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Abstract

In this thesis, mixed primitive variable based finite element formulations are de-
veloped to solve linear and nonlinear fluid-structure interaction problems involving
incompressible (or almost incompressible) fluid models. The mixed elements are used
according to the inf-sup condition.

It is pointed out that along the fluid-structure interfaces, different coupling condi-
tions can be used according to different mathematical models or meshing conditions,
but the requirements of both mass and momentum conservation must be satisfied on
the discretized configuration. In this work, we correct one historical misunderstand-
ing about the causes of the so-called spurious non-zero frequency rotational modes
widely reported in the frequency analysis of acoustoelastic/slosh fluid-structure in-
teraction problems. We also discuss mode superposition methods in both primitive
variable and potential-based formulations.

In nonlinear fluid-structure interaction analyses involving convection dominated
flows, large free surface waves, material nonlinearities, large structural deformations
and large fluid-structure interface motions, we apply arbitrary Lagrangian-Eulerian
(ALE) descriptions to maintain mesh regularity within the analysis domain. In order
to eliminate the spatial oscillations in flow regions with high Reynolds number (or
Peclet number), as well as to use high order mixed elements satisfying the inf-sup
condition in low Reynolds number (or Peclet number) flow regions, we propose a
new upwinding scheme and develop a mixed treatment, i.e. the use of a control vol-
ume finite element upwinding formulation for the convective terms and the standard
Galerkin formulation for the other terms.

The proposed formulations are implemented experimentally, and various numerical
examples are given to demonstrate and confirm the ideas in this thesis.

Thesis Supervisor: Klaus-Jiirgen Bathe
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Overview

Many interaction problems involving different continuous media exist in practical

engineering fields. One of them is the so-called fluid-structure interaction problem,

where the interaction between fluids and structures can significantly affect the re-

sponse of the structures and needs to be taken into account properly. Common fluid-

structure interaction problems include the analysis of offshore structures, acoustical

media, liquid or gas storage tanks, pipeline systems, nuclear reactors and biomechan-

ical systems [1] [2] [3] [4] [5] [6].

For the past two decades, much effort has gone into the application of the existing

finite element procedures to areas involving fluid flows and fluid-structure interac-

tions. In addition to the standard Galerkin formulation commonly used in solid me-

chanics and structural analyses, the streamline upwinding/Petrov-Galerkin (SUPG)

formulation, the Galerkin least squares method, the Galerkin method using artificial

viscosities, and the skew positive influence coefficient upwinding control volume fi-

nite element method (CVFEM) are all currently available, though none is completely

satisfactory, in dealing with the convection dominated problems.

A number of finite element formulations have been proposed to model the fluid

- 14 -



1.1 Overview

for the analysis of fluid-structure interaction problems; namely, the displacement for-

mulation (see Bathe and Hahn [7], Akkas et al [8], Hamdi et al [9], Belytschko and

Kennedy [10], Belytschko [3], Olson and Bathe [11]), the displacement potential and

pressure formulation (Morand and Ohayon [12]), and the velocity potential formula-

tion (Everstine [13], Olson and Bathe [14], Felippa and Ohayon [6]). For the inviscid

and irrotational fluids, the displacement (or the velocity) potential and pressure are

often used instead of the displacement or velocity unknowns.

However, the primitive variable formulations have always received considerable

attention because they do not require any special interface conditions or new solution

strategies (for example, in frequency calculations and response spectrum analysis).

Moreover, the true mass and stiffness matrices generated from these formulations

provide convenience in solving general coupled problems. With the ever-increasing

availability of high speed and large capacity computers, this approach shows great

promise in general applications to the solution of a broad range of problems (specifi-

cally nonlinear problems). Unfortunately, many difficulties remain unsolved for using

primitive variable finite element formulations in analyses involving fluid flows and

fluid-structure interactions.

In linear analyses, it has been widely reported that the displacement-based fluid

elements employed in frequency or dynamic analyses exhibit spurious non-zero fre-

quency circulation modes [15] [9] [11]. Various approaches have been introduced to

obtain improved formulations. The penalty method has been applied by Hamdi et

al. [9] and has been shown to give good solutions for the cases considered in that

reference. Subsequently, Olson and Bathe [11] demonstrated that the method "locks

up" in the frequency analysis of a solid vibrating in a fluid cavity and also showed

that the reduced integration performed on the penalty formulation yields some im-

provement in results but does not assure solution convergence in a general case. More

recently, Chen and Taylor proposed a 4-node element based on a reduced integration

technique together with an element mass matrix projection [16]. The element is used



1.1 Overview

to solve some example problems, but an analysis or numerical results on whether

the element formulation is stable and reliable are not presented. We believe that

the currently available displacement-based formulations of fluids and fluid-structure

interactions are not yet satisfactory and some misunderstandings about the nature of

spurious non-zero frequency rotational modes must still be clarified.

In nonlinear analyses, three issues have to be considered:

* In problems involving large free surface and large fluid-structure interfacial mo-

tions, automatic adaptive procedures are necessary [17] [18].

* In convection dominated conditions, the Galerkin method no longer provides

the best approximation for discretized spaces [19] [20].

* There are only a handful of elements (such as the 9/3 and 9/4 - c elements) sat-

isfying the inf-sup condition (or Babu'ka-Brezzi condition), which is a require-

ment for a reliable finite element procedure in the analysis of incompressible (or

almost incompressible) materials (including fluids) [21] [22] [23] [24] [25].

It has been found that the available upwinding schemes work well for lower or-

der elements [26] [27]. In fact, the SUPG method was initially proposed for 4-node

isoparametric elements [28]. Much research has been performed to find a suitable

upwinding technique for higher order elements; however, the outcome has not been

satisfying [29]. Some researchers believe that the use of a suitable Petrov-Galerkin

formulation can circumvent the inf-sup condition [20] [19]. In practical problems

involving fluid flows and fluid-structure interactions, there will be certain convec-

tion dominated regions mixing with the low Reynolds number or Peclet number flow

regions. Therefore, it is highly desirable to have a procedure for incorporating up-

winding schemes into the elements that satisfy the inf-sup condition. We believe that

there is much research to be done to find a way to accommodate the requirements of

both the upwinding schemes and the inf-sup condition.



1.2 Thesis Objective

1.2 Thesis Objective

More than two decades ago, the displacement-based formulation for fluids drew many

researchers' attention simply because, at the time, the displacement-based finite el-

ement codes for structures were fully developed and people thought that they could

extend the applications of these codes to the problems involving fluid flows and fluid-

structure interactions with little effort [1]. Unfortunately, the effort did not turn out

successful, even for the linear problems, due to the reported existence of non-zero

frequency spurious modes and to the difficulties in handling the large motions of flu-

ids. It has long been believed that spurious non-zero frequency rotational modes are

caused by the irrotationality constraint [9] [30] [16], and many methods have been

proposed to eliminate these modes. In this thesis, we will correct this misunderstand-

ing by showing that the true origins of the spurious non-zero frequencies are in the

use of the pure displacement-based formulation (including the penalty formulations)

and in the mishandling of the fluid-structure interfacial conditions. We will pro-

pose u/p based formulations with proper elements (i.e. mixed elements that satisfy

the inf-sup condition). In addition, we address some subtle points on the bound-

ary conditions around fluid-structure interfaces and free surfaces. The solutions of

some selected generic test problems demonstrate that if u/p based formulations are

used with proper elements and boundary conditions, we will no longer encounter the

spurious non-zero frequency pressure modes and rotational modes. Indeed, we show

mathematically that rotational modes will have zero frequency if we use common

inviscid acoustic fluid models.

To extend the primitive variable formulations to nonlinear analyses, we reach a

conclusion that a v/p formulation is a proper approach. For the convection domi-

nated problems, we develop a mixed upwinding formulation by adopting a CVFEM

upwinding scheme [31] into 9-node elements which satisfy the inf-sup condition. We

also compare the SUPG formulation for 4-node elements with the proposed upwind-

ing formulation for 9-node elements; and point out the advantages and disadvantages

17



1.3 Thesis Outline

of both upwinding approaches. To avoid excessive mesh distortions, the ALE formu-

lation is incorporated into the proposed upwinding scheme.

In summary, we will develop a unified finite element procedure for linear and non-

linear analyses of incompressible (or almost incompressible) fluids and fluid-structure

interaction problems.

1.3 Thesis Outline

In Chapter 2, we start from fundamental momentum, mass and energy conservation

equations and discuss commonly used mathematical models for fluids. The diffi-

culties and confusion about the pure displacement formulation will be discussed in

Chapter 3. Also in Chapter 3, we propose u/p and v/p formulations for both lin-

ear and nonlinear analyses. In Chapter 4, based on the mathematical model of the

isentropic, irrotational and inviscid fluid model, we present a u-p-A formulation, i.e.,

a mathematically more comprehensive form of the often used penalty formulation,

and a v-p-A formulation as the extension to nonlinear problems. We also compare

the u/p and u-p-A formulations at the end of Chapter 4 and point out the inner

relationship between different formulations and mathematical models. Some impor-

tant issues of the fluid-structure interaction problems are discussed in Chapter 5. In

Chapter 6, selected test examples are analyzed to confirm the ideas in this thesis

and demonstrate the capabilities of the proposed formulations. In Chapter 7, mode

superposition methods in primitive variable and potential-based formulations are dis-

cussed. Recommended future research on the subject of this thesis will be addressed

in the concluding chapter.



Chapter 2

Mathematical Models

2.1 Governing Equations

In continuous media, including fluids and solids, the governing equations for the me-

chanical behaviors can be derived from the mass, momentum and energy conservation

laws [32]. To express these conservation laws mathematically, we have to use certain

kinematical descriptions of the physical quantities we are interested in. In the finite

element analysis, we always attach the unknowns to mesh points and the time rate

of change of any quantity a (or the mesh referential derivative with respect to time)

can be expressed as,

a* = +v m -Va (2.1)
at

where v m is the mesh velocity which could be linked to the material velocity or as-

signed arbitrarily, provided that the boundary of meshes moves with the material

boundary and the elements keep regular shapes. If the mesh velocity vm is the same
da

as the material velocity v, we have the pure Lagrangian formulation and a* = a = ddt
aa

while vm = 0 gives the pure Eulerian formulation and a* = . From Eq. (2.1), it is
obvious that in nonlinear analysis with arbitrary Lagrangian-Eulerian (ALE) descrip-

obvious that in nonlinear analysis with arbitrary Lagrangian-Eulerian (ALE) descrip-

- 19 -



tions, it is more convenient to use the velocities as the primitive variables than the

displacements in describing the fluid motion. In solid mechanics, Lagrangian formu-

lations (total Lagrangian formulation and updated Lagrangian formulation [33]) are

commonly used for both linear and nonlinear analysis. In fluid mechanics, if the con-

trol domain is fixed, the Eulerian formulation can be naturally adopted; however ALE

formulations show the capability and potential for analysis involving large boundary

motions such as free surfaces and fluid-structure interfaces.

We write the mass conservation equation as,

pV + = 0 (2.2)

where p is the mass density.

For the linear problems of solid mechanics, from Eq. (2.2), we can derive

p = -Kui,i (2.3)

where p is the pressure (actually the pressure due to the volumetric strain), . is the

bulk modulus and u is the displacement vector. However, if we use the general ALE

description within which vm is neither v nor 0, the mass conservation equation can

be rewritten as,

pV - v + p* + (v - vm) - Vp = 0 (2.4)

The energy conservation equation (the so-called first law of thermodynamics) is

generally expressed as,

dQ + dW = dE + dT (2.5)

where dQ, dW, dE and dT are the heat added to the system, work done by the

surroundings to the system, internal energy increase of the system and the kinetic

202.1 Governing Equations



2.1 Governing Equations

energy increase of the system respectively.

The momentum conservation equation is commonly written as,

P•i = Tij,j + f:i (2.6)

where 7 and fE are the stress tensor and body force vector.

For linear elastic solids, the strain E and the deviatoric strain E' are defined as,

1= + uji) (2.7)
/ 1

i3 = Ej - 3kk6ij (2.8)

and the constitutive relations can be written as,

ij = rEkkij + 2GE' (2.9)

where G is the shear modulus.

For fluids, we commonly use,

Tij = (-p + Aekk) 6 ij + p(vi,j + Vj,i) (2.10)

the so-called Newtonian fluid model, where p stands for the viscous shear coefficient or
2

dynamic viscosity. From Stokes hypothesis (A = p•), Eq. (2.10) has the same form3
as Eq. (2.9), but velocity strains are used instead of the strains due to displacements.

Note here p is mainly the dynamic pressure, which is different from the pressure

p = -Krkk for solids.

In this thesis, we use the elastic material models for solids, including the hyperelas-

tic material model [34]. As for the nonlinear analysis of fluids, we use the Newtonian

fluid model; for acoustic fluids, we have two approaches; one is to introduce an arti-

ficial shear modulus G (zero or O(1)) and the other is to assume the inviscid fluidP



2.1 Governing Equations

model (indeed, inviscid might not be a proper term for acoustic fluids undergoing

small displacements and the physical meaning of this model is actually zero shear

modulus).

All three conservation equations shall hold on any point within the domain of the

continuous media we are interested in.

Much research has been done in the area of solid mechanics [35], in fact, the finite

element method was first introduced in the context of structural and solid mechanics.

In this thesis, we focus our attention on fluid models, fluid-structure interfaces and

free surfaces.

There are two major fluid mechanics categories; one deals with compressible fluids,

such as aerodynamics, the other deals with incompressible fluids, such as hydrody-

namics. For the physical problems, where the changes of density p, temperature 9,

pressure p and velocity vector v are equally significant, compressible fluid models

are applied and all the three conservation equations and one state equation relating

p, p and 0 are used. In this thesis, we consider only the fluid models which are in-

compressible (or almost incompressible) such as the models used in the analysis of

acoustoelastic/slosh problems and interaction problems involving the Navier-Stokes

flows; the interaction between the mechanical and thermal processes is neglected, i.e.,

only the mechanical equations are needed to describe the fluid and solid response. Of

course, in nature, a different practical engineering focus may lead us to a different

mathematical model which simplifies the physical problems.

From the momentum equation, ignoring the inertia force, we can easily get the

control equations for hydrostatic problems,

V(p + pgx2) = O0 (2.11)

where we can see that the pressure p is solely related with the boundary condition, the

position x, the mass density p and the gravity g. For linear problems, the solution of

Eq. (2.11) can be added to the dynamic solutions excluding the hydrostatic pressure.
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For isentropic acoustic fluids, we have,

dp c2. (2.12)
dp

where c is the compressible wave velocity (or sound speed).

