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Abstract

The purpose of this research is to investigate the relationship between the chemical
structure variations and the macroscopic properties like thermal transition temperatures
and crystallization kinetics for liquid crystalline polycarbonates based on substituted
stilbene mesogen. The chemical variations include changes in the methylene spacer
length and substitution on the mesogen. We are able to determine the role of the
chemical variations on the thermodynamic stability of the mesophase and in the
nucleation kinetics and growth of the crystalline phase.

For our liquid crystalline a-methyl stilbene (HMS) polycarbonates, there is a very narrow
temperature range of stability for the mesophase. The mesophase, which is actually
monotropic, can be only observed during cooling when three dimensional crystal growth
is suppressed. The multiple melting endotherms seen in the heating scan are assigned
either to the melting of more perfect crystals forming from the mesophase (melting at
higher temperature) or to less perfect crystals forming from the isotropic phase (melting
at lower temperature). The region of stability of the mesophase seen in the cooling scan
becomes smaller, when the methylene spacer number, n, ranges from 5 to 8. When the
length of spacer becomes greater than that of the mesogen (n 2 9), all the transition
temperatures drop. Using wide angle X-ray scattering and molecular modeling, we show
that the orientation of the carbonate group and the length of the methylene spacer are both
implicated in the rapid nucleation of crystals. When the length of the methylene spacer
and the mesogen are comparable, a regularly packed intermeshed crystal structure occurs.
This crystal structure forms rapidly from the mesophase which acts as a template for
nucleation and growth of crystals from an already ordered melt. Using small angle X-ray
scattering, we have found for the first time that HMS polycarbonates with odd-numbered
methylene spacer have a higher value of crystal lamellar thickness than those with even-
numbered one. The odd-even oscillation in lattice parameters and lamellar characteristics
has not been reported before. Changes in long period, lamellar thickness, and linear
crystallinity during non-isothermal crystallization and melting are explained by a model
of dual lamellar thickness.

The steric effect of the second lateral methyl substituent on the stilbene mesogen lowers
the stability of the mesophase of a,1-dimethyl stilbene (DMS) polycarbonates. Because
of the steric effect, DMS polycarbonates do not have "odd-even" property oscillation with
the methylene spacer length as HMS polycarbonates do.

Thesis Supervisor: Dr. Peggy Cebe

Title: Associate Professor of Polymer Physics
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Chapter 1

Introduction and Background

1.1 OVERVIEW

1.1.1 Introduction to Liquid Crystalline Polymers and Definitions

Liquid crystalline polymers (LCPs) may exhibit liquid crystalline order either as a

function of concentration in solution (lyotropic LCPs) or as a function of temperature in

the melt (thermotropic LCPs). The type of ordered structures that liquid crystalline

polymers form may be represented as shown in Figure 1.1 [1]. Traditionally, the

thermotropic liquid crystalline phase exhibited by small molecular rod-like mesogens can

be classified as nematic, cholesteric, smectic A (an untilted nematic) or smectic C (a tilted

layer). Disk-like molecules exhibit various discotic liquid crystalline phases.

These ordered liquid crystalline structures give birefringent melts and solutions

when observed under crossed polarizers. As with small-molecule liquid crystals the most

simple polymeric liquid crystal phase is the nematic phase. The molecule chain axes

mutually align in relation to a simple director without long range positional order which

might contribute to a crystal lattice. Schlieren texture is a characteristic of the nematic

phase. When viewed between crossed polarizers, this texture shows an irregular network

of black brushes branching out from a number of scattered points and passing

continuously from one point to another. They correspond to extinction positions of

nematic mesophase. These points are the intersections of vertical lines of singularity with

the glass surfaces [2,3]. Possible topologies (molecular arrangements) about point

singularities are given in Figure 1.2 [4]. Disclinations are point or line defects within a

mesophase of a liquid crystalline sample. The strength of the disclination, S, is connected

with the number of dark brushes meeting at one point [4]:
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I S I = number of brushes / 4

From the observation of singularities with S= +1/2, the mesophase can be identified as a

nematic phase. By electron microscopy using a decoration technique [51, disclination

structures can be also observed.

One of the major commercial interests in LCPs is their processibility to form

uniaxially oriented fibers (for example, see Ref. 1, P. 41). Because of the high chain

continuity in oriented LCPs, a desired high stiffness and tensile strength can be achieved

along the chain alignment direction. Melt processing is one of the easiest processing

methods for thermotropic LCPs . Thermotropic LCPs can be simply extruded from the

molten liquid crystalline state to form highly oriented fibers. LCPs can be blended with

other polymers to improve processibility and to form high strength composites. One of

the characteristics of an LCP fiber is its low coefficient of thermal expansion, which can

meet the needs of dimensional stability and reduction of internal stress during cooling.

Commercially, LCP fibers are generally more expensive than other fiber materials.

1.1.2 Review of the History of Liquid Crystalline Polymers

The history of LCPs started in 1956 when Flory published a paper on

concentrated polymer solutions [6]. The lattice theory of Flory is applicable for

quantitative treatment of phase separation phenomena in solutions of rodlike chain

polymers, including melts [7-9]. The theory predicted that at a critical concentration Vp*,

athermal solutions of polymer hard rods (no intermolecular attractions) of axial ratio x

(length/diameter) show initiation of a stable anisotropic or liquid crystalline phase, i.e.,

Vp* = (8/x)[1-(2/x)] (2)

(1)



As the axial ratio of the polymer rod drops approaching to 6.4, the polymer composition

of the isotropic phase and the liquid crystalline phase both get close to 1, which is

undiluted. Therefore, for an undiluted system, which is thermotropic, the ordered liquid

crystalline phase will always be stable with respect to the isotropic phase if the axial ratio

of the rod exceeds 6.4. However, this ratio is obtained by considering only the repulsive,

shape dominated, forces between the molecules.

Incorporation of possible directional attractive forces makes it possible that

polymer rods of lower axial ratio can have a liquid crystalline phase. Groups in polymer

chains with polarizabilities higher along their bond axes than along the perpendicular can

contribute to the stability of the liquid crystalline phase. Examples of such groups are p-

phenylene, -CEC-, -N=N-, and -C=N-. These interactions are important in semiflexible

long-chain polymers. Therefore, high axial ratio is not required for liquid crystalline

phase formation in the melt. The nature of the liquid crystalline phase appears to be

dependent totally on the shape of the monomer unit. For example, consider the structure

[10,11] shown below:

+ CONH - Ph - COO(CH ),OOC - Ph - HNOC - (CH 2 ),m ,dp

These are polyesteramides having a smectic liquid crystalline phase for specific values of

n and m. It is very likely that intermolecular hydrogen bonding plays an important role.

In this case, strong interactions compensate for a weak steric drive to the liquid

crystalline phase.

1.1.3 Introduction to Monotropic Liquid Crystalline Behaviors

In the polymer melt (the thermotropic system), how does the liquid crystalline

phase stabilize as opposed to the crystal phase and the isotropic phase? In 1956 Flory



tried to answer this question [6]. As mentioned above, for rodlike chains, when a limiting

concentration is exceeded, either a liquid crystalline phase or a crystalline phase separates

from the isotropic phase. Crystallization may happen in two steps: 1) the polymer chains

order cooperatively in a given region into a parallel alignment without change in the

intermolecular interactions; and 2) the increase in intermolecular interactions is possible

by the more efficient packing of the chains in the parallel state. The first step is similar

for both the crystallization process and the formation of liquid crystalline phase. The

second step is separation of a crystalline state or a liquid crystalline phase. With

extensive chain alignment and good chain regularity, crystallization should proceed so

fast that the two steps are inseparable.

Recently, from a thermodynamic point of view, the liquid crystalline phase can be

identified to be either enantiotropic or monotropic [12,13]. The thermodynamic relation

required is:

dG = VdP - SdT (3)

where G is the free energy, V is the volume, S is the entropy, P is the pressure and T is

the temperature. Assume the phase transition happens at a constant pressure (dP = 0) .

The free energies of the crystal (Gk), liquid crystal (Glc), and isotropic (Gi) phases

decrease with increasing temperature. The decrease of Gi (dGi/dT) is steeper than Glc

and Gk, because

Si > Sic > Sk. (4)

As shown in Figure 1.3(a) (taken from Fig.1 of Ref.12), the enantiotropic liquid

crystalline phase is thermodynamically stabilized with respect to the crystalline phase and
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Figure 1.4 The diagram of the free energy vs. temperature used to explain the

monotropic mesophase. (Figure taken from Ref. 13, Figure 2)



the isotropic phase within the temperature range from Tm (Tk-lc) to Ti (Tic-i). It is

observed as reversible both on heating and on cooling. As shown in Figure 1.3(b). the

virtual liquid crystalline phase is thermodynamically less stable than the crystalline phase

and the isotropic phase. The monotropic liquid crystalline phase is a particular case of a

virtual mesophase, which can only be observed on cooling, provided that the

crystallization process is by-passed due to supercooling. Particularly in polymers,

crystallization only happens at a certain supercooling temperature and the crystallization

temperature can be appreciably below the equilibrium melting point. In contrast, the

formation of liquid crystalline phase generally requires less supercooling. As shown in

Figure 1.4 (taken from Fig.2 of Ref.13), an unstable or monotropic liquid crystalline

phase can exist from Ti-lc to Tlc-k' in cooling. As temperature drops further,

crystallization will happen and the free energy may drop to the value of the perfect crystal

Gk. During reheating, the perfect crystal melts directly into isotropic liquid at Tk-i.

It is possible that the free energy only drops in between two extremes, Gk and

Gk'. If the free energy remains at a value above Gkc after crystallization, the liquid

crystalline phase still can be seen during reheating. Then this liquid crystalline phase can

be classified as enantiotropic. Therefore, it is possible that the improved perfection of

crystals upon annealing can make this kind of enantiotropic liquid crystalline phase into a

monotropic liquid crystalline phase.

1.2 OVERVIEW OF MAIN CHAIN THERMOTROPIC LIQUID

CRYSTALLINE POLYMERS

1.2.1 Introduction

It is helpful to view liquid crystalline polymers as being constructed from the

same rigid mesogenic groups that form small-molecule liquid crystals. The most basic



construction is to link the rigid mesogenic groups end to end to form a rigid polymer

chain, which is the rigid rod polymer, as mentioned in 1.1.2. However, in practice this

approach leads to a problem: although Tm and Tlc-i are both increased as a result of the

polymerization, and the range of mesophase stability is in principle maintained or even

enhanced, thermal degradation of the polymer tends to curtail this range and often

prevents the liquid crystalline phase from being observed.

Therefore, the reduction of the transition temperature into an useful working range

without destroying the liquid crystalline stability completely is one of the primary

objectives in the design of LCPs. One route to make the chain less stiff is to introduce

more mobile linking groups between the rigid units. A further modification involves the

connection of the mesogenic units through spacers consisting of lengths of flexible

polymer molecules. Such flexible spacers may be incorporated between the mesogenic

groups to give a single linear molecule, which is used to form the so-called main chain

LCPs. Or a flexible polymer chain can be used as a backbone to which the mesogenic

sections are added as side groups, which is used to form side chain LCPs.

Insertion of substituents on the mesogen can modify its steric and electronic

features [14-22], and therefore its potential as a mesogen. The steric factor generally

plays a more important role for LCPs, which is also the case for small monomeric liquid

crystals [18]. The lateral substituents usually reduce the thermal stability of the liquid

crystalline phase.

1.2.2 Stilbene Containing Liquid Crystalline Polymers

Main chain thermotropic LCPs with various kinds of mesogens have been studied

[23-47]. Stilbene-containing polymers have been widely studied due to the low cost of

the monomer. Various linking groups that link the methylene spacer and the stilbene
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mesogen have been studied. Figure 1.5 shows the chemical structure for stilbene-

containing polymers. Jackson's [48] stilbene polyesters were reported in the 1980's as

high melting enantiotropic LCPs. These polyesters can produce reasonably high strength

fibers and injection molding plaques. Polyesters of a-methyl stilbene [49] were found to

melt at temperatures similar to Jackson's polyesters and were also enantiotropic LCPs.

Percec's a-methyl stilbene polyethers [50] were reported to be lower melting

enantiotropic LCPs of stilbene which can exhibit a nematic or smectic liquid crystalline

phase. Like other main chain thermotropic LCPs, for these stilbene LCPs, both their

melting temperature, Tm (Tm = Tk-lc), and their transition temperature from the liquid

crystalline phase to the isotropic phase, Ti (Ti = Tic-i), tend to decrease with increasing

length of flexible spacer. Figure 1.6 is a plot of both Tm and Tlc-i vs. the number of -

(CH 2 )- units in the spacer for a homologous series of polyesters of a-methyl stilbene

[14,49]. The zig-zag nature of the plots is an example of the odd-even effect, which was

seen in all of the stilbene-containing polymers mentioned above. Both transition

temperatures tend to be higher when there is an even number of -(CH2)- units in the

flexible spacers. Also notice that the temperature range for liquid crystal stability

decreases with increasing length of the spacer. At n=12, Tlc-i first drops below Tm and

the stability of the liquid crystalline phase is lost.

Insertion of a second substitution has a drastic depressive effect on Ti that causes

a, B dimethyl stilbene polyesters not to have an enantiotropic liquid crystalline phase.

For example, the a-methyl stilbene liquid crystalline polyester with -(CH2)8- flexible

spacer has a melting point of 483K and isotropic temperature of 530K, while the a, 8

dimethyl stilbene polyester with the same flexible spacer has a melting temperature of

500K and a virtual liquid crystalline phase at Ti=454K [21]. In this work, no odd-even

effect is discussed because of the limited flexible spacer number.
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Figure 1.6 The diagram of Tm and Tlc-i vs. the number of -(CH 2)- units in the

spacer for a homologous series of a-methyl stilbene polyesters.

(Figure taken from Ref. 14, Figure 4)



Expanding on the past work with stilbene-based polyesters and polyethers, a

series of polycarbonates have been synthesized by Dr. Schreuder-Gibson with stilbene

mesogen, mono- or di- substituted with methyl or ethyl groups, which are referred to as

HMS-n, DMS-n, HES-n, DES-n, respectively [51]. Their chemical structures are shown

in Figure 1.5. For stilbene polycarbonates containing the heptane flexible spacer, methyl

substituted stilbenes (HMS-7 and DMS-7) are semicrystalline, while ethyl substituted

stilbenes (HES-7 and DES-7) are amorphous [51].

1.2.3 Theoretical Concerns Relating to the Odd-even Effect

The odd-even effect can be easily understood by considering that the degree of

alignment of the polymer chains within the mesophase is higher for the even series than

for the odd series, when the methylene units in the flexible spacer have all trans

conformation [52]. Although the methylene spacer has been found not to be restricted to

the all-trans conformation in the anisotropic phase, its conformation is rather extended

[53-57]. An all-trans sequence will only connect two mesogenic groups without

introducing a kink in a polymer chain if it has an even number of methylene units.

However, there are some theoretical bases which can explain the odd-even phenomenon

[58-61].

Conformational energy calculations [58-61] have pointed out that the methylene

spacer length and the linking group both have influence on the conformation of the

methylene spacer. Three contributions to the total partition function, ZT, can be

considered:

ZT = Zst Zen Zconf (5)

where Zst is the contribution considering excluded volume effects, Zen is the orientation-



dependent contribution, and Zconf takes care of the configurational degree of freedom.

When the methylene flexible spacer (F) is attached to the mesogen (M) by M-O-F

or M-O(O=)C-F linkage, the even-numbered methylene spacers have a significant

population of highly extended conformations which makes the nearly parallel alignment

of the mesogen along the macroscopic orientation axis favorable. These conformers help

to promote a stable nematic phase and are most likely preferred over others in the nematic

phase. The conformational energy and entropy change of the methylene spacer

contributed from these conformers can significantly increase the enthalpy and the entropy

change of the transition from the isotropic phase to the nematic phase. It has been found

experimentally that the enthalpy and entropy changes of the isotropic-nematic transition

for these polymers are much larger than those of the monomeric liquid crystal [26,301. In

contrast, for an odd-numbered methylene spacer, the number of highly extended

conformers is much smaller. For these conformations, the mesogen is tilted by about 300

from the macroscopic orientation axis and the order parameter is smaller. (The order

parameter can be defined as 1 - (1.5*< sin2 4 >), where 0 is the angle between a chain

segment and the macroscopic orientation axis). Therefore, the enthalpy and entropy

change from the isotropic to nematic transition are much smaller for these polymers with

odd-numbered methylene spacer than those with even-numbered one, as experimentally

observed [23,26,30,49,62,63].

