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ABSTRACT

Tiny nanocrystallites of cadmium selenide of about 15 A in diameter were synthesized in
solution using organometallic precursors. These tiny nanocrystallites are produced as a
nearly discrete species as evidenced by optical absorption spectra. Absorption spectra of
these tiny clusters were taken in various solvents, with the spectra showing solvent effects
on the absorption peak positions. Photoluminescence excitation (PLE) scans for the tiny
clusters at both room temperature and low temperature (77 K) were monitored at various
luminescent wavelengths, with the PLE scans showing discrete transitions having a
temperature dependence analogous to the temperature dependence of the bulk band gap.
The PLE scans also show significant absorption into surface states at room temperature.
Fluorescence scans on the tiny clusters at both room temperature and 77 K were taken at
various excitation wavelengths, showing that the luminescence is mainly from the deep-
trap surface states, except for room temperature emission at higher energy excitation,
where band-edge luminescence is prominent. Ordered films of the tiny nanocrystallites
were prepared. X-ray powder diffraction and electron diffraction was performed on the
films, and the ordering was found to be in a hexagonal system. Attempts at growing
single crystals of the tiny clusters were made with no success to date.

Small nanocrystallites of cadmium selenide ranging in size from 24 A to 41 A in diameter
were synthesized in solution at high temperature (380 'C) to yield particles having high
crystallinity, very few stacking faults, and a narrow size distribution. XRD patterns of
these particles as glassy films were collected, while XRD patterns for particles
approximating these in size, shape, and structure were simulated. The { 110}, {103 }, and
{112} reflection peaks of the simulated XRD patterns were analyzed by fitting to
gaussians to show the difficulties involved with such attempts of extracting lattice
constants from peak positions of XRD patterns for such nanocrystallites. Next, keeping
in mind these pitfalls, the experimental XRD patterns were analyzed by fitting to
gaussians as well, showing virtually no lattice contraction for the nanocrystallites.
Finally, a better way of analysis for such small particles, fitting the experimental XRD
patterns to the simulated patterns and allowing for variation in the lattice constant, was
employed. This analysis found very small lattice contractions for the nanocrystallite, no
greater than a few tenths of a percent.
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CHAPTER 1: STRUCTURAL AND OPTICAL PROPERTIES OF TINY

CADMIUM SELENIDE NANOCRYSTALLITES

I. Introduction

Semiconductor nanocrystallites, including those of cadmium selenide, are

currently the focus of much fascinating research, mainly because their small size results

in properties between molecules and bulk crystals. The study of such clusters can

therefore reveal the evolution of bulk properties. At the molecular-like end of the size

scale are tiny cadmium selenide clusters which are only about 15 A in diameter.

Research involving such clusters is not only interesting because these clusters are the

smallest nanocrystallites with a crystalline core, but also because these clusters can be

made as a nearly discrete species and thus provide a unique opportunity for structural and

optical characterization.

The method of synthesizing these tiny cadmium selenide clusters is based on a

method described by Murray, et al.,' which is used to synthesize clusters ranging in size

from about 20 to 120A in diameter. These clusters are made through the mixing of

organometallic precursors in a coordinating solvent, which prevents growth of the

clusters and passivates the surface. For the larger nanocrystallites, the mixing is done at

very high temperature to cause a discrete nucleation, and the resulting particles are grown

to larger size through careful control of the temperature. The tiny clusters, however,

result as a thermodynamic minimum after reaction at a much lower temperature.

Though the crystalline cores of resulting tiny clusters have the structure of bulk

cadmium selenide, the optical properties have not yet evolved into those of the bulk due

to their small size. Solid state physics has two extreme models for simply representing

periodic structures. The first, the weak potential model, represents the electronic states as

free electrons perturbed by a weak periodic potential, which is most applicable in the case

of metals. This gives rise to continuous bands in the bulk separated by a band gap. The

boundary conditions for nanocrystallites would then give rise to discrete states rather than

a continuous band. The tight-binding method assumes that the electrons are held closely



by individual atoms (or molecules), but that there is significant overlap between

neighbors. This results in several closely spaced states that form continuous bands in the

bulk limit. This model is especially applicable for semiconductor materials with a high

degree of covalency, such as cadmium selenide, and would additionally be applicable to

the ordering of clusters in a superlattice.

II. Synthesis of Tiny Nanocrystallites

The tiny nanocrystallites are synthesized by a method similar to that described by

Murray, et al.' A typical preparation of these clusters involves first drying and degassing

about 20 g of trioctylphosphine oxide in the reaction flask by heating at about 160 0 C

under vacuum for several hours. The contents of the flask are constantly stirred with a

stir bar throughout the entire preparation. The temperature is then raised to about 2000 C

for about 20 minutes, after which the flask is filled with and maintained under argon. The

temperature is then allowed to decrease to about 70 to 800 C, where it is stabilized.

