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Abstract

An active control approach was developed to observe and control nonlinear
distortions in high amplitude acoustic waves in a rigid-walled, two-radii harmonic
resonator. The medium was air at ambient pressure and temperature. The resonator was
first driven with a single-frequency waveform near the fundamental resonant frequency in
generating standing waves with characteristic pressure amplitudes of 1400 Pa. The
nonlinearly excited harmonics due to quadratic and cubic nonlinear coupling effects were
then quenched by introducing additional driving frequencies. A semi-empirical
computational model was developed using effective quadratic and cubic nonlinear coupling
coefficients and an perturbation solution approach to predict the amplitudes of the first three
pressure harmonics when the resonator is driven at the fundamental resonance. The active
control approach allowed selective suppression and enhancement of specific mode(s) in the
resonator while the effects on the other nonlinearly driven modes were observed. Both the
model and experimental setup demonstrated that by quenching the first few nonlinearly
excited harmonics, all subsequent higher harmonics were also quenched. The active
control approach was also used to experimentally measure the quadratic and cubic nonlinear
coupling coefficients, which were found to be fairly constant with the driving force.
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Chapter 1 Introduction

Chapter 1 Introduction

R enewed interest in finite amplitude acoustic waves in confined geometries
has been stimulated by recent developments in acoustic compressors and

thermoacoustic refrigerators. These devices use resonant cavities to store energy in an

acoustic standing wave. When the standing wave is driven to high amplitudes near the

cavity's fundamental resonant frequency, the working fluid's acoustic nonlinearities
couple energy from the driven mode to other (higher harmonic) modes which ultimately

results in the formation of shock waves. Dissipation of energy by the shock waves
diminishes the potential pressure amplitude obtainable within the cavity. Consequently,
this curbs increases in power density within the cavity and limits the performance of the
devices. Suppression of nonlinear effects is critical in improving directly the efficiency
of the acoustic compressor, and less directly the efficiency of the thermoacoustic
refrigerator.

Studies by Gaitan and Atchley', and Coppens and Sanders2 have shown that
nonlinear effects can be suppressed by the use of a detuned, or an anharmonic, cavity.
An anharmonic cavity has resonant frequencies which are not integral multiples of the
fundamental, a condition induced by the geometric design of the cavity. This passive

control approach is currently used by both the acoustic compressors and thermoacoustic
devices to suppress nonlinear distortion and to prevent shock wave formation. The
approach has been shown to be effective, but it has its limits. For instance, the geometry
design cannot be made too complicated (to avoid harmonic resonances) because

1 D. F. Gaitan and A. A. Atchley, J. Acoust. Soc. Am. 93, 2489-2495 (1993).
2 A. B. Coppens and J. V. Sanders, J. Acoust. Soc. Am. 58, 1133-1140 (1975).
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turbulence losses will limit the attainable acoustic pressure amplitudes. Other problems

with the passive approach are associated with the geometry design, which cannot be

changed once a cavity is built.

Another possible approach for suppressing nonlinear effects is presented in this

thesis. This new approach, which has received no attention in the past, is based on

actively controlling the magnitudes of the nonlinearly generated harmonics. Instead of

altering the geometry of a given cavity, this approach will modify the forcing function.

The cavity will be driven at multiple frequencies to selectively drive a mode (or modes)

and extract power from the other (unwanted) modes. This method actively "dissipates"

certain modes which are necessary in initiating nonlinear effects. The active control

approach can be used with the passive approach to further enhance the performance of the

acoustic devices mentioned earlier. Furthermore, this approach allows for direct probing

of the nonlinear acoustic coupling between the modes of a cavity. This thesis will

document how an active control approach was successfully modeled and tested.

1.1 Finite Amplitude Acoustic Waves

Finite amplitude acoustic waves can be best described by first defining

infinitesimal, or linear, acoustic waves. The characteristic shape of a dissipationless

linear acoustic wave does not change as the wave travels through a medium. The

amplitude of the wave may increase or decrease with distance and time, but the overall
shape remains the same. The waves are of the form Af(x ± cot), where A is the

amplitude, f is the wave function shape (e.g. sine), x is the position, co is a constant sound

speed, and t is time. Such waves are solutions to the linear dissipationless wave equation

which is derived using the linearized mass, momentum, and state equations.

A finite amplitude acoustic wave does change in shape as it propagates. The

wave function f is no longer independent of A, x, and t. Finite amplitude waves are

solutions to the nonlinear wave equation which is derived using higher-order

approximations of the mass, momentum, and state equations. In 1808 Poisson developed

an equation which showed that propagating sound waves will change in form and

consequently generate additional frequencies.3 Fay later showed that due to the nonlinear

' A. L. Thuras, R. T. Jenkins, and H.T. O'Neil, J. Acoust. Soc. Am. 6, 173-180 (1935).
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relation between pressure and specific volume there is found to be a gradual transfer of

energy from components of lower frequency to those of higher frequency.4

The production of the second and higher harmonics as a wave progresses, due to

the nonlinear character of the acoustic wave equation (leading to the formation of a shock
in the inviscid case) is counterbalanced at the higher frequencies by sound absorption
(dissipation).5 When the two processes balance, an almost stable wave is the result. This

thesis presents a method to control the wave in a confined geometry.