Substituting Eq. (2.12) into Eq. (2.2), we get

v + P =0 (2.13)

where the bulk modulus ' = pc2 .
da Da

In linear analyses, for any quantity a, the material time derivative (or ) and
dt Dt

the mesh referential derivative a* are the same as the spatial time derivative and

the equilibrium position stays the same as the original configuration. Therefore, we

can use displacements instead of velocities as primitive variables in the momentum

and continuity equations. If we assume zero shear modulus for acoustic fluids, we

have,

pii+Vp-fB = 0 (2.14)

V u+ = 0 (2.15)

Comparing Eq. (2.15) with Eq. (2.3), we find that r = f and the fluid pressure

definition is exactly the same as for solids.

Since V x Vq = 0 for any smooth scalar valued function ¢, if the non-conservative

forces are ignored, Eq. (2.14) implies

a(Vx v)= O (2.16)at
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and hence the motion is always circulation preserving, i.e. it is a motion in which the

vorticity does not change with time.

If the fluid starts from rest, we have the irrotationality constraint,

Vx u = 0 (2.17)

In actuality, if we define a displacement potential q, with u = Vq [12], or a

velocity potential €, with v = V¢ [14], Eq. (2.17) and Eq. (2.16) are automatically

satisfied. Unfortunately, there are a few disadvantages of the potential formulations:

1) Non-symmetric matrices are obtained [36]. The procedure to make the matrices

symmetric enlarges the bandwidth of the matrices and involve more computation

effort [37] [13].

2) Special elements are needed along the fluid-structure interfaces.

3) The stiffness and mass matrices for fluids are not the physical ones as for struc-

tures, therefore, it is difficult to apply dynamic loading and use the standard spectrum

method (refer to Chapter 7).

Another mathematical model for acoustic fluids is to introduce a shear modulus

G (zero or O( )), and the momentum equation (2.6) can be rewritten as,

1
piii + p,i = G(ui, -j + 31ujj ) + fi (2.18)

Substituting Eq. (2.15) into the above equation, we have,

Gpiii + (1 + )pi = Gui,,j + fB (2.19)

In fact, the time scale corresponding to shearing is much larger than that of the

compressible wave, and we can expect that the rotational modes have the minimum

amount of energy and shear waves can be negligible compared with compressible

waves. This implies that, in the transient analysis, the so-called rotational modes do

not distract the major interest. In the frequency analysis, we show that if we use
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u/p formulations with elements which satisfy the inf-sup condition and impose the

boundary conditions (especially the fluid-structure interfacial conditions) properly,

there exist no non-zero frequency spurious modes.

2.3 Incompressible Fluid Models

For the fluid models used in this thesis, the bulk modulus 0 is the material property

which is assumed to be constant. If we are interested in compressible waves interacting

with structures, the mathematical model for the fluid (or air) is called acoustic model

as discussed in the last section. However, for the problems within which the fluid

compressibility is not of the prime interest, we can actually use the incompressible
Lw

fluid models. The parameter to characterize these two types of interests is K = ,
c

where L and w are the characteristic length and frequency of our mathematical model.

If K < 1, we can use the incompressible fluid model.

The continuity equation for the incompressible fluids is

V v= 0 (2.20)

One mathematical model for incompressible fluids is the inviscid model, which

gives the extra constraint

Vx v = 0 (2.21)

if the fluid starts from rest.

As for the inviscid fluid models, there are two finite element procedures, one is

called the primitive variable formulation and the other is called the potential formula-

tion which uses the velocity potential 4, where v = V , or the displacement potential

b, where u = V0. It is important to keep in mind that both approaches solve the

Laplacian equation,
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V0 = 0 (2.22)

As we know, for ocean and aeronautical engineering, to calculate the lifting forces

on the structures interacting with the fluid (or air), some vorticities have to be added

to represent the effects of viscosity. The area of such approaches is not within the

scope of this thesis.

Another mathematical model is more general. Rather than assuming the inviscid

model and imposing the irrotationality constraint (2.21), we use the Navier-Stokes

equations

pi)i = -P,i + pvi,jj + ff (2.23)

with the constraint of Eq. (2.20).

We know immediately that to derive Eq. (2.23) we use Eq. (2.20) once to simplify

the viscous shear force terms. The bridge between the incompressible and acoustic

fluid models is the so-called artificial compressibility P for the hydrodynamists who

use Eq. (2.13) instead of Eq. (2.20) [36] [38]. In fact, here 3 is not artificial at all; /

is the physical bulk modulus of fluids.
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Chapter 3

u/p and v/p Formulations

Historically, two interrelated constraints, i.e., the incompressibility and irrotationality

constraints created some confusion for acoustic fluid models and formulations. In this

chapter, we start from the basic pure displacement-based formulation and address the

often encountered difficulties. As a proper approach, u/p and v/p formulations are

proposed for linear and nonlinear problems.

3.1 Understanding of Irrotationality

For the isentropic and inviscid fluid models, in terms of the displacements only, we

have by substituting Eq. (2.15) into Eq. (2.14),

V(Vu) + fB =0 (3.1)

where fB = -pii, if the other body forces are ignored.

The variational form of Eq. (3.1) can be written as,

(3(v -u)(V. u) - f". Ju}dV + p us dS = 0 (3.2)
Vf Sf

where u' is the displacement normal to Sf
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This is the often used pure displacement-based formulation. It was widely reported

that this formulation produces spurious non-zero frequency modes [15] [9] [11] [39].

From the rigid cavity test problem in [9], Hamdi, et al concluded that the observed

spurious non-zero frequency modes are the rotational modes. Historically, many

researchers also believed that the non-zero frequency rotational modes were due to

the constraint of Eq. (2.17). As pointed out in [2] [9], the irrotationality constraint is

"lost" in the finite element formulation; therefore, the following penalty formulation

was proposed [9],

/{i(V -u)(V. - u) + o(V x u)(V x u) - f" -Bu}dV + fp 6u dS = 0 (3.3)
v, s,

where a is the large penalty parameter.

Interestingly, for some problems, the so-called spurious non-zero frequency ro-

tational modes disappeared with the above formulation. Considering the fact that

penalty formulations are too "stiff", researchers often use reduced integration meth-

ods for the terms,

I {(V u)(V -. u) + a(V x u)(V x 6u)}dV (3.4)

It is well known now that this penalty formulation with the reduced integration

technique does not have a sound mathematical background and is often found unre-

liable.

By introducing a penalty term on the irrotationality constraint and applying the

reduced integration method to the pure displacement-based formulation, the spurious

non-zero frequency modes can be eliminated in some cases; however, while this actu-

ally somehow "confirmed" many researchers' misunderstanding about the causes of

the reported spurious modes, we believe that it was coincidental. Since acoustic media
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are nearly incompressible with a high bulk modulus, it should be obvious that the pure

displacement-based formulation and its penalty formulation introduce non-zero fre-

quency spurious modes (such as the familiar checkerboard pressure mode). A proper

procedure is to replace the pure displacement-based formulation by u/p formulations

and apply mixed elements that satisfy the inf-sup condition. In actuality, if the acous-

tic fluid models allow the existence of a small amount of shear modulus, we will no

longer have the constraint of Eq. (2.17) and shall also expect the rotational modes

to be in the lowest end of the frequency spectrum. For acoustic fluid models with no

shear modulus (or inviscid acoustic fluid models), the rotational modes will have zero

frequency. In conclusion, irrotationality constraint and incompressibility constraint

have different physical significance.

In the frequency analysis without the effects of gravitational forces and other body

forces, Eq. (3.1) can be written as,

lV(V. U) + pw 2U = 0 (3.5)

where U represents the eigenfunction. It then follows that

w2(V x U)= 0 (3.6)

since OV x (V(V - U)) = 0.

It is apparent that in a frequency analysis, for the solutions corresponding to the

rotational motions (V x U : 0), the frequencies are zero; while for the solutions

corresponding to the irrotational motions (V x U = 0), the frequencies can be non-

zero. One may view the first type of solutions as the way the system responds to the

rotational initial conditions.
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3.2 u/p Formulation

3.2.1 Control Equations

The variational approaches for potential-based formulations are discussed in [40], here

for our displacement-based mixed formulation, we define a variational indicator,

2

II = J{ _U.fB _A ( +V-u)}dV

+J (V.-)2dV + p u dS
Vf Sf

where the variables are p, u, and the Lagrange multiplier A,. We note that the first

two terms correspond to the usual strain energy (given in terms of the pressure) and

the potential of the externally applied body forces. The third term implies the mass

conservation equation. The fourth term is the potential corresponding to the artificial
1

shear modulus G, which we assign a constant of the order - for the fluids we are

interested in. The last term is the potential due to any applied boundary pressure

on the surface S1 . To include the surface gravity waves, we simply add a surface

gravitational potential term / pguidS.

Sf
Invoking the stationarity of HI, we identify the Lagrange multiplier A, to be the

pressure p and obtain the governing equations,

Vp-fB - GV 2u = 0 (3.7)

Vu = 0 (3.8)
P~+

and the boundary conditions
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on S,
(3.9)

p = p on Sf

The pressure pi is commonly assigned to be zero on the free surface, provided the

surface gravity waves are ignored.

3.2.2 Finite Element Discretizations

Applying the standard Galerkin discretization procedure, and hence for a typical

finite element, we have

u = HU

p = HpP

V-u = (V.H)U = BU

Vx u = (Vx H)U = DU

where H and Hp are the interpolation matrices, and U and P are the vectors of

solution variables.

The matrix equations of the u/p formulation are

M 0

0 0 P

K

L
T

L

A
(3.10)

where

M = pHTHdV
vf

K = JGBTBdV
Vf

L = - BTHpdV

A= - HTH HdV
PP

= - JH p dS
Sf

u -n = un

31
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Define the following finite element spaces [35] [41],

Vh = {vh IEL 2 (Vol), Vh=O on S,~
Oxj

Dh = {qh I qh = V'Vh for some Vh E Vh}

Kh(qh) = {Vh I Vh E Vh, V Vh = qh} (3.11)

with the subscript h denoting the element "size" of the mesh considered.

Since 0 is large and the pressure is the finite value confined by the boundary force

conditions, the quantity JIV - uhl| will be small, indeed, the larger 3, the smaller is

JIV -Uh j. It is then difficult to obtain an accurate pressure prediction Ph = -- V -uh.

In the 1970's, some mathematicians [21] [22] discovered that if a sequence of finite

element spaces with mixed elements satisfy the inf-sup condition,

J qh div(vh) dQ
inf sup > f>o) d> >0 (3.12)

qhEDh VAEVh llkhll llVhlI
we can have the following convergence requirement,

IlU - Uh I1 < Cd(u, Vh) (3.13)

where C is the constant independent of h and material properties. In fact, if Eq. (3.12)

is satisfied, the element is optimal for the displacement (or velocity) and pressure

interpolations employed; that means, the discretizations using the element are stable

and have the "best" error bounds that we can expect for the interpolations used.

Since M and K are the positive definite matrices and we have,

Q"KQ = P (3.14)
QT MQ = I

where Q is the transformation matrix and P is the diagonal matrix listing the corre-

3.2 u/p Formulation 32



3.2 u/p Formulation

sponding eigenvalues.

In transient analysis, at each time step, the following equation holds,

K'= K + CM (3.15)

where the constant C is the positive number related to the direct integration scheme

used (for instance, C = At for the trapezoidal rule). Therefore, from Eqs. (3.14), we
At 2

have K' as a positive definite matrix and the ellipticity condition [25] [35] is satisfied

for every time step in the dynamic analysis. In the limit case, G = 0 and K = 0,

the positive definite mass matrix M still guarantees the satisfaction of the ellipticity

condition.

The key to the success of this mixed finite element formulation is to choose the

appropriate interpolations for the displacements and pressure. Without restricting

the essence of our exposition, let us consider two-dimensional solutions. The finite

element formulation for three-dimensional solutions is then directly obtained [35].

Considering the incompressible (or almost incompressible) analysis of solids and

viscous fluids, it is well-established that finite elements which satisfy the inf-sup

condition are effective and reliable. Appropriate interpolations are summarized in

references [35], [25] and [42]. The u/p elements give continuous displacements and

discontinuous pressures whereas the u/p - c elements yield continuous displacements

and pressures across the element boundaries.

For the fluid element formulation considered here, we use the same displace-

ment/pressure interpolations that satisfy the inf-sup condition in the analysis of solids

(and viscid fluids). Two proposed elements (9/3 and 9/4 - c elements) are schemat-

ically depicted in Fig. 3-1. For the 9/3 element, we interpolate the pressure linearly

as

P =p 1 + p 2r+ p 3s (3.16)

33
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* nodal point displacement

x pressure

9/3 element

continuous displacement and discontinuous pressure

* nodal point displacement

O pressure

9/4-c element

continuous displacement and continuous pressure

Figure 3-1: Two elements for the u/p formulation. Full numerical integration is used
(i.e. 3 x 3 Gauss integration).
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Type I macroelement with 4/1 elements Type II macroelement with 4/1 elements

Figure 3-2: Two macroelements for the u/p formulation. Full numerical integration
is used (i.e. 2 x 2 Gauss integration).

and for the 9/4 - c element we use the bilinear interpolations

P = p1 +p 2r + p38 + 4 rs (3.17)

Of course, there are a few other elements available. It is interesting to know

that so far there is no available simple 4-node element (Q1/PO or Q1/Q1 element)

satisfying the inf-sup condition with general meshes [43]; however, researchers found

[25] [44] that some special macroelements constructed with 4/1 elements pass the

inf-sup condition. Fig. 3-2 shows the two types of macroelements used in this thesis.

Using the proposed u/p formulation, we no longer need to impose the constraint

of Eq. (2.17) and can literally choose all the elements satisfying the inf-sup condition.

Another benefit is that this u/p formulation can be easily extended to nonlinear

analyses.

3.2.3 Number of Zero Modes

To predict mathematically the number of zero modes, we first consider a fluid domain

with
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u- n=O onS (3.18)

The analogy of this analysis to structures and fluid-structure systems is straight

forward. Eq. (3.18) shall be satisfied on the discretized boundaries; and the proper

choice of boundary tangential directions is discussed in Chapter 5,

Considering that the shear modulus G is O(1), we take K = 0 as the limit case.

Since M and A are positive definite matrices, we need only to consider the stiffness

matrix K* = LA-1L' to understand the zero modes.

For the matrices we consider here, we can write any n x m matrix L in a form [45]

L = PEQ (3.19)

where P and Q are the invertible matrices with dimensions n x n and m x m, while

E is the matrix of dimension n x m in the form,

Ir 0
0 0

where I, is a r x r dimension unit matrix and r is the rank of L. From the consistency

of our finite element discretizations, and due to the existence of a constant pressure

distribution, we have 1 < r < m - 1 (refer to Appendix A). Using Eq. (3.19), we get

K* = PEQA-'QT ET'P = PA'PT (3.20)

where A' has the form

Kr 0]

0 0

and K, is a r x r dimension invertible matrix.
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It is then obvious that the number of zero modes is k = n - r, i.e.

k > n-m + 1 (3.21)

Notice in the above discussion, we consider n as the number of displacement

degrees of freedom and m is the number of pressure degrees of freedom. With the

presence of free surfaces, we have the number of zero modes,

k > n- m (3.22)

Since the free surface is the material surface, we will have one implicit constraint

imposed from the mass conservation. That implies for a free surface with i degrees

of displacement freedom, the actual independent degrees of freedom is i - 1. If we

consider the gravitational effects (i.e. including the sloshing modes), the number of

zero modes will be,

k > n- m- i + 1 (3.23)

3.2.4 Free Surface Condition

In this thesis, we ignore the surface tension and assign p = 0 on the free surfaces.