Meanwhile a solution is prepared in a dry box consisting of 10 ml of trioctylphosphine,

10 ml of a 1.0 M solution of trioctylphoshine selenide in trioctylphoshine, and 200 il of

dimethyl cadmium. This solution is thoroughly mixed and loaded into a 20 ml disposable

syringe. The syringe is then quickly brought out of the dry box, and the solution within is

immediately injected into the reaction flask through a rubber septum. The temperature of

the resulting mixture is then brought back to and maintained in the range of 70 to 800 C.

After several hours the mixture becomes a pale yellow color which eventually develops

opaque swirls, probably due to clusters partially ordering in the solution and scattering

light.

After this stage, the preparation of the clusters is complete. The reaction mixture

is transferred to vials under inert conditions, either via cannula or through the use of a

syringe, and stored in a dry box for later use. After cooling to room temperature, the

reaction mixture becomes a paste of trioctylphosphine/trioctylphosphine oxide containing

the clusters.



III. Absorption Spectra of Tiny Clusters in Various Solvents

The trioctylphoshine/trioctylphoshine oxide paste containing the clusters can be

dispersed in several solvents such as alkanes, ethers, aromatics, and chlorinated solvents.

Non-solvents of these tiny clusters include alcohols (long-chain alcohols such as octanol

and decanol only very sparingly solvate the tiny clusters), acetonitrile, and N,N-

dimethylformamide. The clusters can be purified by repeated dispersion in a solvent,

precipitation by a non-solvent, and decanting to remove the resulting supernatant. A tiny

amount of either trioctylphoshine or trioctylphoshine/trioctylphoshine oxide must be

added during the dispersion step to guarantee the presence of enough capping group and

prevent irreversible flocculation of the clusters. Excess cadmium and selenium can be

removed (as well as irreversibly aggregated clusters) by filtration of the clusters in

solution.

After purification, the tiny clusters can be dispersed in any solvent and the

absorption spectrum for the solution can be collected. This was done at room

temperature for the clusters in solutions of nonane, toluene, chloroform, tetrahydrofuran,

and diethyl ether using a Hewlett-Packard 8452 diode array spectrometer. The resulting

absorption spectra can be observed in Figure 1-1 (page 12), where absorbance of the tiny

clusters in the various solvents versus wavelength is shown. The discrete energy states

for these tiny clusters are immediately visible in these spectra, with the extreme

narrowness of the linewidths for these tiny clusters being especially noticeable. The first

absorption feature in these spectra occurs at a wavelength around 410 nm and varies in

position and shape, as well as the other absorption features, for the various solvents. This

indicates that there must be some interesting effects on the energy states due to solvent

interactions with the capping groups and/or surface atoms. Polarization of the clusters by

the solvent could be one possible interaction, with the resulting effects on the spectra

being the shifting of non-polar states to lower energy (larger wavelength) and the

broadening of polar states. This could not be the only factor, if it is indeed a major factor,

since the spectrum in tetrahydrofuran, which is a more highly polar solvent that diethyl

ether, does not yield the expected results when compared to the spectrum in diethyl ether.
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IV. Photoluminescence Excitation and Fluorescence for the Tiny Clusters

Photoluminescence excitation (PLE) scans can be performed for the tiny clusters

in the trioctylphoshine/trioctylphoshine oxide paste by illuminating the clusters in paste,

scanning through wavelengths of this exciting light, and collecting the emission at a given

wavelength as a function of the wavelength of the exciting light. PLE scans are thus

similar to absorption spectra in the information that they provide, however one key

difference is that absorption spectra probe excitation into energy states, while PLE scans

only probe excitation into states for which emission eventually occurs at a given

wavelength. PLE scans with the tiny clusters were collected at various emission

wavelengths at both room temperature and at liquid nitrogen temperature (77 K), and can

be seen in Figures 1-2a and 1-2b (page 14). The PLE scans were carried out on a SPEX

Fluorolog-2 spectrometer using front face collection. The slit sizes used were 1.0 mm at

room temperature and 0.5 mm at 77 K. Comparing the scans at room temperature in

Figure 1-2a with those at 77 K in Figure 1-2b, a temperature dependence analogous to the

temperature dependence of the bulk band gap2 can be seen. It must also be noted that the

amplitudes of the scans at 77 K are much larger than those of the scans at room

temperature, indicating a much greater quantum yield at lower temperatures. Also

apparent from these scans is the significant absorption into surface sates at room

temperature.