1.2 Finite Amplitude Acoustic Waves in Confined Geometries

When acoustic waves are confined to propagate in a rigid-walled cavity like a
tube or a rectangular box, standing waves are set-up. Standing waves are formed by the
phase interference between the incident and reflected waves at the cavity walls. If the
wavelength of the waves is larger than the transverse (i.e. the radius of a tube)
dimension(s) of the cavity, then the acoustic motion is essentially planar and the acoustic
waves can be referred to as plane standing waves. Physically, standing waves maintain a
pressure (or velocity) field such that it appears stationary in the sense that at any point x,
the field simply fluctuates harmonically in time. In Fig. 1.1 the velocity field inside a
rigidly closed tube oscillates with time but at a point xo where the velocity is zero, it will
remain zero for all times.

Figure 1.1 Velocityfield (third mode) in a closed tube.

Nonlinear effects of finite amplitude standing waves in cavities have been studied
by many researchers, most recently by Gaitan and Atchley of the Naval Postgraduate
School. Their predecessors, Coppens and Sanders, conducted pioneering work in the
1960's and 1970's on solving the nonlinear wave equations and verifying the results
experimentally. In 1968, Coppens and Sanders extended Keck-Beyer perturbation

4 R. D. Fay, J. Acoust. Soc. Am. 3, 222-241 (1931).
5 R. T. Beyer, Nonlinear Acoustics, 11 (1974).

xX
i: ·:

............. .........
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solution approach and resulted in the ability to describe and predict amplitudes and

phases of the nonlinearly generated harmonics.6 They showed that finite amplitude
effects are enhanced when the forcing frequencies are nearly equal to the characteristic

mode frequencies of a cavity. To demonstrate, they used straight tubes with harmonic

characteristic modes which allowed for efficient coupling of energy between the

fundamental and the nonlinearly generated harmonics. Gaitan and Atchley then focused

on anharmonic (where the characteristic modes are not harmonics of the fundamental)

tubes and succeeded in suppressing nonlinear effects. For this reason, most current

applications of finite amplitude standing waves utilize anharmonic cavities to avoid

nonlinear losses.

1.3 Practical Applications of Finite Amplitude Acoustic waves

Two important applications of finite amplitude acoustic waves have emerged as a

result of recent environmental concerns and technical advances. The ban on the use of

chlorofluorocarbons (CFCs) as refrigerants has prompted research into alternative

refrigerants and improved or novel refrigeration techniques. In just the past few years,

major projects by research and corporate institutions have shown that thermoacoustic

refrigerators may be practical alternatives to conventional refrigerators.7 Current

refrigerators and air conditioners remove heat to an evaporating liquid, the refrigerant.

This process bases the heat transfer on phase changes of the refrigerant as it circulates

through the refrigeration unit. A major constraint, therefore, in designing conventional

refrigerators, is the type of refrigerant used. Thermoacoustic refrigerators do not use

CFCs nor the newer hydrofluorcarbons (HFCs) as refrigerants. In fact, the heat transfer

mechanism is not based on any refrigerant, but rather on the unusual relationship between

temperature and sound.8

"[In a thermoacoustic refrigerator], to capture coldness, a plastic coil is placed

inside a thermoacoustic device's tube so that gases pass freely through the coil as they are

pushed from one end of the unit to the other by a high-intensity sound wave. The gases

warm up as they move toward the high-pressure portion of the wave, transferring heat to

one side of the coil, and cool off as they oscillate back toward the low-pressure region,

6 A. B. Coppens and J. V. Sanders, J. Acoust. Soc. Am. 43, 516-529 (1968).
7 G. Swift, Physics Today 48(7), 22-28 (1995).
8 S. Garfinkel, Technology Review, October 18, 17-19 (1994).
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transferring cold to the other side. Coolness is then conducted to the desired location."9

In Fig. 1.2, the comparison between the conventional and the thermoacoustic refrigeration
cycle shows the latter to be much simpler in design. The low number of components and
moving parts contribute to higher reliability and lower cost.

Conventional Thermoacoustics

Figure 1.2 Conventional and thermoacoustic heat transfer process.

Several factors now exist that limit the efficiency of thermoacoustic refrigerators,
from inherent losses (heat transfer to and from the gas across the stack) to viscous losses
incurred as the gas oscillates in the cavity. To improve the efficiency, higher power
densities are needed, thus the need to increase the acoustic pressure amplitudes.
However, increasing the pressure amplitudes to large magnitudes means generating
nonlinear effects that eventually result in shock formation and significant losses. As
mentioned, the current approach to suppress the nonlinear effects is to use an anharmonic
cavity, this thesis shall present another approach, based on a harmonic cavity.

Another device that has benefited from using an anharmonic cavity is the sonic
compressor. In this compressor, a standing wave is driven to high pressure amplitudes
which compresses the refrigerant (Fig. 1.3). The refrigerant moves in and out of the
cavity through check valves mounted on the end of the cavity. In conventional
compressors, pistons and rotors are used to compress the refrigerant. To help maintain
smooth motion, lubricants (oils) must be added to the refrigerants. A problem with using
the new refrigerants is that compatible lubricants have not yet been developed

9 Ibid.
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successfully. 10 Sonic compressors require no lubrication and is ideal for high purity gas

compression. Furthermore, one company working on sonic compressors projects

improvements in energy efficiency of 30 to 40 percent over existing compressors."