Interestingly, it has been found experimentally that when the the methylene

flexible spacer (F) is attached by M-C(O=)O-F linkage, the tendency to form a nematic

phase is significantly suppressed [16,32]. When a nematic phase occurs, the enthalpy and

entropy change of the isotropic-nematic transition is larger for these polymers with odd-

numbered methylene spacer than those with an even-numbered one [42]. From the

conformational energy calculation, it is found that for these polymers with even-



numbered methylene spacer, the population of extended conformers is smaller than those

polymers having a M-O-F or a M-O(O=)C-F link. It is ascribed to the fact that the trans

conformation of O-C-C-C bonds is not the lowest energy conformation for the polymers

having a M-C(=O)O-F link. Therefore, the enthalpy change of the isotropic-nematic

transition is reduced for these polymers with even-numbered methylene spacer and the

odd-even effect is reversed.

1.3 CHARACTERIZATION OF MAIN CHAIN THERMOTROPIC LIQUID

CRYSTALLINE POLYMERS

1.3.1 Identification of Liquid Crystalline Phase

It is recommended to use various methods to identify the liquid crystalline phase

in LCP systems because the coexistence of phases might obscure the observation under

polarized optical microscopy at different temperatures. For example, when LCPs are

oriented by shearing, a shear band structure might be observed under polarized optical

microscopy and electron microscopy [64-66]. It is believed that the formation of the

shear band is caused by the stress relaxation of polymer chains from the oriented state,

which results in periodic thickness change. Recently, it was found that crystallization can

also lead to the formation of banding morphology [67]. The banding was caused by the

periodic buckling of polymer chains in the crystalline phase.

Two dimensional wide angle X-ray diffraction is also a popular method for the

identification of liquid crystalline phases. The X-ray diffraction patterns of aligned

nematic polymers will look similar to that shown in Figure 1.7 [52]. The important

features which characterize the nematic structure are the presence of diffuse equatorial

maxima, and sometimes layer lines which are centered on the meridian and diffuse along

their length [68]. The existence of any sharp maximum is indicative of certain type of
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Figure 1.7 X-ray diffraction patterns of aligned nematic polymers.

(Figure taken from Ref. 52, Figure 2.5)
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long range positional order, such as occurs in smectic structures or crystals, and will take

the polymer out of the nematic classification. However, nematic polymers may be

partially crystalline, and in that case sharp diffraction features or distinctly quadrantal

reflections will then be superimposed on a basic nematic pattern.

1.3.2 Crystallization Kinetics and Crystalline Structures

Many crystallization studies of thermotropic LCPs have been done by using a

differential scanning calorimeter (DSC). Typically, two kinds of studies were executed.

First, many studies used several different cooling rates to try to find out the effect on the

exotherm peak of crystallization and the isotropic to mesophase transition. This approach

is especially useful for the study of a monotropic system [69]. The exotherm of

crystallization is so suppressed by a higher cooling rate that the isotropic to mesophase

transition is observable.

In the second study, the DSC was also used to study the isothermal kinetics of the

mesophase formation and of the crystallization from the mesophase or isotropic state.

Ideally, if the resolution of data is high enough in the beginning of crystallization, one

can determine the Avrami parameter. The general results present some controversial

points about the mechanism of the transformation and the resulting Avrami parameters

[70]. Parallel studies of polarized optical microscopy and real time wide angle X-ray

scattering (WAXS) are usually done. From these studies, it is generally suggested that

crystallization from the liquid crystalline phase can preserve the local orientation in the

crystalline phase.

By using two dimensional wide angle X-ray diffraction techniques, some packing

principles of main chain LCPs in the crystalline phase are proposed by Ungar and Keller

[71]. Two possible structures are proposed, as shown in Figure 1.8. In an "intermeshed"
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Figure 1.8 Mesogen - spacer packing in (a) intermeshed,

(b) layered structure. (Figure taken from Ref. 70, Figure 3)



structure, the rigid mesogen with bigger cross section matches the flexible spacer on

adjacent polymer chains. In a "layered" structure, the rigid mesogen and the flexible

spacer are coupled themselves in seiies on adjacent polymer chains. The "intermeshed"

structure seems more stable thermodynamically because it will transform into the

"layered" structure by an endothermic reaction.

A detailed study of the influence of the flexible spacer on the solid state structure

has been made [72] for a series of mesogenic aromatic-aliphatic azomethine ether

polymers (AZMEP-n), with methylene spacers number n =1-16. Unit cell parameters

determined from the fiber patterns of annealed single filaments have been used to classify

the polymers into distinct groups having different chain conformations and crystal

systems. The even members of the series have C-centered monoclinic, I-centered

monoclinic or triclinic unit cells changing with the increase of the length of spacer.

When n is odd, the unit cells are orthorhombic, I-centered monoclinic or triclinic

changing with the increase of the length of spacer.

1.4 Objective and Overview of This Research

Main chain LCPs have potential uses as high strength fiber forming materials

because of their tendency to form ordered phases from the isotropic phase. Main chain

LCPs can be extruded from the liquid crystalline state and form an extended chain

structure in the solid state, which has high chain continuity and therefore high mechanical

properties along the orientation direction. Generally, the wider the temperature range of

stability for the liquid crystalline phase, the better the fiber forming capability for the

LCP during melt processing. In our research, we incorporate the methylene flexible

spacer in the LCP structure, which is connected with the stilbene mesogen by the

carbonate linking group. This is a popular approach as mentioned in 1.2.1, because the



incorporation of the methylene spacer can lower transition temperatures and therefore

ease the melt processing.

The purpose of this research is to investigate the relationship between the

chemical structure variations and the macroscopic properties like thermal transition

temperatures, crystallization kinetics, and fiber formation. The chemical variations

include change in the methylene flexible spacer length, substitution on the mesogen and

linking group chemistry. As mentioned in 1.2.2, it has been found both HMS and DMS

polycarbonates are semicrystalline. Therefore, in this research, we are concentrating on

these two groups of materials, especially on HMS polycarbonates. In our research, we

are able to determine the role of the chemical variations on the thermodynamic stability

of the liquid crystalline phase and in the nucleation kinetics and growth of the crystalline

phase.

For our liquid crystalline a-methyl stilbene polycarbonates, there is a very narrow

temperature range of stability for the liquid crystalline phase. The liquid crystalline phase

can be only observed during cooling when three dimensional crystal growth is

suppressed. Using wide angle X-ray scattering and molecular modeling, we show that

the orientation of the carbonate group and the length of the methylene flexible spacer are

both implicated in the rapid nucleation of crystals. When the length of the methylene

spacer and the mesogen are comparable, a regularly packed crystal structure occurs in

which the mesogen (M) and the flexible spacer (F) align as shown below:

-M-F-M-F-M-F-M-

-F-M-F-M-F-M-F-

This crystal structure forms rapidly from the liquid crystalline phase which acts as a

template for nucleation and growth of crystals from an already ordered melt.



Using small angle X-ray scattering, we found that the orientation of the carbonate

group and the length of the methylene spacer are also related to the larger dimension of

crystals forming from the liquid crystalline phase. ax-methyl stilbene polycarbonates with

odd-numbered methylene spacer have a higher value of crystal lamellar thickness than

those with even-numbered one.

The effect of the second methyl substituent on the mesogen for stilbene

polycarbonates (DMS-n) is discussed in Chapter 5. In summary, the steric effect of the

second methyl substituent lowers the stability of the liquid crystalline phase. The steric

effect also reduces the effect of the carbonate group, and therefore DMS polycarbonates

do not have the regular property change with the methylene spacer length as the HMS

polycarbonates do.



Chapter 2

Crystallization Studies and Monotropic Liquid Crystalline

Behavior of HMS Polycarbonates

2.1. INTRODUCTION

It has been found that the monotropic mesophase exists in several kinds of main

chain thermotropic liquid crystalline polymers, such as poly(ester imides) [69],

polyurethanes [73,74], and polyethers and copolyethers [75-79]. It has also been found

that some enantiotropic LCPs can behave like monotropic LCPs after an annealing

process [80].

The behavior of these monotropic LCPs is strongly related to the shape of the

monomer unit and the conformation of the polymer chain. One interesting characteristic

is the existence of a kink in the polymer chain, which plays an important role in the

interaction between the polymer chains. A kink can permanently exist in a polymer

chain, as, for example, in polyurethane LCPs [73,74]. This particular kink is caused by

two urethane linkages in the meta positions with respect to the benzene ring. Due to the

interchain hydrogen bonding forming within the urethane linkage by adjacent polymer

chains, these LCPs form an ordered monotropic mesophase. The order is preserved in the

crystalline phase which forms from the mesophase. A kink can also exist in a polymer

chain as one of the conformational isomers. Percec's liquid crystalline polyethers and

copolyethers [75-79] are examples. Instead of being linked by a rigid group, two benzene

rings are connected by two methylene linkages to form a flexible rodlike mesogen. The

formation of the monotropic mesophase depends on the degree of alignment of polymer

chains caused by their cooperative movement.



It is well-known that for main chain LCPs, both the mesogen and the flexible

spacer contribute to the orientational order that characterizes the transition from the

isotropic (i) phase to liquid crystal (Ic) mesophase. From the intercept and the slope of

AHi-lc and ASi-lc versus the number of methylene units in the flexible spacer, Blumstein

first obtained the contribution from the mesogen and the flexible spacer, respectively

[81]. The former was assigned as the orientational contribution and the latter as the

conformational contribution. Blumstein's polyesters showed an odd-even effect in AHi-lc

and ASi-lc versus n, the number of methylene units in the flexible spacers [26,81]. The

value is higher when n is even. This effect can be understood by considering that the

degree of alignment of the polymer chains within the mesophase is higher for the even

series than for the odd series, when the methylene units in the flexible spacer have all

trans conformation [52,82]. This effect is usually observed and can be theoretically

justified [58,59] for those polymers with rigid rod mesogen. However, for Percec's

polyethers with flexible mesogen [79], AHi-lc and ASi-lc increase linearly with the

number of methylene units in the flexible spacers. This phenomenon was explained by

the coupled action of the flexible mesogen and the flexible spacer.

In this Chapter, we report on characterization and crystallization studies of cx-

methyl stilbene polycarbonates (HMS-n) whose synthesis has been reported previously

[51]. The chemical repeat unit for these polymers is shown in 1.2.2. The flexible spacer

number ranges from n = 4-10, 12. A monotropic mesophase was identified for these

HMS polycarbonates. Like some other monotropic LCPs mentioned above, HMS-

polycarbonates also have kinks in their polymer chains caused by the conformational

isomers of the carbonate linkage. If the two bonds adjacent to the carbonate linkage have

trans conformation, then HMS polycarbonates will have a linear shape.



In this Chapter, we report on the crystallization and melting behavior of ox-methyl

stilbene polycarbonates [51]. In contrast to the enantiotropic stilbene-based polyethers

and polyesters, HMS polycarbonates are monotropic LCPs. Also, there is no odd-even

effect seen in any of the transition temperatures vs. the flexible spacer number. Finally.

there are different trends in the phase transition temperatures for n 5 8 compared with

those of higher n value. These differences in thermal behavior can be related directly to

differences in the chemical structure of the linking groups and to the relative lengths of

the flexible spacer and mesogen.

2.2. EXPERIMENTAL SECTION

2.2.1 Materials

The synthesis of HMS polycarbonates was performed in Dr. Schreuder-Gibson's

group [51] and followed the method of Sato [84]. The synthesis is described in the

Appendix. The resultant LCPs were soluble in chloroform and obtained as fine white

powders, except for n=7,9 which were obtained as white, very fibrous product. All

polymers studied in this research have reasonably high molecular weight, in the range

from 11,000 to 54,800 with distributions (Mw/Mn) close to 2 as reported previously [51].

2.2 Differential Scanning Calorimetry (DSC)

Thermal properties of materials were studied using a Perkin-Elmer DSC-4 or

DSC-7. Indium was used to calibrate the temperature and the heat of fusion. All

materials studied had a sample weight range of 2.5-6.5 mg. The studies that were done

included heating and cooling at fixed rates, the effect of crystallization temperature on

crystallization time and melting temperature, and the effect of crystallization time on

melting temperature.



The first approach involved heating and cooling at fixed rates over a wide

temperature interval. The sample was heated to 2000C and held at that temperature for

2.5-3 minutes, then cooled at a rate of 100C/min to 500 C, then heated at 100C/min to

2000 C. This study was done for all HMS-n samples. In addition, HMS-6 through 9 were

cooled and heated at 5, 20, and 500 C/min. This study was designed to test the

dependence of the mesophase to isotropic transition on cooling rate.

The next study was isothermal crystallization for HMS-5 through 9. The sample

was melted at 190 0C for about 3 minutes, then quenched at -500 C/min to a

crystallization temperature Tc and held isothermally until the crystallization was finished.

The Tcs were specifically chosen for each HMS sample in advance. Because all HMS-5

through 8 materials have close crystallization temperatures, we chose the same

crystallization temperatures in the range between 138 0C and 1440C for these samples.

Exothermic heat flow as a function of time was measured. Here we were interested in the

effect of the flexible spacer number on the isothermal crystallization kinetics.

The next study involved immediate rescan after isothermal crystallization for

HMS-5, 6, 8 and 9. After staying at Tc isothermally until crystallization was finished, the

sample was immediately heated at 50 C/min to 1900C without cooling. This immediate

rescan technique avoids the formation of imperfect crystals during cooling to room

temperature, and thus results in a cleaner endothermic response.

HMS-5 and HMS-9 were studied by a variety of other thermal approaches. HMS-

9 was held at Tc = 114 0C and HMS-5 at Tc = 1400C until crystallization was finished,

then immediately heated at 1, 2, or 50C/min. Finally, the effect of crystallization time

was studied for HMS-9 at Tc =114 0C and for HMS-5 at Tc = 1470C. Samples were held

isothermally at the crystallization temperature for different times, and then immediately



heated at 50 C/min to 190 0C immediately, without cooling to room temperature.

2.2.3 Optical Microscopy

A Zeiss microscope was equipped with a turret containing long working distance

objective lenses, for use with the Mettler hot stage. The long working distance protects

the lens from aberrations that might result from exposure to elevated temperatures. For

HMS-n, samples of powder were placed on glass slides and covered with a glass cover

slip. These were inserted into the hot stage at room temperature and the stage controller

was set to heat and then cool the samples at a fixed rate. Samples were studied using

polarized transmitted light geometry, and the analyzer was placed at 900 to the polarizer.

The change in transmittance was recorded simultaneously as the sample heated.

Crystallization studies were done on HMS-5. The polymer was heated to 1900 C

and held at that temperature for 2.5 minutes, then cooled at 20 0C/min for isothermal

crystallization to 127 0 C, the temperature of the mesophase to crystal transition of HMS-5.

Samples were also cooled at 20 0C/min from 190 0C to 1570C, the transition temperature

of the isotropic phase to mesophase transition, and held for 40 minutes, then cooled at

20 0 C/min to 1270C for further isothermal crystallization.

2.2.4 Transmission Electron Microscopy (TEM)

TEM was performed on HMS-5, 7 and 9 using a JOEL 200CX transmission

electron microscope operating at 200 KV. Samples were prepared by making a dilute

solution of the polymer in chloroform. This was done by dissolving 1 mg of polymer in 2

ml of the solvent. Several drops of the polymer solution were then placed on a freshly

cleaved mica surface that had been coated with a thin layer of carbon by thermal

evaporation. The chloroform evaporated in about 1 minute leaving a thin film of

polymer. The polymer on the mica was then subjected to heat treatment using a Mettler



hot stage. In all cases, the polymer was heated to 1900 C and held at that temperature for

3 minutes. For HMS-5, cooling was done at -100 C/min. with isothermal holding at

1570 C for 30 minutes. The procedure was repeated with an isothermal hold at 127oC.

Cooling was also done for HMS-7 with isothermal holds at 155 0 C and at 136 0 C; and for

HMS-9 with holding at 132 0 C and at 102 0 C. After holding at the specified temperature,

the samples were removed from the hot stage and allowed to air-cool. The above

temperatures correspond to peak temperatures of exotherms observed in a DSC cooling at

-100C/min. That is, HMS-5, 7 and 9 were assigned isotropic-to-nematic transitions at

157 0 C, 155 0 C and 132 0C, respectively, and nematic-to-crystalline transitions at 127 0 C,

136 0C, and 102 0 C, respectively.