Fluorescence scans can be performed by illuminating the clusters in paste at a

given wavelength and scanning through the emission wavelength, collecting the emission

along the way as a function of the emission wavelength. Fluorescence scans with the tiny

clusters were collected for various excitation wavelengths at both room temperature and

at 77 K, and can be seen in Figures 1-3a and 1-3b (page 15). The fluorescence scans were

also carried out on a SPEX Fluorolog-2 spectrometer using front face collection, with slit

sizes of 1.0 mm at room temperature and 0.5 mm at 77 K. Evident from the figures is

that the luminescence is mainly from deep-trap surface states, except for room

temperature emission for higher energy excitation, where band-edge luminescence is

prominent.
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V. Ordered Films of the Tiny Clusters

Highly ordered films of the tiny clusters were prepared by first purifying the

clusters using the procedure described above with chloroform as the solvent and

acetonitrile as the non-solvent. The dispersion/precipitation/decanting sequence was

repeated three times before final dispersion in nonane. This solution of clusters in nonane

was then filtered and concentrated by removal of solvent under vacuum. To this

concentrated solution (about 0.2 ml) was added a drop or two of octanol. Ordered films

for x-ray powder diffraction studies were the formed by carefully dropping a couple drops

of the solution onto a Si (001) wafer and allowing to dry completely, while films for

electron diffraction studies were prepared by brushing a copper grid against a drop of the

solution and allowing to dry completely. The copper grids were from Ernest Fullam and

were 300 mesh with an approximately 50 A coating of amorphous carbon. It must be

noted that all steps in making the films were carried out under an inert atmosphere.

The structure of the resulting films was first characterized through powder x-ray

diffraction (XRD). XRD patterns were collected on a Rigaku 300 Rotaflex diffractometer

operating in the Bragg configuration using Cu K, radiation. The accelerating voltage was

set at 50 KV with a 200 mA flux. Divergence and scatter slits of 1Y o were used along

with a 0.150 receiving slit. The pattern obtained for one of the prepared films can be seen

in Figure 1-4a (page 17) where the log of the scattered intensity is plotted as a function of

20. The assignment of peaks is that of a hexagonal system. The progression of sharp

peaks shows a highly ordered structure, while the predominance of the peaks in this

progression over any other peaks indicates a preferred orientation. Also supportive of a

preferred orientation is the fact that the intensity of the { 11 0} reflection peak varies

relative to the intensity of the peaks in the progression. The relative intensities of the

peaks in the progression appears to be due to the shape of the individual particles

themselves. Shown in Figure 1-4b (page 17) are the theoretical form factors for

simulated clusters. Plot (i) shows the log of the scattered intensity for a simulated

spherical cluster with a diameter of 12 A while plot (ii) shows the log of the scattered

intensity for a simulated cluster with the idealized structure of that found by Herron, et
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al.3 for CdS, but substituting the bulk lattice constant of CdSe of a = 4.2999 A.4 The

intensity of the peaks in the progression generally follow the form factor curves for values

of 20 up to about 20", which is the portion of the form factor due to the shape and size of

the particles. Scattering above this region would be due to the internal crystal structure of

the particles themselves, and would be present in the pattern for the ordered clusters only

if there was an exact relation between the internal crystal structure of neighboring

clusters. Therefore reasons for the discontinuation of the progression above {500} could

include that the particles could not be perfectly aligned with respect to one another and

that there is some static disorder between clusters in the ordered film. Explanations for

the presence of broader peaks at larger angles currently remains a mystery.

The ordered films were also characterized using electron diffraction, which was

done using a JEOL 200 CX transmission electron microscope operating at 200 kV.

Figures 1-5a and 1-5b (page 19) show electron diffraction patterns obtained for an

ordered film of clusters prepared on a carbon coated copper grid. In Figure 1-5a, selected

area diffraction is used to probe a very small area of the film using a camera length of 330

cm. Apparent from this pattern is the hexagonal structure of the film, as the rings show

spots in a hexagonal array due to a highly ordered domain. Because the rings are too

closely spaced at this camera length, Figure 1-5b shows a diffraction pattern for a camera

length of 15 m. To achieve this large of a camera length, the high dispersion mode had to

be used which probed a much larger area. Because a large number of ordered domains is

now being probed, the rings appear nearly continuous.