Figure 1.3 Sonic compressor.

The pressure amplitudes in sonic compressors are large and without altering a

cavity to an anharmonic design, shock waves are formed, wasting power and limiting

compression. Although the anharmonic design is effective in suppressing nonlinear

effects, it may be improved further with the active approach.

1.4 Active Control Of Finite Amplitude Acoustic Waves

A cavity driven at its fundamental resonance will result in the generation of higher

harmonics. The active approach proposes to suppress these higher harmonics by

introducing additional forcing tones with appropriate amplitudes and phases. In Fig. 1.4,

a harmonic cavity is driven at one end by a piston at the fundamental resonant frequency
(of the cavity), F, = F1 sin(wd,t). The pressure waveform p(t) is recorded by a pressure

gauge at the fixed-end of the cavity. If only one harmonic, the second, is generated

through nonlinear effects, then the total pressure has two terms as shown. To suppress
the second harmonic, P2L sin(2c,t + 60), a second forcing tone, F2 sin(2o,t + p2), is

imposed so that the response to this tone is equal in amplitude to P2, but out of phase by

1800 (Fig. 1.5). F2 and 02 are determined by filtering the pressure response for the

o P. Yam, Scientific American, November, 120-121 (1992).
" Ibid.
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second harmonic component.

PL(t)= ptLsin(Oit + 61)+ I sin(2wt + 02)

Figure 1.4 Pressure response to single-tone drive at the fundamental resonance.

Figure 1-5 Active control loop to eliminate the second harmonic.

An assumption used in this approach is that the responses to individual driving
tones can be superimposed for the total response. In the loop considered above, two
forcing functions are assumed to generate two separate sets of responses: F, sin(d,t)

generates a odr and a 2Wdr term (nonlinear effect), F2 sin(2com,t + 02) generates a 2C,d

term. When the three terms are summed, the two 2odr terms cancel and only the codr term

remain (Table 1.1).

Table 1.1 Superposition of individual responses.

In reality, nonlinear effects generate all harmonics of the fundamental, not just the

second. Furthermore, the nonlinear nature of the responses precludes the use of
superposition principles. Nonetheless, as this thesis will show, some assumptions such as
superposition of responses and the generation of a finite number of harmonics can be
successfully used to demonstrate the approach's effectiveness.

Forcing term Response
F, sin(d,,t) pz, sin(Wdt + 01)+ p2L sin(2d,t + 02)

F2 sin(2wdt + 02) - P2, sin(2d,t + 02)
Total PIL sin(wmt + 01)

V V \\.It
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1.5 Contributions of this thesis

This thesis makes three significant contributions to the study of finite amplitude
acoustic waves in confined geometries. The first is proof of principle of the active
approach in suppressing nonlinear effects. An active feedback system was designed and
developed that allowed selective driving or damping of the modes within a resonator
cavity. This approach presents a new tool which can be used to suppress nonlinear effect
losses in high amplitude acoustic waves.

The second contribution is the ability to experimentally probe for the nonlinear
coupling between the modes of the cavity. In relation to this, the active approach also
allows direct measurement of the second and higher-order nonlinear coupling terms
between the modes of the cavity. The term order used here refers to the order of the
nonlinear wave equation. Although most of the thesis discusses the response of the
second-order (quadratic) nonlinear wave equation, third order (cubic) coupling effects are
also discussed. Knowing how the modes couple and how much coupling is present will
be useful in understanding how energy is transferred and how it can be stopped from
"leaking" to higher harmonics.

The third contribution is the development of a simple computational model that
calculates the resonator response using a perturbation solution approach. Theoretical
development of the perturbation solutions show that the nonlinearly generated harmonics
originate from the fundamental mode. For example, in the quadratic coupling case, a
forcing drive at frequency co, will result in a dominant response at frequency wo, but also
will generate a second harmonic at frequency 2 cd,. Higher frequency modes are then

excited by the interaction of these two terms. The model is limited to just the first few
harmonics. The simple model rapidly calculates the response due to a given driving
function, and predicts numerical values for the drive variables F2 and ~2 needed to

suppress the harmonic response of the cavity.

1.6 Thesis organization

This thesis is divided into five major sections beginning with Chapter 1, the
Introduction. Chapter 2 presents a more in-depth discussion of nonlinear acoustic waves
in confined geometries. The quadratic nonlinear wave equation (QNE) used by Coppens
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and others will be stated and its solutions briefly discussed. Another quadratic nonlinear

equation will then be introduced which uses an effective quadratic nonlinear coupling
coefficient Equad. This effective quadratic nonlinear wave equation (EQNE), is the basis

for the theoretical and computational models in this thesis. A perturbation solution is

presented that clearly shows how harmonic modes are excited in the second-order EQNE.

The perturbation solution approach is then extended using an effective cubic (third-order)

nonlinear equation (ECNE) that includes both quadratic and cubic nonlinear effects.

The active control approach is discussed in Chapter 3. The three sections to this

chapter are: the basic concept - multiple frequency input forcing function, the concept

applied to a specific resonator design, and the experimental setup. Although the active

approach is applicable to both harmonic and anharmonic cavities, this chapter will

discuss why a harmonic cavity was chosen and how it was designed.