2.3. RESULTS

2.3.1 Differential Scanning Calorimetry

DSC thermograms of HMS-4-12 are shown in Figures 2.1 and 2.2, for first

cooling and second heating, respectively. Nearly all samples showed a dual exothermic

response indicating a small higher temperature exotherm representing the isotropic to

mesophase (i-lc) transition, followed by a large exotherm at the mesophase to crystalline

(lc-k) transition. On the reheating scans, usually dual endotherms were observed. Notice

that the upper melting temperature range is quite broad, and always covers the

temperature range of the isotropic to mesophase transition seen in the cooling scan.

Table 2.1 summarizes the melting and crystallization peak positions. Transition

temperature vs. n is shown in Figure 2.3 (cooling) and Figure 2.4 (heating). There is only

weak odd-even effect seen at the upper crystalline melting temperature in heating for low

n, but no odd-even effect is seen in cooling. The stability range of the mesophase

becomes smaller from n = 5 to 8 in the cooling scan. For n 2 9, all the transition

temperatures drop. Table 2.2 lists the estimated AHi-lc and AHlc-k.
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Figure 2.1 DSC thermograms of HMS-4-10,12 at 10 0 C/min cooling.
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Figure 2.2 DSC thermograms of HMS-4-10,12 at 100C/min heating.



Table 2.1

Thermal Transition Peak Temperatures for HMS Series Polycarbonates
at 100 C/minute Scan Rate

Sample Crystallization Temp.(oC) Melting Temp.(oC)

n Tc(upper) Tc(lower) Tm(upper) Tm(lower)

(±20 C) ( 10 C) (±+1 C) (±o1C)

4 ----- 129 159

5 156 132 148 127

6 154 128 147 123

7 144 135 150 131

8 ----- 138 146 136

9 131 106 125 90

10 131 99 109 97

12 ----- 104 116

------- No transition seen in this sample



4 5 6 7 8 9 10 11 12

Flexible Spacer Number,
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Figure 2.4 Transition temperatures vs. n during heating: (e ) upper melting
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Table 2.2

Estimated AHi-lc and AHlc-k for HMS Series
at 100 C/minute Scan Rate

Polycarbonates

Sample AHi-lc AHlc-k
n (KJ/mole) (KJ/mole)

4 ---- 0.6

5 0.1 4.3

6 0.2 2.5

7 0.2 4.4

8 ---- 3.6

9 0.6 5.6

10 0.3 4.5

12 ---- 7.8

-------- No transition seen in this sample



Figure 2.5 shows DSC scans at cooling rates of 5, 10, 20, and 50 0 C/min for HMS-

9. There is little change for the isotropic to mesophase transition temperature (indicated

by an arrow) with the cooling rate, but the onset of crystallization is suppressed by higher

cooling rate. Similar results were seen in HMS-6. The liquid crystalline phase transition

is not affected much by this variation of cooling rate for these two samples. However, the

formation of three dimensional crystals is greatly affected by the cooling rate due to the

strong temperature dependence of the rate of formation of secondary nuclei.

In Figure 2.1, we were unable to observe the isotropic to mesophase transition for

HMS-8, which we had expected to see at the front shoulder of the large crystallization

exotherm, as was the case for HMS-5 through 7. Given the dependency of the

crystallization exotherm on cooling rate, we used a high cooling rate to suppress the

exotherm of crystallization causing it to occur at a lower temperature. Figure 2.6 shows

DSC scans of HMS-8 at cooling rates of 5, 10, 20, and 50 0 C/minute. At a cooling rate of

500 C/min HMS-8 now clearly shows the mesophase transition as a shoulder on the high

temperature side of the crystallization exotherm. It is not seen at lower cooling rates

because it overlaps with the crystallization phase transition and can not be separately

identified. Similar effect of cooling rate was seen for HMS-7. The mesophase transition

of HMS-7 can be observed at cooling rates of 50C/min to 50 0 C/min (see Figure 2.1 for

100C/min) but disappears at a slow cooling rate of 20C/min. At this rate, the onset

temperatures of the transitions from the isotropic to crystalline phase is about 143 0 C.

Table 2.3 summarizes the onset temperatures of the transitions from the isotropic to

mesophase (Ti-lc) and from the mesophase to crystalline phase (Tlc-k). All the heats of

transition from the isotropic to mesophase are qualitatively the same with the cooling

rates.
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Figure 2.5 DSC thermograms of HMS-9 at various cooling rates.
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During isothermal crystallization, the crystallization time, tc , is the time after

which no further exothermic heat flow can be detected. As the crystallization

temperature increases, the crystallization time increases, and the exothermic peak area

decreases and finally becomes undetectable. Figure 2.7 shows the isothermal

crystallization heat flow versus time for HMS-9 crystallized at 108 0C and 120 0 C. As the

crystallization temperature increases, the crystallization kinetics become slower, and the

area under the exothermic peak also becomes smaller. Tables 2.4 and 2.5 summarize the

time to maximum exothermic heat flow and crystallization time as a function of the

crystallization temperature from the isothermal study of HMS-5 through 8. Table 2.6

summarizes both the time to maximum exothermic heat flow and crystallization time as a

function of the crystallization temperature for HMS-9.

Figure 2.8 shows DSC scans of HMS-9 at a heating rate of 50C/min after staying

at the crystallization temperature isothermally until crystallization was finished. The

sample is not cooled before scanning, therefore this technique is called an 'immediate

rescan'. These thermograms represent the immediate rescans after isothermal

crystallization at 108, 112, 114, 116, 118, 120 and 1230 C. We can see that there are two

major peaks in nearly all the immediate rescan endotherms. We will designate the lower

one as Tm I and the upper one as Tm2, according to the peak position. Tm2 is broader and

extends to the bottom of Tm 1. The area under Tm2 becomes smaller as the crystallization

temperature increases. Finally, when crystallization temperature equals 123 0C, only the

lower peak remains. Also, the temperature range of Tm2 becomes smaller, and appears to

have a fixed upper limit. We observed similar results for the DSC scans of HMS-5, 6 and

8. In each case, there are two endotherms, the upper one of which becomes relatively

smaller as crystallization temperature increases.
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Table 2.4

Time to Maximum Exothermic Heat Flow (minutes)
as a Function of Crystallization Temperature for HMS-5 through 8

Sample Crystallization Temperature (OC)

130 134 138 140 142 144 147

HMS-5 ----- 0.7 0.7 0.9 1.2 1.4 2.2

HMS-6 0.4 0.8 1.3 1.6 1.9 2.1

HMS-7 ----- 0.9 1.0 1.4 1.7 3.4

HMS-8 ----- ----- 0.2 0.4 0.7 1.2 2.6

------ Not tested at this temperature



Table 2.5

Crystallization Time (minutes) as a Function of Crystallization
Temperature for HMS-5 through 8

Sample Crystallization Temperature (oC)

130 134 138 140 142 144 147

HMS-5 ------ 2.1 2.8 3.0 4.0 8.6 13.7

HMS-6 2.8 4.8 6.3 7.7 8.6 9.3

HMS-7 ------ ------ 4.4 5.0 6.3 8.0 12.4

HMS-8 ------ ------ 2.0 2.8 4.1 8.2 17.8

------ Not tested at this temperature



Table 2.6

Time to Maximum Heat Flow and Crystallization Time (minutes)
as a Function of Crystallization Temperature for HMS-9

Crystallization Time to Maximum Crystallization Time
Temperature (oC) Exothermic Heat (minutes)

Flow (minutes)

108 0.3 2.2

112 0.5 2.5

114 0.6 4.7

116 1.0 6.7

118 1.4 7.5

120 2.1 10.8

123 2.2 14.2
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Figure 2.8 Immediate rescan DSC thermograms of HMS-9 at 50C/min

heating rate after isothermal crystallization at the

temperatures shown.



The relationship between the melting point and the crystallization temperature is

found from the Hoffman-Weeks equation [85] as:

Tm = Tm0 ( 1 - 1/y) + Tc/ (1)

where Tm0 is the infinite crystal melting point and y is the thickening factor of the

lamellae. The thickening factor is found from the reciprocal of the slope, and the infinite

crystal melting point is found from the intersection of the Tm vs. Tc curve with the line

Tm=Tc. Here we use Tml as Tm. Table 2.7 summarizes the infinite crystal melting

points and thickening factors for HMS-5, 6, 8 and 9. The thickening factors are all very

close to 1.

Figure 2.9 shows the immediate rescans at heating rates of 1, 2, and 50 C/min for

HMS-9 which was isothermally crystallized at a crystallization temperature of 114 0 C.

There is little change in Tm and also the area under the melting peak is almost the same

with these heating rates. Similar results were also seen for HMS-5. Therefore, we

suggest that there is little or no reorganization during this process. This is consistent with

studies on other kinds of main chain thermotropic LCPs [86,87].

Figure 2.10 shows DSC scans at heating rate of 50 C/min for HMS-9 after being

held at Tc = 114 0 C for 0.5, 1.0, 2.0 or 4.7 minutes. For HMS-9 at this crystallization

temperature, the time to maximum exothermic heat flow is 0.6 minutes as determined

from isothermal crystallization studies. From this study of HMS-9, we see that there are

two peaks developing at the same time. By comparing the melting peaks after different

crystallization time, we see that the upper peak, Tm2, with wider and higher range, stops

growing earlier than the lower one, Tml. The upper peak develops most of its area before

the time to maximum exothermic heat flow, while the lower peak develops significant

area after this time.



Table 2.7

Infinite Crystal Melting Point and Thickening Factor
for HMS-5, 6, 8 and 9

Infinite Crystal Thickening
Sample Melting Point, Factor, y

Tm0 (oC)

HMS-5 203 1.2

HMS-6 231 1.1

HMS-8 215 1.1

HMS-9 262 1.0
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Figure 2.9 DSC thermograms of HMS-9 after isothermal crystallization at

114 0C for 4.68 minutes. Immediate rescan at the indicated rates.
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2.3.2 Optical Microscopy

Optical Microscopy revealed a fine grained pattern of birefringence whose

intensity (recorded with a photodetector) changed rapidly near the isotropic to mesophase

transition and more gradually near the mesophase to crystalline transition. Poorly formed

spherulites were seen in HMS-5, 6, 7 and 8. None were seen in HMS-4, 9, 10 and 12.

In Figure 2.11(a) and (b), we show optical micrographs of HMS-5 at

magnification of 320x between crossed polars. We can see Schlieren texture in Figure

2.11(a), which is a characteristic of the nematic mesophase [4]. As shown in Figure

2.11(a) and (b), spherulites developing at crystallization temperature 127 0 C without

annealing were much bigger than those developing at 127 0 C after prior annealing at

157 0C, which is the isotropic to mesophase transition temperature. When the sample was

annealed at 157 0C, many small highly birefringent spots formed at this temperature.

Upon cooling to 1270 C, the birefringence increased and crystals filled the entire field of

view, as shown in Figure 2.11. We conclude that the locally forming mesophase serves

as nucleation site for subsequent crystallization.

2.3.3 Transmission Electron Microscopy

Islands of different sizes with similar morphology were formed for HMS-5, 7, and

9 samples for both isothermal-annealing temperatures. The smaller islands demonstrate a

sheath-like texture which suggests that polymer chains align parallel to each other and

may crystallize to cause periodic thickness change, as described in Chapter 1. There

appears to be an increase in thickness from the edge to the center of the larger island as is

apparent from the increase in mass/thickness contrast. We can clearly see sheath-like

texture around the edge, and even the interior part of these larger islands. We can also

observe faint diffraction spots from the smaller islands and stronger diffraction spots from

the larger islands. Furthermore, in the center of the larger islands, we can see the lamella-



Figure 2.11 Optical micrograph of HMS-5 crystallized at 1270 C for 40 minutes.

(a) Sample annealed at 157 0C for 40 minutes prior to crystallization

at 127 0 C. (b) Sample cooled directly to 127 0C without annealing.

Scale marker is the same for both figures.



like structure or some sharp crystal edges. Therefore, crystals with different degrees of

perfection have developed in the whole sample. Also, we know that these crystals are

from the parallel aligned polymer chains, which suggests that the nematic phase serves as

crystal nuclei. Figure 2.12 shows a TEM micrograph of HMS-5, which was annealed at

157 0 C for 30 minutes and then air-cooled.

2.4. DISCUSSION

2.4.1 Relationship Between Transition Temperatures and Flexible Spacer Number

In our HMS polycarbonate polymers, no odd-even effect is seen in any of the

transition temperatures, as shown in Figures 2.3 and 2.4. In contrast, all of the HMS

polyethers [50] and polyesters [49,82] showed an odd-even effect in both the melting

temperature and the transition temperature from the liquid crystalline phase to the

isotropic phase. We suggest that the conformation of the carbonate linkage causes the

loss of the odd-even effect. As mentioned in the Introduction, for most LCPs with rigid

rod mesogen, polymers with an even number of methylene units in the flexible spacer

have a higher degree of alignment than those with an odd number. Moreover, as with

Percec's polyethers [75-79], when a polymer has a flexible mesogen, the liquid crystal

mesophase is formed by the coupled action of the flexible mesogen and the flexible

spacer. The flexible mesogen can result in significant conformational changes of the

polymer chain, which will affect the formation of the liquid crystal mesophase.

Similarly, for the HMS polycarbonates reported here, the carbonate linkages positioned

beside the methyl-stilbene mesogen can cause considerable conformational change. In

order to form the mesophase, the carbonate linkages have to adopt the conformation that

causes the polymer chain to be aligned and stabilized. The specific conformation in the

carbonate linkage might be the reason why the odd-even effect is lost within the HMS

polycarbonate polymers. The loss of the odd-even effect in the transition temperatures



Figure 2.12 TEM micrograph of HMS-5 annealed at 157 0 C for 30 minutes

and then air-cooled. Bar = 1 gtm
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has also been seen in enantiotropic liquid crystalline polycarbonates [49].

Next, we consider the cause of the melting point reduction in HMS

polycarbonates compared to HMS polyethers or polyesters. At the equilibrium melting

temperature Tm, the crystal phase is in equilibrium with the melt. Setting the Gibbs free

energy change equal to zero, we write:

Tm = AHf/ ASf (2)

where AHf and ASf are the differences in enthalpy and entropy, respectively, between the

melt and the crystal phase. Better intermolecular interaction leads to the higher absolute

value of AHf which would tend to increase the melting point. ASf reflects the greater

randomness in the isotropic phase [52]. The carbonate linkage contributes more

conformational entropy change between the crystalline phase and the isotropic phase, and

between the isotropic phase and the mesophase, than either ester or ether linkages. This

effect not only causes the lower melting transition temperature of HMS polycarbonates,

but also might cause the stable range of their mesophases to become narrowed. Actually

HMS polycarbonates are monotropic liquid crystalline polymers. The local

intermolecular interaction is the driving force for crystallization which leads to

monotropic behavior. The effect of intermolecular interaction on mesophase behavior

has been studied by other groups [88].

A change in properties occurs when the flexible space number exceeds eight.

First, from polarizing optical microscopy, small but ill-formed spherulites are seen for

n=5, 6, 7, and 8. No spherulites large enough to be identified by optical microscopy were

seen for n=9, 10 or 12. Second, in both cooling and heating, the transition temperatures

of HMS-polycarbonate LCPs drop sharply when n is greater than eight. In HMS



polyethers [50], which have an enantiotropic mesophase, the transition temperatures also

drop when n > 8. Lowering of the crystallization and melting temperatures, and inability

to form large spherulites imply that crystal size and perfection are reduced when n

exceeds eight.

In terms of the repeat unit structure of the HMS polycarbonates, we note that the

change in properties occurs when the length of the flexible spacer group exceeds the

length of the stilbene mesogen, for chains in the all trans conformation. From the

standpoint of energy minimization, this conformation represents one of the most probable

conformations resulting in extended polymer chains, for most liquid crystalline polyrmers

in the mesophase [25,59,79]. The fact that the same effect is seen in HMS

polycarbonates and in HMS polyethers is related to similarity of their chemical structures.