VI. Attempts to Crystallize the Tiny Nanocrystallites

Though preparation of ordered films of the tiny nanocrystallites was successful,

growing single crystals of these clusters had not been successful. However, many

attempts at such crystal growth were attempted. The methods tried were various

recrystallization techniques, both with and without added non-solvent, and techniques of

slowly approaching saturation of the clusters in solution by the gradual addition of non-

solvent. The recrystallization attempts involved first purifying the clusters using the
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(b) High dispersion diffraction pattern, camera length = 15 m.
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procedure described above in the preparation of ordered films and dispersing the clusters

in a final solvent such as nonane, chloroform, tetrahydrofuran, toluene, or hexane. At this

point, small amounts of non-solvents such as methanol, acetonitrile, N,N-

dimethylformamide, or octanol may be added in varying concentrations. The resulting

solutions with or without added non-solvent were then stored in darkness either in an

isolated cabinet or in a freezer for up to several months. To date, these attempts have

shown no signs of forming singe crystals and have only formed flocculates or remained as

solutions.

The attempts to slowly saturate the clusters with non-solvent again involved first

purifying the clusters and dispersing in a final solvent. One technique of slowly

saturating the clusters was, depending upon the density of the solvent relative to the

desired non-solvent, to either add the solution of clusters to a vial and very carefully

adding a non-solvent as a layer above the solution phase or doing the reverse with the

solution phase over the non-solvent. The gradual saturation was the result of the

diffusion of non-solvent into the solution phase, though only flocculation occurred. A

second technique was to add the solution to one side of an H-cell, adding non-solvent to

the other side, and storing the sealed H-cell in a dark, isolated cabinet for up to several

months. The saturation was accomplished by the gradual evaporation and diffusion of the

non-solvent into the cluster solution, though again no signs of the formation of single

crystals occurred, only flocculation.

VII. Conclusion

Tiny nanocrystallites of CdSe were synthesized as a nearly discrete species, as

evident from absorption spectra of the clusters in various solvents. Also shown by these

absorption spectra are solvent effects on the absorption peak positions. PLE scans of the

clusters at both room temperature and at 77 K show discrete transitions having a

temperature dependence analogous to that of the bulk band gap and show significant

absorption into surface states at room temperature. Fluorescence scans of the clusters at

both room temperature and 77 K show that the luminescence is mainly from deep-trap



states, except for room temperature emission for higher excitation energies, where band-

edge luminescence is prominent. Ordered films of the tiny nanocrystallites were

successfully prepared, though attempts at forming single crystals of the clusters have not

been successful to date. The films, however, are ordered in a hexagonal system as

evident from XRD and electron diffraction.
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CHAPTER 2: LATTICE CONTRACTIONS FOR SMALLER CADMIUM

SELENIDE NANOCRYSTALLITES

I. Introduction

Recently there has been much interest in semiconductor nanocrystallites since

such particles express properties between those of molecules and those of the bulk.

These nanocrystallites have crystalline cores with a large fraction of atoms on the surface.

Though several different methods have been developed to synthesize semiconductor

nanocrystallites,1- 3 few research groups have been successful at producing identical

particles capable of complete structural determination.4 6 Therefore for virtually all of the

particles only limited structural information is obtainable by such methods as powder x-

ray diffraction (XRD), electron microscopy, and EXAFS.

One unanswered question pertaining to the structure of semiconductor

nanocrystallites is whether or not there is a lattice contraction from that of the bulk.

Several groups have found lattice contractions for metal clusters, 7 11 typically on the order

of a few percent of that for the bulk. Metal bonding, however, is isotropic, while that of

semiconductors is quite directional due to a high degree of covalency. Nevertheless,

some researchers expect to see a lattice contraction in semiconductors as well, often

citing arguments based on simple models of surface tension. So far, though, EXAFS data

for cadmium chalcogenide nanocrystallites indicate contractions in nearest-neighbor bond

lengths of no more than 1%,12 and even in the exact structure found by Herron, et al. for

Cd 32Sl 4(SC 6H5s)36-DMF4 bond contractions of only about 0.5% are present in the core. 4 It

may be noted that EXAFS methods probe the average bond lengths throughout the

particles while XRD probes distances between planes in the crystalline core of the

particles. This paper relates the use of XRD techniques on CdSe nanocrystallites in

attempting to shed more light on any possible contractions in semiconductor

nanocrystallites. First, difficulties involved with such attempts will be explored by

simulating XRD patterns for the nanocrystallites and analyzing them by fitting to

gaussians. Next, keeping in mind the pitfalls, experimental XRD patterns for CdSe



nanocrystallites will be analyzed by fitting to gaussians. Finally, a better way of analysis

for such small particles, fitting to simulated patterns, will be used to analyze the

experimental patterns.