Chapter 4 presents the experimental and computational results. The results are

presented in two sections: responses to a single-tone drive, and response to a multi-tone

drive. The main purpose of the first section is to confirm the validity of the

computational model in predicting amplitudes of the harmonic responses. The second

section then applies the active control approach in suppressing nonlinear effects and

probing nonlinear coupling coefficients. An interesting application of the active control

approach will also be presented: acoustic mixing.

Chapter 5 presents a summary of the thesis and suggestions for future work.





Chapter 2 Nonlinear Acoustic Waves in Confined Geometries

Chapter 2 Nonlinear Acoustic
Waves in Confined Geometries

n order to employ an active control approach on suppressing nonlinear effects in
acoustic waves within confined geometries, the nonlinear effects must first be

understood, the most crucial aspect of which is how the first few harmonics are generated.

Once the mechanism for the generation of harmonics is understood, a technique to suppress

these harmonics can then be devised. This chapter will focus on the generation of

harmonic modes via a theoretical model using effective nonlinear coupling coefficients.

Before this model is presented, results from past research efforts will be discussed. As the

discussion will show, many assumptions and approximations used previously are still

applicable to current research and will thus be retained to simplify the theory.

2.1 Classical quadratic nonlinear wave equation, ONE

For their acoustic work in confined geometries, Coppens and Sanders I used a
nonlinear equation of the form:

coV dt + - o =  C 2 -•-po ,2 (2.1)

where u and p are the total acoustic velocity and pressure, Po and co are the gas density and
sound speed at ambient conditions, yis the ratio of specific heats for the gas, and 3 is a

' A. B. Coppens and J. V. Sanders, J. Acoust. Soc. Am. 58, 1133-1140 (1975).
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linear operator that leads to dissipation and dispersion. The left-hand side of the equation is

the classical, linear wave equation with dissipation. The right-hand side is the effective

forcing function leading to harmonic generation. Although the focus of this chapter is not

to re-derive Eq. 2.1, the underlying assumptions and developmental processes will be

discussed. The reader is referred to works by Coppens and Sanders',2 for a full discussion

on the derivations.

The nonlinear wave equation is arrived at with the same procedure as that for the

linear wave equation, the difference being the order of the terms retained. In the linear

case, for example, the continuity equation, an essential piece in deriving the wave equation,

only hold the first-order acoustic quantities (i.e. pressure and density). In the nonlinear

case, all higher terms of the continuity equation are carried through until the end when a set

of approximations and assumptions is imposed. One assumption is that the peak Mach

number of the driven fundamental acoustic wave must be small, M << 1, where
M = U0 /co , U0 is the maximum particle velocity and co is the sound speed. Another

assumption is that the dissipative process is weak, a/k << 1, where a is the infinitesimal-

amplitude attenuation constant, and k is the wave number.

Next, the dominate source of dissipation is assumed to arise from the viscosity of

the fluid at the tube walls and the thermal conductivity of the walls. This assumption must

be met with the condition3 that the thickness of the boundary layer be smaller than the

wavelength of the highest acoustic frequency of interest. The boundary layer thickness is

approximated4 by I = 5(v/mw), where v is the kinematic shear viscosity of the fluid and o

the (angular) frequency. Finally, to use Eq. 2.1 for plane standing waves in tubes, several

important restrictions must be imposed. Geometrically, the length of the tube must be

much greater than the radial dimension. In relation to this, there must be no excitation of

any transverse mode of the system, so that the amplitude of the wavefront is essentially

constant outside the boundary layer .

With the assumptions listed above, Eq. 2.1 is then derived using the constitutive

equations (continuity, force equations, etc.), neglecting terms of orders higher than M2 ,
M(a/k), and (alk)2 . Now, if the perturbation solution approach is used, harmonic

2 A. B. Coppens and J. V. Sanders, J. Acoust. Soc. Am. 43, 516-529 (1968).
3 A. B. Coppens, J. Acoust. Soc. Am. 49(1), 306-318 (1971).
4 E.E. Weston, Proc. Phys. Soc. (London) B66, 695-709 (1953).
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generation can be easily demonstrated. First, the pressure p and velocity u are written as

perturbation series:

p = p (1) +P (2) +P (3) + (4) +... (2.2a)

and
U = ) + U(2) + ) + (4) +..., (2.2b)

where the superscripted numbers denote the orders of the perturbation terms. Now, by
applying an externally imposed forcing term F,, Eq. 2.1 becomes the following:

c( V 2- + & 2 = -Fd, - [2 I 2 pLo2 (2.3)

Substituting second-order perturbation solution terms p = p(l) + (2) and
u = u ') + u(2) into Eq. 2.3 and equating terms of equal order up to second order, results in
two equations, Eq. 2.4a and 2.4b. In the forcing function for Eq. 2.4b, terms of order

p()p( 2), (p( 2))2 , U 1) (2) , and (u(2) )2 have been neglected on the ground that (p ())2 and

(u0)) 2 are much larger.