To apply the proposed u/p formulation to the analysis involving free surfaces, we

introduce a free surface gravity wave potential Wf, denoted as,

Wf = U pgdSf (3.24)

where u, is the free surface elevation referring to its static equilibrium position Sf. A

similar approach has already been discussed in [30]. We often discretize u, with the

isoparametric elements of the same order on the free surface as in the fluid domain.

For instance, in two dimensional analysis, if we use 9-node elements for the fluid



domain, on the free surface, we can use 3-node elements. Therefore we have us =
3

H sUs = Z hiU, where hi = (s2 - s)/2, h2 = (s2 + s)/2, h3  1 - s2.
i=1

From the variation of Wf, i.e. 6W, = J 6upgu,dSi, we derive the additional
Sf

stiffness term for the nodal displacements us on the free surface,

K, / pgHH, dS (3.25)
Sf

3.3 v/p Formulation

The natural extension of the proposed u/p formulation to nonlinear analyses is a

v/p formulation. Since the nonlinearities are introduced from the large free surface

motions and the large relative motions between structures and fluids, we apply the

ALE kinematic description [46] in our v/p formulation and use the velocity v as the

primitive variable instead of the displacement u.

For the viscous fluid model undergoing large motions, the governing equations

(momentum and continuity equations) are given as,

pvr + Vp- fB = pV2v (3.26)

V v+ 0 (3.27)

where I is the dynamic viscosity of fluids, and the boundary conditions are,

v.n = iv on S (3.28)

p = p on S1

In Eq. (3.26), vr stands for v* + (v - vm) - Vv. Note that in the analysis of

incompressible fluid (sloshing problems), i.e. where the dynamic pressure part is

dominating, j5 can be approximated as p*. However, to produce more accurate pres-
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sure results in the analysis of almost incompressible fluid (acoustoelastic problems),

we have to use ý5 = p* + (v - vm) Vp.

3.3.1 Variational Forms

The variational forms of Eqs. (3.26) and (3.27) are,

W = p6v - v* + (v - v). -vv}d- pV vd

-Jv- f BdV - fJ . V2 vdV + f vp dS
v, v, s,

WP = - 6p{V .v+ [p* + (v - vm) -Vp]}dV
Vf

(3.29)

where Vf is the fluid domain and fB is the body force excluding the inertia force.

Note that Jv is the arbitrary admissible velocity, i.e. 6v - n = 0 on S., and p is

commonly assigned to be zero on the free surfaces.

We know that the bulk modulus 3 is a large constant (numerically sufficiently

large) for incompressible (or almost incompressible) fluids. This implies that a full

explicit temporal scheme will not be suitable for this formulation because of the ex-

cessive time step limitation for the stability requirement. However, many approaches

such as mixed explicit and implicit, predictor corrector, multistage and multistep

schemes are available. Here, for simplicity, we use the trapezoidal temporal scheme

with the conventional Newton-Raphson iteration method for the nonlinear equations.

We will use the standard Galerkin formulation in this chapter, however, the difficulties

introduced by the convective terms and their remedy will be addressed in Chapter 5.

Denote 6W and 6R as the left and right sides of equilibrium equations in varia-

tional forms, just like the internal and external virtual work. Note that if the bound-



ary motion is large enough, we have to include the surface tractions and body forces

in 6W and take into account their contributions to the tangent stiffness matrices. For

the applied nodal forces, if they are fixed with mesh points, they should be included

in 6R.

In the incremental analysis, at any time t, the equilibrium equations must be

satisfied [35],

6tW = 6tR (3.30)

where 6W = (6W,, 6W,)T .

From the Taylor expansion, we have the following,

6tW*At -- t+AtR - 6tW (3.31)

from which, we can derive the incremental stiffness matrix.

In the ALE formulation, all the variables are described on finite element mesh

points. Therefore, the increment of a is defined as Aa = a*At. Since we denote y,

x and z as the spatial, material and mesh point coordinates [46], the derivative of
Ba

any quantity a with respect to the spatial coordinate yi is denoted as a, = a and
Oyi

iDa ,vm
its time rate of change following the mesh point is ,y k , where vm is the mesh0yk 19i
velocity (or denoted as Um*). Therefore, we have,

•I/. -•,,-i(kvi "•Y V 9vi I d"
6W,* = Op6v {v** + (v - + - uk) - (VUk - Uk }dV

fyk 9k j OYk

J(p*1 6V'k 096vk 9vj O6vn avk - Uk Vkv)dV
Vf yk Pyj C9yk p yn 9Yk Nyn 9Yn

f ,1vk v9nm Ovk + 1O6VVkOVk Vm _1 6Vk Ovk 9Ovm

S yi Oyn n y, 1yn y9i Oyn aYn Oyn OynYr
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+ Jf6v{p[V + (Vk - Vk) o

6 v Ov vk OaV
Yp{ k 0 Yn 0Yk

6p aOp Ovm
-{(vk - vUk) n

0 19Y 19k

SfiBOn dVOyn

Op Ovdumvkm) ]} d- V
i9k 9Yn

OVk
ap {

3.3.2 Finite Element Discretization

Since we have,

OtW OEtW *AtW = -Ao + ao
88 88*

where ET [V UP U m ] , applying the standard Galerkin finite element proce-

dure, we get,

CAo* + KAo = AR

where

O C• ]

C, C"v

K = Kv

KPV

K, Kpm

=6W, ,6SP T F

6W* =-j+±
-J

y

(3.32)

S[p** + (v; - vm• ) ]}dV

-(Vk - vkm) a dVak
(3.33)

(3.34)

C,,v

0

(3.35)

AR
Rv
0

6VTF,

and

= 6Wp

Ov

1,+ [P* + (Vk -ý3
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5V TCv,AV*

6P T KppAP

JV TCMAV m

6VT KmAU m
5Vp KvAum

6P T K•AUm

6VT K,,AVA

6P TK,,PAV

=1
=-)

=Vf

pSvi AvdV

(vk - vkm) L9 dV0 Yk dV

p6vhi - AvkmdV
,yk

= v•Ak OAu
Vf yj yYk

-f
" /

9Svhk OAUT Vk
i( yn

eyj Syn cy,

6V TKVpAI

6P TC, AbPTCpmPPr

P TCm AXN
PCpvA

9vi 19Auy
(Vk - M) Ykk 9)j a9k

6 Uvk Ovk OAAu
9yn 9yi 1Oyn

- " m 6V+ 6vi{p[vi + (v k - -•k) i
Vf On k

1 JUP 9Yk a

f p(-k + -[P* + (vUk -
Vf 9k

= J{p6vaAvk + (Vk - Ukm)
19Yk
aAvk AVk 9P)d

fp( + )d
yk 

9k

AvYk

S1= ApdV

f dV

6vM
m = p }dV
Pn k dV

yvn aYk

16U, 9k 9uAm
19• v•9 ak 1MAuz )dV

ayn dyn yyi

The trapezoidal temporal discretization is as the following [47],

t+Atb

t+Atj

At

=tb + (tb +t+• i)2
and consequently,

At 2

t+atb =t b +t bat + - b(t +t+at i)4

7

BAum dV

ap O }dV
9Yn 9Yk

u n dV
Oyn

A96 Vk DAVk
+49. }dV

dyn a n

(3.36)

(3.37)

r V

v

v

19
Ukm) -aYk
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where b can stand for U m, V or P.

Since V and P are independent variables, and U m is the mesh displacement

which can be assigned independently, or related with the material displacement U

(refer to Chapter 5), we assign a linear relation between the motion of meshes and

the boundary material points as follows,

M* = (3.38)
UM= LAU

where the relation C is selected such that the mesh regularity is preserved during the

time evolutions. If we use mixed elements with discontinuous pressure, such as the

9/3 element, we can statically condense out P unknowns on the element level, by

using,

S 2C mAt
AP = -( + Kpp)- ((Kp, + Cm L + K m Lv )AV + Fp) (3.39)At PV P712?P



Chapter 4

u-p-A and v-p-A Formulations

4.1 Introduction

From the discussion in Chapter 3, we know that if we use the u/p formulation with

proper elements (such as the 9/3 and 9/4 - c elements) we will not have spurious non-

zero frequency modes. With the artificial shear modulus G (0 or O(-)), we expect

some zero frequency (or numerically sufficiently small) rotational modes. In the last

chapter, we discuss the mathematical prediction of the number of zero modes, and we

know that if many such zero frequency modes exist, they can significantly reduce the

effectiveness of the solution algorithm. To impose the constraint of Eq. (2.17), his-

torically, penalty formulations, along with reduced integration techniques, are widely

used [2]. Consequently many researchers have encountered the so-called non-zero fre-

quency spurious rotational modes and various remedy procedures have been proposed

[9] [30] [16]. One common interesting idea from the penalty formulations is that a

large shear modulus is introduced to shift the modes due to shearing to the high end

of the frequency spectrum. In this chapter, a u-p-A formulation is presented and it

is believed that this formulation is the proper approach to impose the constraint of

Eq. (2.17). For the nonlinear analysis, we will start from the isentropic, inviscid and

irrotational fluid model and impose the constraint of Eq. (2.21).

- 44 -
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4.2 u-p-A Formulation

4.2.1 Variational Formulations

In order to impose the constraint of Eq. (2.17), we introduce,

Vx u = A (4.1)

where A is a "vorticity moment". The magnitude of A shall be small while a is a

constant of large value.

Based on our experience with the u/p formulation in Chapter 3, we propose the

following variational indicator for the finite element formulation of the fluid model

considered here

p2  P
I = -uf"-A( +V-u)

vf 20 1
A.A A

+ - AA ( - V x u)}dV (4.2)
2a a

+f nuj s dS
Sf

where the variables are p, u, A, and the Lagrange multipliers A, and AA. The constant

1 is the bulk modulus and the constant a has large value. We note that the first

two terms correspond to the usual strain energy (given in terms of the pressure)

and the potential of the externally applied body forces. The third term implies the

constraint of Eq. (3.8), the fourth term is included to be able to statically condense

out the degrees of freedom of the vorticity moment, and the fifth term represents the

constraint from Eq. (4.1). For the fourth and fifth terms we require that the constant

a is large, and we use a = 10000. However, from our numerical tests, we find that

a can be any numerically reasonable value larger than 1, say 1013 < a < 10430. The

last term is the potential due to any applied boundary pressure on the surface Sf.

Invoking the stationarity of H, we identify the Lagrange multipliers Ap and AA

to be the pressure p and vorticity moment A, respectively, and we obtain the field
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equations

Vp- fB + V x A

V -u+ P

A
Vxu---a!

and the boundary conditions

u.n = fi on S,

p = p on Sf (4.6)

A = 0 on S

4.2.2 Finite Element Discretization

We use the standard Galerkin finite element discretization [35] and hence for a typical

element, we have

u = HU

p = HP

A = HAA

V-u

Vx u

= (V -H)U

= (V x H)U

= BU

= DU

where H, Hp and HA are

of solution variables.

the interpolation matrices, and U, P and A are the vectors

= 0

- 0

- 0

(4.3)

(4.4)

(4.5)
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The matrix equations of our formulation are

A
P +

0

LT

QT

where

M = pHTHdV

Q = JDTHAdV

G = - THHAdV

v,

L = -f BTHdV

A = IH'HpdV
s,

R = -JHspdS
Sf

The key to the success of the finite element discretization is to choose the appropri-

ate interpolations for the displacements, pressure and vorticity moment. Extending

the idea from Chapter 3, for the inviscid fluid element formulation considered here,

we use the displacement/pressure interpolations that satisfy the inf-sup condition in

the analysis of solids (and viscid fluids) and use the same interpolation for the vor-

ticity moment as for the pressure. Thus, two proposed elements are the 9 - 3 - 3 and

9 - 4c - 4c elements schematically depicted in Fig. 4-1.

Hence, for the 9-3- 3 element, we interpolate the pressure and vorticity moment

linearly as

P = Pl +p 2r +p 3s

A = A +A 2 r+A 3s

(4.8)

(4.9)

=1(4.7)
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* nodal point displacement

x pressure and vorticity moment

9-3-3 element

continuous displacement, discontinuous pressure
and vorticity moment

* nodal point displacement

O pressure and vorticity moment

9-4c-4c element

continuous displacement, pressure and vorticity moment

Figure 4-1: Two elements for the u - p - A formulation. Full numerical integration
is used (i.e. 3 x 3 Gauss integration).
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and for the 9 - 4c - 4c element we use the bilinear interpolations

p = l+ p2r + P 3 + 4rs (4.10)

A = A 1 +A 2r+A 3 + A4rs (4.11)

Of course, additional elements could be proposed using this approach. In each

case, the vorticity moment would be interpolated with functions that, when used for

the pressure interpolation, give a stable element for (almost) incompressible condi-

tions. For instance, a reasonable element is also the 9- 3- 1 element, which does not

impose the zero vorticity as strongly as the 9- 3 - 3 element. On the other hand, the

4 - 1 - 1 element with regular meshes is not recommended; however, some macroele-

ments constructed with 4 - 1 - 1 elements can be applicable to certain analysis cases

(refer to Chapter 2 and 6). For all elements full numerical integration is used [35].

While we do not have a mathematical analysis to prove that the proposed elements

are indeed stable, based on our experience we can expect a good element behavior.

Namely, the constraints in Eq. (4.4) and (4.5) are very similar in nature and are not

coupled in the formulation (see the variational indicator in Eq. (4.2)). Hence, we

can reasonably assume that the two constraints should be imposed with the same

interpolations in the element discretization.

The treatment to include the surface waves is exactly the same as used for the

u/p formulation in Chapter 3. The mathematical prediction of the number of zero

frequency modes is also the same as in Chapter 3, however, the number of vorticity

moment unknowns shall be included in m.
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4.3 v-p-A Formulation

4.3.1 Field Equations

Based on the u-p-A formulation for linear problems, we propose a v-p-A formulation

for nonlinear analyses with the ALE kinematic description.

Note that in the u-p-A formulation, we introduced A (so-called vorticity mo-

ment for displacements) and a large parameter a to impose the irrotationality con-

straint (2.17). Similar to the approach in linear analyses, in nonlinear analyses, to

impose the irrotationality constraint, we introduce A as the vorticity moment for

velocities and replace the constraint (2.21) with,

A
V x v - - = 0 (4.12)

Consequently, the field equations are modified as follows,

p[v* + (v - v ). Vv] + Vp - fB + VxAA = 0 (4.13)

V v + P = 0 (4.14)
A

Vxv- - = 0 (4.15)
a

with the boundary conditions

v.n = Vn on S,

p = p on S1  (4.16)

A = 0 on S

4.3.2 Variational Forms

With the boundary conditions in Eq. (4.16), we have the variational forms of Eqs. (4.13),

(4.14) and (4.15):
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S= p6v v* + (v - vm) - Vv}dV - pV vdV

Vf Vf

Vf Vf Sf

WP = - 6p{V v + [p* + (v - vm) - Vp]}dV

6 WA = A. (V x v- -- )dV (4.17)
Vf

where Vf is the fluid domain and fB is the body forces excluding the inertia force.