Both of these LCPs have linking groups that are symmetric. Crystal perfection is related

to interchain packing, and in both HMS polycarbonates and polyethers the interchain

packing is affected by the relative lengths of the flexible spacer and mesogen. For HMS

polyethers, when the mesogen length is greater than the flexible spacer, the most stable

crystal structure is 'intermeshed', in which the interchain packing is tight [71]. However,

this kind of crystal structure does not exist in those polymers with the flexible spacer

length longer than its mesogen, which have layered structure. Similarly, HMS

polycarbonates with flexible spacer longer than the mesogen do not seem to have

intermeshed structure. In support of this view, we note that in the plot of d-spacing for

two major interchain reflections versus flexible spacer number, n, the interchain spacing

shows an odd-even effect for low n value, but levels off when n 2 9 [89]. These results

will be more completely discussed in a subsequent publication [90] on x-ray diffraction

of HMS polycarbonates.

When the length of the flexible spacer gets close to that of the mesogen from n =



5 to 8, the stability range of the liquid crystal phase seen in the cooling scan becomes

smaller. For HMS-7 and 8, the closeness of the length between the mesogen and the

spacer increases the crystallization rate and makes the mesophase transition and the

crystallization transition indistinguishable for the lower cooling rates. For these two

samples, the liquid crystalline phase is much more unstable than in other samples, as

suggested by the results of cooling rate studies in Table 2.3. We suggest that the

difference is related to the difference of the spacer length, which results in difference in

crystal structure. When the length of spacer becomes close to that of the mesogen,

intermolecular interaction is affected, causing fast crystallization. In Chapter 3, we will

describe our experiments in x-ray diffraction of HMS polycarbonates LCPs in which we

investigate change of crystal structure with the number of methylene units in the flexible

spacer [90].

2.4.2 Crystal Formation

For nematic liquid crystalline polymers, the crystallization from the nematic phase

has been widely studied [86,87,91-94]. The nematic phase usually serves as a nucleus for

subsequent crystallization. Without the formation of the nematic phase, the polymer

crystallizes much more slowly from the isotropic phase. The crystals forming from the

nematic phase usually have structure similar to their nematic phase. For monotropic

liquid crystalline polymers, the crystallization from the liquid crystalline phase is rapid.

Therefore, their liquid crystalline phase is considered to be more ordered than that of

enantiotropic nematic LCPs [72].

Our HMS polycarbonate polymers are monotropic liquid crystalline polymers. As

shown in Figures 2.1 and 2.2, the range of the transition from isotropic phase to nematic

phase seen in the cooling scan overlaps the range of the upper melting peak of the crystals

seen in the heating scan. The transition from the isotropic phase to liquid crystal phase is



very close in temperature to the transition from the liquid crystal phase to the crystal

phase for the heating and cooling rates used in this study.

For main chain thermotropic liquid crystalline polymers, dual endotherms are

usually seen in the DSC heating scan. As shown in Wendorff's crystallization studies on

liquid crystalline copolyesters [91], two groups of crystals develop in sequence. The

upper melting crystals form first from the nematic phase and restrict the growth of the

later crystals forming among the first crystals by an annealing process. The closeness of

the peak temperatures of the dual endotherms is a characteristic of our HMS

polycarbonate LCPs. Whether we heat by immediately rescanning after isothermal

crystallization, or heat after cooling from the melt, two crystal populations are observed.

Each crystal population melts predominantly to form one of the dual endotherms. We

conclude that the first crystal group using the nematic phase as the nuclei for

crystallization has faster crystallization rate. The second crystal group grows more

slowly due to the slower rate of formation of secondary nuclei from the isotropic phase.

The upper peak seen in the immediate rescan after isothermal crystallization is

from the melting of the crystals developing from the nematic phase, while the lower peak

is from the crystals growing from the isotropic phase. These two groups of crystals are

both stable, which is why we observe no 'reorganization' during the rescan process. The

upper melting crystals develop earlier than the lower melting crystals, as shown in Figure

2.10. Both crystal populations grow fast provided the crystallization temperature is

below the transition temperature from the isotropic phase to the nematic phase. As the

crystallization temperature increases, the population of upper melting crystals, using the

nematic phase as the nuclei for crystallization, gradually diminishes, as shown in Figure

2.8. This result is in agreement with observation of decreased exothermic area shown in

Figure 2.7. The mesophase transition covers a broad temperature range of about 10



degrees (see Figure 2.1). The amount of seed nuclei from the mesophase decreases as the

isothermal crystallization temperature increases through the mesophase transition range,

and this causes reduced ultimate crystallinity. However, the crystallization rate of the

lower melting crystal group also slows down. Therefore, the formation of secondary

nuclei is also related to the ability of the polymer to form aligned structures.

From the above discussion, we can conclude that the crystals using the nematic

phase as the nuclei for crystallization are the crystals which cause the major exotherm

right after the transition from the isotropic phase to the nematic phase seen in the cooling

scan, as shown in Figure 2.1. These crystals are also the crystals which cause the upper

melting peak in the heating scan, as shown in Figure 2.2. The lower endotherm, which

overlaps greatly with the upper endotherm, is from the melting of those crystals

developing from the secondary nuclei forming from the isotropic phase. The closeness of

the melting point of these two groups of crystals can be understood by considering the

structure of HMS polycarbonate. Due to the flexibility caused by the carbonate linkage,

the first group of crystals develops from the nematic phase in regions quite scattered

throughout the melt. These crystals have widely varying degrees of perfection, which

causes a broad upper endotherm. And these crystals restrict the growth of the later

crystals, but not as much as Wendorff's copolyesters do [91]. In the copolyester LCPs,

clearly separate dual endotherms are observed.

The upper melting crystals are very stable and the crystals developing later from

the remaining isotropic phase can only develop in a restricted geometry among the first

crystals. There is further evidence provided by the crystallization study using optical

microscopy. Bigger spherulites were seen within those samples crystallizing without

annealing at the isotropic to nematic transition temperature. The annealing caused

scattered nematic phases to form locally, which later crystallize and restrict the



development of large spherulites. The mechanism of crystallization whereby the

secondary crystals develop among the first crystals was actually seen in a transmission

electron microscopy study of PEEK [95]. The dual endotherm was also seen in the

heating scan of PEEK which had been crystallized from the melt [96-98]. This

mechanism of crystallization is common in those polymers with low degree of

crystallinity and generally results in observation of broad endotherms.

2.5. CONCLUSIONS

1. HMS polycarbonates are monotropic liquid crystalline polymers, while HMS

polyesters and polyethers have an enantiotropic liquid crystal phase.

2. The conformation in the carbonate linkage strongly affects the stability of the liquid

crystal phase, and causes the loss of the odd-even effect. The spacer length also affects

the crystallization kinetics. The crystallization from the nematic phase becomes faster

when the length of spacer gets close to that of the mesogen. When the former exceeds the

latter, all the transition temperatures drop.

3. The melting of crystals forming directly from the nematic phase causes the high

temperature endotherm seen in the heating scan. These crystals grow fast and restrict the

development of the later crystals forming from the isotropic phase. The later crystals are

less perfect and melt to form the lower temperature endotherm.



Chapter 3

Structure Development in HMS Polycarbonates

by Wide Angle X-ray Scattering (WAXS)

3.1. INTRODUCTION

In our HMS polycarbonates, the monotropic nature of the mesophase prevents

observation of some of the thermal transitions [99]. Therefore, the odd-even effect in the

thermal properties is not obvious because of their monotropic liquid crystalline behavior

[99]. However, we did observe that all transition temperatures dropped when n exceeded

eight [99]. In addition, in our HMS polycarbonates an interesting odd-even effect has

been observed (and reported in preliminary form [89]) in the two dominant interchain d-

spacings from the wide angle X-ray scattering powder diffraction pattern when n ranges

from 5 to 8. When n exceeded eight, the major interchain d-spacings leveled off.

HMS polyethers, polyesters, and polycarbonates all contain the same stilbene

mesogen and the same flexible spacer group. These LCPs differ only in their linking

groups. The question arises concerning the aspects of chain structure that cause our HMS

polycarbonates to be monotropic LCPs, and to show weak (or no) odd-even effect in their

thermal transitions, compared to their chemical relatives. In Chapter 2, we suggested

previously that the stability of the liquid crystalline phase is affected by the carbonate

linkage, which causes fast crystallization resulting from intermolecular interaction [99].

In this Chapter, we explore this idea further by a combined approach using wide angle X-

ray scattering and molecular modeling. We show here that the HMS polycarbonate

chains pack together in an intermeshed structure. The disposition of the carbonate group

differs from n-even to n-odd, and this we suggest is responsible for the odd-even effect in

the two dominant interchain d-spacings from the wide angle X-ray scattering powder



diffraction pattern when n ranges from n = 5 to 8.

3.2. EXPERIMENTAL SECTION

3.2.1 Reflection Mode WAXS

Wide angle X-ray scattering, WAXS, studies were made in reflection mode for all

unoriented HMS polycarbonates. A Rigaku RU-300 rotating anode X-ray generator was

used to examine samples in 0/20 reflection mode. The diffractometer has a diffracted

beam graphite monochromator. Copper K. radiation (X = 1.54A) was used with a step

scan interval of 0.1 degree, at a scan rate of 1 degree/minute over the 20 range from 3 to

53 degrees. HMS powder was melted on a teflon substrate then cooled, and the resulting

solid piece was fixed to an aluminum frame for examination by WAXS.

3.2.2 WAXS Fiber Analysis

WAXS in transmission mode was performed at room temperature on selected

oriented HMS fibers, using a Philips PW1830 X-ray generator operated at 45kV and

45mA with Ni-filtered CuK, radiation. The Statton camera used in this study consists of

a pinhole collimator over which the sample is placed, and a flat film (Kodak DEF-5) to

record the scattering pattern. The sample to film distance is calibrated using Si powder

reference standard (from National Institute of Standards & Technology) rubbed on the

sample surface. The first 20 value for Si is 28.440. HMS fibers were hand drawn from

the mesophase using tweezers. It was relatively easy to draw fibers for HMS-5,7, and 8

but quite difficult to draw HMS-6. The hand drawn fibers cooled rapidly in air, and will

be referred to as raw fiber. Raw fibers were subsequently annealed below the melting

temperature. WAXS was performed on both the raw and annealed fibers.



3.2.3 Molecular Modeling

CERIUSTM, a commercial software package distributed by Molecular

Simulations Inc., was used for indexing of experimental X-ray diffraction patterns and

determination of the crystal structure. Because the experimental c-axis repeat unit is

close to the end to end distance of the fully extended monomer unit, a initial structure

close to all-trans conformation was assumed for X-ray diffraction simulation work. By

comparing the experimental powder and oriented fiber diffraction pattern with the

simulated patterns, we first determined the crystalline cell symmetry and then refined the

crystal lattice parameters.

3.3. RESULTS

3.3.1 Reflection Mode WAXS

The WAXS diffractometer scans of HMS-5-12 are shown in Figure 3.1. WAXS

scans in reflection mode generally show two sharp and dominant interchain reflections.

In addition, several HMS polycarbonates show a number of much weaker peaks.

Considering only the two dominant interchain reflections, we show in Figure 3.2 a plot of

d-spacing vs. flexible spacer number, n. An odd-even effect is observed in the d-spacing

for n = 5 to 8. The assignment of Miller indices of (020) and (110) will be explained

later. When n 2 9, the two major d-spacings get closer to one another and level off.

3.3.2 WAXS Fiber Analysis

Next, we show the flat film fiber patterns of raw (unannealed) fibers, and

annealed fibers. In Figure 3.3 WAXS of selected raw fibers is shown. HMS-5 raw fiber

is shown in Figure 3.3a and HMS-8 is shown in Figure 3.3b. HMS-5 raw fiber WAXS

shows a single diffuse equatorial maximum and no meridional reflections, which is

characteristic of a nematic mesophase. HMS-8 raw fibers have two diffuse equatorial



TWO THETA (degrees)

Figure 3.1 WAXS intensity versus two theta for HMS-4-10, -12.
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Figure 3.3 Flat film WAXS of hand drawn raw fibers:

(a) HMS-5, (b) HMS-8. Fiber axis is vertical.



Figure 3.3, Continued
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reflections and no meridional reflections. The appearance of two diffuse equatorial

maxima in HMS-8 indicates a better interchain registry between the polymer chains in

these fibers. For the sake of brevity, HMS-6 and HMS-7 are not shown. HMS-6 raw

fiber was similar to HMS-5, and HMS-7 was similar to HMS-8.

WAXS patterns of selected annealed HMS fibers are shown in Figure 3.4 Once

the raw fiber is annealed, crystalline reflections are observed though some are too weak

to be seen in the reproduction. In Figure 3.4a, HMS-5 annealed fiber WAXS is shown

along with a sketch of the reflections in Figure 3.4b. One meridional reflection is seen in

annealed HMS-5 along with two equatorial and five quadrantal reflections. In Figure

3.4c, annealed fiber WAXS of HMS-8 is shown, with a sketch in Figure 3.4d. Two

equatorial and six quadrantal reflections are identified in HMS-8. There were no

meridional reflections in HMS-8. HMS-6 and HMS-7 patterns are not shown. HMS-6

did not form highly oriented fibers upon annealing, though numerous crystalline

reflections were seen as broad arcs. HMS-7 annealed fiber pattern is similar to that of

HMS-8. The experimental 20 angles and corresponding d-spacings for HMS-5, 6, 7, and

8 are listed in Table 3.1-3.4, respectively, for the annealed fibers.

In the raw fibers shown in Figure 3.3, there is an absence of three dimensional

crystalline order. Two raw fibers, HMS-5 and 6, showed a single equatorial reflection, an

indication that the nematic mesophase could be described by a single average interchain

separation distance. The other two raw fibers, HMS-7 and 8, displayed two strong

equatorial reflections, an indication that for these fibers the nematic mesophase would

best be described by two different average interchain separation distances. These

probably reflect a higher level of order in the packing for HMS-7 and 8. When the three

dimensional crystals form out of the nematic phase, which serves as the template on

which crystals will nucleate, the average interchain spacing of the crystals is represented



WAXS of hand drawn annealed fibers:

(a) HMS-5 experimental pattern, (b) Sketch of HMS-5 pattern,

(c) HMS-8 experimental pattern, (d) Sketch of HMS-8 pattern.

Fiber axis is vertical. Spotty ring is from Si calibration standard.

Figure 3.4
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Table 3.1

Experimental and Model Crystallographic Parameters

of a Crystal Unit Cell of HMS-5

Miller 20 (°) d-spacing (A)
Index*

(h k 1) data model data model

(1 0 1) 16.4 (+0.20) 16.6 5.4 (±0.1k) 5.4

(1 1 0) 19.9 (1+0.20) 19.8 4.5 (±0.1A) 4.5

(0 2 0) 22.2 (-0.60) 22.8 4.0 (±0.1k) 3.9

(0 0 2) 7.6 (+0.20) 7.6 11.6 (+0.2A) 11.7

(0 1 2) 14.3 (_+0.60) 13.7 6.2 (±0.3A) 6.5

(1 2 1) 27.7 (1+0.60) 28.3 3.2(±0. 1) 3.2

(0 2 2) 24.6 (±+0.50) 24.1 3.6 (±0.1k) 3.7

(0 2 3) 25.7 (+0.30) 25.5 3.5 (±0.1k) 3.5

* Miller indices are assigned based on orthorhombic structure with lattice
parameters given in Table 3.5



Table 3.2

Experimental and Model Crystallographic Parameters

of a Crystal Unit Cell of HMS-6

* Miller indices are assigned
parameters given in Table 3.5

based on orthorhombic structure with lattice

Miller 20 (0) d-spacing (A)
Index*

(h k 1) data model data model

(1 1 0) 21.3 (+0.30) 21.2 4.2 (±O.1A ) 4.2

(0 2 0) 19.3 (+0.20) 19.3 4.6 (±0.1A) 4.6

(0 1 2) 12.2 (+0.20) 12.0 7.2 (±0.1A) 7.3

(0 1 3) 14.9 (+0.40) 14.5 5.9 (±0.2A) 6.1

(1 3 1) 35.3 (+0.50) 34.9 2.5 (±0.1A) 2.6

(0 1 4) 16.7 (+0.60) 17.4 5.3 (±0.2A) 5.1

(1 1 4) 25.8 (+0.30) 25.8 3.5 (+0.1A) 3.5

(1 3 4) 38.7 (+0.60) 38.0 2.3 (±0.1A) 2.4



Table 3.3

Experimental and Model Crystallographic Parameters

of a Crystal Unit Cell of HMS-7

i* Miller indices are assigned based on monoclinic
parameters given in Table 3.5

structure with lattice

Miller 20 (o) d-spacing (A)
Index*

(h k 1) data model data model

(1 0 1) 12.2 (+0.20) 12.1 7.3 (+0. 1) 7.3

(1 1 0) 20.0 (+0.30) 20.2 4.4 (+0.1k) 4.4

(1 1 1) 16.5 (+0.20) 16.5 5.4 (+0. 1) 5.4

(0 2 0) 22.6 (+0.30) 22.5 3.9 (+0.1A) 4.0

(1() 2) 9.5 (+0.20) 9.5 9.3 (+0.1k) 9.3

(1 1 2) 14.7 (1+0.20) 14.7 6.0 (±0.1k) 6.0

(1 2 1) 24.9 (+0.60) 25.6 3.6 (+0. 1) 3.5

(0 2 2) 26.0 (+0.40) 25.7 3.4 (+0. 1) 3.5

(2 1 6) 24.0 (+0.30) 23.9 3.7 (±0.1k) 3.7



Table 3.4

Experimental and Model Crystallographic Parameters

of a Crystal Unit Cell of HMS-8

Miller 20 (o) d-spacing (A)
Index*

(h k 1) data model data model

(0 1 1) 11.4 (+0.20) 11.5 7.8 (±0.2A) 7.7

(1 0 1) 13.5 (+0.50) 14.0 6.6 (±0.3A) 6.3

(11 0) 21.9 (-0.40) 21.5 4.1 (_±0.1) 4.1

(0 2 0) 19.0 (-0.20) 19.1 4.7 (±0.1Ak) 4.7

(0 2 1) 20.6 (+0.40) 20.2 4.3 (±0.1kA) 4.4

(1 3 0) 34.8 (+0.30) 34.8 2.6 (±0.1A) 2.6

(1 0 -1) 25.0 (+0.30) 25.2 3.6 (_±0.1kA) 3.5

(1 1 4) 16.6 (+0.20) 16.6 5.3 (_±0.1k) 5.3

i* Miller indices are assigned based on monoclinic structure with lattice
parameters given in Table 3.5



by the two strong equatorial reflections which are associated with the (020) and (110)

planes.

