROW TMP_Mtb(
SET TMP_MtbI.MTBF = 1000000
WHERE ((TMP_M{.SHIP_MTH =
[Forme)![Updats_4]![month1]) AND
Query Description: _MIb{.RETURNS=0) AND
(TMP_MII.RUN_HRS>Q))

Update MTBF in TMP_MbY to be 1,000,000 where WITH OWNERACCESS OPTION;
(returns)=0 and (run_hrs)>0.

165

Query Name: [MtbfUpdates]

Query Description:

deaumomuedpopulatbnforﬂnupdatemm
in TMP_Mb{ from the values in TMP_t3.

SQL Code:
<CNTL>ENTER=Newiing

UPDATE DISTINCTROW TMP_Mtbf, TMP_3,
TMP_Mtbf INNER JOIN TMP_{3 ON
TMP_Mtb{.PART_NO = TMP_{3.PART_NO,
TMP_Mtbf INNER JOIN TMP_t3 ON
TMP_Mtb{.CUST_ID = TMP_3.CUST_ID,
TMP_Mtbf INNER JOIN TMP_t3 ON
TMP_Mb!.SHIP_MTH = TMP_t3.month

SET TMP_M{.INST_POP =
[TMP_t3].[inst_pop}

WITH OWNERACCESS OPTION;

Query Description:

sa <CNTL>ENTER=Newiine

Update the total shipped for the updste month in
TMP_Mtb{ from the vaiues in TMP_t4.

UPDATE DISTINCTROW TMP_MY, TMP_t4,
TMP_Mibf INNER JOIN TMP_t4 ON
TMP_MIA.PART_NO = TMP_I4.PART_NO,
TMP_Mbf INNER JOIN TMP_t4 ON
TMP_MBA.CUST_ID = TMP_14.CUST_ID,
TMP_Mbf INNER JOIN TMP_t4 ON
TMP_MIb(.SHIP_MTH = TMP_\4.month

SET TMP_Mb{.TOT_SHIPS =

\WITH WNERACCESS OPTION;

166

o 7 S Code:
Query Name: [MibfUpdate J oL <CNTL>ENTER=Newiine

UPDATE DISTINCTROW MTBF_SMTH, TMP_MtbY,
MTBF_SMTH INNER JOIN TMP_Mtbf ON
MTBF_SMTH.PART_NO = TMP_MIb{.PART_NO,
MTBF_SMTH INNER JOIN TMP_Mtbf ON

Query Description: MTBF_SMTH.CUST_ID = TMP_Mtbf.CUST_ID,

MTBF_SMTH INNER JOIN TMP_Mtbf ON

If records for the update month exst in MTBF_SMTH, | | MTBF_SMTH.SHIP_MTH = TMP_MIb{.SHIP_MTH

update them to the values in TMP_Mtbf. SET MTBF SMTH. RUN HRS =
[TMP_Mtb().[RUN_HRS],
MTBF_SMTH.RETURNS =
[TMP_Mtbf).[RETURNS], MTBF_SMTH.MTBF =
[TMP_Mtbf).[MTBF), MTBF_SMTH.INST_POP =
[TMP_Mbi].[INST_POP),
MTBF_SMTH.TOT_SHIPS =
[TMP_M{).[TOT_SHIPS]

WHERE ((TMP_Mtb!.SHIP_MTH =
[Forms)I{Update_4]!{month1]))

WITH OWNERACCESS OPTION;

167

168

Option Compare Database 'Use database order for string comparisons
Option Explicit

MODULE FOR UPDATING THE REPORT MODULE INFORMATION
FROM THE VARIOUS SOURCE TABLES

SOURCE TABLES: SHIPMENTS (SOURCE.MDB)
DELV_MTH (SOURCE.MDB)
QUAL_MTH (SOURCE.MDB)
MTBF_SMTH (SOURCE.MDB)

PART_INE.TXT (Text File)
CUST_ACC.TXT (Text File)
Revision History = (CONFIG.MDB)

' TEMPORARY TABLES: TMP_Cust

' TMP_Part

' TMP_Revs

' UPDATED TABLES: Dehvery Transactions (NEWDB.MDB)
' Delivery

' Delv_Aggregates

1 Quality ”
' Qual_Aggregates

' Reliability "
' Relb_Aggregates "

! Tot_Pop_Quality "
' Tot_Pop_Reliability "
! Cust_Info_Table "

Function REPT (way)
Dim a, infilel As String, infile2 As String
Dim templ As String, temp2 As String, temp3 As String, upform As Form

Set upform = [Forms]![Update_5]
templ = "TMP_Cust": temp2 = "TMP_Part": temp3 = "TMP_Revs"
infilel = upform("import_file"): infile2 = upform("import_file2")

'1== [Set additional values for the update] ==

upform("month2") = GetNewMonth(upform("month1"), -5)
'Set value for a month five months before current.

169

upform("month3") = GetNewMonth(upform("month1"), -2)
'Set value of earliest month for aggregates.
upform("firstday") = GetFirstDay(upform("month1"))
'Get the first day for the desired update month.
upform("lastday") = GetLastDay(upform("month1"))
'Get the last day for the desired update month.
DoCmd SetWarnings False 'Turn warning messages off.
upform("message") = "Starting update"”: DoCmd RepaintObject

a = GetImportDelim(infile1l, temp1, "cs_file_importer_WF", way)
'‘Copy CUSTOMERS to TMP_Cust.

a = GetImportDelim(infile2, temp2, "cs_file_importer_WF", way)
'Copy PART_INFO to TMP_Part.

a = SuperQueryMaster("ReptMakel", way)
'Create new TMP_Revs Table.

"2== [Update the Delivery_Transactions table] ==

'————_—————— . S — S S S— S S— - S ST —— S S—" — =, S— " S— V- C— S —— S—" . S— —— — V" S— - — ey —

a = EmptyTable("Delivery_Transactions", way)'Delete all records from

Delivery_Transactions.
a = SuperQueryMaster("ReptInsertl", way)
‘Update Delivery_Transactions from SHIPMENTS.

= [Update the Delivery and Delv_Aggregates Tables] ==

e e i e et e i s e s < e v e e e S T S P A e S Sy S R S P Sy S S S S TS S SR S S e S S SR S s S S S
= o s e =

a = EmptyTable("Delivery", way) 'Delete all records from Delivery.
a = SuperQueryMaster("ReptInsert2", way)
'Append 6-month updated info to Delivery from
DELV_MTH/TMP_Part.
a = EmptyTable("Delv_Aggregates"”, way) '‘Delete all records from
Delv_Aggregates
a = SuperQueryMaster("ReptInsert3", way)
'Append new aggregate info for the month from Delivery.
upform("message") = "Delivery updated"”: DoCmd RepaintObject

== [Update the Quality and Qual_Aggregates Tables] ==

a = EmptyTable("Quality”, way) 'Delete all records from Quahty
a = SuperQueryMaster("ReptInsert4", way)
'Append 6-month updated info to Quality from QUAL_MTH/TMP_Part.
a = EmptyTable("Qual_Aggregates”, way) 'Delete all records from
Qual_Aggregates.
a = SuperQueryMaster("ReptInsert5", way)
'Append new aggregate info for the month to Qual_Aggregates from

Quality.
upform("message") = "Quality updated": DoCmd RepaintObject

170

'5== [Update the Reliability and Relb_Aggregates Tables] ==

S e o s s S S o S A S D S S S A S S S S S S S S S S S S S e M S S S S P S i AR S G P S S S A S S S S S S S S S S e S
— T e e s s s s e S S S S S S i S e S i S S o S S S S A S S D S D S S S S S S S S S S S S S S S o S S e o

a = EmptyTable("Reliability", way) 'Delete all records from Reliability.
a = SuperQueryMaster("ReptInsert6", way)
'‘Append 6-month updated info to Reliability from
MTBF_S5MTH/TMP_Part.
a = EmptyTable("Relb_Aggregates", way) 'Delete all records from
Relb_Aggregates.
a = SuperQueryMaster("ReptInsert7", way)
'Append new aggregate info for the month to Relb_Aggregates from
Reliability.
upform("message") = "Reliability updated": DoCmd RepaintObject

'6== [Update the Total_Pop_Quality and Total_Pop_Reliability Tables] ==

a = EmptyTable("Total_Pop_Quality", way) 'Delete all records from
Total_Pop_Quality.
a = SuperQueryMaster("ReptInsert8", way)
'Add new population information from Quality.
a = EmptyTable("Total_Pop_Reliability", way) 'Delete all records from
Total_Pop_Reliability.
a = SuperQueryMaster("ReptInsert9"”, way)
'Add new population information from Reliability.
upform("message”) = "Populations updated": DoCmd RepaintObject