Note that 6v is the arbitrary admissible velocity, i.e. 5v -n = 0 on S., and on the

free surfaces, p is commonly assigned to be zero.

As in Chapter 3, we have in the incremental analysis, at any time t, the equilibrium

equations,

6tW = 6tR (4.18)

where 6W = (6W,, 6W,, 6WA)T.

The time change rates of 5W,, 6W, and SWA are given as,

6W'* = Jpvi{vf* + (v; - vj*) vi v+ (k - k) Mav) 1-vi a }dVByk \.k 89) kdV
Vf ayk 19Yj a9Yk

- f 96vk D6Vk 9Vm n9v 96 aU )
(P* p 'yj - AEk ay: + AkEkij n-) dVBy 1k ay) k 19i 19y 9yi

6vi{p[v* + (Vk -UVkm) -vY]i - n dVm
Vf iy -f} dV1

S(pS6Vn A 6v Ovm
-- -• AkEkjyi )n dV (4.19)
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Vf

Vf
((Uk

Ovk Ovm 1
+ [+

9p avmkm n _ ynkan 1k k

* + (V - Vm* ) op ]}dV

(Vk - Vk) dV
ayk

Ovi vkd
- kij aYn aYi + (Ekij Vj

ayi

4.3.3 Finite Element Discretization

Applying the finite element procedure as in Chapter 3, we have,

CAo* + KAo = AR

where e T

o o Cm
Cp O Cv ,
0 0 0

K,,

K,,pv

KAv

F,

FA

FA

=6W , 6P TF,V I 6~pTF - 6Wp , 6A T FA

6 W

-r 19Yk
dp{ ~k

A61 iv;5Ak f EkiJ yiayi
(4.20)

(4.21)
Ak) } d V

-- n}dV
ci 0yn

=[ P p U ],

(4.22)

C,,

0

0

Rv
0

0

C

AR

VT
-I

Kvp KA Kv

Kp 0 K

0 KAA KAm

and

=

1 dp Onvm+ P + (k - vm) -n }dV0 k Yk OYnV

K
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V'TCZ,Av*

6PT K,,aP

6 AT KAA'AA

6V T CvAVm

= p6viAv*dV
Vf

= _ 6AkAAkdV
ar

S vdV

6V TK,,AP

6PTC,,AP

6VTKhAAA

P TCm AVmPV

- k ApdV

Vf 
dV

J Ekij a AAkdV
Vf

-f 6P VkdV
Vf 

/3

d 6vk OAu - Akki j aDLuYp AYkj a y= - N - v)

+JS6vi{p[v +
Vf

V1  lySn cJYk

f Vk +
1 {Vk

= 6Ak{(EkiJ vj

&U4

f {p vi vk

f= - 6 ( D 
Vk

Dyk

- vr), >
aYk

_ 8Au m
- f } n dV

dl n

AkEki 6 3 ) n dV
Dyi d9nY

ip* + (vk -

Ak dAum

a ) y,

+ (Vk - Vkm)

TP) O mUdV
Op DAum

km) I} dVU k 9kdYk aDu

-Ekij A u }dV

i}dV
d9Yk

k 9)dV0 Oyk

Defining the relation between U and •m as L, again if we use the discontinuous
type of 9-node elements, such as the 9 - 3 - 3 element, we can statically condense
out A and P unknowns in the element level, by using,

AP = -( + Kpp)-((Kpv + CmC + Kmc )AV + F,)
(4.23)

VfVf
O u }dV

Oyj OYk

6V TKm am

6PT Km tu m
pV

6AT KT vAU m

6V TPK,,VA

6P KPVAV

I/

ilr
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1A A+
A -= -K-((KA, + KmL 2)AV + FA) (4.24)

4.4 Discussions

The reason for proposing the u-p-A formulation in linear analyses is simply to reduce

the number of zero frequency modes by imposing the constraint of Eq. (2.17). After

defining the "vorticity moment" A, it is clear that the frequencies of A modes depend

on a in the same way as the frequencies of p modes depend on 0. Since a is a

numerically large variable (103 < a < 1040), we in effect shift the frequencies of

the rotational modes to the very high range and we shall expect the frequencies of

rotational modes to be in the higher range of the frequency spectrum than the pressure

modes.

If we substitute Eq. (4.5) into Eq. (4.3), we have the following set of equations,

Vp - f' + aV x (Vx u) = 0 (4.25)

V Pu+ = 0 (4.26)

Since we have,

V(V . u) - V2 u + V X (V X u) (4.27)

by substituting Eq. (4.26), we can rewrite Eq. (4.25) as,

(1 - )Vp - f_ = aV 2 u (4.28)

Therefore, we can see immediately that the term aV 2u is the stiffness term for

u. In the u-p-A formulation, the large value of a means high stiffness for u, and

the modes introduced by this term shall be in the highest range of the frequency
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spectrum. If we extend the same philosophy to the nonlinear problems, similarly we

will get,

Vp- -V5 - = aV 2v (4.29)

V.v+ = 0 (4.30)

where fB is the body force including the inertia force.

However, the term aV 2v acts as the viscosity term instead of the stiffness term! If

we apply the large value for a used in the u-p-A formulation to the v-p-A formulation,

we actually bring into the formulation a very large amount of viscosity.

Now if we change our philosophy to shifting the frequencies of rotational modes

to the very lowest end of the spectrum, i.e. numerically sufficiently small (around

10- 5 - 10- 3) instead of the highest end of the spectrum, we will have the equiva-

lent formulation as the u/p formulation, and the number of zero frequency modes

is discussed in Chapter 3. To achieve this, we simply introduce a small variable a

( < a < ) . Since 1 is the small value of O(c), a is 0( ) and - is O(C2).
10 10/0 0 0

Ignoring 0(02 ) terms, we have for the linear problems,

Vp - fB = aV 2u (4.31)

V-u+P = 0 (4.32)

where a is identified as G and the inertia force -pii is included in fB.

For one element (size 2 x 2) with p = 2.1 x 109 Pa, p = 998.2 kg/mr and a =

2.1 x 1012 Pa, the element eigenvalues (the first three non-zero frequencies are listed

in Tab. 4-1) and element eigenvectors (shown in Figs. 4-2 and 4-3) are calculated with

u/p and u-p-A formulations. It is clearly indicated that the highest three frequencies
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Element No. of zero modes First Second Third
Theory Result (rad/sec) (rad/sec) (rad/sec)

9/3 15 15 3552.85 6153.71 6153.71

9-3-3 12 12 3552.85 6067.56 6067.56

Table 4-1: Frequency analysis of typical mixed elements.

calculated with the u-p-A formulation are introduced by the assigned a = 10000.

For nonlinear problems, we get,

Vp -fB

·v+ /,3

= aV 2 v

= 0

(4.33)

(4.34)

Dv
where a is identified as p and the inertia force -p is

Dt
included in fB.

Eqs. (4.33) and (4.34) are the familiar Navier-Stokes equations including the ar-

tificial compressibility 0.
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Mode 1

Mode 3

Mode 5

Mode 7

Mode 9

Mode 11

Mode 13

Mode 15

0

\iZ\
EJ
LI

VIZ

One 9-3-3 element

Mode 2

Mode 4

Mode 6

Mode 8

Mode 10

Mode 12

Mode 14 * O
Mode 16 o l

Mode 18 o 0

Figure 4-2: Mode shapes of one 9-3-3 element; * frequencies are physical ones and o
frequencies are due to the large parameter a.

Mode 17 o
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One 9/3 element

SModel Mode2

7 Mode 3 Mode 4

Mode 5 Mode 6 .

Mode 7 Mode 8

K1 Mode9 Mode 10

J\ Modell1 Mode 12

Mode 13 Mode 14

~ Mode 15 Mode 16 *

SMode 17* Mode 18 *

Figure 4-3: Mode shapes of one 9/3 element; * frequencies are physical ones.
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Chapter 5

Fluid-structure Interactions

5.1 Introduction

With primitive variable formulations for fluids, the coupling between fluids and struc-

tures are rather natural. If noslipping boundary conditions are used, the coupling

procedure between the fluids and structures is directly obtained by the element as-

semblage process [35]. If slipping boundary conditions are used, we can assign different

nodal numbers for the same spatial position on the fluid-structure interfaces shown

in Fig. 5-1. The constraints between fluid side nodes and structure side nodes can

be imposed in the same way as for structure matrices. Commonly we use the skew

coordinate systems to assign the continuous normal displacements (or velocities) and

discontinuous tangential motions around the fluid-structure interfaces.

In addition, if slipping boundaries are used, the mass conservation (or the imper-

meability condition) has to be imposed along with the momentum conservation.

There are three issues or rather three difficulties in the nonlinear finite element

procedures for both fluids and solids, especially for fluids and fluid-structure interac-

tion problems. The first is to maintain mesh regularity during the time evolution; the

second is to get rid of the spatial oscillations in convection dominated problems with

the standard Galerkin formulations [481 [49] [50] and the third is to select suitable
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Fluid s

Figure 5-1: Fluid-structure interface nodes.

mixed elements which satisfy the inf-sup condition in the analysis of incompressible

(or almost incompressible) materials.

Unlike the area of almost incompressible media, within which many conclusive

results have been drawn in the 1980's, many upwinding schemes have been proposed,

but none of them is completely satisfactory [51] [52] [28] [29]. Many researchers are

still wondering whether or not such an elegant conclusion as the inf-sup condition can

be reached.

The SUPG formulation was originally proposed in the context of finite element

methods; while the skewed positive influence coefficient upwinding procedure was

initially developed for the control volume finite element method [31]. Both upwinding

formulations were introduced for 4-node elements [52]. Considering the fact that the

SUPG formulation retains the oscillations (refer to Chapter 6) and 4-node elements

do not satisfy the inf-sup condition, in this thesis, we extend the control volume finite

element upwinding procedure to 9-node elements in a mixed approach with both the

standard Galerkin formulation and the control volume finite element method. The

very reason for this extension to high order elements is that we want to use elements

which satisfy the inf-sup condition. Considering the fact that no available simple

4-node element satisfies the inf-sup condition with general meshes [43], we naturally

e
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select 9/3 and 9/4 - c elements which satisfy the inf-sup condition. In fact, the 9/3

element is proved mathematically to be the optimal second order element.

To avoid the mesh entanglements, researchers have two options; one is to use

adaptive procedures and the other is to use arbitrary Lagrangian-Eulerian (ALE)

descriptions. A survey of adaptive procedures is available in [53]. In this thesis, we

use the ALE formulation which is summarized in [46].

5.2 ALE Descriptions

The essence of ALE formulations is that the spatial position for the description of

the state variables is neither fixed in space, nor attached with material particles.

Therefore, we can arbitrarily select proper mesh motions so as to avoid excessive

mesh distortions and follow the moving boundaries. Fundamentally, there are two

ways of relating the mesh and material particle motions. The first type is used for

the closed domain problems or the problems where the material boundaries are known.

In this ALE description, the mesh velocities (or displacements) along the boundary

are commonly assigned to be the same as the material particle, i.e. vm = v or set to

follow the boundaries. The second type is for the problems with unknown material

boundaries, such as the large amplitude free surfaces and fluid-structure interfaces. In

this case, the mesh configurations can not be assigned arbitrarily, due to the fact that

the mesh domain has to be the same as the material domain. Consequently, we have

to introduce additional unknowns of mesh displacements on the material surfaces.

For example, on the 2D free surface, where vm = 0 and v2 = v', the kinematical

relation,

u = v2 - 01 (5.1)ay,
provides the link between the mesh displacements over the fluid domain and us.

Since in the whole formulation, the mesh velocities can be set independently, as



long as the mesh domain covers the material domain and mesh regularity is main-

tained, the final results shall be the same. Obviously, choices for the mesh velocities

are not unique.

5.3 Upwinding Techniques

Many formulations can be used, though not completely satisfactory, to get rid of the

spatial oscillations of the standard Galerkin formulation for convection dominated

problems [29]. In this thesis, we develop a mixed formulation of the standard Galerkin

and control volume finite element methods with 9/3 and 9/4 - c elements and extend

the scheme to the Navier-Stokes equations.

We treat one 9-node element as four 4-node elements in dealing with the convective

terms only. Fig. 5-2 shows the typical 4-node element for the upwinding control vol-

ume finite element method. The commonly used testing problem is the heat transfer

problem governed by,

v -VO - aV20 = 0 (5.2)

The variational form of the above equation is,

f 60(v V9 - aV 29)dV = 0 (5.3)
V

In the standard Galerkin formulation, 60 has the same interpolation function as

for 0. For the SUPG formulation, 69 can be assigned as the combination of the same

interpolation function for 0 and an elementwise continuous interpolant which is often

the derivative of the interpolant for 0 to suit its purpose of carrying the sign of the

"wind" direction [52]. In the artificial viscosity approach, some constants (depending

on isotropic and anisotropic viscosity models) are introduced to the diffusion terms

and the standard Galerkin formulation is used. Other approaches such as the Galerkin

5.3 Upwinding Techniques 62
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Figure 5-2: Typical 4-node element in the CVFEM upwinding scheme.

least squares method can also be applied. Interestingly, in the one dimensional cases,

many of the above methods will give the same set of discretized equations which

provide the exact solutions on the nodal points (so-called super convergence).

The idea of the control volume finite element method (CVFEM) is different from

the Galerkin method (shown in Fig. 5-3). The approximation is directed to each

node, upon which the conservation equations hold for the integral over the control

volume,

(v -VO - aV 20)dV = 0 (5.4)

In fact, we can actually get Eq. (5.4) by setting 60 = 1 on the control volume

around individual nodes in the variational form of Eq. (5.3). If the velocity satisfies,

V -v=0 (5.5)

which is true for the heat transfer problems with incompressible fluids, we can later
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Standard Galerkin Standard CVFEM

Figure 5-3: Typical interpolant functions.

on get,

/(v -nO- aV n)dS = 0 (56)

We know immediately that on the element boundary the contributions from the

elements sharing the same boundaries will cancel each other except for the domain

boundary. Therefore, the important parts left are the evaluation of Eq. (5.6) on the

inner sides illustrated in Fig. 5-2. Since v is known and the only unknown 0 is inter-

polated with 4-node elements, the integration of Eq. (5.6) can be evaluated by one

Gaussian Quadrature point. In the standard CVFEM, 0 is evaluated solely from the

isoparametric interpolation functions. In the Schneider and Raw upwinding scheme,

to achieve an optimal diagonal dominating discretized equation (i.e. requiring that the

diagonal entity is positive and all the off-diagonal entities are negative), the values of 0

at the interpolation points, ipl(r = O,s = 0.5),ip2(r = -0.5,s = 0),ip3(r = O,s = -0.5)

and ip4(r = 0.5,s = 0) are evaluated according to the mass flux in and out of the con-

trol volumes. Take the control volume on node 1 as an example, the contributions

from the convective terms in Eq. (5.6) to the discretized equation for node 1 is,

5.3 Upwinding Techniques 64
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v -nlo 0 ip + v n.Oip4

For the standard CVFEM, we have,

4

Oipl= = hi 1Jjp1 i

i=where

where

(1 + r)(1 + s)
hi =4

= (1 -r)(1 -s)h3 = 4

Notice, here we use the counterclockwise

on the inner surfaces of the control volume

h2= (1-r)(1 + s)

h44h4= (l •(1 -s)
4

convention to define the normal directions

and the mass flux is,

rh=v n (5.9)

where the positive sign of rh indicates the flux out of the control volume.