The interchain spacing of the nematic mesophase seen in the raw fiber WAXS

(Figure 3.3) can be compared to the interchain spacings of the crystalline phase seen in

the annealed fiber WAXS (Figure 3.4). For HMS-5 (Figure 3.3a) and HMS-6 (not

shown) the single equatorial reflection seen in the pattern of the raw, unannealed fiber has

a d-spacing which lies in between the d-spacings of the two strongest reflections seen in

the annealed fiber powder pattern. The inner spot on the equator of HMS-8 raw fiber

pattern (Figure 3.3b), lies on the (020) position of annealed fiber pattern (Figure 3.4b).

The outer diffuse spot has a d-spacing which lies in between the d-spacings of the two

strongest reflections seen in the powder pattern just as the single equatorial reflection

does in the HMS-5 and 6 raw fiber pattern. In contrast, the two spots on the each side of

equator in the HMS-7 raw fiber pattern have d-spacings close to the d-spacings of the two

strongest reflections seen in the powder pattern. For annealed fibers HMS-8 (Figure

3.4b) and HMS-7 (not shown) the d-spacings of the two strongest equatorial reflections

correspond to the two strongest reflections observed in the powder patterns of Figure 3.1.

3.3.3 Molecular Modeling

Molecular modeling and X-ray simulation work was undertaken to determine the

unit cell lattice parameters and crystal structure of the HMS polycarbonates that could be

obtained as highly oriented fibers. Crystal structure was determined for HMS-5 through

8. We found the experimental c-axis repeat unit was very close to the end to end distance

of a fully extended monomer unit. Therefore, an initial structure with a conformation

close to all-trans was used to build the unit cell for X-ray diffraction simulation by

CERIUSTM. By comparing the experimental powder and oriented fiber diffraction

patterns with the simulated patterns, we derive the crystal structures for these polymers.



HMS-5 and 6 have an orthorhombic structure with two chains per cell, while HMS-7 and

8 have a monoclinic structure, also with two chains per cell. Figure 3.5a-c contain the a-b,

a-c, and b-c projections, respectively, of HMS-5.

Agreement of intensity between the experimental and simulated X-ray diffraction

patterns required the crystal unit cells of HMS-5 through 8 to have two polymer chains at

(0,0,0) and (1/2,1/2,1/2) positions. Miller indices were assigned using the model lattice

parameters. The predicted scattering angle, 20, and d-spacings are shown in Tables 3.1-

3.4 for HMS-5-8, respectively, for direct comparison with the experimental data.

Excellent agreement is obtained between the model and experimental d-spacings. In

Table 3.5, we list crystal lattice parameters, a, b, c and angles (o, 3, y, for HMS-5 through

8. The last column of the table lists the value of asin3.

The length of the b-axis of the unit cells shows an odd-even alternation for n = 5

to 8. In the orthorhombic system (for HMS-5 and 6) the lengths of the a- and b-axes are

an indication of the interchain separation distances for the comer chains of the unit cell.

For the monoclinic system (HMS-7 and 8), the quantity asin3 represents the

perpendicular distance between the corner chains lying in the a-c plane. An odd-even

alternation is observed in asin3 for n = 5 to 8.

In the crystal unit cell, HMS-5-8 have an extended chain structure. In Figure

3.6a-b we show the extended chain structures for monomer units of HMS-5 and 6,

respectively. Note that for odd numbered n the two carbonyl oxygens lie on the same

side of the monomer chain axis, while for even numbered n they lie on opposite sides of

the chain as shown by the arrows. The carbonate linkage, which distinguishes this HMS

series from the HMS-polyethers and HMS-polyesters, has important consequences for the

unit cell symmetry, chain packing, and mesophase stability. When HMS-polycarbonate
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monomers pack into the crystalline unit cell, the crystal symmetry is such that the center

chain occupies a position shifted along the molecular chain axis, relative to the position

of the corner chain. This causes HMS-5 to 8 have an intermeshed structure, which is

similar to that observed in other main chain LCPs [71,72]. In Figure 3.7 the corner and

center chains of the unit cell of HMS-7 are shown in a projection along the b-c plane. As

seen in Figure 3.7, in the intermeshed crystal unit cell, the center and corner chain

stilbene mesogens are intermeshed with the flexible spacer group. The stilbene mesogen

of one chain is adjacent to the flexible spacer group of the neighboring chain.

3.4 DISCUSSION

A stable intermeshed structure can exist if the length of the flexible spacer is not

too large compared with the length of the mesogen, as suggested by Unger and Keller

[70]. The methyl stilbene mesogen has a unit length of about 11.6 A. We can categorize

the HMS-polycarbonates into three groups according to the relative lengths of the

mesogen and the other portions of the chain. First, HMS-4 has a length of flexible spacer

and linking groups of 10.8 A that is quite short compared to the methyl stilbene mesogen.

DSC studies show that while HMS-4 forms a nematic mesophase, the short flexible

spacer group causes very slow crystallization kinetics [99]. Very poor crystals form over

a wide temperature range from the melt, leading to very low ultimate degree of

crystallinity. In the second group, HMS-9, 10, and 12 have flexible spacer lengths

ranging from 12.6 A to 16.5 A, which are all very long compared to the methyl stilbene

mesogen. As shown in Figure 3.2, the interchain d-spacings level off when n 2 9.

Furthermore, for n 2 9 no large spherulites were seen with polarized optical microscopy

and transition temperatures observed in DSC cooling and heating scans drop sharply [6].

These facts suggest that crystal size and perfection are reduced for HMS-9, 10 and 12.

Here the flexibility of the chain leads to rapid crystallization kinetics and relatively less
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perfect crystals. However, the intermeshed structure is not stable in these members of the

series. The flexible spacer is too long to allow proper overlap of the carbonates on

adjacent chains.

Finally, in the third group are the series members HMS-5 through 8 in which the

length of the mesogen is close to the length of the other groups, leading to a favorable

overlap of the adjacent carbonates. HMS-8 has a stable intermeshed crystal structure,

because the extended -(CH2) 8 - length is about 11.3 A which is close to the methyl

stilbene mesogen. At the short end of this grouping, the extended -(CH2) 5- length is only

about 7.4 A yet a stable intermeshed structure is still observed. The carbonate linking

group plays an important role in determining whether or not a stable intermeshed

structure can be formed. In the HMS-5 member of the series, the carbonate-pentane-

carbonate length is about 11.8A, which matches the mesogen length quite well.

The carbonyl oxygen in the carbonate linkage is of partial negative charge while

the remaining atoms in the carbonate linkage are of partial positive charge. This leads to

a dipole moment transverse to the molecular chain axis at the position of the carbonate

group. As shown in Figure 3.6, in HMS-5 and 7, consecutive carbonate dipoles on the

chain point in nearly the same direction while in HMS-6 and 8 consecutive dipoles point

in nearly opposite directions. This affects the way in which the corner and center chains

are positioned relative to one another, and creates an odd-even effect in the packing of the

cell. In HMS-5 and 7, the center and corner chains have dipole moments aligned, and

pointing along [010]. In HMS-6 and 8, the dipole moments on adjacent carbonate units

between chains can have a more favorable interaction when the center chain rotates

relative to the corner chain. This rotation is demonstrated in Figure 3.8 where we show a

view of the unit cells of HMS-7 and 8 for comparison, projected along the c-axis. The

rotation of the adjacent chains of HMS-6 and 8, causes the length of the b-axis of the unit



cell to increase, and the quantity asinl3 to decrease, compared with HMS-5 and 7.

HMS-7 and 8 have a higher degree of overlap of the carbonate linkage between

adjacent polymer chains than is found in HMS-5 and 6. This is caused by the very close

match between the length of the mesogen and the length of the flexible spacer. We

suggest this is the reaison why HMS-7 and 8 have a less stable mesophase than HMS-5

and 6. As seen in the differential scanning calorimetry cooling studies [99], the

temperature stability range of the mesophase decreases from HMS-5 to 8. More over, as

mentioned above, only a diffuse maximum is seen in the raw fiber pattern of HMS-5 and

6, which suggest that in the mesophase of these LCPs, the polymers chains arrange

themselves randomly in two dimensions. The diffuse maximum represents the average

distance between chains in the nematic mesophase. However, both HMS-7 and 8 show

two spots on each side of the equator in the raw fiber pattern, which is evidence that in

the mesophase of these two, there already exists a more regular arrangement of polymer

chains in two dimensions. This would lead to faster crystallization from the mesophase,

and therefore, a mesophase of reduced stability.

Although we clearly observe an odd-even effect in the crystal unit cell parameters,

there is no obvious odd-even effect observed in the melting transitions, as shown in

Chapter 2. This is probably because the broad melting endotherms from different crystal

populations obscure this effect.
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3.5. CONCLUSIONS

HMS polycarbonates with 5 to 8 methylene flexible spacer units have a stable

intermeshed crystal structure. Within this structure, the disposition of the carbonate

group differs from n-even to n-odd and causes the odd-even effect of the crystal unit cell

parameters, b and asin3. Furthermore, the higher degree of overlap of the carbonate

linkage of HMS-7 and 8 than HMS-5 and 6 between adjacent polymer chains may be the

reason why HMS-7 and 8 have less stable mesophase than HMS-5 and 6.



Chapter 4

Structure Development in HMS Polycarbonates

by Small Angle X-ray Scattering (SAXS)

4.1 INTRODUCTION

The monotropic liquid crystalline phase is not thermodynamically stable when

compared either to the crystalline phase or to the isotropic phase at any temperature [12].

Therefore, the monotropic liquid crystalline phase can be only observed in cooling

provided that the crystallization process is suppressed during cooling. Monotropic liquid

crystalline behavior has been recently characterized for several main chain thermotropic

LCPs [69,73-80]. It is worthwhile to reflect why our a-methyl stilbene polycarbonates

are unable to form an enantiotropic liquid crystalline phase, whereas a-methyl stilbene

polyethers and polyesters do form such phases. As suggested in Chapter 2 [90,99], the

reason could be two fold. First, the flexibility of the carbonate linkage might cause the

liquid crystalline phase to be thermodynamically less stable compared with the crystalline

phase and the isotropic phase. Second, the carbonate linkage can cause fast

crystallization resulting from improved intermolecular interaction.

The structure of the resulting crystals depends on the flexible spacer number, n.

Both the stability of phases and the crystal unit cell packing depend upon n. As

mentioned in Chapter 3, we found the methylene spacer length can affect the stability of

the liquid crystalline phase and crystalline phase. The stability of the liquid crystalline

phase relative to the crystalline phase decreases as the methylene spacer length gets close

to that of the mesogen, from n = 5 to 8. When the length of the spacer becomes greater

than that of the mesogen (n 2 9), all the transition temperatures drop. Formation of the

crystalline phase is highly related to the existence of the liquid crystalline phase, which



serves as crystal nuclei or as a template for crystallization. The amount of seed nuclei

decreases as temperature increases and as a result the crystallization rate slows down and

the ultimate crystallinity is reduced.

It is also mentioned in Chapter 3 that an odd-even oscillation has been observed

for HMS-5 to 8 in the two crystalline unit cell lattice parameters which determine the

interchain distance. This phenomenon is caused by the disposition of the carbonate group

which is different from n-even to n-odd in the crystalline phase [90]. In this Chapter, we

report on the use of real-time synchrotron small angle X-ray scattering (SAXS) to study

the development of crystal structure in HMS polycarbonates. An interesting odd-even

effect is observed in lamellar thickness and linear crystallinity.

Real-time synchrotron SAXS has been widely used to investigate fast structure

changes of homopolymers [100-113] and polymer blends [114-118]. For example,

research on time resolved crystal structure and morphology development using

synchrotron SAXS have been done for polyethylene (PE) [100-102], poly(ethylene

terephthalate) (PET) [103,104], poly(aryl ether ether ketone) (PEEK) [105-107],

poly(butylene terephthalate) (PBT) [108], poly(phenylene sulfide) (PPS) [109],

thermoplastic polyimide (New-TPI) [110-111], and thermotropic polyethers based on

semiflexible mesogen [74].

4.2 EXPERIMENTAL SECTION

The X12B beam line at Brookhaven National Synchrotron Light Source (NSLS)

was used to obtain small angle X-ray scattering data in transmission mode. For high

temperature work, a Mettler hot stage was supported in the X-ray beam path by an

aluminum holder, and the beam passed through the sample, which was sealed between



two pieces of KaptonTM tape. A two-dimensional histogramming gas-filled wire detector

was used. All samples studied here were isotropic, so circular integration of the intensity

was used to enhance the signal to noise ratio. The beam profile was treated according to

pinhole geometry. The sample to detector distance was either 1.85 m or 1.46 m, and was

calibrated by cholesterol meristate and collogen fiber. X-ray wavelength was either

1.53A or 1.49A.

SAXS scans at room temperature were taken for HMS-4 through 10 and 12,

which were non-isothermally crystallized by cooling at -50 C/min from the melt to room

temperature. Real-time SAXS data were taken during cooling at -50 C/min for HMS-5

and 6, and during heating at 5'C/min for crystallized HMS-5 to 9. Real-time studies were

also done during isothermal crystallization. HMS-5 to 8 samples were melted at 190 0 C

for 2.5-3 minutes, then cooled at -200C/min to 1400 C and held there until crystallization

was finished. Crystallization times had been determined in our prior study [99_]. Data

were collected during cooling from 170-1400 C and during the whole isothermal

crystallization process. The data collection time was 120 seconds for static experiments,

and 30 seconds for cooling and heating experiments, and 10 seconds for isothermal

crystallization experiments.

SAXS intensity was corrected for background, sample adsorption, variation of

incident beam intensity and thermal density fluctuations. The slope of Is4 versus s4 plot

(where s is the scattering vector, s = 2 sinO/X) was used to get the diffraction intensity

contribution from thermal density fluctuations [119,120]. The corrected intensity is used

for quantitative analysis.
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4.3 RESULTS AND DISCUSSION

4.3.1 Room Temperature SAXS

We show in Figure 4.1 the Lorentz corrected SAXS intensity, Is 2, versus s at

room temperature for HMS-5 which had been cooled at -5 0C/min from the melt to room

temperature. A well developed intensity maximum occurs at about s=0.005. For s less

than about 0.005, intensity drops steadily until s is about 0.0025. The beam stop obscures

real intensity data for s less than about 0.0025. We assume that HMS polycarbonates

have a lamellar structure in which stacks of lamellae alternate with amorphous material.