'7== [Update the By_Type_Quality and By_Type_Reliability Tables] ==

e i s i e i s ey e e S e e s e S e S s S S e i S S S S S S S S P M 7S S Sy e S e S VEED S LA S i S i S e e Sl S e S S S S e e S

a = EmptyTable("By_Type_Quality", way) 'Delete all records from
By_Type_Quality.
a = SuperQueryMaster("ReptInsertA", way)
'Append distribuitor info to By_Type_Quality from Quality/TMP_Cust.
a = SuperQueryMaster("ReptinsertB", way)
'Append non-distribuitor info to By_Type_Quality from
Quality /TMP_Cust.
a = EmptyTable("By_Type_Reliability", way) 'Delete all records from
By_Type_Reliability.
a = SuperQueryMaster("ReptInsertC", way)
'Append distribuitor info to By_Type_Reliability from
Reliability/ TMP_Cust.
a = SuperQueryMaster("ReptInsertD", way)
'Append non-distribuitor info to By_Type_Reliability from
Reliability/ TMP_Cust.
upform("message") = “Customer types updated”: DoCmd RepaintObject

171

'8== [Update the Cust_Info_Table] ==

a = EmptyTable("Cust_Info_Table", way) 'Delete all records from
Cust_Info_Table.

a = SuperQueryMaster("ReptInsertE", way)
'Add latest info to Cust_Info_Table from
TMP_Cust/TMP_Revs/TMP_Part.
a = DeleteTable(temp1, way) 'Delete the TMP_Cust table.
a = DeleteTable(temp2, way) 'Delete the TMP_Part table.
a = DeleteTable(temp3, way) 'Delete the TMP_Revs table.

upform("message") = "Update completed": DoCmd RepaintObject
DoCmd SetWarnings True

End Function

172

Query Name: [Reptinsertt 1

Query Description:

inserts the shipping details information for the update
'month into the Delivery_Transactions table.

SQL Code:
<CNTL>ENTERsNewiine

INSERT INTO Delivery_Transactions (part_number,
customer_id, month, po_no, line_number, order_qty,
ship_qty, sched_date, ship_date, req_date,
SO_number, var_gty, var_days, late_flag)

SELECT DISTINCTROW SHIPMENTS.PART _NO,
SHIPMENTS.CUST_ID, [Forms]!{(Updats_! S]![monthﬂ
AS month, SHIPMENTS.PO _NO,
SHIPMENTS.SO_LINE,
SHIPMENTS.ORDER_QTY,

SHIPMENTS.SHIP. QTY

SHIPMENTS. SCHED DATE,

SHIPMENTS.SHIP, DATE

SHIPMENTS.REQ_| DATE

SHIPMENTS.SO_ NUMBER

SHIPMENTS. VAR QTY, SHIPMENTS.VAR_DAYS,
SHIPMENTS. LATE FLAG

FROM SHIPMENTS

WHERE ((SHIPMENTS.SHIP_DATE Between
[Forms]![Update_5]!{firstday] And
[Forms]!{Update_S}iflestday]))

WITH OWNERACCESS OPTION;

Query Name: |Reptingert2 I

Query Description:

inserts the delivery information by part number for the
months up to the update month into the Delivery

SQL Code:

rmsem INTO Delivery
(part_number, customer_id, month, totsl_orders,

lats_ordecs, On_time_percentage)

SELECT DISTINCTROW
DELV_MTH.part_number,
DELV_MI’H.W_H.

DELV_MTH.month,
DELV_MTH.total_orders,
DELV_MTH.late_orders,
DELV_| _MTH. On_time,
FROM DELV MTH, TMP _Pust,
DELV_| MTH LEFT JOIN TMP Part ON
DELV_| MTH, part_number = T™P _Part PART_NO

WHERE ((DELV_MTH.month Between
[Forma)i{Update_S]!{month1] And
{Forms!{Update_Sji{month2])

'WITH OWNERACCESS OPTION;

173

Query Namae: [Reptinsert3]

Query Description:

[—demryhfornuﬁonforpanmmm
it into Detv_Aggregates

SQL Code:
<CNTL>ENTER=sNewiine

INSERT INTO Deiv_

(part_number, customer_id, month, capacity,

total_orders, late_orders, ddvuy_w'ogﬁ)

SELECT DISTINCTROW

Delivery.part_number, Delivery.customer_id,

[Forms)i{Update_S]!{month1] AS month,

TMP_Part. CAPACITY,

Sum(Dclivorytohl orders) AS SumOftotal_orders,

Sum(Delivery.late_orders) AS SumOfiate_ otdon

(1<{Sum([late_orders]y/Sumy[total_ ordml))) AS
aggregate

delivery_
FROM Delivery, TMP_Part,
Delivery LEFT JOIN TMP_Part ON
_number = TMP_Part. PART_NO
'WHERE ((Dollvuy month Between
{Forms]{{Update_S]i[month1] And
[meum_smmmm
GROUP BY Delivery.part_number,
Detivery.customer_id, TMP_| MCAPACITY
WITH OWNERACCESS OPTION;

Query Name: [Reptinsert4 |

Query Description:

Inserts the quaiity information by part number into the
Quaiity table for the six months up to the updste
month.

SQL Code:
<CNTL>ENTER=Newiine

INSERT INTO Quailty (part_number, customer_id,
capacity, month, shipped, qual_retums, quality,

)

SELECT DISTINCTROW QUAL_MTH.part_number,
QUAL_MTH.customer_id, TMP_Part. CAPACITY,
QUAL_MTH.month, QUAL_MTH.shipped,
QUAL_MTH.quel_retums, QUAL_MTH.quallty,
TMP_Part.QUAL_SPEC

FROM QUAL_MTH, TMP_Part,

QUAL_MTH LEFT JOIN TMP_Part ON
QUAL_MTH.part_; number = TMP_Part. PART_NO

WHERE ((QUAL_MTH.customer_| Jd Not Like “Z*)

AND (QUAL_MTH.month Between

[Forms)!{Update_S]i{month2] And

[Forma]i[Update_5]![month1]) AND

((shipped]+iqual_retume]>0))

WITH OWNERACCESS OPTION;

174

Query Name: {ReptinsertS]

Query Description:

SQL Code:
<CNTL>ENTER=Newiine

INSERT INTO Qual_Aggregates (part_number,
customer_id, month, capacity, total_shipped,

qualty_returns, Quaiity_aggregate)
SELECT DISTINCTROW Quality.part_number,
Quality.customer_id, [Formsj!i{Updats_5]![month1] AS

inserts aggregate information from the Quality table
into Qual_Aggregates.

month, Quality.capacity, Sum(Qualilty.shipped) AS
SumOfshipped, SumyQuatity.qual_retums) AS
SumOfqual_retums,
(1-(Sum([qual_retums]ySum({shipped])) AS
quality_aggregate

FROM Quality

WHERE ((Quality.month Between
[Forms)![Update_S]i{month1] And
[Forms]![Update_S}![month3}))

GROUP BY Quality.part_number, Quaity.customer_id,
Quality.capacity

WITH OWNERACCESS OPTION;

Query Narne: (Reptinserts §

Quary Description:

!nm:uhmmmmwmwm
Reiiabilty table for the six months up to the update
imonth,

$SQL Code:

INSERT INTO Reliabilty
(part_number, customer_id, month, run_hrs,
rel_retums, mibf, inst_pop, tot_ships, capacity,

specification
SELECT DISTINCTROW MTBF_SMTH.PART_NO,
MTBF_SMTH.CUST_ID, MTBF SMTHSHIP MTH,
MTBF SMTH.RUN HRS.MTBF MHRETURNS
M‘I’BF SMTH.MTBF, MTBF_SMTH.INST_POP,
MTBF SMTH.TOT_SHIPS, M Part.CAPACITY,
T™MP P-t.M'rBF SPEC
{FROM | MTBF_ SMTH, TMP _Part,
MTBF_ SMTH LEFT JOIN TMP Part ON
MTBF SMTH.PART_| NOtTMP Put.PART_NO
WHERE ((MTBF_ SMTH. CUST_ 1D Not Like *-Z*)
AND (MTBF_MH.SHIP_MTH Between
[Forms]{[Update_S]![month2) And
[Forms]i[Update_5]i[month1])
WITH OWNERACCESS OPTION;

<CNTL>ENTER=Newiine

175

Query Name: [Reptinsert?]

Query Description:

SQL Code:
at <CNTL>ENTER=Newiine

Inserts the aggregate rellability information from the
Reilability table into Relb_Aggregates.