(22 _ d 2 +d (1)c0V -• + C =--F, (2.4a)

2V2 _ 2 2 (2) d2 u[(1) r2 ( p1) y
Y+ 3 & + (2.4b)

jj t )t Poc0  t2 L 2 Poc

Eq. 2.4b shows that the second-order perturbation term p(2) is the result of
nonlinear self interactions of the first-order solution. If the number of perturbation terms is
increased, then the higher-order solutions are dependent on the interaction of both classical
and other nonlinearly generated terms. For example, if p is composed of three terms
p = pt) + p(2) + p(3), then p(2) depends on self-interactions of pt'), and p(3 ) depends on
interactions between p() and p(2). Thus, if the acoustic waves are driven at a frequency
W,, then from the perturbation solution approach, the effective forcing function in Eq. 2.1
will generate all integer multiples nod, of the driving frequency and the full solution must
contain all harmonics of the input frequency'. In Eq. 2.4, if pt') is sinusoidal in time, say
p() = Asin(dt), where A is a spatial function, then p(2) is seen to depend on
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(p ())2 = A2 sin 2(ct), which by the trigonometric identity sin 2(ot) = ½1[ - cos(2w,t)],

can be resolved into two terms at 0 and 2 co, frequencies. The 0 (DC) frequency term does
d2

not contribute to the acoustic pressure since it is a constant with time, -(Constant) = 0
at2

in the right-hand side of Eq. 2.4b. After dropping the DC term, p(2) has just the 2 mo,
term. Extension of the analysis to higher perturbation terms will clearly demonstrate how
the other harmonics are generated.

When any of these (driven) frequency terms are near the resonant frequency of a
standing wave of the cavity, the response may be very strong. The intensity of the

response depends on the quality factor Q of the particular resonance and how well the
resonant frequency o,, coincides with the frequency term now,. When the acoustic waves

are driven near resonances, Eq. 2.3 can be simplified to a semi-empirical form. The major
simplification is performed on the dissipation operator 3 and will be discussed next.

2.1.1 QNE near resonant frequencies of the standing wave

When a (generated) forcing function does not have its frequency nod, close to the

o,, the standing wave is not excited strongly and the dissipation term in the quadratic
nonlinear wave equation (QNE, Eq. 2.3) can be ignored. However, when no, ~ Co, the

amplitude of the standing wave depends strongly on the quality factor Q. of the resonance

and the dissipation term must be retained. The Q, is an empirical quantity measuring the

sharpness of a resonance and can be written as

0Q =  CO" (2.5)
cn2 - al

where o., is the nth resonant frequency and o,, and o,2 the lower and upper half-power

points. The quality factor can also be defined as an ratio of the energy within the system
(the standing wave) to the average energy lost per radian when the system is at a resonant
frequency5. Clearly, a higher Q signifies a less dissipative system. In the case of a forced
standing wave inside a cavity, a higher Q. will result in a higher amplitude wave, especially
near a resonant frequency. The values of Q,, and ow can be determined experimentally, in

s A. D. Pierce. Acoustics. An Introduction to Its Physical Principles and Applications, 122 (1989).
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the infinitesimal-amplitude acoustics regime. Coppens and Sanders' showed that at near

resonance conditions, the classical wave equation operator (left-hand side of Eq. 2.3) can

be written as

2 2  d d2 nCod, d
2 2 ao 3 d &d (2.6)

where c, is the phase speed for the nth resonance. Since only resonant standing waves

contribute significantly when driven near a resonance, the acoustic pressure p can be
expressed as a sum of frequency terms Pi, P21, .. Pn:

P = P1 
+ P2 + P3 + "P . (2.7)

where the subscript refers to the nth harmonic mode of the forcing frequency Co: p, is of
frequency nw,.

Combination of Eqs. 2.3, 2.6, and 2.7 results in a semi-empirical QNE, valid when
the system is driven near a resonant frequency.

Y. 22  nO, p _ d,2 (2 u y-1( p
= -ii _ I d -F -+ . (2.8)

&t2 ) pOC t2 C0 ) 2 poc2

Eq. 2.8 will be the starting point for developing a model using effective nonlinear
coupling coefficients. Before discussing this model, the following section will investigate
applications of Eq. 2.8 in previous projects to determine the practicality of the equation
when compared to experimental results.

2.1.2 Experimental results using the QNE

Initial development of the QNE by Coppens and Sanders utilized purely theoretical
absorption and dispersion terms. Further research6 showed that the observed dispersion
was not in total agreement with their theoretical model. To compensate, the QNE was
modified to include experimentally determined Q. and ,o., as seen in Eq. 2.8. With the

corrections, the solutions to the semi-empirical model were in excellent agreement with
experimental results. In one of their earliest experiments2, high-amplitude standing waves

6 A. B. Coppens and C. Lane, J. Acoust Soc. Am. 54, 336 (L) (1973).



Chapter 2 Nonlinear Acoustic Waves in Confined Geometries

were generated in a 6-ft long, 2.5-in diameter rigid-walled tube, with one end sealed and

the other end fitted with a piston - the vibration generator. For forcing frequencies near the

fundamental or the second resonance, the theory-predicted amplitudes of the nonlinearly

excited second and third harmonics matched well with experimental results.