In the Schneider and Raw upwinding scheme, if rh,,o < O0, which indicates that the

flow direction is from left to right, we define,

sipl = (1- f)2 + fip2 (5.10)

mhbowhere the ratio of the mass fluxes f = and 0 < f • 1.
moa

If rhao > 0, which indicates that the flow comes from right to left, we then have,

(5.11)

where f = hod andO<f <1.
To extend this approach to solve nonlinear fluid-structure interaction problemso

To extend this approach to solve nonlinear fluid-structure interaction problems

(5.7)

(5.8)

ipl = (1 - f)A1 + fOip4



with ALE formulations, we simply use the mass flux of

rh = (v - v m ) - n (5.12)

Since the convective terms are nonlinear, we use the successive iteration procedure

in the ALE formulation of the Navier-Stokes equations. In order to achieve faster

convergence rate of iterative procedures, we could use the true tangent stiffness matrix

or include a line search option. In the successive iteration procedure, v - vm in

Eq. (5.12) is taken from the last iteration step.

5.4 Boundary Conditions

The above mathematical models appear to be rather natural when considering the

free surfaces and the interactions between different media, but we have to look more

deeply into the boundary conditions. Different mathematical models will have dif-

ferent boundary conditions and some subtle points arise in imposing the boundary

conditions. From the numerical examples in Chapter 6, we find the existence of

non-zero spurious frequencies when wrong boundary conditions are imposed.

In the interaction problems, if there is no slipping between different continuous

media, the particles on both sides will share the same displacements and shall also

satisfy the force balance. For the interface between fluids and structures shown in

Fig. 5-4, if no additional assumptions are made for the fluids, the particles on both

sides of the mesh points S 1 and S2 shall have the same displacements and velocities,

while the force balance holds. For the normal displacements, we have,

un|Is,s 2 = unIS1,s 2  (5.13)

Uf S1,S2 = -UI|Sl,S 2 (5.14)
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5.4 Boundary Conditions 67

Fluid side

F2

Structure side

Figure 5-4: Fluid-structure interface.

As the fluid viscosity decreases, the layer FIF2S2S1 will get thinner and the normal

direction gradient of the tangential velocity around the fluid-structure interface will

become greater, therefore, in the limit (inviscid fluid models), we have,

UnIF1,F2  = UnIS 1,S2  (5.15)

UtIF|,F 2 # utls,s 2  (5.16)

To satisfy the mass conservation over the layer F1 F2S2S1, we have the following

discussion on the slipping boundary condition for inviscid fluid models.

Let us consider typical boundary lines composed of two adjacent 3 or 4-node ele-

ments, see Fig. 5-5, and two 9-node elements, see Fig. 5-6. Based on our assumption,

the displacement component tangential to the solid is not restrained (while the dis-

placement component normal to the solid is restrained to be equal to the displacement

of the solid). The choice of directions of nodal tangential displacements (from which

also follow the normal displacements) is critical.

Considering the solution of actual fluid flows and fluid flows with structural in-
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FLUI

elemer
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(X

inflow outflow

Figure 5-5: Tangential direction at node A for 3 or 4-node elements.
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boundary of element b,
length Lb \

boundary of element
length La

C
y

Figure 5-6: Tangential directions at nodes A and B for 9-node elements.

teractions (in which the fluid is modeled using the Navier-Stokes equations including

wall turbulence effects or the Euler equations), we are accustomed to choosing these

directions such that in the finite element discretization there is no transport of fluid

across the fluid-structure interfaces. It is important that we employ the same con-

cept also in the definition of the tangential directions at boundary nodes of the fluid

considered here, including the acoustic fluid which does not flow but only undergoes

(infinitesimally) small displacements.

While we do not recommend using the Q1/PO or Q1/Q1 element of the mixed for-

mulation, lower-order elements (3-node triangular two-dimensional and 4-node tetra-

hedral three-dimensional elements) are effectively employed in fluid flow analysis and

could be used in our formulations [35] [54] [55]. Hence, consider first the boundary

representation in Fig. 5-5. This case was already discussed by Donea [56].

In the following discussion, we use displacements to discuss the mass conservation

and the same concepts hold for the velocities.
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For the displacement UA, we have the spurious fluxes A Va and AVb across the

element lengths La and Lb. Mass conservation requires that Va + AVb = 0 and hence

we must choose 7 given by

La sin al + Lb sin2 (5.17)
Latan Lcos al + Lb cos a2

We note that 7 is actually given by the direction of the line from node 1 to node

2. In general, the direction of UA is not given by the mean of the angles al and a 2 ,

but only in the specific case when La = Lb

y = '(a, + a 2) (5.18)
2

We employ the same concept to establish the appropriate tangential directions at

the typical nodes A and B of our 9-node elements in Fig. 5-6. For node A, we need

to have

fA dl + uA . nbdl = 0 (5.19)
La Lb

where

0 ya Oxanadl = (- ds, ds)
s ~(5.20)

nbdl = (- ds, ds)
as Os

In the above equations, Xa, Ya, Xb and Yb are the interpolated coordinates on the

boundaries of elements a and b, while uA and ubA are the interpolated displacements

corresponding to the displacement UA at node A,

A 2 + s
A UA

S2 2 (5.21)- -
ua = rUA 2

For element a, mass conservation requires
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uf . nadl = 0 (5.22)
La

where u B is the interpolated displacement on the boundary of element a based on

the nodal displacement UB

B = (1 - 2)UB (5.23)

The relation (5.22) shows that the appropriate tangential direction yB at node B

is given by

ay axtan YB = (5.24)

Our numerical experiments have shown that it is important to allocate the ap-

propriate tangential directions at all boundary nodes. Otherwise, spurious non-zero

energy modes are obtained in the finite element solution.

In the nonlinear analysis, within each time increment, we still have to satisfy

the mass conservation on the discretized slipping boundary. However, after each

incremental step, the material configuration will be updated as well as the mesh

configuration. Therefore, the conditions of Eqs. (5.19) and (5.22) should be satisfied

at every time step. That means we have to modify the flow tangential directions on the

fluid-structure interfaces at every time step and it is somewhat involved (especially for

high order elements) to impose the perfect inviscid mathematical model for practical

problems. Nevertheless, the physical world always allows us to use the viscous fluid

models, and in practice, different meshing techniques could be used along the fluid

boundaries and fluid-structure interfaces.



5.5 Free Surface Condition

On the free surface (for simplicity we focus on 2D problems, however, the analysis is

directly applicable to 3D), if we assign, v' = 0 and vm = v2, we will have,

0us
us = v2 - v1 9y1 (5.25)

To discretize the above equation, we can either use the standard Galerkin formu-
au,

lation with some upwinding techniques for the term -vi , or we can use upwinding

finite difference schemes. The typical SUPG method is,

Sf

where 6us is the standard virtual displacement with the same interpolation function

as for us; and Jw, is the elementwise continuous interpolant carrying the sign of vl
&6u.

(often assigned as i ).
9y,

In this thesis, we will use the following upwinding finite difference scheme for

Eq. (5.25),

...* 2U8+ + 3U8 - 6US- 1 + U-2
U(*+ +  3 • 6 - - V -= 0 (5.27)

2 Y1 + 3Y, - 6 i + Yi- 2

where the nodes are numbered sequentially from upstream to downstream [57].
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Chapter 6

Numerical Examples

The proposed u/p, u-p-A , v/p and v-p-A formulations have been implemented

experimentally. The following cases are chosen to demonstrate the capability of the

formulations and to confirm the key arguments.

6.1 Linear Vibration Problems

To demonstrate the capability of the proposed u/p and u-p-A formulations for linear

analyses, we solved eight generic test problems involving fluids and fluid-structure

interactions. We set the tall water column and rigid cavity problems exactly the

same as used in [11] [9] [2] in order to compare the results with those from either the

pure displacement-based formulation or the displacement formulation with a penalty

term on the irrotationality constraint. We aim to clarify the long lasting misunder-

standing about the causes of the non-zero spurious modes with the chosen examples.

We consider these analysis cases to be good tests because, while they pertain to

simple problems, the degree of complexity is sufficient in exhibiting deficiencies in

formulations.

Until the proposed u/p and u-p-A formulations in this thesis, we were not able to

obtain accurate solutions to all these problems with a displacement-based formulation
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(or a formulation derived therefrom).

In all test problems, we want to evaluate the lowest frequencies of the complete

systems. We also give the number of the zero frequencies k present in the analyses us-

ing the u/p and u-p-A formulations. The mathematical predictions of zero frequency

modes are obtained from the formulas discussed in Chapter 3. Of course, we do not

calculate the mode shapes corresponding to the zero frequencies, but simply shift to

the non-zero frequencies sought [35].

The results are found to be in good agreement with those calculated with the

u - / formulation, or the analytical solutions and the numbers of zero frequencies

match with the mathematical predictions. The pressure bands or distributions are

quite smooth indicating accurate solutions.

6.1.1 Tall Water Column Problem

Fig. 6-1 shows the tall water column considered in [2]. The acoustic speed c =

,6/p. The governing equations for the fluid field are,

1 a2
= 1 0 (6.1)

c2 Or2
_2U 1
U= -- Vp (6.2)

with the initial condition

u=O at t=O

and the boundary conditions



Water: compressible

Column: rigid

p = 999.0 kg/m3

9

t3=2.18 x 10 Pa

L1 =0.0508 m

Figure 6-1: Tall water column problem.
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S= 0 at x =O,L1

u2 =0 at x2 = 0

p=O0 at x2 =L 2

The analytical solutions of the above equations are given,

ul = AA, sin(Act) cos(A 2x2) sin(A1 l)

u2 = AA2sin(Act) sin(A 2x2)cos(A1x1) (6.3)

p = -pA2c2A sin(Act) cos(A 2x2) cos(A lx1)

with

n·r
A1 = • n=0, 1,2,

Lm
A2 = m=1, 3,5, ...

2L2 (6.4)
A2 =

w = cA

Notice that the free surface condition is p = 0 with no gravity effects and if no

further mathematical assumptions are made on the displacements of the free surface,

we shall expect surface elevations for some modes (indicated from the analytical

solutions in Eqs. (6.3)).

In this thesis, we use the same mesh as was used in [2] [11], however, we apply

9/4 - c and 9/3 elements for the u/p formulation and 9- 4c- 4c and 9- 3- 3 elements

for the u-p-A formulation. The lowest four displacement modes are shown in Fig. 6-

2, and Fig. 6-3 gives the corresponding pressure distributions. There is no spurious

non-zero frequency mode observed, therefore, it is clear that those reported non-zero

frequency spurious modes were induced by the pure displacement-based formulation

(including its penalty formulation), which should not be used for incompressible (or

almost incompressible) materials. Interestingly, the difference of the u/p and u-p-



Mode 1 Mode 2 Mode 3 Mode 4

Figure 6-2: First four modes of the tall water column problem.
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Mode 1

U.6

0.2

0.1

A

-

0 1 2

x 109

Mode 2

x 1010

Mode 3

x 1010

Mode 4

x 1010

Figure 6-3: Pressure distributions corresponding to the first four modes of the tall
water column problem.
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Table 6-1: Analytic solution of acoustic frequencies of the tall water column problem.

a = 1.0 m
I 8///////////////////////////////

C

II

Figure 6-4: Rigid cavity problem.

A formulations is mainly the number of zero frequency modes as discussed in Chapter

3 and 4. The number of zero frequency modes from the u/p formulation is greater

than the number of zero frequency modes from the u-p-A formulation, and the dif-

ference between the two is the number of A unknowns. The analytical solution of the

frequencies are listed in Tab. 6-1.

Tab. 6-2 gives the frequency solutions using both the u/p and u-p-A formulations

with different mixed finite elements.

6.1.2 Rigid Cavity Problem

In the reference [9], Hamdi, et al tested the rigid cavity problem shown in Fig 6-4.

The analytical frequency solution is,

Mode # Frequencies (rad/sec) n,m
1 4567.74 n = 0, m = 1
2 13703.2 n = 0, m= 3
3 22838.7 n = O, m = 5
4 31974.2 n=O, m = 7

Fluid

3-=1.156 x 10 Pa

p=1.0x 10 3 kg/m3
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Mode one, f= 170.6 Hz

Mode three, f= 429.5 Hz

........................................

Mode two, f= 353.5 Hz

Mode four, f= 462.1 Hz

Figure 6-5: First four modes of the rigid cavity problem.

Table 6-4: Analytic solution of acoustic frequencies of the rigid cavity problem.

w=cw ( )2+ )2 (6.5)

where n, m are integers and c is the acoustic speed.

Figs. 6-5 and 6-6 show the mode shapes and the pressure bands of the first four

non-zero frequencies. Tab. 6-3 lists the frequencies calculated with both the u/p and

u-p-A formulations with different types of mixed elements. The first four analytical

frequencies calculated from Eq. (6.5) are listed in Tab. 6-4.

It was reported in [9] that the displacement-based formulation introduced non-

zero frequency spurious modes (which were identified as rotational modes) and these

spurious modes could be eliminated by applying a penalty term of the irrotationality

Mode # Frequencies (Hz) n,m
1 170.0 n =1, m=0
2 340.0 n=2, m=0
3 425.0 n=0, m=1
4 457.7 n = 1, m=l

6.1 Linear Vibration Problems 82
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Figure 6-6: Pressure bands of the first four modes of the rigid cavity problem.
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' V

6

I I

p= 1000.0 kg/m3
9

= 2.1 x 10 Pa g

-~- a=A sin ot

L=0.8 m

Figure 6-7: Sloshing water tank problem.

constraint of Eq. (2.17). From the calculated results, we conclude that if we use

the u/p or u-p-A formulation with elements satisfying the inf-sup condition, we will

not encounter the spurious non-zero frequency rotational modes. In actuality, the

spurious rotational modes are related to the familiar spurious pressure modes (through

Eq. (4.27)).