INSERT INTO Reib_Aggregates
(part_number, customer_id, month, capacity,
totll run_hrs, reilability_retums, refiability_aggregate,

tot_ships)

SELECT DISTINCTROW Reliability. part_number,
Rellability.customer_id,
(Fm]l[Upddc_S]l(mnthﬂ AS month,
Reliability.capacity, Rellability.run_hrs,
Reliability.rel_returmns, Rellability.inst_pop,
Reliability tot_ships

FROM Reliability

WHERE ((Retiability.month =

[Forms}!{Update_S}]![month1]))

'WITH OWNERACCESS OPTION;

Query Name: {Reptinserts |

Query Description:

F;ummmmmmmm
otal_Pop_Quality. Information is aggregated by
product capacilly.

Code:
saL <CNTL>ENTER=Newiine

INSERT INTO ToU_Pop Quailty (capachty,
‘NP mih, shipped, retumed, quallty, mex_qual,

min_qual, specification)

SELECT DISTINCTROW Quaiity.capacity,
Quaiity.month, Sum(Quallty.shipped) AS
SumOfshipped, Sum(Quallly.qual_retumne) AS
SumOfqual

Avo(My m) AS AngfSpoM
FROM Quallty
GROUP BY Quality.capaclly, Quality.month
WITH OWNERACCESS OPTION;

176

Query Name: [Reptinserts]

Query Description:

SQL Code: '
<CNTL>ENTER=Newiine

INSERT INTO Total_Pop_Reliability

(capacity, ship_mth, run_hvs, returns, reliability,
max_rel, min_rel, spociﬂadon)

SELECT DISTINCTROW Refiability.capacity,
Reliability. month, Sum(Rellabilty.run_hrs) AS

Inserts 6 month reliability information from Reliability
into Total_Pop_Rellability. (nformation is aggregated
by product capacity.

SumOfrun_hrs, Sum(Reliabilty.rel_returns) AS
SumOfrei_retumns, Sum([run_lws]ySum([rel_retums])
AS mtbf, Max(Refiability. mtb{) AS MaxOfmtbf,
Min(Reliability. mtbf) AS MiInOfmtbf,
Avg(Retiability. spacification) AS AvgOfspecification
FROM R
GROUP BY Reiiability.capecity, Rellabiity.month
WITH OWNERACCESS OPTION;

[ReptinsertA J

Query Description:

saL <CNTL>ENTER=Newline

INSERT INTO By_Type_Quality
(capacity, ship_mth, shipped, returned, quailty,
mex_qual, min_qual, cust_type)

SELECT DISTINCTROW Quaiity.capacily,
Quality.month, Sum(Quailty.shipped) AS
SumOfshipped, Sum(Quailty.quai_returns) AS

rmmmmwumm
into the By_Type_Quailty table.

SumOfqual_returns,
:::naqd WMASM
mauny'm' MMM’W

AS Bpri
FROM Quality, TMP_Cust,
Quailty INNER JOIN TMP_Cust ON
Quality.customer_id = TMP_Cust. CUST_ID
WHERE ((TMP_Cust.FLAG Uke "DIST™)
GROUP BY Quality.capacity, Quality.month
OWNERACCESS OPTION;

177

Query Name: [ReptinsertB

Query Description:

SQL Code:
<CNTL>ENTER=Newtine

Inserts quality information aggregated for non-
distribultors into the By_Type_Quality table.

INSERT INTO By_Type_Quality
(capacity, ship_mth, shipped, retumed, qualiity,
max_qual, min_qual, cust_type)

SELECT DISTINCTROW Quality.capacity,
Quality.month, Sum(Quaiity.shipped) AS
SumOfshipped, Sum(Quality.qual_retums) AS
SumOfqual_retums,
1-Sum({qual_returns]ySum([shipped]) AS quaiity,
Max(Quality.quality) AS MaxOfquality,
Min(g;:lty .quality) AS MInOfquailty, “Others”

FROM Quality, TMP_Cust,

Quality LEFT JOIN TMP_Cust ON
Quality.customer_id = T™P _Cust.CUST_ID
WHERE ((TMP_Cult.FLAG Not Like "DIST*™))
GROUP BY Quaiity.capacity, Quality. month

WITH OWNERACCESS OPTION;

Query Name: {ReptinsertC

Query Description:

Inserts reiiabilty information aggregated for
idistribuitors into the By_Type_Reliabillty table.

$QL Code:
<CNTL>ENTER=Newiine

INSERT INTO By_Type_Reliabillty

(capacity, ship_mth, run_hre, retums, reliability,
mex_rel, min_rel, cust_type)

SELECT DISTINCTROW Rellabiilty.capacity,
Reliability.month, Sum(Reliability.run_hrs) AS
SumOfrun_hre,

Bxprl
FROM Reliabiiity, TMP_Cust,
Reliabilty INNER JOIN TMP_Cust ON
Reliabiity.customer_| BOTMP Cust.CUST_ID
WHERE ((TMP_CustFLAG Like *DIST*"))
GROUP BY Reliabillty.capacily, Rellsbilty.month
WITH OWNERACCESS OPTION;

178

Query Name: [ReptinsertD 1

Query Description:

SQL Code:
<CNTL>ENTER=Newline

inserts reliability information aggregated for non-
distribuitors into the By_Type_Reliability table.

INSERT INTO By_Type_Reliabiiity
(capacity, ship_mth, run_hrs, retumns, refiabillty,
max_rel, min_rel, cust typo)

SELECT DISTINCTROW Reliabillty.capacity,
Reilability.month, Sum(Reilability.run_lvs) AS
SumOfrun_hrs, Sum(Reliabillty.rel_retumns) AS
SumOfrel_retumns, Sum(frun_hrs])/Sum((rel_retums])
AS mibf, Max(Retiabillty. mtbf) AS MaxOfmibf,

Min(Refiability.mtbf) AS MinOfmtbf, "Others" AS Exprt

FROM Reliability, TMP_Cust,

Reliability LEFT JOIN TMP_Cust ON
Reliability.customer_id = ™P _Cust.CUST_ID

WHERE ((TMP_Cust.FLAG Not Like *DIST™))

GROUP BY Reilabiilty.capacity, Reiisbiilty. month

WITH OWNERACCESS OPTION;

Query Description:

$QL Code: <CNTL>ENTER=Newine

Inserts customer information into the Cust_Info_Tabie.

INSERT INTO Cust_info_Table (Customer_Name,
part_number, customer_id, customer_part_no,
sales_part_no, customer_AE, product_rev, capacly,

gigabytes)

SELECT DISTINCTROW TMP_Cust. CUST_NAME,
TMP_Reve.part_no, TMP_| Reve.customer r_id,
TMP_Revs. M Part. SALES_PART,
TMP_Cust. CUST_AE, TMP_Reve.opt_rev,
TMP_Part. CAPACITY, TMP_Part. GIGABYTES

FROM TMP. _Revs, TMP Clﬂ. TMP_Puart,
TMP_Cust 'RIGHT JOIN TMP_Reve ON
TMP_ " Cust.CUST_ID = TMP, Rmm_ld.
TMP Revs LEFT JOIN TMP_Part ON
T™P_ _Reva.part_no = TMP_| MPART NO

WHERE ((TMP_ Cud.CUST NAME is Not Nulf) AND

(TMP_Revs.part_no Is Not Ntl) AND

(TMP_Revs.customer_id is Not Null) AND

(TMP_Revs.opt_rev Is Not Null))

'WITH OWNERACCESS OPTION;

179

Query Name: (ReptMake1

Query Description:

SQL Code:
<CNTL>ENTER=Newiine

[insert the latest revision information from Revision
History into TMP_Revs.