The semi-empirical QNE (Eq. 2.8) was used with similar success in a later'

experiment using rectangular cavities. In both instances, the authors stressed that finite-

amplitude effects are most prominent when the acoustic waves are driven at a frequency for

which a normal mode (resonance) of the system is strongly excited. Since nonlinear effects

generate integral harmonics of frequencies noad,, if the normal modes co. are not integral

multiples of the fundamental (i.e. Co2 2W1), then the nonlinear effects cannot attain

significant amplitudes. This theory was tested successfully by Gaitan and Atchley (1993) 7

with anharmonic tubes.

PI s Rigid cap
Microphone(a) Harmonic c..avity.......... ........ ....... ...

(a) Harmonic cavity

(b) Anharmonic cavity

Figure 2.1 Examples of a harmonic cavity and an anharmonic cavity.

By manipulating the geometry of a cavity to one like in Fig. 2.1b, the normal

modes of the cavity were detuned, leading to smaller nonlinear effects. Their predictions

were also in excellent agreement with experimental results, but only for the lower

harmonics and relatively weak forcing functions. One reason for the limitations is due to

the order of the nonlinear equation used. Gaitan and Atchley used the second order QNE

which neglected third-order (cubic) effects. The third-order effects are initially negligible

with weak forcing amplitudes, but become more significant with stronger forcing

amplitudes. They may have been able to better their predictions if they had included third-

order nonlinear effects in their theory. However, they still would not have been able to

7 D. F. Gaitan and A. A. Atchley, J. Acoust. Soc. Am. 93, 2489-2495 (1993).
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measure third-order effects directly, because experimentally, the response measured
includes both second and third-order effects. Although the main objective of this thesis is
not to predict amplitudes of harmonics but rather to suppress the harmonics, the active
control approach can be used to directly probe the cubic coupling effects by suppressing the
quadratic coupling effects. The following section will introduce a set of nonlinear wave
equations using effective nonlinear coupling coefficients. These equations are simpler to
work with and will demonstrate the generation of nonlinear effects more clearly.

2.2 Nonlinear wave equations with effective coupling coefficients

The semi-empirical QNE (Eq. 2.8) related the mode-dependent dissipation terms to
the second-order, quadratic, nonlinear operator:

( d2d now, d X P d2 [(U) 2  -l( p )2 l
c 2 - J = -Fo,- +- - -2 ,' (2.8)

where p, is the nth harmonic, u and p are the total acoustic velocity and pressure: u= u,

and p= p,. In the following analysis, the quadratic nonlinear operator (the second term

on the right-hand-side of Eq. 2.8) is replaced with Eq,p2, where p is the total acoustic
pressure and equd is assumed to be a real, positive constant. Eq. 2.8 is then of the
following form:

c -2V2d2 n = -F, - p 2. (2.9)

Eq.d, the effective quadratic nonlinear coupling coefficient is strictly speaking, not a
constant, it is mode-dependent. In the original quadratic nonlinear operator, the time
derivative d2/dt 2 on the u2 and p 2 produces mode-dependent terms which are clearly not
constant. However, in the interest of simplicity, eqa has been assumed constant since
only a few modes are investigated. The value of eqd is found by measuring the coupling
between the fundamental harmonic and the second harmonic.

For higher acoustic pressure amplitudes, cubic coupling is modeled by the addition
of a third term to the overall forcing function in Eq. 2.9 The equation with both quadratic
and cubic nonlinear coupling can then be written:



Chapter 2 Nonlinear Acoustic Waves in Confined Geometries

Y d2  no~d- d).P
cV2 _ 2 = -Fi -8EquP 2 _ ECu 3p (2.10)

where Ecjic is another constant to be found experimentally.

As indicated in the previous section, the acoustic pressure p can be expressed by

two different series, Eqs. 2.2a and 2.7. The first series is arranged by the perturbation

orders p(J) while the second series is by the frequency components p,. Although the final

solution to compare with the experiments will be in terms of pn, the subsequent analysis

will initially utilize the perturbation approach because the solutions better demonstrate

harmonic generation. To use the perturbation approach, however, Eqs. 2.9 and 2.10 must

first be rewritten without the frequency series notation. Focusing first on Eq. 2.9, rewrite

the linear equation portion (left-hand side) so that the total acoustic pressure p is again

present. The following equation will be referred to as the effective quadratic nonlinear

wave equation, EQNE:

2V 2  +d = -F, -q p2 . (2.11)

The operator 3 that leads to dissipation and dispersion was shown in the previous

section to be significant only when the driving frequency is near a resonant frequency.

Furthermore, Eq. 2.6 shows that the operator is frequency and not time-dependent and in

the summation form of Eq. 2.8, each dissipation term corresponded to a particular resonant

frequency. If Eq. 2.11 is Fourier transformed with respect to time, then the following is

the result:

d2 (2.12)dX2+ C+2i p)=- F, P) - ,)-, p') . (2.12)

Ip) is the Fourier transform of p, Ip2) is the Fourier transform of p2, IF,) is the

Fourier transform of Fd, i is l--, 7 is the mode-dependent dissipation operator ?7= oMQ,

and A is an expansion parameter which will be used later in the perturbation expansion.