6.1.3 Sloshing Problem

To demonstrate the capability of predicting the sloshing modes, we analyze a rigid

rectangular tank shown in Fig. 6-7. The analytical solution of the sloshing frequencies

is given as,

w = gktanh(kh) (6.6)

where kL = nr, n = 1, 2, 3, ...

The acoustic frequency can be calculated from Eqs. (6.4). The computed fre-

- -~- - -
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Sloshing mode 1, f = 5.657 (rad/sec)

Sloshing mode 3, f = 11.31 (rad/sec)

L,

Sloshing mode 2, f = 8.891 (rad/sec)

Sloshing mode 4, f = 12.52 (rad/sec)

Figure 6-8: First four sloshing modes of the sloshing water tank problem.

Acoustic mode 1, f = 7600.3 (rad/sec)

Acoustic mode 3, f = 14063 (rad/sec)

----,

Acoustic mode 2, f = 9507.6 (rad/sec)

Acoustic mode 4, f = 20245 (rad/sec)

.....

Figure 6-9: First four acoustic modes of the sloshing water tank problem.
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Figure 6-10: Pressure bands of sloshing modes of the sloshing water tank problem.
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Figure 6-11: Pressure bands of acoustic modes of the sloshing water tank problem.
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Analytic solution of acoustic frequencies of the sloshing water tank prob-

Pa

kg/m 3

Im,

Massless piston

E=-.Ox 1011 Pa

-,,)•

Im12 m

Figure 6-12: Tilted piston-container system.

quencies are listed in Tab. 6-5; while the analytical frequency solutions for both the

sloshing and acoustic modes are listed in Tab. 6-6.

The first four sloshing and acoustic modes and their pressure bands are shown in

Figs. 6-8, 6-9, 6-10 and 6-11 respectively.

6.1.4 Fluid-structure Interaction Problems

Fig. 6-12 describes the tilted piston-container problem. The massless elastic piston

moves horizontally. Fig. 6-13 describes the problem of a rigid cylinder vibrating in

an acoustic cavity. The cylinder is suspended from a spring and vibrates vertically in

the fluid. Fig. 6-14 shows a rigid ellipse on a spring in the same acoustic cavity.

Mode # Sloshing frequencies Acoustic frequencies n,m

(rad/sec) (rad/sec)
1 5.641 7,587.67 n = 0, m = 1
2 8.695 9,484.58 n = 1, m = 1
3 10.74 13,678.86 n = 2, m = 1
4 12.41 18,682.46 n = 3, m = 1

Table 6-6:
lem.

8m

I
i .0.

b.d

V0
Fluid
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p=l.0x 103
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8m

Figure 6-13: A rigid cylinder vibrating in an acoustic cavity.

c-oo

8m

Figure 6-14: A rigid ellipse vibrating in an acoustic cavity.
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Figure 6-15: Typical mesh for the tilted piston-container system.
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Figure 6-16: Typical mesh for the rigid cylinder problem.
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Figure 6-17: Typical mesh for the rigid ellipse problem.
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Mesh, Number of zero Frequencies (rad/sec)
Test case no. of frequencies

elements Theory Result First Second Third Fourth

Tilted 4 > 19 19 1.898 6.063 9.275 10.45
piston- 16 > 79 79 1.867 5.702 9.239 9.808

container 32 > 159 159 1.862 5.605 9.192 9.397
Rigid 2 > 7 7 3.899 718.2 1178 1326

cylinder 8 > 37 37 4.259 611.5 1193 1330
problem 32 > 157 157 4.285 589.6 1138 1254
Rigid 2 > 7 7 6.192 697.8 1216 1269
ellipse 8 > 37 37 6.755 591.7 1229 1235
problem 32 > 157 157 6.848 572.6 1157 1178

Table 6-7: Analysis of test problems using the u/p formulation with 9/3 elements.

Mesh, Number of zero Frequencies (rad/sec)
Test case no. of frequencies

elements Theory Result First Second Third Fourth

Tilted 4 > 7 7 1.895 6.054 9.256 10.32
piston- 16 > 31 31 1.867 5.696 9.236 9.792

container 32 > 63 63 1.862 5.603 9.189 9.391
Rigid 2 > 1 1 3.846 628.2 928.6 1341

cylinder 8 > 13 13 4.228 609.5 1191 1326
problem 32 > 61 61 4.281 589.4 1138 1252

Rigid 2 > 1 1 5.511 629.9 932.6 1246
ellipse 8 > 13 13 6.612 589.1 1220 1232

problem 32 > 61 61 6.827 572.1 1155 1176

Table 6-8: Analysis of test problems using the u-p-A formulation with 9-3-3 elements.
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Figure 6-18: Pressure bands of the first four modes of the tilted piston-container
problem. (Mesh of thirty-two 9-3-3 elements.)

U

LO

U)

'r-

SII

rl
O

XX4

I



6.1 Linear Vibration Problems

MODE 62
F = 0.6814 cycles/sec

YL
PRESSURE
MODE 62

- 314.7

- 209.8

- 70.0

- -69.8

- -209.7

MODE 64
F = 181.1

YI_
cycles/sec

PRESSURE
MODE 64

- 1.597E+07

- 1.064E+07

- 3.548E+06

-3 S4RRn06

-1.064E+07

MODE 63
F = 93.81 cycles/sec

PRESSURE
MODE 63

- 6372180.

- 4248120.

- 1416040.

- -1416040

- -4248120.

MODE 65
F = 199.2 cycles/sec

PRESSURE
MODE 65

- 2.152E+07

- 1.536E+07

- 7.151E+06

- -1.057E+06

- -9.266E+06

Figure 6-19: Pressure bands of the first four modes of the rigid cylinder problem.
(Mesh of thirty-two 9-3-3 elements.)
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MODE 62
F = 1.087 cycles/sec

PRESSURE
MODE 62

- 193.4

- 128.9

43.0

- -A

- -128.9

MODE 64
F = 183.9 cycles/sec

PRESSURE
MODE 64

- 1.648E+07

- 1.096E+07

- 3.596E+06

- - 74rvunr

- -1.113E+07

Figure 6-20: Pressure bands of the first four modes of the rigid ellipse problem. (Mesh
of thirty-two 9-3-3 elements.)
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Test case Mesh, Frequencies (rad/sec)
no. of elements First Second Third Fourth

Tilted piston problem 32 1.858 5.569 9.116 9.299
Rigid cylinder problem 32 4.269 581.8 1124 1224
Rigid ellipse problem 32 7.071 563.2 1138 1158

Table 6-9: Results obtained using the u - q formulation for analysis of three test
problems.

Figs. 6-15, 6-16 and 6-17 show the typical meshes used in these problems. Tab. 6-

8 and Tab. 6-7 list the results obtained using the 9 - 3 - 3 element and 9/3 element,

and Tab. 6-9 gives the results obtained with the velocity potential (that is u - 0)

formulation [14] which can be considered a very reliable procedure (refer to Chapter

7). The meshes used in this analysis have been derived by starting with coarse meshes

and subdividing in each refinement each element into two or four elements.

Figs. 6-18, 6-19 and 6-20 show the pressure band plots of the modes considered

in Tab. 6-7. The frequencies from the incompressible fluid model (with added mass

effects) are the upper bound of the calculated frequencies in Tab. 6-8 and Tab. 6-7.

This matches with the mathematical prediction in [58].

To illustrate the importance of assigning the appropriate tangential displacement

directions at the fluid nodal points on the fluid-structure interfaces, we present the

results of two test cases.

In the first test case, the very coarse finite element model shown in Fig. 6-21

for the response analysis of the rigid cylinder is considered. The assignment of the

correct tangential directions at nodes 10 and 11 is critical. If we use the actual

cylinder geometry, the tangential directions are 60 and 120 degrees from the x-axis.

However, using Eq. (5.22) we obtain 45 and 135 degrees, respectively. Tab. 6-10 lists

some solution results and shows that a spurious non-zero frequency appears when the

incorrect tangential directions are assigned.



6.1 Linear Vibration Problems

Figure 6-21: Response analysis of rigid cylinder; use of two 9-3-1 elements.
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Y
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Figure 6-22: Response analysis of rigid ellipse; use of eight 9-3-3 elements.
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Number of zero Frequencies (rad/sec)
Test case Tangent frequencies

direction Theory Result First Second Third Fourth

Rigid cylinder incorrect > 5 4 4.649 86.17* 693.7 1154
model in Fig. 6-21 correct > 5 5 3.861 688.2 1169 1324

Rigid ellipse incorrect > 13 12 6.719 34.65* 591.4 1213
model in Fig. 6-22 correct > 13 13 6.612 589.1 1220 1232

Table 6-10: Spurious modes (*) due to assignment of incorrect tangential displacement
directions at the fluid-structure interfaces.

In the rigid ellipse test case, the finite element model shown in Fig. 6-22 is used

for the frequency solution of the rigid ellipse vibrating in the fluid-filled cavity. If

we use the tangential directions given by the actual geometry of the ellipse, a non-

zero spurious frequency is calculated, whereas if the tangential directions are assigned

using Eqs. (5.19) and (5.22), good solution results are obtained, see Tab. 6-10. The

comparison of the angles (y) from the x-axis obtained using Eqs. (5.19) and (5.22)

with the angles using the actual geometry is as follows:

angle Ylmodel

angle 'Ylmodel

angle 7Ymode•

= 86.930

= 87.400

= 70.890

angle 7geometr,,

angle 7Ygeomet,,

angle y7geomer,

It is interesting to note that based on the mass transport requirement the angle

-y at node 7 is larger than at node 10, which is an unexpected result based on the

actual geometry of the ellipse.

We also show results obtained with the 4 - 1 - 1 element. Since the 4/1 displace-

ment/pressure element (that is, the element with 4 corner nodes for the displacement

interpolation and a constant pressure assumption) for incompressible analysis does

not satisfy the inf-sup condition, we expect that the 4-1-1 element will not provide a

node

node

node

10:

7:

11:

= 87.040

= 83.410

= 77.220
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Figure 6-23: Checkerboard pressure band of the rigid cylinder problem with 4-1-1
elements.
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Figure 6-24: Checkerboard pressure band of the rigid ellipse problem with 4-1-1
elements.
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Mesh, Frequencies (rad/sec)
Test case no. of ----------------

elements First Second Third Fourth

Rigid cylinder problem 128 11.91 581.8 1135 1234
Rigid ellipse problem 128 557.5 988.2 1157 1180

Table 6-11: Solution results using 4-1-1 elements.

Table 6-12: Macroelements with 4 - 1 - 1 and 4/1 elements for
problem.

the rigid ellipse

stable discretization. Tab. 6-11, Figs. 6-23 and 6-24 show some solution results. These

clearly indicate that the 4 - 1 - 1 element is not a reliable element; the predicted

lowest frequencies are not accurate and the checkerboard pressure bands obtained

here are typical of those observed with the 4/1 element in incompressible analysis.

However, some types of macroelements shown in Fig. 3-2 with 4/1 elements have

been proved mathematically to satisfy the inf-sup condition for the u/p formulation.

As a natural extension, we expected the same macroelements with 4 - 1 - 1 elements

will give good results. Surprisingly, we found that for both the rigid ellipse and

rigid cylinder problems, the structure modes predicted with type I and II macroele-

ments (shown in Fig. 3-2) in the u-p-A formulation are spurious. This indicates that

the inf-sup condition for the u-p-A formulation is not exactly the same as for the

u/p formulation regardless of the similarities (refer to Chapter 3).

Mode # Type I Type II
(4/1) (4-1-1) (4/1) (4-1-1)

1 6.802 560.8 6.781 559.2
2 575.6 1035 579.0 1155
3 1167 1167 1165 1163
4 1210 1194 1195 1191
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Table 6-13: Macroelements with 4 - 1 - 1 and 4/1 elements for the rigid cylinder
problem.

The explanation for this is that 4 - 1 - 1 elements give extra constraints indi-

cated from the mathematical prediction of zero frequency modes, however, no math-

ematical proof is yet available. As expected, using the 4/1 macroelement in the

u/p formulation, we can calculate the structure mode accurately. We come to the

conclusion that the inf-sup condition can help to select good elements for both the

u/p and u-p-A formulations, but for the u-p-A formulation, 4 - 1 - 1 element and

its macroelements are not recommended.

Fig. 6-25 shows the system involving a submerged structure and the free sur-

face. The submerged 2D plane strain structure has the dimension 0.2 x 0.0026.

Tab. 6-16 lists the first four dry modes. Some preliminary analysis on the similar

systems are available in references [5], [59], [60], [61] and [62]. In certain acoustoe-

lastic fluid-structure interaction problems, gravity effects are ignored. However, we

will take the gravity effects into account in this example and demonstrate that the

u/p formulation can in one finite element analysis obtain the sloshing, structure and

acoustic frequencies accurately (results from convergence studies are listed in Tabs. 6-

15 and 6-14). Fig. 6-26 shows the typical mesh of this problem. Using the proposed

u/p formulation, the computational results of the number of zero frequency modes

match with the mathematical prediction in Chapter 3.

Figs. 6-28 and 6-27 show the mode shapes and pressure bands of the first two

Mode # Type I Type II
(4/1) (4-1-1) (4/1) (4-1-1)

1 4.413 254.0 4.466 203.1
2 590.0 583.1 593.2 581.6
3 1157 1149 1156 1142
4 1280 1249 1262 1242
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No. of elements Sequence Number Frequencies (rad/sec)
Mode

Structure Fluid Theory Result First Second
1 11 > 68 68 5.4717 8.8003

Sloshing 2 38 > 250 250 5.3901 8.4892
4 140 > 950 950 5.3696 8.4533
1 11 > 76 76 190.85 6964.3

Structure 2 38 > 266 266 150.27 1808.6
4 140 > 982 982 129.07 1105.5
1 11 > 78 78 8867.4 12009

Acoustic 2 38 > 268 268 7386.5 9214.8
4 140 > 985 985 7509.3 9366.3

Table 6-14: Analysis of the acoustoelastic/slosh problem using the u/p formulation
with 9/4 - c elements.

Table 6-15: Analysis of the
with 9/3 elements.

acoustoelastic/slosh problem using the u/p formulation

No. of elements Sequence Number Frequencies (rad/sec)
Mode

Structure Fluid Theory Result First Second
1 11 > 55 55 5.4717 8.8003

Sloshing 2 38 > 190 190 5.3360 8.6016
4 140 > 700 700 5.3435 8.4673
1 11 > 63 63 190.85 6964.3

Structure 2 38 > 206 206 111.07 1800.72
4 140 > 732 732 113.93 1013.29
1 11 > 65 65 8867.4 12009

Acoustic 2 38 > 208 208 7381.3 9257.5
4 140 > 735 735 7513.2 9382.8
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Structure

E=2.068 x 10 N/ m 2

C A v=0.3
p=7.827 x 103kg/m 3  Fluid

V=2.1 x 10 N/mr

p=9.982 x 102kg/m

Figure 6-25: Acoustoelastic/slosh problem.