SELECT DISTINCTROW GetMain(I[Revision
History). INTERNAL PART NUMBER]) AS pert_no,
GetSufx([Revision History].[INTERNAL PART
NUMBER])) AS customer_id, First([Revision
History].[OPTION REVISION]) AS opt_rev,
Max([Revision History).[CCR ACCEPTANCE DATE)
AS acc_date, First([Revision History].[CUSTOMER
PART NUMBER]) AS cust_part

INTO TMP_Revs

FROM [Revision History]

WHERE (([Revision History).[EVALUATION UNIT?]
Like “N**) AND ([Revision History].[OEM MODEL
NUMBER] Not Like "DSP5* And [Revision
History).JOEM MODEL NUMBER] Not Like "RZ7*))
GROUP BY GetMain([Revision History].[INTERNAL
PART NUMBERY]), GetSufi([Revision
History).JINTERNAL PART NUMBER)

HAVING (((GetMain([Revision History]. INTERNAL
PART NUMBER])<>"NONE™))

'WITH OWNERACCESS OPTION;

180

Appendix C

Summary of File Locations

PC Hard Drive (Drive C:)
Installed applications:
Microsoft Access 1.1 Installed
Microsoft ODBC Administrator Installed
DEC Rdb SQL Server Installed

Microsoft Access files:

MAINT.MDB Maintenance tool ACCESS file
NEWDB.MDB Reporting tool ACCESS file
RAWDB.MDB Local PC database file (ACCESS)

PC Network Drive (Drive D:)
CONFIG.MDB Configuration database file (copy)
CUST_DAT.TXT Customer information text file (copy)
PART_DAT.TXT Part number information text file (copy)
CONFIG.COM Command file
LOAD_OUT.DAT Monthly shipments text file (edited copy)
SHIPS.TXT Individual shipments for the month (edited copy)

MAXCIM Network Node:
SUB_FIS.COM File that generates Maxcim output files
MTBEF.FCF Specification file for LOAD_OUT.DAT
OEM_LOAD.FCF Specifiaction file for SHIPS.TXT

Other Network Node:

CONFIG.MDB original in public directory.
RATS.RDB Warranty returns database

181

182

Appendix D
ACCESS BASIC Code

Maintenance Application
FUNCTIONS THAT EXIT TO THE DOS ENVIRONMENT

PROCEDURES CALLED BY THE VARIOUS FORMS
LIBRARY OF QUERY AND DATA TRANSFER FUNCTIONS
FUNCTIONS THAT PLAY SOUNDS

MISCELLANEOUS UTILITY FUNCTIONS

Reporting Application

GENERAL MENU FUNCTIONS

MISCELLANEOUS UTILITY FUNCTIONS

FUNCTIONS FOR CREATING A MAIN REPORT AND A SUB REPORT

183

Option Compare Database 'Use database order for string comparisons

Option Explicit

' FUNCTIONS THAT EXIT TO THE DOS ENVIRONMENT

'===== EXECUTE AN EXTERNAL BATCH USING DECNET COMMAND

Function ExecuteBatch (dclfile As String)

Dim vTargetLoc As String, MyBatFile As Integer

Dim pos As Integer, username As String, password As String

Dim vActionl As String, nodename As String, pathlength As Integer
ReDim filename(9) As String

'—— Send message for incorrect filename —-

If IsNull(dclfile) Or dclfile = " Or Left(dclfile, 1) = "?" Then
MsgBox "You need to specify a batch file to be executed.”, 64, "ExecuteBatch”
Exit Function

End If

'—— Get nodename and insert location for username/password —-
On Error GoTo clean_up

pos = InStr(dclfile, "::")

If pos = 0 Then Exit Function

pos = pos - 1

nodename = Left(ddlfile, pos)

' Get the username and password information —

username = InputBox("Username for " & nodename & ":", "Node where
batch executes")

If username = "" Then Exit Function

password = InputBox("Password for " & nodename & ":", "Node where batch
executes")

If password = " Then Exit Function

'——- Insert username and password into the directory path ——
pathlength = Len(dclfile)

vTargetLoc = nodename & """ & username & " " & password
vTargetLoc = vTargetLoc & """ & Right(dclfile, pathlength - pos)
vActionl = "C:\DECNET\NFT SUBMIT " & vTargetLoc & " >
C:\ACCESS\TESTDATA.LOG"

'-—— Create and execute the batch file ——

184

MyBatFile = 1

Open "C:\ACCESS\TESTDATA.BAT" For Output As MyBatFile
Print #MyBatFile, "ECHO OFF"

Print #MyBatFile, vActionl

Print #MyBatFile, "ECHO Submitting batch process."

Print #MyBatFile, "EXIT"

Close MyBatFile

ExecuteBatch = Shell("C:\ACCESS\TESTDATA.BAT", 4)
MsgBox "Batch job submitted.", 64

clean_up:

' Erase the information on the batch file -——-

Open "C:\ACCESS\TESTDATA.BAT" For Output As MyBatFile
Print #MyBatFile, " "

Close MyBatFile

Exit Function

End Function

Function MonitorLog (logfilename As String)
Dim recordname As String, completestr As String

'-—- Get filename or exit if filename is not correct ——-

On Error GoTo ErrorCheck

If logfilename = "?" Or logfilename = "" Then GoTo NeedFileName
Open logfilename For Input Access Read Shared As #1

'-—- Get the contents of the log file —
Do While Not EOF(1)
Input #1, recordname
completestr = completestr & recordname & Chr(13) & Chr(10)
Loop
Close #1
MonitorLog = completestr
Exit Function

NeedFileName: '

MsgBox "You need a file name to get log information.”, 64, "MSG_FORM
Message”

MonitorLog = "No file name given."

Exit Function

ErrorCheck:
MsgBox "Error Getting Log Information.”, 52, "MSG_FORM Error”

185

MonitorLog = "Error looking for data."
Exit Function
End Function

'===== UNUSED SAMPLE FUNCTION =====

Function Send ()

Dim MyTable As Table

Dim MyDB As Database

Dim vFileName As String, vMsgText As String

Dim vShell As String, vTargetLoc As String, MyBatFile As Integer

Dim vActionl As String, vAction2 As String

Set MyDB = CurrentDB()

vFileName = "TESTDATA.DAT"

DoCmd TransferText A_EXPORTDELIM, "export_format", "CUSTOMERS",
vFileName, True

vTargetLoc = " COMET::21dua132:[siaca}*.*"

vActionl = "C:\DECNET\NFT COPY " & vFileName & vTargetLoc & " >
TESTDATA.LOG"

vAction2 = "C:\DECNET\NFT SUBMIT
COMET::21dua132:[siacaltestmail.com"

MyBatFile = FreeFile

Open "TESTDATA.BAT" For Output As MyBatFile

Print #MyBatFile, vActionl

Print #MyBatFile, vAction2

Close MyBatFile

Send = Shell("TESTDATA.BAT", 1)

vMsgText = "Please check the TESTDATA.LOG file to confirm correct
processing”

MsgBox vMsgText, 48, "Warning!"

End Function

186

Option Compare Database 'Use database order for string comparisons
Option Explicit

' PROCEDURES CALLED BY THE VARIOUS FORMS

'===== UNUSED FUNCTION, UNDER DEVELOPMENT =====

Function AddParameter ()

Dim upform As Form

Dim a, textlabel As String, labelcontrol As Control, param As Control
Dim inputname As String

Set upform = Screen.ActiveForm

Fora=1To5
textlabel = "Text(" & a & ")"
If upform(textlabel).Visible = False Then
Set labelcontrol = upform(textlabel)
inputname = InputBox("Enter parameter name:", "New Parameter")
If inputname = " Then Exit Function
inputname = Left(inputname, 10)
DoCmd Echo False
DoCmd DoMenultem 3, 2, 0 'FormsDesignMenuBar, View, Design View
labelcontrol.Visible = True
upform(labelcontrol.caption).ControlName = inputname
upform(inputname).Visible = True
labelcontrol.caption = inputname
DoCmd DoMenultem 3, 0, 2 'FormDesignMenuBar, File, Save
DoCmd DoMenultem 3, 2, 1 'FormsDesignMenuBar, View, Form
DoCmd Echo True
Exit Function
End If
Next
End Function

'===== GET INFORMATION FOR LOCAL AND ATTACHED TABLES =====

'================================w===m=$m====

Function GetAllTables ()
Dim db As Database, sn As Snapshot, a, attch As Integer
Dim tname As String, ttype As Long, ErtMsg As String

'—— Get a list of local and attached tables —

On Error GoTo ErrorCheck
Set db = CurrentDB()

187

Set sn = db.ListTables()
a = EmptyTable("SYS_TableDetails", 0)

'—- Get the table fields —
Do While Not sn.EOF
attch = True
ttype = sn.TableType
tname = sn.Name
If ttype = DB_TABLE Then attch = False
If ttype = DB_QUERYDEF Then GoTo Do_a_loop
If thame Like "MSys*" Then GoTo Do_a_loop 'Don't get system tables
If thame Like "SYS_*" Then GoTo Do_a_loop 'Don't get program tables
If tname Like "TMP_*" Then GoTo Do_a_loop 'Don't get temporary tables

'— Call the database analyzer to get table fields —-
Call DumpTablelnfo("MAINT.MDB", "SYS_TableDetails", tname, attch)
Do_a_loop:
sn.MoveNext
Loop
sn.Close
Exit Function