This assumption is reasonable considering that spherulites have been observed by both

optical microscopy and transmission electron microscopy [99]. To obtain parameters

characterizing the lamellar stacks, we use the one-dimensional electron density

correlation function, K(z), derived by discrete Fourier transform of the Lorentz corrected

intensity. z is a dimension along the normal to the lamellar stacks. The intensity here is

the corrected intensity obtained after the background and thermal density fluctuation

corrections. The intensity versus s data then were linearly extrapolated to s = 0. Also,

Porod's law, I(s) - s- 4 was employed to extrapolate the intensity data to high s. The

resulting correlation function starts off with a z-spacing of 1/(maximum s value), but a

spline interpolation fills in the missing values in the regime of interest.

In Figure 4.2a, we show a general plot of K(z) vs. z, and in Figure 4.2b K(z)

versus z for HMS-5. The parameters characterizing the lamellar stacks are the long

period, L, lamellar thickness, 1c, and linear crystallinity, Xc. These are obtained

according to the method proposed by Strobl and Schneider [121]. The average long

period, L, is the z value where the first maximum in K(z) occurs for z > 0. The invariant,

Q, is related to the linear crystallinity, Xc, and the electron densities of the crystal and

amorphous phases, pc and Pa, respectively, according to:
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Figure 4.1 Lorentz corrected SAXS intensity vs. scattering vector s at room

temperature for HMS-5 cooled at -50 C/min from the melt.
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Q = Xc (1 - Xc) (Pc - Pa)2 .

As shown in Figure 4.2a, Q is found from the intercept of extrapolation of the K(z) vs. z

curve at small z value to z=0. The coordinate of the horizontal line tangent to the first

minimum of K(z) vs. z is -A, where A is related to linear crystallinity and density by:

A = Xc2 (Pc - Pa )2 . (2)

Using equations (1) and (2), the linear crystallinity is found from:

A/(A+Q). (3)

The definitions of L, Ic , Q and A are illustrated in Figure 4.2a. In Figure 4.2b, K(z) is

shown for HMS-5.

In Table 4.1, we list long period, linear crystallinity and lamellar thickness at

room temperature for HMS-4-10 and 12 crystallized by cooling at 50 C/min from the melt

to room temperature. Lamellar thickness and linear crystallinity show an odd-even effect

from HMS 4-10, as shown in Figure 4.3a, b, which has never been found before. In both

parameters, the value at n=9 is quite large, more than 20% greater than the values of the

odd members of the series for n<9. The variations in Ic and Xc are well outside the error

bars on the measurements which are shown by the vertical markers.

4.3.2 Real-time SAXS during Cooling and Heating

Figure 4.4 shows differential scanning calorimetry (DSC) cooling scans of HMS-

5 and 6 for the purpose of comparison with SAXS data taken at the same cooling rate.

The curves are vertically offset for clarity, but are drawn to the same vertical scale. The

scale is shown by the vertical marker indicating heat flow of 50 mW/g. The cooling scan
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Table 4.1

Long Period, Linear Crystallinity and Lamellar Thickness for Crystallized
HMS-4-10 and 12 Cooled at 50 C/min from Melt to Room Temperature

Sample L(A) Xc Ic(A)
n (_±5A) (±0.01) (±2A)

4 270 0.18 34

5 214 0.26 44

6 215 0.21 33

7 234 0.25 46

8 230 0.18 29

9 175 0.32 54

10 197 0.26 47

12 194 0.25 49
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of HMS-5 shows a small exothermic transition at 1550 C (Ti-lc) and a much larger, and

sharper, crystallization exothermic peak at 132 0 C (Tlc-k). The area under the

crystallization peak is 6.9 J/gram. HMS-6, in comparison, shows a broad small

exothermic transition at 155 0C (Tlc-.k) and a broad crystallization peak at 127 0 C (Tic-k).

The crystallization exotherm area for HMS-6 is 3.4 J/gram, considerably smaller than that

of HMS-5. These two LCPs have their thermal transitions, i-lc and Ic-k, at about the

same temperatures during cooling from the melt. Their heats of crystallization are,

however, very different. Since the heat of fusion of the perfect crystal is unknown for

these polymers, we can not determine the degree of crystallinity of HMS-5 compared to

HMS-6. To gain further insight into the crystallization process, we use real-time SAXS

to determine the development of crystal structure during cooling.

In Figure 4.5a, we show the Lorentz corrected intensity versus s data at selected

temperatures during the cooling scan for HMS-5. As the temperature drops from 170 0 C

to 115 0C, the intensity increases. For temperatures greater than 135 0C, any peak in the

intensity (if one exists) is hidden by the beam stop. Only a very strong shoulder appears

and grows up as temperature drops from 170 0C to 135 0 C. At 135 0 C, the intensity peak

finally emerges and continues to shift to higher s value as the temperature drops.

Intensity reaches a maximum at about 115 0 C, then as temperature decreases below

115 0 C, the intensity in the peak drops during the later stages of crystallization. Figure

4.5b shows K(z) versus z at several temperatures at which a clear maximum in intensity

was observed. As temperature decreases, the long period (L) shifts to lower values.

Figures 4.6a-c show long period (L), lamellar thickness (1c), and linear

crystallinity (Xc), respectively, for HMS-5 (circles) and 6 (stars) during cooling for all

measurement temperatures less than 1400 C. From 170 0 C to 1400 C, no long range

periodic order can be seen (no clear peak appears in Is2 vs. s) so the correlation function
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Figure 4.5 (a) Lorentz corrected SAXS intensity vs. s for HMS-5 during cooling

at -50C/min from the melt. (b) One-dimensional electron density

correlation function for HMS-5 at several temperatures.

109

j0



000
0 0K

)K

0o

t8JU

360

340

320

300

280

260

X
K*

(a)
U 50 90 100 110 120 130 140

T (0C)

0 0 0 0 (b)

A* m

K 
X* *

'u U 90 100 110 120 130 140

T (OC)

Figure 4.6 (a) Long period, (b) lamellar thickness, and (c) linear crystallinity

vs. temperature for HMS-5 and 6 during cooling at -50C/min.

110

o 5
) 6

o
o 0

o0

o
2 0

A

*
*1 *e

0 0
* )K

n.
0 5
*6

65

0 0

0 0

A A

KX

nrrrr

-

-

-

-

-

22
-. t, • ' ,_ •I

0o

I I I I , I

14; I
V~n 1



0.28

0

0.27

0.26

0.25 n

o 5
X * 6

0.24

0.23

0.22

0.21'

0.2
70 8

0 0

0 0

00

000

A

A 0

0

*u

X )
KA K A

0 90 100 110
T (OC)

(c)

O O0

co

K K
X

K

120 130 140

Figure 4.6, Continued

111

m ^

n;



analysis was not applied to data taken above 1400 C. The data collection time of 30

seconds results in temperature interval of 2.50C for each data point. The intensity data

represent an average over the temperature window. As temperature decreases below

140 0C, the long period decreases steadily as shown in Figure 4.6a. Due to its low

crystallinity, HMS-6 has a lower scattered intensity. The HMS-6 data are more noisy and

the error of long period is high in the high temperature region.

Similar to what we observed in the room temperature SAXS (Figure 4.3a), the

lamellar thickness of HMS-5 is always larger than HMS-6, as shown in Figure 4.6b. We

also see two stages in the non-isothermal development of the lamellar thickness. At high

temperature, Ic is increasing with decreasing temperature from about 140 0 C to 110 0 C;

below 110 0C, Ic steadily decreases. These trends are clearly seen in HMS-5, and weakly

seen in HMS-6. The changes in lamellar thickness are much greater than what could be

accounted for on the basis of thermal contraction during cooling.

In Figure 4.6c, the linear crystallinity of HMS-5 is always greater than that of

HMS-6 over this temperature range. As temperature decreases, the linear crystallinity for

HMS-5 increases from 0.23 to 0.28, while for HMS-6 the linear crystallinity is nearly

flat. By the time the intensity shows a clear maximum (for T less than about 1400 C)

allowing K(z) to be determined unambiguously, significant linear crystallinity already

exists. As shown in DSC cooling scans, the crystallization exotherm (lc-k) occurs at

temperatures lower than 140 'C. Therefore, we consider the electron dense phase

existing at this temperature actually represents the liquid crystalline phase.

The results shown in Figure 4.6 support the model of dual lamellar populations

[95,105,106]. During isothermal crystallization, in the model of dual lamellar

populations, initially "primary" crystals grow in a sea of amorphous melt forming the
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superstructure of the spherulites. Other later forming "secondary" crystals grow in

amorphous material of restricted mobility due to the entanglement effects caused by the

primary crystals. The primary crystals may be thicker, more perfect, and higher melting.

Secondary crystals may be thinner, less perfect, and lower melting. Here, we have to

modify the model for our LCP system and for the nonisothermal conditions. During the

first stage of crystallization (here, above 1 100C) "primary" crystal lamellae form, which

use the liquid crystalline phase as nucleation sites for crystal growth. During this stage,

the long period decreases and lamellar thickness slightly increases as temperature

decreases. In the second stage (below 1 100C), smaller and less perfect crystal lamellae

form from the isotropic phase, and therefore the average lamellar thickness and long

period both decrease.

When cooling through the liquid crystalline phase transition, there exists a large

fraction of electron dense phase, which is the nematic liquid crystalline phase. This phase

serves as crystal nuclei for fast crystallization. From 1400C to 110 0C, the crystallization

mainly happens in this phase, therefore the linear crystallinity only slightly increases.

The lamellar thickness increase in this temperature region can be ascribed to the

"thickening" of the nematic crystal nuclei. We can imagine that the nematic phase is not

very organized; therefore, the initial organized portion of the nematic phase serves as the

crystal seed, which will draw the loosely-organized nematic liquid crystalline phase into

the crystalline phase. This crystallization process is reflected in the major DSC

crystallization exotherm, as shown in Figure 4.4.

The next series of figures refers to melting behavior of HMS materials which had

been crystallized by cooling at -50 C/min from the melt to room temperature. Figure 4.7

shows DSC heating scans of HMS-5 to 9, for the purpose of comparison with SAXS data

taken at the same heating rate. HMS-6 data are presented in Figure 4.8, while composite
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Figure 4.7 DSC thermograms of HMS-5 to 9 at 50 C/min heating rate.
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(c) long period for HMS-6 during heating at 50C/min.
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during heating at 50 C/min.
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plots of HMS-5 through 8 are shown in Figure 4.9. In Figure 4.8a, we show the Lorentz

corrected intensity versus s data at several temperatures during the heating scan for HMS-

6. As temperature increases, the intensity increases. The position of the peak intensity

maximum is constant in the beginning of heating, but decreases steadily once crystals

start melting. We show K(z) versus z at several temperatures in Figure 4.8b. Figure 4.9a

shows the long period (L) up to 140 0 C. Above 1400C, the long period data is not shown

because of the higher error after the melting of the samples. Taking HMS-6 as an

example, almost no melting occurs below 100 0 C, as seen from the nearly constant long

period. But the lamellar thickness and linear crystallinity increase slightly from further

crystallization of the sample, as shown in Figure 4.9b,c. Between 100-1300 C there is

slight melting, which causes the slight increase of long period. The lower melting

crystals are imperfect crystals which crystallized mainly from the isotropic phase in the

lower temperature range during the cooling. The average lamellar thickness and linear

crystallinity still increase slightly, which suggest crystal reorganization during the heating

scan. After 130 0C, major melting of primary crystals occurs, which causes the drastic

decrease of linear crystallinity and lamellar thickness, and the significant increase of long

period. The melting history seen here approximately coincides with the DSC heating

scan shown in Figure 4.7.

HMS-5 to 9 samples show similar melting behavior during the heating scan,

except that HMS-9 has a lower melting temperature range, which is also consistent with

our DSC study. Lamellar thickness and linear crystallinity versus temperature for HMS-

5-8 are shown in Figure 4.9b,c, respectively. Notice that there is higher error in these two

parameters after the samples start to melt. The odd-even effect holds clearly from the

beginning of the heating scan to a temperature just before the melting.
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4.3.3 Real-time SAXS during Isothermal Crystallization

In the real-time SAXS study of isothermal crystallization of HMS-5, the sample

was melted and then cooled to 1400 C. We show in Figure 4.10a the DSC exothermic

heat flow vs. time at 140 0C, and for comparison in Figure 4.10b the Lorentz corrected

intensity (Is2 ) vs. time at 1400 C at s = 0.0025, where Is2 has its maximum value. The

Lorentz corrected intensity starts to increase when the temperature drops through the

isotropic to mesophase transition although the cooling behavior is not shown here.

Significant intensity has already developed through electron-dense phase formation by

the time the temperature has reached 140 0 C. From the non-zero value of Is2 at t = 0, we

conclude that electron-dense phase formation happens as the material is cooled through

the isotropic to mesophase transition. Once the isothermal crystallization temperature is

reached, the intensity grows very fast in the early stage of crystallization before the time

to maximum heat flow as observed in the DSC exothermic heat flow. The linear

crystallinity, lamellar thickness and long period obtained from the one-dimensional

electron density correlation function also quickly reach a final steady state value in the

beginning of the isothermal crystallization. These facts suggest that the nematic phase

serves as crystal nuclei for fast crystallization, as mentioned in Chapter 2 [99]. Table 4.2

shows the linear crystallinity, lamellar thickness and long period for HMS-5-8

isothermally crystallized at 1400 C without cooling. An odd-even effect still can be

observed for the linear crystallinity and lamellar thickness, probably because HMS-5 to 8

have similar crystallization behavior around 1400C, as shown in Chapter 2 [99].

By assuming the c-axis is perpendicular to the lamellar thickness, we list in Table

4.3 the estimated average number of monomer repeat units in crystal lamellae for HMS-5,

6, 7 and 8 isothermally crystallized at 1400 C, and crystallized by cooling at -50 C/min

from the melt to room temperature. We first note that the number of monomer repeat

units in crystal lamellae is higher for samples isothermally crystallized at 1400C than for
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Table 4.2

Long period, Linear Crystallinity and Lamellar Thickness
for HMS-5-8 Isothermally Crystallized at 1400 C

Sample L(A) Xc lc(A)
n (±+5A) (+0.01) (±2A)

5 380 0.24 89

6 360 0.22 57

7 355 0.24 82

8 370 0.21 55

Table 4.3

Monomer Repeat Unit Length and Estimated Number
of Monomer Repeat Unit in Crystal Lamellae for HMS-5-8

Sample Monomer length Ic* / m lct/m
n m

5 23.4 3.8 1.9

6 24.4 2.3 1.4

7 25.6 3.2 1.8

8 26.8 2.1 1.1

* isothermal crystallization at 140 0C.
- crystallization by cooling at -50C/min from the melt to room temperature.
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samples non-isothermally crystallized by cooling from the melt. As mentioned above,

the nematic liquid crystalline phase serves as crystal nuclei and the major crystallization

occurs from the scattered nematic phase. It is clear that the crystallization at high

temperature such as 1400 C without cooling avoids the further crystallization from the

isotropic phase at the lower temperature; therefore, the lamellar thickness is higher and

linear crystallinity is lower.

In Table 4.3, we can see that the lamellae of HMS-5 and 7 consist of more repeat

units than the lamellae of HMS-6 and 8. As described above, the organized portion of the

nematic phase serves as crystal nuclei, which later form crystal lamellar from the nematic

phase. Therefore, we suggest that the size of both crystal nuclei and nematic phase are

larger for the odd than the even series HMS polycarbonates. We ascribe the odd-even

effect of lamellar thickness to the different degree of regularity of dipole orientation for

HMS-5 and 7 compared with HMS-6 and 8. As shown in Chapter 3 [90], because of the

extended conformation adopted by HMS-5 to 8 polymer chains within the crystalline

phase, for HMS-5 and 7, consecutive carbonate dipoles on the chain point in nearly the

same direction, while for HMS-6 and 8, consecutive dipoles point in nearly opposite

directions. The favorable dipole orientation for the odd series must affect both the

formation of the nematic liquid crystalline phase and the growth of crystal lamellar.

Therefore, the lamellar thickness and even linear crystallinity are higher for the odd series

than the even series.

In Table 4.1, we notice that HMS-9, 10 and 12 have a pretty high value of

lamellar thickness, but their melting temperature is lower than HMS-n, for n < 8 [99].

We ascribe the transition temperature drop to the greater length of the extended

methylene spacer compared with the length of the mesogen, which causes a less perfect

crystal structure and no formation of spherulites big enough to be observed under the
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optical microscope [99].