Ultimately, A will be set to a value of 1. 77 is understood to hold the dissipation terms

associated with all frequency terms w present in p. These frequencies are the drive

frequencies determined by the input (e.g. piston) forcing function F,, and the nonlinearly
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generated frequencies in qaa. 2 For example, if the forcing function Fdr has a single

frequency oA (near the fundamental resonance o)) and the nonlinear term is neglected, then

by Eq. 2.6, 7 =-oA /Qi, o = )A, and Eq. 2.12 becomes the following:

TX A a A ) =-F- ) (2.13)

Since the objective does include nonlinear effects, 17 and o are expected to consist

of many mode-dependent terms. By including all frequency terms in 17 and w, Eq. 2.12 is

essentially the same as Eq. 2.8 (in Fourier space) with two assumptions. The first

assumption is that Eq. 2.12 is only applied to a one-dimensional system (V2 = d2/dX2 ).

This assumption focuses the study on plane waves (in the x-direction) and restricts other

types of acoustic waves (e.g. radial) from being generated. The second assumption is that

the phase speed c, be constant and equal to co for all resonances. Utilizing c, is one way to

account for dispersion effects. However, dispersion effects can be maintained, in this

analysis, by replacing the calculated resonant frequencies wn,catc with those experimentally

measured wo. The solutions to Eq. 2.12 is found by first replacing Ip) with its

perturbation terms,

IP) = IP())+'p(2) )+ I2 (3))+i P(4))+..., (2.14)

where A is the same expansion parameter used in Eq. 2.12.

Eq. 2.12 can be made more compact with the following definitions.

+ - 2

If) = f (t)e-'dt , f*g = f (s)g(s- o)ds, k2 = + i • . (2.15)2n C2 C cC C0

The first two definitions are the Fourier transform of f and the convolution integral

of f and g, respectively. k2 , a function of driving frequencies and dissipation, measures

the nearness of the drive frequency to a resonance. Using these definitions, Eq. 2.12 is

rewritten as

(-•x2 + p) = -[IF)-c •p)*Ip). (2.16)d,) dx j q dIP)*IP
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Substituting Eq. 2.14 into Eq. 2.16, and equating coefficients of like powers of A,
the first few terms of I p) are found.

A,0  ') =2- F1,), (2.17)

': (dx2 + (2)=C wdq 1 (p)u1pd,),) (2.18)

. +( 2 p3' ) I2q=-2 , p '(1) "(2), (2.19)

S+ 2 = ( -e (21 p (1)) p(3) +1p(2) 1 p(2))). (2.20)

The first-order (linear) response, Ip(), depends strictly on the input driving

function F,. The second order response, p2), depends on the interaction between the

linear response with itself. Higher-order responses depend on increasingly complex

interactions among lower-order responses. To write an explicit solution for Ip()), an

orthonormal set of eigenfunctions I m) is assumed to exist for a resonator. I m) is a set of

functions that is strictly dependent on x, not t or w. Noting that x2 jm) = -k2jm) where

km is the wave number cmf/co associated with the mth mode (mo, is the mth resonant

frequency), then with some algebra, IpM') is

a) = , (m F,) ). (2.21)
m=1 (k2 -k)

Dirac notation (mIF,) was used here for the integral over the volume of the

resonator of the product of the functions I mn) and IF,). The resonator will have a sizable

response only if (m F,) is non-zero at a frequency which makes k approximately equal to

one of the km's. The solutions for the higher-order responses have the same form as in Eq.

2.21, with the appropriate drive terms substituted for IF,).

_'Z) = _- ' iM); IF.2)=eq'" I P( '") P( (2.22)
M=1 k knt)
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p) F(m F,3) m F,,3) = 2eqJp "')jJpl2)), (2.23)
m=( , - kp) I)

pIP_-1 2-2)1M), IF,&,)=e,,d(2[ p(1)) + ,ip'l')). (2.24)

2.2.1 Harmonics generation using the EQNE

To show harmonic generation, assume a forcing function of amplitude F is driving
standing waves at a frequency od, near the fundamental resonant frequency of the resonator
co, F,(t)= Fsin(wt). Although the forcing function can be spatially- dependent, only

the time -dependent term will be retained for the current discussions, since the Fourier
transform with respect to time of the complete forcing function, F,(x,t) = F,,(x). Fd,(t),

does not affect the spatial component F,(x). Thus for the discussions to follow, the

volume integral (ml F,(x, t)) is

(m F, (x, t)) = [IIm)F, (x)d]. IF, (t)), (2.25)

where only the time-dependent component of the forcing function is in Fourier space.
Until the discussion on the modeling of the forcing function is presented in Section 3.2.2,
the term forcing function F, will be written as just the time-dependent component F,(t):

F,=F,(t). The spatial component F,(x) is understood to have been incorporated into the
volume integral as shown above. Now, the Fourier transform of Fd, = Fsin(ot) is the

sum of two Dirac delta functions, IF,,) = [38(o + co,) - (c -w,)] where P is a constant.

In Eq. 2.20, the volume integral (m F,) does not affect the frequency functions in IF,)

so I p () can be written as follows:

Ip )_ _ [8(C + dW ) - 8(- g,(x), (2.26)

where g,(x) is the spatial function describing the product of the volume integral and the mth

eigenfunction:
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g, (x)= [fm)F, (x)dV] -m). (2.27)

Since only one driving frequency is present, k2 has but one value, associated with

odr: k 2  + 7h , where 17 is given by 17= . When the drive frequency

car=oI, then k2 - k. is clearly the smallest when m=l, at the first resonance. The other

eigenmodes are not excited appreciably and can be neglected from the sum, leaving p(l)
with just one term at frequency odr:

p(l) = A sin(,t + 11)g1 (x), (2.28)

where A and 0,1 are constants to be determined, and g,(x)=[f 1)F,(x)dV]. l).