'e—— On Error: Inform that table info is not available —
ErrorCheck:

ErrMsg = "Could not get information for the " & tname & " table."
MsgBox ErrMsg, 64

Resume Next

End Function

'===== I"IIDE THE LAST IJPDAI'E ===

Function HideUpdate ()
Dim a, vsb, Text, upd, mac, caption, msg, choice

' Search from last to first update position —
On Error Resume Next
Fora=8To1 Step -1

Text = "Text(" & a & ")"

vsb = Forms!General_Menu(Text).Visible

'— Look for the last update in General Menu —
If vsb = True Then
msg = "Are you sure you want to hide Update_" & a & "?"
choice = MsgBox(msg, 36, "Hide Last Update")
If choice = 7 Then GoTo HideUpdate_end
upd = "Upd("& a & ")"

188

mac = "Mac(" & a &)"

'--— Hide Controls in General Menu -—-
DoCmd Echo False
DoCmd OpenForm "General_Menu", A_DESIGN
Forms!General_Menu(Text).caption = "Update_" & a & ": Not used."
Forms!General_Menu(Text).Visible = False
Forms!General_Menu(upd).Visible = False
Forms!General_Menu(mac).Visible = False
DoCmd DoMenultem 3, 0, 2 'FormDesignMenuBar, File, Save
DoCmd OpenForm "General_Menu", A_NORMAL
DoCmd Echo True
GoTo HideUpdate_end
End If
Next
HideUpdate_end:
End Function

'===== UPDATE THE TABLE INFORMATION ON THE SYSTEM TABLES

—— ————= === ===

Function MANT ()
Dim a, SQL As String

'-—- Get updated table info? --—-

On Error Resume Next

a = MsgBox("Update Table Info?", 36, "View Attached Tables")
If a = 7 Then Exit Function

a = GetAllTables() 'Put revised table info into SYS_TableDetails
DoCmd SetWarnings False

'——- Get the list of table names into a temporary table —

SQL = "SELECT DISTINCTROW SYS_TableDetails.TableName INTO
TMP_maint "

SQL = SQL & "FP.OM SYS_TableDetails GROUP BY
SYS_TableDetails.TableName "

SQL = SQL & "WITH OWNERACCESS OPTION;"

a = QueryMaster("1", SQL, ", 0) 'Execute the Query

'—- Delete entries that already exist in SYS_TableSources -—-

SQL = "DELETE DISTINCTROW TMP_maint.* FROM TMP_maint,
SYS_TableSources, "

SQL = SQL & "TMP_maint INNER JOIN SYS_TableSources "

SQL = SQL & "ON TMP_maint.TableName = SYS_TableSources.table_name

SQL = SQL & "WITH OWNERACCESS OPTION;"

189

a = QueryMaster("2", SQL, ", 0) 'Execute the Query

'-—-— Insert new entries into SYS_TableSources ——

SQL = "INSERT INTO SYS_TableSources (database_name, table_name) "
SQL = SQL & "SELECT DISTINCTROW '?', TMP_maint.TableName "
SQL = SQL & "FROM TMP_maint WITH OWNERACCESS OPTION;"

a = QueryMaster("3", SQL, ", 0) 'Execute the Query

'-— Delete temporary table when done —-
a = DeleteTable("TMP_maint", 0)
DoCmd SetWarnings True

End Function

Function NewUpdate ()

Dim a, vsb, Text, upd, mac, caption

Dim title, upform, template, upmacro, tempmacro

Dim inmsg As String, newline As String, ErtMsg As String

On Error GoTo NU_ErrorCheck
newline = Chr(13) & Chr(10)
' Add a new line below if you have a new available template ——

inmsg = "Enter: " & newline

inmsg = inmsg & "(1) Update won't use input textfile" & newline
inmsg = inmsg & "(2) Update will use input textfile" & newline
inmsg = inmsg & "(3) Monitor external update only" & newline
inmsg = inmsg & "(4) Execute external batch"

'— Loop to find the first empty update slot —
Fora=1To8

Text = "Text(" & a & ")"

vsb = Forms!General_Menu(Text).Visible

'—— When you find the empty slot do the following —
If vsb = False Then

'-——- Set control and object names —

upd = "Upd(" & a & ")" 'Name of General Menu update button
mac = "Mac(" & a & ")" 'Name of General_Menu macro button
upform = "Update_" & a 'Name of Update form

upmacro = "Macro_" & a ‘Name of Update macro

190

'— Set title for update —

title = InputBox("Enter the title for the desired update:", "New Update
Title")

If title = "" Then Exit Function

title = a & "-" & title

'-—- Set description of update —-

caption = InputBox("Enter a short description for the desired update:”,
"New Update Description”)

If caption = "™ Then Exit Function

caption = "Update_" & a & ™ " & caption

'—— Determine update template to use —
template = InputBox(inmsg, “"Update Template")

If template = "™ Then Exit Function

tempmacro = "TEMPLATE" & template & "_macro”
template = "TEMPLATE" & template & "_Update”

'~ Update General_Menu to make the new update visible —-
DoCmd Echo False
DoCmd OpenForm "General_Menu", A_DESIGN
Forms!General_Menu(Text).caption = caption
Forms!General_Menu(Text).Visible = True
Forms!General_Menu(upd).Visible = True
Forms!General_Menu(mac).Visible = True
DoCmd DoMenultem 3, 0, 2 'FormDesignMenuBar, File, Save
DoCmd OpenForm "General_Menu", A NORMAL

'—— Create a new template macro for the update —
DoCmd SetWarnings False

DoCmd SelectObject A_MACRO, tempmacro, True
DoCmd CopyObiject , upmacro

'—— Create a rew template form for the update —
DoCmd SelectObject A_FORM, template, True
DoCmd CopyObject , upform

DoCmd SetWarnings True

'-— Update information in the new form —

DoCmd OpenForm upform, A_DESIGN ‘formname, DesignView
Forms(upform)!Titletext.caption = title
Forms(upform)!UpdButton.OnPush = upmacro

DoCmd DoMenultem 3, 0, 2 'FormDesignMenuBar, File, Save
DoCmd Close 2, uf:form 'Form, formname

191

'--—— Return to the General_Menu form -—-
DoCmd SelectObject A_FORM, "General_Menu", False
DoCmd Echo True
GoTo NewUpdate_end
End If
Next
NewUpdate_end:
Exit Function

'—— On Error: Display error and exit -—

NU_ErrorCheck:

ErrMsg = "You Generated this error:" & Err & "."

If Err = 2544 Then ErrMsg = "Template macro " & tempmacro & " does not
exist."

MsgBox ErrMsg, 16, "New Update Error"

Exit Function

End Function

Function ReplaceString ()
Dim bigstring As String, instring As String, outstring As String
Dim pos As Integer, verify As Integer, outlen As Integer, biglen As Integer

'—— Enter string to be replaced and new string —-

outstring = InputBox("Enter name of string to replace:", "Replace String")
If outstring = "" Then Exit Function

instring = InputBox("New string:", "Replace String")

If instring = "" Then Exit Function

RepStr_loop:

'—- Set up to look for string to be replaced in the sql_code field —
If IsNull([Forms]![Queries_form]![sql_code]) Then Exit Function
bigstring = [Forms]![Queries_form]![sql_code]

pos = InStr(bigstring, outstring)

outlen = Len(outstring)

'—— Replace all instances of the string appearing in the sql_code field —
Do While (pos > 0)
biglen = Len(bigstring)
verify = MsgBox("Replace at " & pos & "?", 4, "Replace String")
If verify = 6 Then
bigstring = Left(bigstring, pos - 1) & instring & Right(bigstring, biglen -
(pos - 1) - outlen)
[Forms]![Queries_form]![sql_code] = bigstring

192

End If
pos = InStr(pos + 1, bigstring, outstring)
Loop

'---— Ask to go to the next record to continue replacing —
verify = MsgBox("Next Record?", 4, "Replace String")
If verify = 6 Then
DoCmd GoToRecord , , A_NEXT
GoTo RepStr_loop
End If
End Function

193

Option Compare Database 'Use database order for string comparisons
Option Explicit

LIBRARY OF QUERY AND DATA TRANSFER FUNCTIONS

[}
L
1]
'

Function DeleteTable (tb_name As String, way)

On Error GoTo ErrorCheck

If way <> 0 Then
MsgBox "Deletes the table " & tb_name & ".", 64, "Function DeleteTable"
Exit Function

End If

DoCmd SelectObject A_TABLE, tb_name, True

DoCmd DoMenultem 1, 1, 4 'DatabaseMenuBar , Edit, Delete

DeleteTable_end:

DeleteTable = 0

Exit Function

ErrorCheck:
Exit Function
End Function

Function EmptyTable (tablename As String, way)
Dim db As Database, qDelete As QueryDef, SQL As String

On Error Resume Next
If tablename = "?" Then Exit Function
If way <> 0 Then
MsgBox "Deletes all records from " & tablename & ".", 64, "Function
EmptyTable"
Exit Function
End If

Set db = CurrentDB()

SQL = "DELETE FROM " & tablename & ";"

Set qDelete = db.CreateQueryDef("EmptyAll", SQL)
gqDelete.Execute

gqDelete.Close

db.DeleteQueryDef ("EmptyAll")

EmptyTable = SQL

194

End Function

'===== DELETE TABLE RECORDS WHERE THE GIVEN CRITERIA IS TRUE

Function EmptyWhere (tablename As String, criteria As String)
Dim db As Database, qDelete As QueryDef, SQL As String

On Error GoTo ETW_ErrorCheck:

Set db = CurrentDB()

SQL = "DELETE FROM " & tablename & " WHERE " & criteria & ";"
Set qDelete = db.CreateQueryDef("EmptySome", SQL)
qDelete.Execute

qDelete.Close

db.DeleteQueryDef ("EmptySome")

EmptyWhere = SQL

ETW_ErrorCheck:
MsgBox "Error #" & Err, 16, "Error”
Resume Next

End Function

'===== IMPORT DELIMITED TEXT INTO A TABLE =====

Function GetImportDelim (infile As String, outtable As String, informat As
String, way)
Dim MSG As String, fields As Integer

On Error GoTo GID_ErrorCheck

fields = False

If Right(informat, 2) = "WF" Then fields = True

If IsNull(outtable) Then Exit Function

If way <> 0 Then
MSG = "Imports delimited text to table " & outtable
MSG = MSG & " from file " & infile & " using the "
MSG = MSG & informat & " import format.”
MsgBox MSG, 64, "Function GetImportDelim"
Exit Function

End If

DoCmd TransferText A_IMPORTDELIM, informat, outtable, infile, fields

Exit Function

GID_ErrorCheck:
MsgBox "Error #" & Err, 16, "Error"

195

Resume Next
End Function

Function GetImportFixed (infile As String, outtable As String, informat As
String, way)
Dim MSG As String

On Error GoTo GIF_CheckError

If IsNull(outtable) Then Exit Function

If way <> 0 Then
MSG = "Imports fixed length text to table " & outtable
MSG = MSG & " from file " & infile & " using the "
MSG = MSG & informat & " import format."
MsgBox MSG, 64, "Function GetImportFixed"
Exit Function

End If
DoCmd TransferText A_IMPORTFIXED, informat, outtable, infile

Exit Function

GIF_CheckError:

MSG = "Can't import file " & infile & ", error #" & Err
MsgBox MSG, 64, "Error on GetImportFixed"

Exit Function

End Function

Function NullsToZeroes (tablename As String, fieldname As String, way)
Dim db As Database, qDelete As QueryDef, SQL As String
Dim SQL1 As String, SQL2 As String, MSG As String

'— Send description of this function if way=0 —

If way <> 0 Then .
MSG = "Sets all null instances of field " & fieldname
MSG = MSG & " in table " & tablename & " to zero.”
MsgBox MSG, 64, "Function NullsToZeroes"

Exit Function

End If

'-— Execute query to turn nulls into zeroes —
Set db = CurrentDB()

196

SQL1 = "UPDATE " & tablename & " SET " & fieldname & " =0 "
SQL2 = "WHERE " & fieldname & " = Null;"

SQL =SQL1 & SQL2

Set gDelete = db.CreateQueryDef("EmptyAll", SQL)
gqDelete.Execute

qDelete.Close

db.DeleteQueryDef ("EmptyAll")

NullsToZeroes = SQL

End Function

Function QueryMaster (queryname As String, SQL As String, MSG As String,
way) '
Dim db As Database, qUpdate As QueryDef

Dim ErrMsg As String, answer, queryparams As Snapshot

Set db = CurrentDB()
QueryMaster = 0
On Error GoTo CheckError

'—— Select execution: 0=Execute 1=SQL 2=Message 3=Create —

If way <> 0 Then
If way = 1 Then MsgBox SQL, 64, "SQL Code for " & queryname
If way = 2 Then MsgBox MSG, 64, "Description of " & queryname
If way = 3 Then Set qUpdate = db.CreateQueryDef(queryname, SQL)
Exit Function

End If

Set qUpdate = db.CreateQueryDef(queryname, SQL)

Set queryparams = qUpdate.ListParameters()

DoCmd OpenQuery queryname

qUpdate.Close

db.DeleteQueryDef (queryname)

Exit Function

'— Error handler —-

CheckError:

Const STOP_BOX = 16, OK_CANCEL_BOX = 49

Const QUERY_DEF_EXISTS = 3012, TABLE_DOESNT_EXIST = 3078
Const BAD1_SQL = 3129, BAD2_SQL = 3075, BAD3_SQL = 3070
Const BAD4_SQL = 3144, NO_PROC = 3146

If Err = QUERY_DEF_EXISTS Then
ErrMsg = "If you continue, you will overwrite an existing "
ErrMsg = ErtMsg & "query definition " & queryname & "."
answer = MsgBox(ErrMsg, OK_CANCEL_BOX)

197

If answer = 1 Then
db.DeleteQueryDef (queryname)
Resume
Else Exit Function

End If

End If

If Err = BAD1_SQL Or Err = BAD2_SQL Or Err = BAD3_SQL Or Err =
BAD4_SQL Then
ErrMsg = "The function " & queryname & " tried to execute an "
ErrMsg = ErrMsg & "SQL statement with illegal syntax."
MsgBox ErrMsg, STOP_BOX
Exit Function
End If

If Err = TABLE_DOESNT_EXIST Then
ErrMsg = "The function " & queryname & " looked for a table "
ErrMsg = ErrMsg & "that doesn't exist.”
MsgBox ErrMsg, STOP_BOX
Exit Function
End If

If Err = NO_PROC Then
ErrMsg = "No processes available for ODBC call. "
ErrMsg = ErrMsg & "Try reinstalling your network connections, "
ErrMsg = ErrMsg & "or reattaching the tables using another SQL server."
MsgBox ErrMsg, STOP_BOX
Exit Function

End If

ErrMsg = "You generated this error: " & Str(Err) & " in " & queryname & "."
MsgBox ErrMsg, STOP_BOX

Exit Function

End Function

unction SuperQueryMaster (queryname As String, way)
Dim a, SQL As String, MSG As String, ErtMsg As String
Dim db As Database, tb_queries As Dynaset
Dim query_sql As String
Const STOP_BOX = 16

On Error GoTo SuperQueryMaster_ErrorCheck

198

Set db = CurrentDB()

'—— Get sql_code and descripton for the desired query name —-

query_sql = "SELECT DISTINCTROW "

query_sql = query_sql & "SYS_Update_Queries.sql_code, "

query_sql = query_sql & "SYS_Update_Queries.description "

query_sql = query_sql & "FROM SYS_Update_Queries "

query_sql = query_sql & "WHERE ((SYS_Update_Queries.query_name = "
query_sql = query_sql & queryname & ")) "

query_sql = query_sql & "WITH OWNERACCESS OPTION;"

Set tb_queries = db.CreateDynaset(query_sql)

'——- Display message and exit if query name doen't exist —
If tb_queries.EOF Then
ErrMsg = queryname & " does not exist"
ErrMsg = ErrMsg & ". Open the [SQL Code] window and "
ErrtMsg = ErrMsg & "verify that the query name is not misspelled.”
MsgBox ErrMsg, STOP_BOX
Exit Function
End If
tb_queries.MoveFirst

'— Display message and exit if SQL code doen't exist —

If IsNull(tb_queries.sql_code) Then
ErrMsg = "There is no sql code associated with " & queryname
ErrMsg = ErrMsg & ". Open the [SQL Code] window to " & queryname
ErrMsg = ErrMsg & " and add the SQL statement to the SQL code box."
MsgBox ErrMsg, STOP_BOX
Exit Function

End If

'—— Get SQL and Description —
SQL = tb_queries.sql_code
If IsNull(tb_queries.description) Then
M% = "n
Else MSG = tb_queries.description
End If
tb_queries.Close

'——- Call QueryMaster to execute according to the value of way —
a = QueryMaster(queryname, SQL, MSG, way)
Exit Function

SuperQueryMaster_ErrorCheck:

MsgBox "Error #" & Err, 64
Exit Function

199

End Function

200

Option Compare Database 'Use database order for string comparisons
Declare Function SNDPLAYSOUND% Lib "mmsystem" (ByVal filename$,
ByVal Snd_Asynck%)

' FUNCTIONS THAT PLAY SOUNDS

S — ey v o e S 4o U S S S S— ST = > S S St S S S S S S s S S ——— — ——
P+ 3+

Function PlayThisWAV (w As String)
Dim X As Integer

X = SNDPLAYSOUND(Trim(w), 1)
End Function

201

Option Compare Database 'Use database order for string comparisons
Option Explicit

' MISCELLANEOUS UTILITY FUNCTIONS

'===== CHANGE A NULL VALUE TO THE STRING "None" =====

Function ElimNull (fieldname)
Dim fieldvalue

fieldvalue = fieldname

If IsNull(fieldvalue) Then fieldvalue = "None"
ElimNull = fieldvalue

End Function

Function GetFirstDay (thismonth As Control) 'Argument as YY-MM

On Error Resume Next

If IsNull(thismonth) Then End

GetFirstDay = CVDate(Right(thismonth, 2) & "/01/" & Left(thismonth, 2))
End Function

'===== GET THE LAST DAY OF A GIVEN MONTH =====

Function GetLastDay (thismonth As Control) 'Argument as YY-MM
Dim thisdate, nextmonth

On Error Resume Next

If IsNull(thismonth) Then End

thisdate = CVDate(Right(thismonth, 2) & "/01/" & Left(thismonth, 2))
nextmonth = DateAdd("m", 1, thisdate)

GetLastDay = DateAdd("d", -1, nextmonth)

End Function

'===== GET PREVIOUS MONTH FROM TODAY AS YY-MM =====

Function GetLastMonth ()
Dim thisdate, newdate, newyear As String, newmonth As String

thisdate = Date
newdate = DateAdd("m", -1, thisdate)

202

newyear = Right(DatePart("yyyy", newdate), 2)

newmonth = DatePart("m", newdate)

If Len(newmonth) = 1 Then newmonth = "0" & newmonth
GetLastMonth = newyear & "-" & newmonth

End Function

NUMBER =====

Function GetMain (Partno)
Dim testmain

testmain = Partno
If IsNull(testmain) Then
testmain = ""
GoTo setvalueMain
End If
testmain = Left(testmain, 5)
If Right(testmain, 1) = "-" Then testmain = Left(testmain, 4) & " "
If testmain = "NO PA" Then testmain = "NONE "
setvalueMain:
GetMain = testmain
End Function

Function GetMonth (datefield)
Dim newyear, newmonth

newyear = Right(DatePart("yyyy", datefield), 2)

newmonth = DatePart("m", datefield)

If Len(newmonth) = 1 Then newmonth = "0" & newmonth
GetMonth = newyear & "-" & newmonth

End Function

Function GetNewDay (thisday, delta)
Dim thisdate, newdate, newyear, newmonth, newday

thisdate = CVDate(Right(Left(thisday, 5), 2) & "/" & Right(thisday, 2) & "/" &

Left(thisday, 2))
newdate = DateAdd("d"; delta, thisdate)

203

newyear = Right(DatePart("yyyy", newdate), 2)

newmonth = DatePart("m", newdate)

If Len(newmonth) = 1 Then newmonth = "0" & newmonth
newday = DatePart("d", newdate)

If Len(newday) = 1 Then newday = "0" & newday
GetNewDay = newyear & "-" & newmonth & "-" & newday
End Function

Function GetNewMonth (thismonth As Control, delta) As String
Dim thisdate, newdate, newyear As String, newmonth As String

thisdate = CVDate(Right(thismonth, 2) & "/01/" & Left(thismonth, 2))
newdate = DateAdd("m", delta, thisdate)

newyear = Right(DatePart("yyyy", newdate), 2)

newmonth = DatePart("m", newdate)

If Len(newmonth) = 1 Then newmonth = "0" & newmonth
GetNewMonth = newyear & "-" & newmonth

End Function

Function GetSql (qd_name As String)
Dim db As Database, Q As QueryDef
Dim SQL As String

On Error GoTo GetSql_ErrCheck
Set db = CurrentDB()

Set Q = db.OpenQueryDef(qd_name)
SQL =Q.SQL

GetSql = SQL

Exit Function

GetSql_ErrCheck:
MsgBox "Error #" & Err, 52
Exit Function

End Function

204

Function GetSufx (Partno)
Dim testsufx

testsufx = Partno
If IsNull(testsufx) Then
testsufx = ""
GoTo setvalueSufx
End If
testsufx = Right(testsufx, 3)
If Left(testsufx, 1) <> "-" Then testsufx = Right(testsufx, 2) & " "
If Not (testsufx Like "*-*') Then testsufx = "-2?"
setvalueSufx:
GetSufx = testsufx
End Function

205

Option Compare Database 'Use database order for string comparisons
Option Explicit

' GENERAL MENU FUNCTIONS

v s e e e s s e e s s S s s e e s s v s e s e s e e
4 —_——— — ==

Function HideReport ()
Dim a, vsb, text, upd, mac, caption, msg, choice

'—— Find the last report and hide it —
On Error Resume Next

For a =8 To 1 Step -1

text = "Text(" & a & ")"

vsb = Forms!General_Menu(text).visible

If vsb = True Then
'— Verify if user wants to hide the report —
msg = "Are you sure you want to hide Report_" & a & "?"
choice = MsgBox(msg, 36, "Hide Last Report")
If choice = 7 Then GoTo HideReport_end
upd ="Upd(" & a & ")"
mac = "Mac(" & a & ")"

'—— Hide the report on the General Menu form —
DoCmd Echo False
DoCmd DoMenultem 0, 2, 0 'FormMenuBar, View, DesignView
Forms!General_Menu(text).caption = "Report_" & a & ": Not used."
Forms!General_Menu(text).visible = False
Forms!General_Menu(upd).visible = False
Forms!General_Menu(mac).visible = False
DoCmd DoMenultem 3, 0, 2 'FormDesignMenuBar, File, Save
DoCmd DoMenultem 3, 2, 1 'FormDesignMenuBar, View, Form
DoCmd Echo True
GoTo HideReport_end

End If

Next

HideReport_end:

DoCmd SelectObject A_FORM, "General_Menu", False

End Function

'===== CREATE A NEW REPORT WINDOW =====

206

Function NewReport ()
Dim a, vsb, text, upd, mac, caption, title, upform, template, upmacro
Dim tempmacro, ErrMsg As String

'-—--- Find the first open location to insert the new report option ——-
On Error GoTo NR_ErrorCheck

Fora=1To8

text = "Text(" & a & ")"

vsb = Forms!General_Menu(text).visible

If vsb = False Then
upd = "Upd(" & a & ")" 'Name of General Menu update button
mac = "Mac(" & a & ")' 'Name of General_Menu macro button
upform = "Report_" & a 'Name of Update form
upmacro = "Macro_" & a 'Name of Update macro

'— Enter the data to create the new report window ——

title = InputBox("Enter the title for the desired report:”, "New Update
Title")

title = a & "-" & title

caption = InputBox("Enter a short description for the desired report:", "New
Update Description")
caption = "Report_" & a & ": " & caption

template = 1

If template <> 2 Or IsNull(template) Then template = 1
tempmacro = "TEMPLATE" & template & "_macro”
template = "TEMPLATE" & template & "_Report"

'~ Add the new report option to the General Menu form —-

DoCmd Echo False

DoCmd DoMenultem 0, 2, 0 'FormMenuBar, View, DesignView
Forms!General_Menu(text).caption = caption
Forms!Genera:_Menu(text).visible = True
Forms!General_Menu(upd).visible = True
Forms!General_Menu(mac).visible = True

DoCmd DoMenultem 3, 0, 2 'FormDesignMenuBar, File, Save
DoCmd DoMenultem 3, 2, 1 'FormDesignMenuBar, View, Form

'-—— Create a new template macro for the update —
DoCmd SetWarnings False

DoCmd SelectObject A_MACRO, tempmacro, True
DoCmd CopyObiject , upmacro

'—- Create a new template form for the update —

207

DoCmd SelectObject A_FORM, template, True
DoCmd CopyObject , upform
DoCmd SetWarnings True

'-—— Set up form buttons to point to the correct macro —
DoCmd OpenForm upform, 1 'formname, DesignView
Forms(upform)!Titletext.caption = title
Forms(upform)!ViewButton.OnPush = upmacro & ".open_rep"
Forms(upform)!PrintButton.OnPush = upmacro & ".print_rep"
DoCmd DoMenultem 3, 0, 2 'FormDesignMenuBar, File, Save
DoCmd Close 2, upform 'Form, formname