No. of elements Frequencies (rad/sec)
First Second Third Fourth

1 457.432 36851.0 43851.5 155273
2 378.365 3802.02 42256.1 42882.7
4 363.097 2446.82 7852.46 20493.2

Table 6-16: First four dry modes of the submerged structure (plane strain) (with
9-node elements).

6.1 Linear Vibration Problems 107



6.1 Linear Vibration Problems

485E1185
Ej186

7

C 16
191

194
19

C 1 o
C1 193

18

14
189 C115

192
17

U1U2
/C-/c
- /

F C/

Figure 6-26: Typical mesh of the acoustoelastic/slosh problem.
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Figure 6-27: Pressure bands of the first two sloshing, structure and acoustic modes
of the acoustoelastic/slosh problem.
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First sloshing mode

First structure mode

First acoustic mode

Second sloshing mode

I................ .............

Second structure mode

Second acoustic mode

...... ..........

Figure 6-28: First two sloshing, structure and acoustic modes for the acoustoelas-
tic/slosh problem.
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1

0= 1

0=0

0=0

0=0

0= 1-cos(4 ix)

0=0

Figure 6-29: Two convection dominated heat transfer problems.

sloshing, structure and acoustic frequencies calculated with forty 9-node elements.

6.2 Upwinding Test Problems

6.2.1 Convection-Diffusion Examples

To test our proposed upwinding formulation for 9-node elements, we analyzed

two convection dominated heat transfer examples (Peclet number is 6.25 x 109 for

both cases) shown in Fig. 6-29. In the diagonal flow problem, the flow is uniform

(Iv| = 1.0) in the diagonal direction; while in the rotating cosine hill problem, the

flow is rotational (vl = -x 2 and v2 = x 1). Figs. 6-30 and 6-31 show the results from

the standard Galerkin (with 9-node elements), the SUPG formulation (with 4-node

elements) and the proposed upwinding formulation (with 9-node elements). Indicated

from the results, the SUPG formulation introduces less crosswind diffusion, however,

it retains some spatial oscillations around the sharp changing regions. Since the

SUPG formulation was originally introduced for 4-node elements, the formulation

6.2 Upwinding Test Problems 111
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Galerkin Formulation with 9-node elements
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Figure 6-30: The diagonal flow problem with distorted meshes.
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Galerkin Formulation with 9-node elements
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Figure 6-31: The rotating cosine
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will be unstable for low Reynolds number flow problems with general 4/1 element

meshes. The proposed formulation for 9-node elements works well for the diagonal

flow problem even with the distorted mesh, but in the rotating cosine hill problem,

there exists some crosswind diffusion. From our numerical tests, we find that the

crosswind diffusion will be reduced with the mesh refinement. As a side remark,

whether there exists an optimal upwinding scheme which has neither oscillation nor

crosswind diffusion needs to be further investigated.

6.2.2 Corner Flow

Fig. 6-32 illustrates the turning flow test problem for the control volume upwinding

scheme in convection dominated flow problems. In this test problem, we assign a

known corner flow field,

u1 = x1 (6.7)

U2 = -X 2  (6.8)

The corresponding pressure distribution is,

p= P-(x + x) (6.9)
2

where the nodal pressure at node A is assigned to be zero.

From the analytic solution, node B should have the pressure -1000.0; using the

proposed upwinding formulation with sixteen 9-node elements, the calculated pressure

for node B is -717.0. Fig. 6-33 shows that the pressure distribution is not exactly the

circular shape as indicated in Eq. (6.9) due to the crosswind diffusion. Nevertheless,

with that coarse mesh, the flow field is smooth and accurately predicted.

1146.2 Upwinding Test Problems
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Figure 6-32: Corner flow problem.
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Figure 6-33: Velocity profile and pressure band of the corner flow problem.
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Inlet Outlet

Im

4.0 m

Figure 6-34: Navier-Stokes flow over a step problem.

6.2.3 Navier-Stokes Flow Over a Step

This test problem is used to show the spatial oscillations with the standard Galerkin

formulation for the Navier-Stokes equations and demonstrate the capability of the

developed upwinding scheme for 9-node elements. The mathematical model is shown

in Fig. 6-34. In the reference [51], Hughes, et al analyzed the same problem with

a penalty formulation and reduced integration techniques for low order elements.

Results of the velocity profiles and pressure distributions for 9-node elements with

the standard Galerkin formulation are shown in Figs. 6-36 and 6-35. As is clearly

visible, 'wiggles' appear upstream of the step. This confirms that it is inappropriate to

use the standard Galerkin formulation for convection dominated problems. With only

thirty-eight 9-node mixed elements, the proposed v/p formulation and the upwinding

technique gave fairly good results shown in Figs. 6-38 and 6-37. The employed data

for this problem were: (Re = 200, Vi, = 0.25).

6.3 Nonlinear Problems

To demonstrate the capability of the proposed v/p formulation with the ALE kine-

matic description and developed upwinding formulation for 9-node elements, we an-

6.3 Nonlinear Problems 116
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Figure 6-35: Pressure bands of the Navier-Stokes flow over a step problem (the stan-
dard Galerkin formulation with thirty-eight 9-node elements).
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Figure 6-37: Pressure bands of the Navier-Stokes flow over a step problem (the new
upwinding formulation with thirty-eight 9-node elements).
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alyze a problem involving large free surface motions and a problem of the Navier-

Stokes flow interacting with a hyperelastic structure under large displacements and

large strains. In the region around the structure and free surfaces, with the help of

the ALE description, we can relate the fluid mesh points to the structure nodes or

assign additional mesh velocity unknowns in order to regularize the mesh inside the

fluid domain. We use 9/3 or 9/4 - c elements and apply the developed upwinding

formulation.

6.3.1 Large-amplitude Sloshing Problem

The applications of the finite element method with velocity potential formulations

for nonlinear free surface waves have been discussed in [63] [64] [65] [66]. In this

thesis, we use the proposed v/p formulation with 9-node mixed elements. To avoid

the excessive mesh distortion, we apply the ALE description to the v/p formulation.

For the rigid tank with a free sloshing surface shown in Fig. 6-7, we subject it to

the horizontal sinusoidal motion a sin wt, where w = 0.89(rad/sec) and a = 0.098g.

The free surface profiles are shown in Fig. 6-39.

Figs. 6-41 and 6-42 show the velocity profiles and the pressure bands. Fig. 6-

40 gives amplitudes. In a linear analysis, both downward and upward motions of

the sloshing tank will have the same magnitude. However, indicated by nonlinear

analysis, the amplitudes of upward displacements and velocities are much higher

than the downward ones. Notice that with the influence of viscosities and crosswind

diffusion due to the coarse mesh, free surface amplitudes are less than the results with

the potential formulation [46].

6.3.2 Hyperelastic Structures Interacting With Viscous Flows

Fig. 6-43 shows the first testing problem. Through this test example, we want to

demonstrate that our v/p formulation with the ALE description and newly developed

upwinding formulation can be successfully applied to convection dominated problems

6.3 Nonlinear Problems 121
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Figure 6-39: Free surface profiles (with eight 9-node elements, v = 0.05).
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Figure 6-42: Pressure bands of the nonlinear sloshing water tank problem.
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Inlet 0.08

Hyperelastic structure

0.5

1 IOutlet

4.0

Figure 6-43: Navier-Stokes flow interacting with a hyperelastic structure problem.

involving almost incompressible fluids and solids with large displacements and large

strains.

The typical mesh (very coarse one) is given in Fig. 6-44. Figs. 6-45 and 6-46

give the flow fields and the pressure bands. Interestingly, with the coarse mesh used,

the developed ALE and upwinding formulation gives the convergence and provides

reasonable results with no spatial oscillation and checkerboard pressure modes. In

practice, before a large number of finite elements is used, this type of coarse meshes

can be applied to get a first estimation of a rather complicated problem.

Fig. 6-47 shows the displacement time history of Node 5.

The results from finer meshes are shown in Figs. 6-48, 6-49, 6-50 and 6-51.
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Figure 6-44: Typical mesh of the Navier-Stokes flow interacting with a hyperelastic
structure problem.
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Figure 6-46: Pressure bands of the Navier-Stokes flow interacting with a hyperelastic
structure problem.

0-1~

0

0

0

I~1!11~22

Nols

G-329HIMI.H.q

------------- -------- ·-----~- ~

Ln 41 . u I "
MW,~Sa- 'CI

riZii~2aiS~Oj119

baraar
--

~-- ~- ---~-~-- ---~~-~ ~----~ ~`-------

~--~-~ -- --̀ ~



6.3 Nonlinear Problems 129

I'. .4 6
V. IO

0.16

0.14

0.12

0.1
E
a 0.08

C 0.06

0.04

0.02

On n',
0 0.5 1 1.5 2 2.5 3

Time

Figure 6-47: Node 5 displacement history of the Navier-Stokes flow interacting with
a hyperelastic structure problem.
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Chapter 7

Mode Superposition Method For

Linear Fluid-structure Interaction

7.1 Introduction

A great deal of research has been performed on finite element methods for fluid-

structure systems [1] [3] [10] and mostly direct integration methods are employed [14]

[67]. With symmetric M, K, and C matrices (for conservative systems, the coupling

matrix C has zero diagonal entries) in 0 - U and P - 0 - U formulations, a mode

superposition method can be applied. However, this thesis shows that the procedure

is different from the common spectrum analysis we are familiar with in structural

dynamics [68] [35].

In this chapter, we will give the spectrum method for both potential-based and

displacement-based formulations.

We assume an inviscid, irrotational compressible fluid with small motions and no

gravity effects (to introduce the gravity effects in linear analysis, we have to include

the surface potential). In the 0 - U formulation, we use the velocity potential as the

state variable for fluids and displacements for solids. In the P - ¢ - U formulation,

we replace one velocity potential unknown with a pressure unknown for each fluid
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7.2 Potential-based Formulations

region. Both potential-based formulations will give the same natural frequencies of

the fluid-structure system, except the zero frequency mode.

In the u/p or u-p-A formulation, displacements are the state variables for both

the structures and fluids, therefore M and K matrices are the true physical mass

and stiffness matrices. Based on the discussion in Chapter 3 and 4, for general

acoustoelastic/slosh fluid-structure interactions, we will have the standard spectrum

method as used in structural dynamics.

The treatment of the effect of ground motions is discussed for both types of for-

mulations.

7.2 Potential-based Formulations

7.2.1 Governing Equations

We start with the variational indicators for the structural region and the fluid region.

For the solid region:

(V..) = {- CdV- pdV - - p dVt2 2v 2 v,.
- (uI IdS -j (US) T f/dS - uTbdVdt (7.1)

For the fluid region:

12f 1 l (_p)d(V .I) f { -(P - pf)2dV - 2 pf(V) 2dV
( Jt 2 J2 fV

- If(P - p )uNdS}dt (7.2)

where V,, V1 , S, and Sp, refer to structure domains, fluid domains, structure natural

boundaries and fluid-structure interaction surfaces respectively. u, 0 and P are inde-
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7.2 Potential-based Formulations 136

pendent variables. Note that only one hydrostatic pressure P is used to replace one

nodal velocity potential for each fluid region. If we have k separate fluid domains, we

should use k independent hydrostatic pressure P.

Using the fact that 6& = 0 at tl and t 2, where _F stands for admissible independent

state variables, we get,

L p,86uiidV + v 6. TCdV - j U(bu)rfIdS

- f (susf)T fdS - JuTbsdV = 0 (7.3)

P 6PdV - J 6PdV + JP p6dV - pf(V60) - (V¢)dV

-f 2dv - , -n u. PdS - pf, -'.n6'dS = 0 (7.4)

7.2.2 Finite Element Discretization and Frequency Analysis

The discretized forms of Eqs. (7.3) and (7.4) are,

dU : M'9U+CT 0 + KsU + KTP = R,

6P: CPi + KpPP + KPU = 0 (7.5)

6 : -Mff- + CfsJ + C4fP - K+ f = 0

We use the standard isoparametric elements for both fluid domains and structure

domains [14] [35]. A typical N-node solid element has the following discretization

relations,

x = hX, y = hY, z = hZ
(7.6)

u = HU, u/n = bU

where
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h

YT

= [hi

= [Yl

h2

Y2

0

hi

0

h3

Y3

0

0

hi

.. hN],

• YN],

X T

ZT

= [x1

[Z1

hN

... XN]

.. ZN

O 0

hN 0

... hN

UT = [U1 v1 W1 u 2 v2 w2 ... UN VN WNI

Then on the solid element level, we have,

K,8 = f BTCB dV, Ms, = psH THdV (7.7)

where C, is the elasticity matrix, and

R, = H'b, dV + f Hs, f fdS

For a typical fluid element (without replacement of one velocity potential unknown

by the pressure unknown), we have the following discretization relations,

VO = D @, 0I = a

5' = [01 02 03 *.. ON]

where

(7.8)

7.2 Potential-based Formulations 137

H



7.2 Potential-based Formulations 138

Oh

Oh

Oh

Oh
Ohx
Oh

Oh

Oh

ah

Oh
Oh

Oh~

Therefore, on the fluid element level, we have,

M f =J h'hdV, Kff = SpfDD dV (7.9)

For the fluid element in which one velocity potential unknown is replaced by

the pressure unknown, the discretization relations are the following (without loss of

generality, we assume the N-th nodal velocity potential unknown is replaced by a

pressure unknown),

V¢ = D' !, 0I = a' 4P (7.10)

where

T = [01 0 2  0 3  ... 0N-l]

h h "h Oh

D' h OOh h

A A A AN-

For these types of elements, we have,
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CpI -= h' dV C, - pfbTa ' dS

Mff = h'ITh'dV, Kff f pDD' dV

,= -dV, K = b T" dS

(7.11)

Note that the three equations in (7.5) have the units of force, volume and mass

flow rate respectively. Combining the units from their corresponding variations, they

all have the unit of energy.

The matrix form of (7.5) is,

M,, 0

0 0

0 0

K,, K T

+ K,, KP,

L0 0

0 U
- Ms. :

0

0

CfS

0

0

CT
pf

c, 1U
Cp, P

o J I1

0

0

-Kff

(7.12)

If we change the sign of the second equation in (7.5), we get the new matrix form

as,

0

0

-Mff

K,, K T

+ -Kps -Kpp

0 0

0

0

-Kff

So0

P + o0
C 7,

0

0

CpTp1

CT

-Cpf

0 1 14

U Rs
P 0

4 0

M0S

0

0

(7.13)
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Both Eqs. (7.12) and (7.13) represent the same fluid-structure interaction problem

and should have the same eigenvalues and eigenvectors. From the kinematic boundary

conditions along the fluid-structure interface, we find that physically 4i has a 7r/2

phase shift from U. Therefore we assign the m-th eigenvector as X= - (U' P' iop)

where Um,Pm and ,m are real values.