4.4 CONCLUSIONS

The changes in linear crystallinity, lamellar thickness and long period during non-

isothermal crystallization and melting can be explained by the model of dual lamellar

thickness. The major crystals crystallize using the nematic liquid crystalline phase as

crystal nuclei. The secondary crystals form from the isotropic phase at lower

temperature. An odd-even effect is observed in lamellar thickness and linear crystallinity,

in which both parameters are lower for a-methyl stilbene polycarbonates with odd-

numbered methylene spacer. We suggest this alternation is caused by the different degree

of regularity of the carbonate dipole orientation in the extended polymer chain

conformation for the odd and even series.
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Chapter 5

Characterization of DMS Polycarbonates and Comparison

between HMS and DMS Polycarbonates

5.1. INTRODUCTION

As mentioned in Chapter 1, a series of polycarbonates has been synthesized by

Dr. Schreuder-Gibson with stilbene mesogen, mono- or di- substituted with methyl or

ethyl groups. These are referred as HMS-n, DMS-n, HES-n, DES-n, respectively.

Chemical structures of these polymers are shown in Figure 1.5. The polycarbonates with

heptane flexible spacer were chosen for comparison of the effect of different mesogen

substitution on their properties [51]. Polycarbonates with ethyl substituted stilbene

mesogen (HES-7 and DES-7) are amorphous, while polycarbonates with methyl

substituted stilbene mesogen (HMS-7 and DMS-7) are semicrystalline and appear to be

liquid crystalline under the optical microscope. Their different behavior was suggested in

Dr. Schreuder-Gibson's work [51] to relate to the stilbene cross section size. This chapter

concentrates on the characterization of DMS-n. The flexible spacer number ranges from

n = 4-10, 12.

As described in Chapters 2 and 3, we determined that HMS polycarbonates

actually can only form monotropic liquid crystalline phases. As mentioned in Chapter 1,

the insertion of substituents on the mesogen will lower the stability of the liquid

crystalline phase because of the steric effect. And in fact, a,B-dimethyl stilbene

polyesters do not have an enantiotropic liquid crystalline phase while a-methyl stilbene

polyesters do [14,21,49]. Therefore, it is not too surprising that DMS polycarbonates

only have a virtual liquid crystalline phase, as described in this Chapter.
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5.2. EXPERIMENTAL SECTION

5.2.1 Materials

The synthesis of DMS polycarbonates was performed in Dr. Schreuder-Gibson's

group [51] and followed the method of Sato [84]. The synthesis is described in the

Appendix. The resultant LCPs were soluble in chloroform and obtained as fine white

powders. All polymers studied here have reasonably high molecular weight, in the range

from 14,200 to 32,800 with distributions (Mw/Mn) close to 2 as reported previously [51].

5.2.2 Differential Scanning Calorimetry (DSC)

Thermal properties of materials were studied using a Perkin-Elmer DSC-4 or

DSC-7. Indium was used to calibrate the temperature and the heat of fusion. The studies

that were done included heating and cooling at fixed rates, and the effect of

crystallization temperature on both crystallization time and melting temperature.

The first approach involved heating and cooling at fixed rates over a wide

temperature interval. The sample was heated to 2000 C and held at that temperature for

2.5-3 minutes, then cooled at a rate of 100C/min to 400 C, then heated at 100C/min to

2000 C. This study was done for all DMS-n samples. For the purpose of comparison,

HMS-7 was also studied in the same way. In addition, HMS-7 and DMS-7 were cooled

and heated at 5, 20, and 500 C/min. HMS-7 was also cooled at 20 C/min. This study was

designed to test the dependence of the isotropic to mesophase transition temperature on

cooling rate.

The next study was isothermal crystallization for HMS-7 and DMS-7. The

sample was melted at 2000 C for about 3 minutes, then quenched at -500 C/min to a

crystallization temperature Tc and held isothermally until the crystallization was finished.

125



The Tcs were specifically chosen in advance to keep the crystallization times comparable.

Because DMS-7 has lower crystallization temperature than HMS-7, we chose a

crystallization temperature in the range from 120 to 132 0C for DMS-7 and from 136 0C to

147 0C for HMS-7. Exothermic heat flow as a function of time was large enough to be

measured in the chosen temperature for both materials. Here we were interested in the

isothermal crystallization kinetics.

The next study involved immediate rescan after isothermal crystallization for

HMS-7 and DMS-7. After staying at Tc isothermally until crystallization was finished,

the sample was immediately heated at 50C/min to 190 0C without cooling. This

immediate rescan technique avoids the formation of imperfect crystals during cooling to

room temperature, and thus results in a cleaner endothermic response.

5.2.3 Wide Angle X-ray Scattering

A Rigaku RU-300 rotating anode x-ray generator was used to examine films of

DMS-7 in 0/20 reflection mode.. The diffractometer has a diffracted beam graphite

monochromator. Copper Ka radiation was used (k=1.54A) with a step scan interval of

0.1 degree, at a rate of 1 degree/minute, over the 20 range from 3 to 53 degrees. Powder

was dissolved in chloroform and several drops of the solution were placed onto quartz

substrates. The thin films were run "as-is" without any other thermal treatment.

Wide angle X-ray scattering was also performed at room temperature using a

Philips PW1830 X-ray generator operated at 45kV and 45mA with Ni-filtered CuK,

radiation (k = 1.54A). The Statton camera used in this study consists of a pinhole

collimator over which the sample is placed, and a flat film (Kodak DEF-5) to record the

scattering pattern. The sample to film distance is calibrated using Si powder reference

standard (from National Institute of Standards & Technology) rubbed on the sample
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surface. The first 20 value for Si is 28.44A. HMS-7 and DMS-7 fiber was hand drawn

from the mesophase using tweezers. This fiber cooled rapidly in air, and will be referred

to as raw fiber. Raw fiber was subsequently annealed below the melting temperature.

WAXS was performed on both the raw and annealed fibers. CERIUSTM, a commercial

software package distributed by Molecular Simulations Inc., was used for indexing of

experimental X-ray diffraction patterns and determination of the crystal structure.

5.2.4 Small Angle X-ray Scattering

The X12B beam line at Brookhaven National Synchrotron Light Source (NSLS)

was used to obtain small angle X-ray scattering data in transmission mode. For high

temperature work, a Mettler hot stage was supported in the X-ray beam path by an

aluminum holder, and the beam passed through the sample, which was sealed between

two pieces of KaptonTM tape. A gas-filled two-dimensional histogramming wire

detector was used. For isotropic samples, circular integration of the intensity was used to

enhance the signal to noise ratio. For oriented fiber samples, sectorial integration of the

intensity was used with 100 interval in each section. The beam profile was treated

according to pinhole geometry. SAXS data were taken on two separate trips. The sample

to detector distance was 1.39 m or 1.85 m, and was calibrated by cholesterol meristate

and collogen fiber. X-ray wavelength was 1.38A or 1.53A.

SAXS scans at room temperature were taken for DMS-5 to 8, which were non-

isothermally crystallized by cooling at 50 C/min from the melt to room temperature. Real-

time SAXS data were taken for an isothermal crystallization study. DMS-7 and 8

samples were melted at 1900 C for 2.5-3 minutes, then cooled at 20 0 C/min to 124 0 C and

held there until crystallization was finished, which was predetermined by the DSC

isothermal crystallization study. Data were collected during cooling from 170 to 1400C

and during the whole isothermal crystallization process. The data collection time was 10
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seconds. Raw HMS-7 fiber was quickly heated from room temperature to 880C, then

heated at 200C/min to 138 0C. Similarly, raw DMS-7 fiber was quickly heated to 75 0 C,

then heated at 200 C/min to 125TC. Data were collected during the 200 C/min heating

process. The data collection time was 15 seconds.

SAXS intensity was corrected for background, sample adsorption, variation of

incident beam intensity and thermal density fluctuations. The slope of Is4 versus s4 plot

(where s is the scattering vector, s = 2 sin0/X) was used to get the diffraction intensity

contribution from thermal density fluctuations 1119,120]. The corrected intensity is used

for quantitative analysis.

5.3. RESULTS

5.3.1 Differential Scanning Calorimetry

In the DSC cooling scan of DMS-4-10 and 12 cooling from melt, usually a broad

exotherm with a low temperature tail is observed. In the reheating scan, a broad

endotherm with a low temperature tail caused by the melting of less perfect crystals is

observed. For the purpose of comparison, Figure 5. la,b shows the cooling and reheating

scans of DMS-7 and HMS-7. In both scans, the baseline of HMS-7 is tilted steeply down

from left to right. DMS-7 has lower crystallization and melting temperature than HMS-7.

Table 5.1 summarizes the melting and crystallization peak positions for DMS-4-10 and

12. These values can be compared to those of HMS-7 which are listed in Table 2.1.

Unlike HMS polycarbonates, the transition temperatures of DMS polycarbonates do not

have an obvious relationship with the flexible spacer. Nevertheless, for both HMS and

DMS polycarbonates, the transition temperatures drop when the methylene spacer

number when n is bigger than 8.
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Figure 5.1 DSC thermograms of DMS-7 and HMS-7 at 100C/min

(a) cooling and (b) heating.
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Table 5.1

Thermal Transition Peak Temperatures for DMS Series Polycarbonates
at 100C/minute Scan Rate

Crystallization Melting Temp.(oC)
Sample Temp.(oC)

n Tc Tm

4 149 172
5 66 115

6 157 174

7 110 142

8 113 139

9 77 105

10 77 106

12 80 112
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Figure 5.2a,b shows DSC cooling scans at various cooling rates for HMS-7 and

DMS-7, respectively. As described in Chapter 2, HMS-7 has a monotropic liquid

crystalline phase, which can be observed in cooling only provided that the crystallization

process is suppressed for example, by increasing the cooling rate. The small higher

temperature exotherm seen in Figure 5.2a represents the isotropic to liquid crystalline

phase transition, whose position is less affected by the cooling rate, compared with that of

the large lower temperature crystallization exotherm. Therefore, at a slow cooling rate

like 20 C/min, the isotropic to liquid crystalline phase transition is covered by the

crystalline phase transition. But at higher cooling rates, the liquid crystalline transition

can be observed. In contrast, for DMS-7 shown in Figure 5.2b, higher cooling rates up to

500C/min still can not separate the liquid crystalline transition from the crystalline phase

transition.

In the DSC isothermal crystallization study, the time to maximum heat flow at

several temperatures is obtained for DMS-7 and HMS-7, as shown in Figure 5.3a,b,

respectively. The time to maximum heat flow of DMS-7 is less sensitive to the

crystallization temperature increase than that of HMS-7.

The relationship between the melting point and the crystallization temperature is

found from the Hoffman-Weeks equation [85] as:

Tm = TmO ( 1 - 1/) + Tc / (1)

where Tm 0 is infinite crystal melting point and y is the thickening factor of the crystal

lamellae. HMS-7 and DMS-7 have similar values of thickening factor and infinite crystal

melting point as shown in Table 5.2.
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Figure 5.2 DSC thermograms of (a) HMS-7 and (b) DMS-7

at various cooling rates.
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Table 5.2

Infinite Crystal Melting Point and Thickening Factor
for HMS-7 and DMS-7

Sample Infinite Crystal Thickening
Melting Point, Factor, y

Tmo (°C)

HMS-7 189 1.2

DMS-7 203 1.3
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5.3.2 Wide Angle X-ray Scattering

Figure 5.4 shows WAXS reflection pattern of DMS-7 film as prepared without

thermal treatment. The narrow single peak maximum located at d-spacing 4.4 A suggests

the existence of the nematic liquid crystalline order.

Figure 5.5a,b shows X-ray diffraction patterns of HMS-7 and DMS-7 raw fibers.

HMS-7 raw fiber X-ray diffraction pattern in Figure 5.5a displays two strong equatorial

reflections, which are associated with the (020) and (110) planes, as described in Chapter

3. Unlike HMS-7, DMS-7 raw fiber X-ray diffraction pattern in Figure 5.5b shows a

diffuse ring with the maximum intensity on the equator. This pattern is similar to that of

weakly ordered amorphous polymer, and indicates no strong orientation between adjacent

DMS-7 polymer chains. Once the raw fiber is annealed, crystalline reflections are

observed in HMS-7 and DMS-7, as shown in Figure 5.6a,b, respectively. HMS-7 has a

monoclinic crystal structure with a = 9.4A, b = 7.9A, c = 25.6A, a = 900, 3 = 34.30 =

900, as described in Chapter 3. For DMS-7, an orthorhombic crystal structure with a =

4.8A, b = 9.1A, c = 25.7A, a = P = y= 900, can be identified. The calculated scattering

angle, 20, and corresponding d-spacings are shown in Tables 5.3, for direct comparison

with the experimental data.

DMS-7 can be compared to an HMS polycarbonate having similar crystalline unit

cell structure. Both DMS-7 and HMS-5 are orthorhombic. Notice that (0 0 1) reflections

exist with I = odd in DMS-7 whereas no such reflections are seen in HMS-5 (see Table

3.1). Absence of (0 0 1) with I odd in HMS-5, is a signature of intermeshed structure in

which adjacent chains are located at (0,0,0) and (1/2,1/2,1/2) positions. In DMS-7,

existence of (0 0 1) for I odd indicates that this polymer does not have an intermeshed

structure.
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Figure 5.5 Flat film WAXS of hand drawn raw fibers:

a.) HMS-7, b.) DMS-7. Fiber axis is vertical.
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Figure 5.5, Continued
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Figure 5.6 WAXS of hand drawn annealed fibers: a.) HMS-7, b.) DMS-7.

Fiber axis is vertical. Spotty ring is from Si calibration standard.
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Figure 5.6, Continued
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Table 5.3

Experimental and Calculated Crystallographic Parameters

of a Crystal Unit Cell of DMS-7

Miller 20 (0) d-spacing (A)
Index*

(h k 1) data Calc. data Calc.

(1 1 0) 20.8 (+0.30) 20.9 4.3 (±0.1A) 4.2

(0 1 1) 10.4 (+0.20) 10.3 8.5 (+0.1A) 8.6

(0 2 0) 19.5 (+0.20) 19.5 4.5 (-+0.1kA) 4.6

(2 0 0) 36.6 (+0.70) 37.5 2.5 (±0.1A) 2.4

(0 1 2) 11.8 (+0.20) 11.9 7.5 (+0.1kA) 7.4

(0 0 3) 10.2 (+0.20) 10.3 8.6 (+0.1kA) 8.6

(1 3 0) 34.6 (+0.50) 35.0 2.6 (-0. 1A) 2.6

(0 04) 13.8 (+0.20) 13.8 6.4 (+0. 1) 6.4

(1 2 4) 29.9 (+0.50) 30.4 3.0 (+0.1A) 2.9

(1 1 5) 27.0 (+0.30) 27.3 3.3 (±0.1A) 3.3

(0 0 7) 23.4 (+0.70) 24.2 3.7 (+0. A1) 3.7

Miller indices are assigned based on orthorhombic structure with lattice
parameters a = 4.8A, b = 9.1A, c = 25.7A, a = P= y= 900.
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5.3.3 Small Angle X-ray Scattering

We show in Figure 5.7a,b the Lorentz corrected SAXS intensity (Is2) versus s

data at room temperature of DMS-7 and HMS-7, respectively, which had been cooled at

50 C/min from the melt to room temperature. Considering that spherulites have been

observed by optical microscopy [51], we assume that DMS polycarbonates have a

lamellar structure in which stacks of lamellae alternate with amorphous material. Then

the one-dimensional electron density correlation function, K(z), is obtained by discrete

Fourier transform of the corrected intensity, as described in Chapter 4. z is a dimension

along the normal to the lamellar stacks. In Figure 5.8a,b, we show K(z) versus z for

DMS-7 and HMS-7, respectively. Long period, lamellar thickness and linear crystallinity

are obtained according to the method proposed by Strobl and Schneider [121], as

described in Chapter 4 .

In Table 5.4, we list linear crystallinity, lamellar thickness and long period at

room temperature for crystallized DMS-5 to 8 and HMS-7 cooled at 50 C/min from the

melt to room temperature. DMS-6, 7 and 8 have similar values of linear crystallinity.

But DMS-7 has higher value of lamellar thickness and long period. HMS-7 has lower

values of linear crystallinity and lamellar thickness than DMS-7.