DoCmd SelectObject A_FORM, "General_Menu", False
DoCmd Echo True
GoTo NewUpdate_end

End If

Next

NewUpdate_end:

Exit Function

NR_ErrorCheck:
ErrMsg = "You Generated this error:" & Err & "."
If Err = 2544 Then ErrMsg = "Template macro " & tempmacro & " does not

exist."
MsgBox ErrMsg, 16, "New Report Error”
Exit Function

End Function

208

Option Compare Database "Use database order for string comparisons

Option Explicit

MISCELLANEOUS UTILITY FUNCTIONS

'===== DISPLAY NEGATIVE NUMBERS BETWEEN PARENTHESIS =====

\ — —— S S—— — S S— S ST S S S S S SE s SE S Gy S SN Syl S S SN S S UAE NS G SE G At S G S S M S S S SE S G SED W S S S Sy S S —
T T T T N R T T T T

Function accformat (anynumber)
If anynumber < 0 Then
accformat = "(" & Abs(anynumber) & ")"
Else accformat = anynumber & " *
End If
End Function

'===== GIVE THE STRING EXPRESSION "NONE" TO A NULL VALUE

e e i e S e s 0 S S T S—— D S S— S S S S i S S ST e =D S S S D S S S S S S S AR S S i S D S Sy S S S ST S S S T S Sret S ST e
3+t S S - =

Function FillNull (Fieldvalue)

If IsNull(Fieldvalue) Then
FillNull = "None"

Else FilINull = Fieldvalue

End If

End Function

'===== GET THE LAST MONTH FROM TODAY AS YY- =====

e et o o S it e S S e S S S S D <V it S P A e D S P e A S D S S S S oS S S S Al St S D S St S D St e e s s s
s e S T S i S S S S S S i S ST S D S S S S S S U S i ST S S S YR Y s o S S S W S i S s S i e e e

Function GetLastMonth ()

Dim thisdate, newdate, newyear As String, newmonth As String
thisdate = Date

newdate = DateAdd("m", -1, thisdate)

newyear = Right(DatePart("yyyy", newdate), 2)

newmonth = DatcPart("m", newdate)

If Len(newmonth) = 1 Then newmonth = "0" & newmonth
GetLastMonth = newyear & "-" & newmonth

End Function :

'===== ADD A MONTH INTERVAL TO GET A NEW MONTH AS YY-MM

Function GetNewMonth (thismonth As Control, delta) As String
Dim thisdate, newdate, newyear As String, newmonth As String

thisdate = CVDate(Right(thismonth, 2) & "/01/" & Left(thismonth, 2))

209

newdate = DateAdd("m", delta, thisdate)

newyear = Right(DatePart("yyyy", newdate), 2)

newmonth = DatePart("m", newdate)

If Len(newmonth) = 1 Then newmonth = "0" & newmonth
GetNewMonth = newyear & "-" & newmonth

End Function

Function GetString (ct_data As String) As String
GetString = ct_data
End Function

210

Option Compare Database 'Use database order for string comparisons
Option Explicit

' FUNCTIONS FOR CREATING A MAIN REPORT AND A SUB REPORT

’———————————-————-——-—~ A S S S VP Sy— S S S S S SHD i S S G S S S S W SH S W S S— —
PP S P e e

Function CreateMain ()

Dim report_name As String, report_source As String

ReDim item(9) As String, group(9), display(9)

Dim a, i, upform As Form, cntrl As Control, ErrMsg As String

'-——- Set the name and data source for the new report —-
On Error GoTo CM_ErrorCheck
Set upform = [Forms]![Make_Main]
If IsNull(upform("report_name")) Then Exit Function
report_name = upform("report_name")
report_name = "Rep_" & report_name
If IsNull(upform("report_source")) Then
report_source = ""
Else report_source = upform("report_source")
End If

'-—- Set values for groups and text boxes ——

Fori=1To3 ‘
If upform("group(" & i & ")") = False Then upform("group(" & i & ")") = 0
If upform("display(" & i & ")") = False Then upform("display(" & i & ")") =0
If IsNull(upform("item(" & i & ")")) Then upform("item(" & i & ")") = ™
item(i) = upform("item(" & i & ")")
group(i) = upform("group(" & i & ")")
display(i) = upform("display(" & i & ")")

Next

'-— Create the new report from the template report —
DoCmd Echo False

DoCmd SelectObject A_REPORT, "TEMPLATE1_Rep”, True
DoCmd CopyObject , report_name

DoCmd SetWarnings False

DoCmd OpenReport report_name, A_DESIGN
Reports(report_name).RecordSource = report_source

'—— Create the groups and text boxes in the new report —
Fori=1To 4

211

If item(i) <> "" Then
a = CreateGroupLevel(report_name, item(i), group(i), group(i))
If group(i) = True And display(i) = True Then
Set entrl = CreateReportControl(report_name, 109, 5 + a * 2, item(i), 0, 0)
cntrl.ControlSource = item(i)
cntrl.Left = (i- 1) * 1500
Elself group(i) = False And display(i) = True Then
Set cntrl = CreateReportControl(report_name, 109, 0, item(i), 0, 0)
cntrl.ControlSource = item(i)
entrl.Left = (i- 1) * 1500
End If
End If
Next
DoCmd Close A_REPORT, report_name
DoCmd SelectObject A_FORM, "Make_Main", False
DoCmd SetWarnings True
DoCmd Echo True
Exit Function

CM_ErrorCheck:

DoCmd SetWarnings True

DoCmd Echo True

If Err = 2501 Then
DoCmd SelectObject A_FORM, "Make_Main", False
Exit Function

End If

If Err = 2544 Then
ErrMsg = "Need report TEMPLATE1_Rep to create main report”
MsgBox ErrMsg, 16, "CreateMain Error”
Exit Function

End If

MsgBox "Error #" & Err, 16, "CreateMain Error”
Exit Function

End Function

'===== CREATE A SUB-REPORT FROM A TEMPLATE =====

Function CreateSub ()

Dim report_name As String, report_source As String
ReDim item(9) As String, label(9)

Dim a, i, group As Integer

Dim upform As Form, cntrl As Control, ErrMsg As String

'-—— Set values for form and report -—

212

On Error GoTo CS_ErrorCheck

Set upform = [Forms]![Make_Sub]

If IsNull(upform("report_name")) Then Exit Function

report_name = upform("report_name")

report_name = "Sub_" & report_name

If IsNull(upform("report_source")) Then
report_source = ""

Else report_source = upform("report_source")

End If

'-—Get values for fields and labels ——-

Fori=1To4
If IsNull(upform("label(" & i & ")")) Then upform("label(" & i & ")") = ™
If IsNull(upform("item(" & i & ")")) Then upform(“"item(" & i & ")") = ""
label(i) = upform("label(" & i & ")")
item(i) = upform("item(" & i & ")")

Next

'-——- Create a new subreport from the template subreport —
DoCmd Echo False

DoCmd SelectObject A_REPORT, "TEMPLATEI_Sub”, True
DoCmd CopyObject , report_name

DoCmd SetWarnings False

DoCmd OpenReport report_name, A_DESIGN
Reports(report_name).RecordSource = report_source

'—— Put fields and labels into new report —
group = True
Fori=1To4
If item(i) <> "" Then
a = CreateGroupLevel(report_name, item(i), group, group)
group = False
Set cntrl = CreateReportControl(report_name, 100, 5, "label” & i, 0, 0)
cntrl.Caption = label(i)
cntrl.Left = (i- 1) * 1500
cntrl. Width = 1400
Set cntrl = CreateReportControl(report_name, 109, 0, item(i), 0, 0)
cntrl.ControlSource = item(i)
cntrl. Top = 50
cntrl.Left = (i - 1) * 1500
End If
Next
DoCmd Close A_REPORT, report_name
DoCmd SelectObject A_FORM, "Make_Sub", False
DoCmd SetWarnings True
DoCmd Echo True

213

Exit Function

CS_ErrorCheck:

DoCmd SetWarnings True

DoCmd Echo True

If Err = 2501 Then
DoCmd SelectObject A_FORM, "Make_Sub", False
Exit Function

End If

If Err = 2544 Then
ErrMsg = "Need report TEMPLATEI1_Sub to create subreport"
MsgBox ErrMsg, 16, "CreateSub Error"
Exit Function

End If

MsgBox "Error #" & Err, 16, "CreateSub Error”
Exit Function

End Function

214