Let the m-th eigensolution be X = XmeAmt; from Eqs. (7.13) and (7.12), we get,

am m + b'Am + c = O (7.14)

amAm + bmAm + cm = 0 (7.15)

where

am = UTM,,U m + q5T Mff•m

b'm = 2i U C, m

cm = UmKssUm + mKff m + P(-Kpp)Pm

and

am = U MssU, + 4 T Mff14m

bm = 2i(UTCTspm + pTCpf4m)

Cm = U KssUm + Kff ym + PKppPm + 2P- KpsUm

Since M,,, Mff,-Kp, and K,, are positive definite matrices, amI and cm should

be positive. Furthermore, Eq. (7.14) gives pure imaginary eigenvalues of the coupled

fluid-structure system. Assign Am = iwm, m = 1,2, ..., n, n is the total number of

degrees of freedom and substitute eigensolution Xmeiwmt into the left side of equation

(7.12), we get

1407.2 Potential-based Formulations
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-w(M,,Um - wmCT,4m + KssUm + KpPm = 0

-wmCpim + KpsUm + KppPm = 0

w M!Iým + WmCfsUm + WmCbPm - Kff m = 0

with matrix form,

(7.16)

Ms, 0

-w 2  0 0

0 0

0

0

Mff

Pm 
Wm

45m

0

0

Cf

0

0

CfT

CT Um
Cf Pm

0 4M

K,, K T

+ K,, Kp

0 0

0

0

Kff

Um 0

Pm = 0
P m 0

In the q - U formulation, we get the similar equation as Eq. (7.12),

M 88

0

0

0

-Mff

-Maf

K,,

+ 0

0

0

-Maa

0

-Kf 1

-Kaf

IU 04P + CS,
C Ca,

0

-K T-Kaf

-Kff

C0

0

C T,

0

0

U Rs,

where Ia denotes the velocity potentials which will be replaced by pressure unknowns.

Eq. (7.18) has the same eigenvalues as Eq. (7.12) except for the zero energy mode.

From the same reasoning, the m-th eigensolution of Eq. (7.18) is in the form X =

(7.17)

U

45a

(7.18)
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tT
XmeAtm, where XL =- (U; i i(#a)n). Assign ,Am = iwm, then we have,

M88

0

0

0 0
M f M T

Mar Maa

K,,

+ 0

0

0

Kff

Kaf

Um
I
m

(4a)m

0

Ka

Kaa

- Wmn

Um

(,a)m

0

Cf,

Cas

CTj{
0

0

CT

O

Um

Vm

(qa)m

0
=- 0

0

(7.19)

7.2.3 Mode Superposition Method

A determinant search method can be used to find the needed real eigenvalues wm

from Eq. (7.17), where m = 1,...,p. Note that the number of negative elements

in the matrix D of the L D LT factorization of K - wiC - wM is the number of

eigenvalues below wi [35] [2].

Rewrite Eq. (7.12) in the following form,

A Y + BY- = . (7.20)

where XT = (U T P T gT), FT = (RT OT OT) and

K 0
A

0 -M
C MB M 0

XY (= i
FF=
0

Without loss of generality, we assume the system has distinct eigenvalues. The

following orthogonal relationships hold,
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Y'B Yk 0 if m k (7.21)
bm + 2amAm ifm=k

YmA Yk= if m= k (7.22)
cm - amA ifm=k

If we have multiple eigenvalues, we can construct independent eigenvector pairs

which still have the orthogonality properties [35].

Assign Y(t) = YQ(t), where Y = (Y 1 Y 2 ... Y 2n) are the mode shapes, Q'(t) =

(qi q2 ... q2n) is the generalized coordinate vector. Using the orthogonality relations,

we have,

4i + Piqi = hi (7.23)

where i = 1, 2, ..., 2n and

ci - ai
Pi b + 2ai A

(7.24)
YT F

i = bi + 2aiAi

The initial conditions for Eq. (7.20) are,

q(0) YB Yo (7.25)bi + 2a2 A(

Note that yT = (Uo Po 4o Uo Po 4o) has to satisfy the second

equation of Eqs. (7.5).

Define

7.2 Potential-based Formulations 143



7.2 Potential-based Formulations

am [UT V(U) + (p)- Wm V(')

m = [# v ) + WmUV U) + wmP;VP)

Ym = 2 C .,U + pTm CPm]

= 2(m [UTMsUm + t Mff~,

with

Vo = B Yo =

V("•)o
V(p)0

V(O•oV(O
VOOVO)

0V J

Therefore we will have,

(T Vo(0-m-)0) (2-)V ( am + Ami Am + Bmibm + 2Aam - (, + ,.)i

q(2m) (0)
_bm + • a_ m + mi= Am -Bmibm+2Amam - ('Ym+ mi

where

Am n +- m B' _

Eqs. (7.24) give us,

h(2m-1) = Cm + Dmi

-- am7m + (m

144
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h2m = C -Dmi

_ -U F(" ) - PF() + wm F(F )

7m + ým
mF() wmUF() F- wP•F

'Ym + ý'

F(")

F(p)

F(O)

F(fi )

F(ý)

F(O)

F = BYo

The solution to Eq. (7.23) is,

q, (t) Sf
T ei(r-t)h, (T)dT + q,(O)e -Pit

Eq. (7.20) has the solution,

Y(t) = YQ(t)
2n

= Ymqm (t)
m=1

Based on the discussion before, we reconstruct the complex eigenvector and eigen-

value couples as follows,

where

Dm

Cm

and

(7.26)

(7.27)

7,2 Potential-based Formulations 145

=



7.2 Potential-based Formulations 146

PT

PT

ijpTm

-i# m

iWmUT

-iWmUT -iwmPm
-• •m )

Mw~~

(7.28)

The final form of the mode superposition solution is,

Pm

m=1

Um

Pm

#m

WmPm

Wmr~rm

Fmu (t)
FmP(t)
F (t)
Fm (t)
Fm (t)
Fý(t)

+ 2Am cos Wmt - 2Bm sin wmt

+ 2Am cos wmt - 2Bm sin wmt

- 2 Am sin wmt - 2 Bm cos wmt

- 2Am sin wmt - 2 Bm cos wmt

- 2 Am sin wmt - 2 Bm cos wmt

- 2Am cos wmt + 2Bm sin wmt

(7.29)

where p denotes the number of real eigenvalues we are interested in and,

fT
S TfoT

j T
fT
1'

1'

F"m(t)

F~ (t)
Fý (t)

Fm (t)
F, (t)

F4(t)

[2C,(T) cos wm(T - t) + 2Dm(r) sin wm(T - t)] dT

[2Cm,(T) COs w (T - t) + 2Dm (r) sin wm(T - t)] dr

[2Cm () sin Wm(T - t) - 2Dm (T) cos wm(r - t)] dT

[2Cm(7T) sin wm(T - t) - 2Dm(T) cos wm(7 - t)] dT

[2Cm(7) sin wm(T - t) - 2Dm(T) COs Wm(T - t)] dT

[-2Cm(T) COsWm(- - t) - 2Dm(T) sin wm(T - t)] dT

(7.30)

7.2.4 Ground Motion Effects

To incorporate ground motion effects is an important part of many dynamic analyses

of fluid-structure systems. It is obvious that the fluid kinetic energy will include the

ground motion as well as the relative fluid motion in the system. The change of the

variational indicator for fluids is as follows,
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(V.I.)f =

(7.31)

12 - 
f P1)2dV -- f IVf P(V + au)2dV -

Is (P - p I)undS}dt

Note that the displacement u and potential 0 represent the relative motion and

fiu is a known quantity. From a similar approach to the structure, we obtain the final

dynamic equations of the fluid-structure system,

0

-Mff

0 -Kff

+i

0

0

Cf,

:1

0

0

C T
pf

CT

Cpf

0

RS - M,,Sg

0

Gug

G = p, DTdV

7.3 Displacement-based Formulations

In Chapters 3 and 4, the u/p and u-p-A formulations are discussed in detail. After

we condense out the pressure and vorticity moment unknowns, we will have,

Mt + K*U = R(t) (7.33)

where M is the positive definite mass (true physical mass) matrix, K* is the stiffness

MS8

0

0

+I

K,,

K,,

0

where

(7.32)
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(true physical stiffness) matrix, U is the nodal displacement unknowns and R(t) is

the discretized oscillatory force term. As discussed in Chapters 3 and 4, K* is not

necessarily a positive definite matrix and

K* = K - LA-1 LT  for the u/p formulation

K* = -LA- 1LT - QG-'QT for the u-p-A formulation

where we assume the total degrees of the freedom is n and the rank of K* matrix is

k. The mode superposition method for Eq. (7.33) is the standard one for structure

dynamcis as discussed in [35].



Chapter 8

Conclusions and Discussions

In this thesis, we conclude that to have a reliable finite element procedure for both

linear and nonlinear fluid-structure interaction analyses, the u/p or v/p formulations

with mixed elements satisfying the inf-sup condition are to be highly recommended.

The developed primitive variable formulations in this thesis can be used for general

acoustoelastic/slosh problems, incompressible (or almost incompressible) flows (in-

cluding large free surface motions) and their interactions with linear and nonlinear

solids. In these formulations, displacements (or velocities) and pressure are used as

independent variables. It is effective that the pressure is associated with element

internal variables and is statically condensed out at the element level. Then the only

nodal point variables used in the assemblage of elements are those corresponding to

the displacements (or velocities). This enables the direct coupling of the fluid elements

with the structural elements. Of course, in principle, we could also employ element

nodal pressures that provide for continuity in pressure (hence cannot be statically

condensed out at the element level).

We point out that the inviscid fluid model is not a requirement for acoustic fluid-

structure interactions as long as the mesh is proper and the viscosity (or shear mod-
1

ulus) is assigned O( ). However, it is important to satisfy the requirements of both

mass and momentum conservation around the fluid boundaries and fluid-structure
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interfaces. We also conclude that in frequency analysis, the historically reported

non-zero frequency spurious modes were caused either by the pure displacement for-

mulation (and its penalty formulations) or the improper treatment of the boundary

conditions. Therefore, the proper way of eliminating the non-zero frequency spurious

modes is to use the u/p formulations with mixed elements satisfying the inf-sup con-

dition. A new effective three-field mixed finite element formulation (u-p-A ) for the

analyses of acoustic fluids and their interactions with structures is also presented in

this thesis.

The developed upwinding scheme with both the standard Galerkin and the con-

trol volume finite element formulations is successfully used with the ALE kinematic

description and high order mixed elements satisfying the inf-sup condition. This ap-

proach is the first attempt to incorporate both the need of upwinding techniques and

the inf-sup condition for 9-node elements.

We have tested the formulations on some simple but well-chosen analysis prob-

lems, which heretofore we could not solve with displacement (or velocity)-based finite

element formulations (or formulations derived therefrom). As indicated from the nu-

merical results, the proposed upwinding formulation provides good solutions even

for very coarse meshes. The new formulations have performed well in all linear and

nonlinear analysis cases.

The results of our numerical experiments confirm that 9/3 and 9/4 - c elements

for the u/p and v/p formulations; and 9 - 3 - 3 and 9 - 4c - 4c elements for the u-p-

A formulation are reliable. However, the use of 4/1 elements with general meshes is

not recommended for practical applications. It is shown that the u/p formulation can

be applied with 4/1 macroelements which satisfy the inf-sup condition. The results

of some numerical experiments on the use of 4/1 elements with general meshes and

inappropriate boundary tangential directions have been included in order to illustrate

the importance of our recommendations.

In linear analysis, general acoustoelastic/slosh fluid-structure interactions can be
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solved reliably with the developed primitive variable based mixed finite element for-

mulations. In nonlinear analysis, the proposed upwinding formulation along with

ALE descriptions for 9-node mixed elements provides a better option for the solu-

tion of the Navier-Stokes flows and their interactions with structures. Nevertheless,

considerable research remains to be done. In particular, we look forward to:

* a better upwinding technique for convection dominated problems and the fun-

damental mathematical criterion (if there is one);

* a more comprehensive formulation involving thermal coupling and turbulence

effects;

* ALE formulations for elastoplastic analysis;

* more feasible mesh adaptive procedures.
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Appendix A

Constant Pressure Mode

Further insight into the inf-sup condition is obtained by studying the governing alge-

braic finite element equations [35]. Let us consider the case of the following matrix,

(Kuu)h (Kup)h Uh Rh (A.1)
(Kup,) (Kpp)h Ph 0

where Uh lists all the unknown nodal point displacements and Ph lists the unknown

pressure variables. The number of displacement and pressure unknowns are n and

m. The right side matrix of Eq. (A.1) is denoted as Kh. The mathematical analysis

of the formulation resulting in Eq. (A.1) consists of a study of the solvability and

the stability of the equations (i.e. the structure of Kh); where the stability of the

equations implies their solvability [35].

From the discretized formulation, we have,

JUT(K p)hPh = JpV VhdV (A.2)
V

where Vh can be any arbitrary admissible displacements and 6 Uh contains n inde-

pendent admissible vectors.

Assuming that (K.U)h is a positive definite matrix (i.e. the ellipticity condition
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is satisfied), if we have,

poV -vhdV = p vJ -ndS = 0 Vvh e Vh (A.3)
V S

where p, is a constant pressure, and (Kpp)h = 0 (incompressible case); we can add

an arbitrary constant pressure po to any proposed solution of Eq. (A.1) [35].

In fact, Eq. (A.3) is equivalent to the following condition,

m

-(Kp)( = 0 i = 1, ... , n (A.4)
j=1

where (Kup)( is the ij'th element of (Kup)h. Therefore, for the incompressible case,

Eq. (A.3) implies that the rank of Kh is at most n+m-1, and the mode corresponding

to the zero eigenvalue contains the constant pressure mode P' = po(1, 1, ..., 1).

For almost incompressible fluid models discussed in this thesis, we will have the

following stiffness matrix for the u/p formulation (refer to Chapter 3),

Kh o= (A.5)
Lh Ah

where the artificial shear modulus G is taken as zero in the limit case. Since we are

using the Galerkin formulation, for almost incompressible fluids, Ah is a negative

definite matrix. Therefore, we have

K* = -LhAh'L (A.6)

If Eq. (A.3) holds, from Eq. (A.4), it is clear that the rank of Lh is at most

m - 1. From the discussion in Chapter 3, we conclude that the rank of K* is also

at most m - 1. In actuality, to have a non-zero pressure Po, Eq. (A.3) requires that

the discretized boundary tangential directions satisfy Eqs. (5.19) and (5.22) (refer to

Chapter 5). That is the fundamental reason why spurious modes can be produced
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when Eqs. (5.19) and (5.22) are violated for inviscid acoustic fluids.

In the proposed u-p-A formulation, we have,

0 Lh Qh
Kh= L T  Ah 0 (A.7)

QT 0 Gh

for which the comparable analysis holds. The corresponding mode contains the

constant pressure PT = po(1, 1, ... , 1) along with the zero vorticity moment mode

Al - (0, O, ..., 0)
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