II. Experimental

Semiconductor nanocrystallites of CdSe ranging in size from about 24 A to 41 A

in diameter were prepared by the method of Murray, et al. 13 with some modifications to

produce clusters with fewer stacking faults. These modifications included using a

smaller, varying amount of trioctylphosphine in the injection along with varying the

concentrations of dimethylcadmium and trioctylphosphine selenide present in the

injection mixture. The actual amounts used were varied to control the size of particles

produced and typically consisted of between 2.5 and 6.0 ml trioctyphosphine, between

10 and 30 pl dimethylcadmium, and enough trioctylphosphine selenide for a

concentration four times that of the cadmium. This resulting mixture was then injected

into 10g trioctylphosphine oxide at 3800 C instead of at 3000 C. Size selection on these

particles did not have the dramatic effect that it for the particles made by Murray, et al.

without modifications, though it did yield a narrow distribution with few particles

absorbing far to the blue or far to the red of the peak absorption. Sizes of the particles

were determined using a size versus peak absorption curve. 13

XRD patterns were collected on a Rigaku 300 Rotaflex powder diffractometer

operating in the Bragg configuration using Cu Ka radiation. The accelerating voltage was

set at 60 kV with a 300 mA flux. Divergence and scatter slits of 0.50 were used along

with a 0.30 receiving slit for nanocrystallite samples while divergence and scatter slits of

Y' with a 0.150 receiving slit were used for bulk CdSe. The diffractometer was

calibrated in the desired range of 38* to 540 using a quartz standard. Samples for XRD

were prepared by dropping size selected particles dispersed in hexane on a Si (001) wafer

and allowing the hexane to evaporate leaving the particles in a glassy form. For the

determination of the lattice constants of bulk CdSe, a suspension of CdSe powder



(99.999%, -325 mesh, purchased from Alfa) in methanol was deposited on a Si (001)

wafer to produce a very thin film.

III. Theory and Analysis

A. Simulations of XRD Patterns

To determine simulations of XRD patterns for the CdSe nanocrystallites, a

crystallite of a given size, shape, and stacking sequence in the c direction was first

constructed. 14 Interatomic distances between the atoms of different types (Cd-Cd, Se-Se,

and Cd-Se) were calculated and binned into discrete distances. An algorithm using a

discrete form of the Debye equation 15 was then employed. In this equation, the diffracted

intensity is given by:

I(S) = f f,(S)f (S) PJ sin(27rtS),
27rS ij=Cd,Se m rm

where Io is the incident intensity, f(S) and fj(S) are the atomic scattering factors for Cd

and Se, S is the scattering parameter [S-2sin(0 )/2] for x-rays of wavelength A diffracted

through the angle 0, r, is the m-th discrete interatomic distance, and pmJ is the frequency

of rm for a given combination of atom types i andj. The algorithm next involves finding

fast sine transforms, 16 J'j(S,), of the function (Pm) for the discrete points S, in
rm

reciprocal space. Finally, the Sampling theorem 17 is used to interpolate between the

J',1 (S,) to find I(S) for a given value of 20:

I(S) x f(S)i(S) sin[2nNAr(S - SIc)]
AS) = E Ji (St+m) 2 i

nS ij=Cd,Se m=-X 2nNAr(S - St+.)

where X is the smallest integer required for convergence within a desired precision, N is

the number of discrete points in reciprocal space, and Ar is the increment between

interatomic distances. N is related to the number M of the maximum interatomic

distance, rd=MAr, by:



N= 2", n= INT[log 2(2M)]+1.

This approach has the advantage in that it does not assume anything about the positions

and widths of the peaks and thus accurately reproduces the convolutions of peaks

resulting from the finite size and defect broadening of the particles. Thermal effects are

included in the simulations by the introduction of a Debye-Waller factor 18 based on an

average root-mean-square displacement of 0.2A. Unfortunately, not enough is known

about the samples to simulate the background scattering, so a linear model for the

background in the experimental patterns was used.

B. Analysis - General Aspects

All methods of analyses involved non-linear fitting techniques using a z 2 figure

of merit:16

Z2 = _[f(x, , a) _ y]

i=1 a

where N is the number of data points (xi, yi), each with an associated uncertainty ai, andf

is the modeling function with modeling parameter vector d. The figure of merit Z2 is

minimized by varying the parameter vector d to achieve the best fit of the data to the

modeling function.

C. Analysis by Fitting to Gaussians

For fitting simulations in the range of x = 20 = 400 to 500 to three gaussians in

order to model the { 110}, {103 }, and { 112} peaks, the modeling function used was:

(X - a 3j+, )2

f(x,, ) = Za3 e a3j+2
j=0

while the modeling function for fitting experimental XRD patterns in the same range to

three gaussians was:



_(Xi - a3j+1 )2

f(x,, ) = a3j e a3j+2  -a 9 .xi + a °
j=0

All parameters ai of the parameter vector a are positive, with a9 and alo representing

respectively the (negative) slope and the constant comprising the linear background used

in modeling the experimental patterns.