In Figure 5.9a, we show Lorentz corrected intensity (Is 2 ) versus s data for the

real-time SAXS study of isothermal crystallization of DMS-7. The sample was melted

and then cooled to 124 0 C. The first scan at the bottom, marked T = 154 0 C, is from the

melt. The second scan from the bottom, marked t = 0, represents the initial stage of

isothermal crystallization at 124 0C. Notice that by the time the cooling process from

154 0 C to 124 0C is completed, significant intensity has already developed. Electron-dense

phase formation does happen during the cooling process as DMS-7 is cooled through the

isotropic to liquid crystalline transition. This i-lc transition can not be separated from the
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Figure 5.7 Lorentz corrected SAXS intensity vs. s at room temperature for

(a) DMS-7 and (b) HMS-7 cooled at -50 C/min from the melt.
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Figure 5.8 One-dimensional electron density correlation function, K(z) vs. z:

(a) DMS-7, (b) HMS-7 at room temperature.
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Table 5.4

Long period, Linear Crystallinity and Lamellar Thickness for Crystallized
DMS-5-8 and FIMS-7 Cooled at 50 C/min from Melt to Room Temperature

Sample L(A) Xc Ic(A)
(±+5A) (±0.01) (±2A)

DMS-5 230 0.20 32

DMS-6 189 0.28 45
DMS-7 218 0.29 67

DMS-8 191 0.28 47

HMS-7 234 0.25 46
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(a) Real-time Lorentz corrected SAXS intensity vs. s,

(b) one-dimensional electron density correlation function,

for DMS-7 isothermal crystallized at 1240C for the time indicated.
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Ic-k crystalline transition, as described above. Also, from our DSC study of isothermal

crystallization kinetics, we know the time to maximum exothermic heat flow is 81

seconds, for DMS-7 crystallized at 1240 C. The intensity grows very fast before 81

seconds. We apply the one-dimensional electron density correlation function to the

intensity data. Figure 5.9b shows K(z) versus z in the beginning and late stages of

isothermal crystallization of DMS-7. The linear crystallinity, lamellar thickness and long

period quickly reach a final steady state value in the beginning of the isothermal

crystallization. Table 5.5 shows the linear crystallinity, lamellar thickness and long

period for DMS-7 and 8 isothermally crystallized at 124 0C without cooling. DMS-7 and

8 have similar values of linear crystallinity, lamellar thickness, and long period. In

comparison, HMS-5 to 8 have similar isothermal crystallization behavior at 1400 C like

DMS-7 and 8 at 124 0 C, as described in Chapter 4. But HMS-5 to 8 have much higher

final values of lamellar thickness and long period.

The annealed HMS-7 and DMS-7 fibers show nice fiber SAXS patterns, which

looks like one of the general SAXS patterns of uniaxial oriented fibers, as shown in

Figure 5.10 [122]. The intensity maxima is located on the meridian and elongates in the

direction of the equator, which is caused from the finite-size crystal lamellae aligning

with c-axis parallel to the meridian direction, as shown in Figure 5.1 la,b [122]. The plot

of the intensity of the meridian section versus s are shown in Figure 5.12a,b for annealed

DMS-7 SAXS fiber pattern taken at 125 0 C and annealed HMS-7 SAXS fiber pattern

taken at 108 0C, respectively. Figure 5.13a,b shows the resultant K(z) versus z. Table 5.5

lists linear crystallinity, lamellar thickness and long period for annealed DMS-7 and

HMS-7 fibers. Annealed DMS-7 and HMS-7 fibers have similar values of lamellar

thickness, but DMS-7 has higher linear crystallinity and lower long period.
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Table 5.5

Long period, Linear Crystallinity and Lamellar Thickness
for Isothermally Crystallized Samples and Annealed Fibers

Sample L(A) Xc Ic(A)
(±5A) (±_0. 1) (±2A)

Isothermally Crystallized at 1240 C

DMS-7 245 25 55

DMS-8 251 24 53

Annealed Fiber

HMS-7 196 24 39

DMS-7 173 27 40
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Figure 5.10 Schematic presentation of the SAXS fiber pattern.

The fiber direction is vertical, the circle in the middle of the

pattern represents the shadow of the beam stop.

(Figure taken from Ref. 122, Figure 7.19)

(a) -T

- LI[K

(b)

Figure 5.11 Schematic presentation of the paracrystalline fibrillar model,

proposed by Hosemann [123]. The striation indicates

the direction of the chains in the crystalline regions.

(a) Single row of microfibrils. (b) Part of a layer of crystalline

blocks [124]. (Figure taken from Ref. 122, Figure 7.22)
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SAXS intensity of the meridian section vs. s for annealed fiber,

(a) DMS-7 at 125 0C, (b) HMS-7 at 1080C.
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Figure 5.13 One-dimensional electron density correlation function for annealed

fiber, (a) DMS-7 at 125 0C, (b) HMS-7 at 108 0C.
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5.4. DISCUSSION

As described in Dr. Heidi Schreuder-Gibson's work [51], the cross-section of the

stilbene unit of DMS polycarbonates is 8.6 A, which is much larger than that of HMS

polycarbonates, at 6.5 A. Therefore, we expect some differences in behavior between the

two groups of polycarbonates. First of all, we notice that unlike HMS polycarbonates,

DMS polycarbonates have only one broad exotherm. Also, the liquid crystalline phase

transition can not be separated from the crystalline phase transition even at higher cooling

rates. These facts suggest that DMS polycarbonates have less stable liquid crystalline

phases than HMS polycarbonates do. The second lateral substituent on the mesogen

further reduces the thermal stability of the liquid crystalline phase. This phenomenon has

been observed in other LCPs [14,21,49], as described in Chapter 1.2.1 and 1.2.2. The

second lateral substituent on the mesogen separates the polymer chains further, which

reflects in the larger crystal unit cell dimension for DMS-7 compared with HMS-7. The

unit cell parameters relating to interchain distances are b and asin3 (where 3 = 900 for

DMS-7). The area of the basal area, the product of b and asinp parameters, is 41.9 A2 for

HMS-7, which is smaller than 43.6 A2 for DMS-7.

As mentioned in 1.1.2, both the asymmetric shape and anisotropic molecular force

are both important to the stability of the liquid crystalline phase. For DMS

polycarbonates, not only the shape asymmetry but also the interaction between polymer

chains is reduced. Therefore, as shown in Figure 1.3b, the free energy of the liquid

crystalline phase should be even higher than that of the crystalline phase and the isotropic

phase for DMS polycarbonates, compared with HMS polycarbonates. Consequently,

Tlc_i of DMS polycarbonates is pushed to even lower temperature and the virtual

mesophase behavior is enhanced.
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The times to maximum heat flow observed in the isothermal crystallization study

are less sensitive to temperature for DMS-7, compared with HMS-7. This result might

also relate to the second lateral substituent on the mesogen. According to the kinetic

theory of crystallization [125], the growth rate of crystals is proportional to

exp(-Kg/TAT), if crystallization happens in the temperature range of nucleation rate

control. Kg is a parameter proportional to 1/Af, where Af can be treated as the free

energy difference between the crystalline phase and the liquid crystalline phase, which

serves as crystal nuclei here. The growth rate of the HMS-7 crystalline phase is more

sensitive to crystallization temperature change than the DMS-7 crystalline phase, which

suggests that the Af between the crystalline phase and the liquid crystalline phase should

be smaller for HMS-7 than for DMS-7. This further supports that the separation of

adjacent DMS polycarbonate polymer chains lowers the stability of the liquid crystalline

phase.

The closeness of adjacent polymer chains of HMS-7 compared to those of DMS-7

is also reflected in the raw fiber WAXS pattern. DMS-7 raw fiber pattern only shows a

single diffuse maximum on the equator, which is characteristic of a nematic mesophase.

However, HMS-7 raw fiber pattern displays two equatorial reflections, which reflect a

higher level of order in the interchain packing.

Because of the steric effect of the second lateral substituent on the mesogen, DMS

polycarbonates do not seem to have "odd-even" property oscillation with the methylene

spacer length, unlike HMS polycarbonates which do show such oscillation. DMS-7 does

not exist in a stable intermeshed structure like HMS-7 does. It is our supposition that the

steric effect of the second methyl substitution on the mesogen reduces the carbonate

dipole interaction between adjacent polymer chains. Therefore, the transition

temperatures do not change regularly with the methylene spacer length for DMS

155



polycarbonates. DMS-7 and 8 seem to have close crystallization and melting transition

temperatures. When DMS-7 and 8 are isothermally crystallized at 124 0 C, they have

similar values of linear crystallinity, lamellar thickness, and long period. Though the

lamellar thickness and long period are higher for DMS-7 than DMS-8 when both are

cooled at 50 C/min from the melt, it is probably because a large population of less perfect

crystalline lamellae are formed during the cooling process for DMS-8.

In general, DMS polycarbonates have slightly higher linear crystallinity than

HMS polycarbonates, as observed in several experiments described above. For example,

annealed DMS-7 and HMS-7 have similar values of lamellar thickness, but DMS-7 has

lower long period value because of slightly higher linear crystallinity. We suggest that

the higher degree of structural symmetry for DMS than HMS polycarbonates might be

the reason for the higher linear crystallinity of DMS polycarbonates.

5.5. CONCLUSIONS

The steric effect of the second lateral methyl substituent on the stilbene mesogen

lowers the stability of the liquid crystalline phase of DMS polycarbonates. DMS

polycarbonates do not have "odd-even" property oscillation with the methylene spacer

length, unlike HMS polycarbonates which do. We suggest that this may be caused by the

possible loss of carbonate dipole interaction caused by the steric effect.
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Chapter 6

Summary and Suggestions for Future Work

In summary of this research, the flexibility of the carbonate linkage causes the

monotropic liquid crystalline behavior of a-methyl stilbene polycarbonates. Both

thermal and structural properties are affected by the chemical composition of a-methyl

stilbene polycarbonates compared with a-methyl stilbene polyesters and polyethers. The

low transition temperatures reflect the entropic effect given by the carbonate linkage,

which increases chain flexibility. Furthermore, the structural studies using WAXS reveal

that the enthalpic effect from the carbonate dipole interaction between polymer chains is

also an important factor that causes the fast crystallization from the liquid crystalline

phase. In addition to the carbonate linkage, the methylene flexible spacer length

obviously plays an important role in the crystalline structure and crystallization kinetics.

For HMS-7 and 8 the close match of the length of the methylene flexible spacer with that

of the a-methyl stilbene mesogen causes fast crystallization from the liquid crystalline

phase. When the length of the flexible spacer is higher than that of the Oa-methyl stilbene

mesogen, that is, when the flexible spacer number n exceeds 9, the crystal structures

change. Therefore, for n 2 9, the melting temperatures drop, reflecting the reduced

degree of perfection of the crystal structure.

An obvious odd-even effect is seen in the crystal structure parameters from

WAXS and the crystal structure dimensions from SAXS for HMS-5 to 8, which has never

been found before. The reason causing the odd-even effect is that HMS-5 to 8 have

stable "intermeshed" crystal structure, in which the disposition of the carbonate dipoles is

different from n-even to n-odd. However, there is no odd-even effect observed in the

melting transitions, probably because the broad melting endotherms obscure this effect.
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Finally, the second methyl substitution on the mesogen in the DMS polycarbonates

possibly causes a reduction of the carbonate dipole interaction between the polymer

chains and therefore results in a loss of the odd-even effect.

For commercial applications, thermotropic LCPs offer an advantage since they

can be extruded by melt processing from the liquid crystalline state to form highly

oriented fibers with high tensile strength. A broad temperature range of liquid crystalline

phase stability is desirable so that the processing temperature can be easily controlled. ca-

methyl stilbene polycarbonates have low transition temperatures, which is an advantage

for lowering the energy cost in the melting processing. However, our a-methyl stilbene

polycarbonates only have a monotropic liquid crystalline phase with a narrow

temperature stability range unlike a-methyl stilbene polyesters and polyethers which

have a broader more stable enantiotropic liquid crystalline phase. Therefore, in order to

have possible use for a-methyl stilbene polycarbonates as fiber forming materials, it is

desired to broaden the temperature range of the liquid crystalline phase stability. One

possible way is to copolymerize a-methyl stilbene polycarbonates with a-methyl stilbene

polyesters or polyethers. The resulting copolymer might have a liquid crystalline phase

with a broadened, more stable temperature range, because the crystallization of each

component might be depressed to lower temperature. Also, this approach might improve

the mechanical properties of a-methyl stilbene polycarbonate fibers like increasing their

toughness.

For applications as a reinforcement material, a main chain thermotropic LCP with

the "intermeshed" crystal structure is better than that with the "layered" crystal structure.

The reason is that in the "layered" structure, the methylene flexible spacer has more space

and freedom for conformational changes, which generally reduces the stiffness of

polymers. On the other hand, in the "intermeshed" crystal structure, the methylene
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flexible spacer directly contacts the rigid mesogen, which causes a more extended

conformation of the methylene spacer and therefore a higher stiffness. For our liquid

crystalline a-methyl stilbene polycarbonates, the "intermeshed" crystal structure can only

exist when the length of the methylene spacer is smaller than that of the mesogen.

Similar effect of the length of the methylene spacer on the crystal structure has also been

observed in oa-methyl stilbene polyethers [71]. Therefore, for the application of the main

chain thermotropic LCPs containing the methylene flexible spacer as a reinforcement

material, we suggest that the methylene spacer length should be chosen to be lower than

that of the mesogen.

For future research, the liquid crystalline behavior of main chain thermotropic

LCPs, especially monotropic ones, is very complex. Here we have focused on just one

type of monotropic LCP. Future work might include other mesogens containing rigid

groups such as anthracene or naphthalene. We could investigate how monotropic liquid

crystalline behavior is related to mesogen type. The question of what specific chain

chemistry leads to monotropic vs. enantiotropic behavior would be addressed by such

studies.

In our research, DSC, wide and small angle X-ray scattering, optical microscopy

and TEM have already given us macroscopic and microscopic understanding of the

formation of the liquid crystalline phase and the crystallization from the liquid crystalline

phase in our liquid crystalline stilbene polycarbonates. However, it is still helpful to use

other techniques, such as solid state nuclear magnetic resonance (NMR) and modulated

differential scanning calorimetry. High temperature NMR with decreasing and increasing

temperature can give us the information on the chain conformation following the phase

transition. By giving a sinusoidal temperature oscillation, modulated differential

scanning calorimetry (MDSC) can resolve heat flow into the reversible and non-
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reversible parts, which are related to heat capacity and kinetic processes, respectively.

For example, the glass transition is a polymer chain relaxation process, which gives a

non-reversible endothermic heat flow response. The crystallization and melting behavior

is complicated in our LCPs. MDSC might separate the undistinguished thermal

transitions observed in conventional DSC.

Furthermore, in our research, we are able to explore the relationship between the

chemical structure variations, especially the methylene spacer length, and the morphology

of the liquid crystalline phase and the crystalline phase for a-methyl stilbene

polycarbonates. It might be interesting to investigate if the methylene spacer length plays

a similar role in a-methyl stilbene polyesters and polyethers, which have not been studied

thoroughly.

Another possible area of future work is investigation of the mechanical properties

of extruded LCP fibers. It might be interesting to determine the role of chemical structure

variations on the mechanical behaviors. The chemical variations can include: changes in

flexible spacer length, linking group chemistry, and maybe substitution on the mesogen.

The investigation of the relation between the mechanical behavior and morphology

change by SAXS is a potential research field.
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Appendix

Synthesis of Stilbene Polycarbonates

The polymerization method used to synthesize stilbene polycarbonates according

to the method of Sato et al. [84] was described in detail by Dr. Schreuder-Gibson [51].

Her description is summarized as follows. The reactions were run in a side-arm test tube

(23mm O. D. by 20 cm) which had a nitrogen inlet tube at the top for flushing while

heating the reactants at atmospheric pressure, at which time the side-arm was vented

through a water bubbler. In a typical reaction, equimolar (0.002 mol) proportions of the

alkylene diphenyl dicarbonates and a stilbene were combined with 20 mg zinc acetate as

catalyst. The reaction tube and the mixture of the alkylene diphenyl dicarbonates and a

stilbene were placed in a Woods metal bath at 1000C under nitrogen for 1-2 hours. The

mixture was then heated to 190 0C for 2.5 hours, then house vacuum was applied and

heating continued at 2000 C for 2 hours, with a final heating to 210 0 C for 1 hour at high

vacuum. The cooled reaction mixture was stirred with chloroform. The chloroform

solution was filtered and added to the filtrate, which caused the polymer to separate.

Yields were generally in the range of 50%. The follow two pages showing synthesis

scheme were given by Dr. Schreuder-Gibson.
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