D. Analysis by Fitting to Simulations

For fitting experimental patterns to a combination of simulations plus a linear

background, the modeling function used was:
n-I

f(x,,d) = CaajI[x' (x,,an)] -a,, 1, x, +a, 2; x' (xi,a,) = 2 sin-'[an sin(-)],
j=0 2

where n is the number of simulations Ij, each with amplitude aj, used in the fit and an+l

and an+2 are respectively the (negative) slope and constant comprising the linear

background. The function x' is used to shift the x-axis (20-axis) as a result of a change in

the ratio an of the experimental lattice constant to the bulk value. The actual fits done

involved only two simulations (n = 2), where I and I2 were simulations for pure wurtzite

particles and for particles with a stacking arrangement of ...BABACAC....

E. Estimations of Uncertainties

Uncertainties in the fitting parameters a were estimated in two ways. The first

way involved just using the square roots of the diagonal elements of the covariance

matrix C to find the uncertainties as Aaj = J .16 Because these elements relied upon

the entered measurement errors oi = d" P, the second method first calculated errors in the

measurements by the following:

N

~f ·(x,, O) - y, ]2 2
calc i=l exp

N-m N-m



where N is the number of data points and m is the number of parameters in d, thus

yielding N-m as the degrees of freedom. Then, since the covariance matrix is

proportional to 1/(•xp)2 , the uncertainties in the fitting parameters are just:

Aaj C=;f. N-m

In a successful model, these two methods would ideally yield the same values, though for

these analyses, the larger of the two was the one actually used. For the analyses fitting

gaussians to peaks, the uncertainties Aaj were then propagated throughout subsequent

calculations to produce estimates of uncertainties in the percent change from the bulk for

each of the three peak centers and then an estimate of the uncertainty in the average

percent change from the bulk. This last uncertainty, however, was compared to the

standard deviation for the three percent changes in the average, with the charted

uncertainty being the larger of the two. For the analyses fitting simulations to XRD

patterns, the uncertainty in the parameter corresponding to the ratio of the experimental

lattice constant to that of the bulk was just converted to the uncertainty in the percent

change from the bulk, though this uncertainty was inherently quite large.

IV. Results and Discussion

A. Reasons for the Expectation of a Lattice Contraction

As mentioned in the introduction, surface tension arguments have been used in

anticipation of lattice contractions in semiconductor nanocrystallites. In these arguments,

the particles are likened to spherical liquid drops where a Laplace pressure Ap = 2y /r

causes the following contraction:19

Aa 2 yK
a 3 r

Here a and Aa are respectively the lattice constant and change in lattice constant, y is the

surface tension, ic is the isothermal compressibility, and r is the radius. Such an equation

shows a linear relationship between the percent change from the bulk of the lattice



constant and the inverse of the radius. This is why the results of the analyses below were

presented as plots of percent change from the bulk vs. 1/radius. Such plots, given c,

would in principle yield y, though the large uncertainties make such a determination

unreliable. This simple model of surface tension does assume that the Laplace pressure is

felt isotropically throughout the particle and therefore neglects any possibility that the

pressure may be felt mainly by the atoms at or near the surface. Thus just one possible

explanation for the measured lattice contractions to be smaller in magnitude than one may

expect could be due to reconstruction occurring mainly at or near the surface, which is

indeed the case for the Cd 32S14(SC 6H5)36-DMF4 cluster of Herron, et al.4

B. Discussion on Choice of XRD Region Analyzed

For all analyses of XRD patterns, simulated and experimental, the portion of the

patterns used was that between 20=400 to 520, which is mainly made up of the { 110},

{103}, and {112} wurtzite reflections. The reasons for choosing this portion are so that

three strong peaks instead of one could be used for the analyses, with the three peaks

being closely spaced and thus minimizing effects from the background difficult for which

to compensate. The "peak" around 20=250 was expressly chosen against since it really is

the convolution of three very closely spaced peaks, { 100}, {002}, and {101}, and as

demonstrated in Reference 13, is highly susceptible to shifts due to a change in shape.

C. Difficulties in Analysis Due to Shape and Defects

As stated above, simulations of the XRD patterns can accurately include effects

due to the small size, shape, and defects of nanocrystallites. Therefore, to point out the

difficulties associated with analysis of the directly observed peaks, XRD patterns were

simulated for nanocrystallites about 30A in diameter and analyzed by fitting to three

gaussians. The simulations used were for 30A particles having a pure wurtzite

arrangement, an arrangement with a stacking fault at the center (...BABACAC..., where

A,B,C designate planes in the c direction and the underline designates the central plane),



and an arrangement with a stacking fault slightly further from the center (...BABABCB...)

and for ellipsoidal particles 29A x 31A (the axis in the c direction was 15.5A while the

axis in the radial direction was 14.5A) having the same three planar sequences. The

results are shown in Figure 2-1 (page 31), where Figure 2-1a shows the percent change of

the lattice constant from that of the bulk for each of the individual peaks and Figure 2-1b

shows the percent change of the lattice constants from the bulk for the average of the

three peaks. The determined lattice constants for bulk CdSe were a = 4.2979+0.0002A

and c = 7.0075±0.0006A, which compare relatively well with previously published values

of a = 4.2999±0.0003A and c = 7.0109±0.0005A .20  As can be seen in Figure 2-la,

changing the stacking arrangement can cause significant shifts in the positions of the

individual peaks, as there is much change in the shift for any given reflection amongst

both groups (i), (ii), (iii) and (iv), (v), (vi), where (i) and (iv) are for pure wurtzite, (ii) and

(v) are for a stacking fault at the center, and (iii) and (vi) are for a stacking fault slightly

further from the center. Also, changing the shape from spherical [(i), (ii), (iii)] to just

slightly ellipsoidal [(iv), (v), (vi)] causes shifts. Perhaps most notable in Figure 2-la is

that there can be significant scatter between peaks of the same pattern. These shifts for

the different peaks are not completely independent, as can be seen in Figure 2-1b where

the average shifts are not nearly as erratic, though there still is some variation. These

charts demonstrate that different shape and defects can have significant effects on the

shifts from the bulk, leading to obvious difficulties when dealing with particles that have

ambiguous shapes and stacking arrangements.

D. Difficulties in Analysis Due to Small Size

Next, simulations for two series of particles with varying sizes, one series of pure

wurtzite and one with the stacking arrangement ...BABACAC..., were fit with gaussians.

A plot of the average percent change from the bulk for the three peaks versus size for

both series can be seen as Figure 2-2 (page 32). Apparent in Figure 2-2 is a trend of the

percent changes becoming larger, corresponding to shifts towards lower angles, as size is

decreased. Thus a slight lattice dilation is falsely indicated. This trend is present in both
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the pure wurtzite series and the series with the stacking faults, with linear fits to the plots

for each of the series indicating that the trends are quite similar. Also apparent from

Figure 2-2 is the scatter of the shifts, especially predominant for smaller sizes. The

scatter is particularly noticeable for clusters of small size with the stacking fault, as the

contribution from the { 103 } reflection is not very intense and therefore difficult to fit

with a gaussian. Thus, the use of gaussians to fit the peaks of XRD patterns seems to be a

less than desirable method of analysis for smaller particles.

E. Results from Fitting Experimental Patterns with Gaussians

The experimental XRD patterns collected can be seen in Figure 2-3 (page 34).

Especially apparent from these patterns is the increasing degree of convolution between

the peaks as size decreases. Keeping in mind the difficulties demonstrated above, these

experimental patterns were analyzed by fitting with gaussians. A plot of the average shift

versus size for these experimental patterns can be seen in Figure 2-4 (page 35). The plot

shows little change from that of the bulk, with some scatter present between points.

Uncertainties, indicated by the error bars, are mainly due to scatter between shifts for

individual peaks in the case of the larger clusters, while difficulties in finding the peaks

becomes the major contribution for the smallest clusters. A linear fit to the plot shows a

trend virtually independent of size with practically no change from the bulk. Comparison

with the analysis of simulations with varying size (Figure 2-2), however, would seem to

indicate a slight lattice contraction on the order of a few tenths of a percent from the bulk

for this range of particle size.

F. Results from Fitting Experimental Patterns with Simulations

A more straightforward analysis of the experimental patterns was to fit the

experimental patterns with a couple of simulated patterns of varying amplitudes, adding a

varying linear model of the background scattering, and varying a parameter, r, (the ratio

of the experimental d-spacings to the bulk values) that shifts the patterns along the 20-
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axis. The results of this analysis can be seen in Figure 2-5 (page 37), where percent

change in r versus size is plotted. Figure 2-5 shows only a slight contraction from that of

the bulk on the order of a few tenths of a percent for this size regime. A linear fit to the

plot indicates that there is a trend of increasing contraction as size decreases, though large

inherent uncertainties in r detract from the quantitativeness of such a relation. These

large uncertainties are due to the fact that r can be varied by large amounts in the fitting

procedure with only small changes in the quality of the fit. The fact that the scatter

between points is much smaller seems to indicate that these uncertainties are

overestimated in the fitting procedure, possibly due to the inability to exactly replicate the

experimental patterns. Therefore, though an exact relationship between lattice

contraction and particle size cannot be expressed, an upper limit can be put on the lattice

contraction for particles in this size range (about 24A to around 41A) of about a few

tenths of a percent from that of the bulk.

G. Examples of Fits from the Various Methods of Analysis

Figure 2-6 (page 38) shows examples of fits obtained in the various analyses.

Figure 2-6a shows two simulations of XRD patterns for particles with 29A diameter, one

pure wurtzite and one with a stacking fault at the center, and fits of these simulations to

three gaussians. Figure 2-6b shows the experimental XRD pattern for 29A diameter

particles with a fit to three gaussians. Figure 2-6c shows the fit to the same experimental

pattern from Figure 2-6b, but with a fit to the two simulations shown in Figure 2-6a.

Both of the fits to experimental patterns include linear models for the background

scattering.

V. Conclusion

Analysis of the XRD patterns for semiconductor nanocrystallites presents

difficulties due to the small size, ambiguous shape, and defects for such particles.

Differences in shape and stacking arrangements cause variations in the observed peak
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positions. Differences in size also lead to variations in peak positions, as well as to a

general trend of a shift of the peaks to lower angles as size decreases, which falsely

indicates a slight lattice dilation. Such difficulties lead to the conclusion that direct

analysis using the observed peak positions is unreliable, especially when trying to

measure small shifts, and such direct analysis in the case of CdSe nanocrystallites shows

virtually no change from that in the bulk. A more reliable approach of analysis is to fit

experimental data with simulated patterns, along with a modeled background, and

shifting the simulated patterns to find the lattice contraction. Such analysis shows a

lattice contraction of a few tenths of a percent for CdSe nanocrystallites in the size range

of 24A to 41A. Large inherent uncertainties are present in these measurements, though

such calculations are still useful as upper bounds.



References

(1) Alivisatos, A. P.; Harris, A. L.; Levinos, N. J.; Steigerwald, M. L.; Brus, L. E.

J. Chem. Phys. 1988, 89, 4001.

(2) Bawendi, M. G.; Carroll, P. J.; Wilson, W. L.; Brus, L. E. J. Chem. Phys.

1992, 96, 946.

(3) Moller, K.; Eddy, C. D.; Stucky, G. D.; Herron, N.; Bein, T. J. Am. Chem. Soc.

1989, 111, 2564.

(4) Herron, N.; Calabrese, J. C.; Farneth, W. E.; Wang, Y. Science 1993, 259,

1426.

(5) Krautscheid, H.; Fenske, D.; Baum, G.; Semmelmann, M. Angew. Chem.

1993, 105, 1364 and Angew. Chem. Int. Ed. Engl. 1993, 32, 1303.

(6) Vossmeyer, T.; Reck, G.; Kutsikas, L.; Haupt, E. T. K.; Schultz, B.; Weller, H.

Science 1995, 267, 1476.

(7) Cluskey, P. D.; Newport, R. J.; Benfield, R. E.; Gurman, S. J.; Schmid, G.

Mat. Res. Soc. Symp. Proc. 1992, 272, 289.

(8) De Crescenzi, M.; Diociaiuti, M.; Picozzi, P.; Santucci, S. Phys. Rev. B 1986,

34, 4334.

(9) Balerna, A.; Bernieri, E.; Picozzi, P.; Reale, A.; Santucci, S.; Burattini, E.;

Mobilio, S. Phys. Rev. B 1985, 31, 5058.

(10) Montano, P. A.; Schulze, W.; Tesche, B.; Shenoy, G. K.; Morrison, T. I.

Phys. Rev. B 1984, 30, 672.

(11) Apai, G.; Hamilton, J. F.; Stohr, J.; Thompson, A. Phys. Rev. Lett. 1979, 43,

165.

(12) Marcus, M. A.; Brus, L. E.; Murray, C.; Bawendi, M. G.; Prasad, A.;

Alivisatos, A. P. nanoStructured Materials 1992, 1, 323.

(13) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J Am. Chem. Soc. 1993, 115,

8706.

(14) Bawendi, M. G.; Kortan, A. R.; Steigerwald, M. L.; Brus, L. E. J. Chem.

Phys. 1989, 91, 7282.



(15) Hall, B. D.; Monot, R. Computers in Physics 1991, 5, 414.

(16) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. Numerical

Recipes, Cambridge University Press: Cambridge, 1986.

(17) Weaver, H. J. Applications of Discrete and Continuous Fourier Analysis,

Wiley: New York, 1983.

(18) Vetelino, J. F.; Guar, S. P.; Mitra, S. S. Phys. Rev. B 1972, 5, 2360.

(19) Solliard, C.; Flueli, M. Surf Sci. 1985, 156, 487.

(20) Reeber, R. R. 1 Mat. Sci. 1976, 11, 590.