For the second-order solution, Eq. 2.22, the forcing function is the convolution of
the first-order solution with itself: IFd,2)= Ce, p(')) * I p('). Using the definition of the

convolution integral given in Eq. 2.15, I p ))* Ip p) is:

Ip'ao())*p(l) (o))•= t~(1) (s)) I p(' (s - c))ds. (2.29)

The integrand consists of four terms,

I p()(s)) P(S - co))= Ab(s - )6(w - s -s )+ P,8(s - d)5(w - s + W.)

+138(s + Wdr)8((w - s - odr ) + )S(s + M,)8(o - s + W,),

where 81, P2, P3, and P4 are appropriate coefficients that include spatial-dependent terms

from p(l'. Integrating these terms with respect to s as shown in Eq. 2.29 results in the

following form for the forcing function on Ip ( ' ) ,

IF,12) = I3' 6(w - 2cod) + 2' 5(w) + +31' 6(o)+ 1' (o + 2t,,). (2.30)

where AP', 13', A', and 34' are appropriate coefficients. Again, the volume integral in Eq.
2.22 does not affect these frequency terms, so that P(2)) is of the form:

P(2 _ (m) H '8(w - 2,,) + 12' 8(() + P3' 3(w) + 4' 3(( + 2cWo,)) m) . (2.31)
m=1 (k2k
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The resultant frequency terms generated for p(2) are recognized to be the sum and

difference of the frequency terms in p(l). In this instance, p(') had just one frequency

term ow, thus the frequency terms in p ( 2) are 0 and 2co. Recalling that a DC term does

not contribute to the response, the second and third term in the forcing function above are

dropped. Then, by Eq. 2.22, if 2o,=mc2, then k/2 - k2 will be smallest at m=2 and p(2 )

will oscillate at 2odr with one dominant spatial dependence corresponding to the second

eigenmode 12):

p(2) = B sin(2cot + 22 )g2(x). (2.32)

2

The constants to be found, B and 022 depend on k2 - k where km
Co

2 (20o,) 2  2 o 2o,
k 2 +-77 -, and 7 2 .g2 (x) is the spatial function that combines the

volume integral with the second eigenmode in Eq. 2.31. Clearly, p(2 ) will oscillate at the

2w, frequency, but its magnitude B depends strongly on how close this frequency matches

that of the second resonant frequency q.

When the analysis is extended to solve for the third-order solution p(3), two

frequency terms will be generated, odr and 3co, written here so the values of k2 can be

discussed:

(m •I6(o- oa,)+ y'2 (w+ wdr,)+ y3 (w- 3wodr,)+ 46(w+3,)) Im), (2.33)
M-=1 ( -k )

where y,', y2', ~3', and y4' are appropriate coefficients. The two values of k2 that result in

the largest terms of the summation series, now with appropriate subscripts that correspond

to the two generated harmonic frequencies, are

2 ,
For frequency drl, 2 + i1 , =  , (2.34)

Co Co 01

(3,)2 3 3co, (2.35)
For frequency 3ow 3 32 2 + 3 i 137 (2.35)

0 C0 Q3
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With Eqs. 2.34 and 2.35, the two frequency terms in Eq. 2.33 can be separated,

resulting in the following:

p,(3) C,'sin((o,+t+031') + C3'sin(3,t + 033')

where C1', C3', O31', and 033' are constants to be determined. The two sums can be

replaced with their dominant terms which correspond to m=1 and m=3, respectively. Thus

the third-order response will have two frequency terms that have maximum amplitudes

when the appropriate eigenmodes are excited:

(,) = C,' sin(,t +031,,') C3' sin(3o,t + 033')
p 1 (x)+ gz (x),

p(3) = C sin(odt+ 31 )g1 (x) + C3 sin(30),,t+0 33)g3(x), (2.37)

where C1, C3, 031, and 033 are constants to be determined. Following the same procedure,

p(4) can be seen to be composed of two frequency terms, 2o, and 4co,:

p(4) = D2 sin(20d, t + 42 )g2 (x)+ D4 sin(4wd, t + 44 )g4 (x), (2.38)

where D z, D4, 42, and 044 are constants to be determined.

The preceding analysis was for the EQNE, Eq. 2.11, when the nonlinear coupling

was assumed quadratic. If cubic nonlinear coupling effects are introduced, then more

harmonic frequency terms will be generated. This will be the subject of discussion in the

following section.

2.2.2 Harmonics generation using the ECNE

Cubic coupling effects are introduced into the nonlinear wave equations when

quadratic effects alone do not adequately describe the physical phenomenon of nonlinear

coupling. Thus for the following analysis, the effective cubic nonlinear wave equation

(ECNE) will include both quadratic and cubic coupling effects. The ECNE is simply Eq.

2.11 with an additional term:
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c2V2 - + P = -F - Equad p2 - ecubic p (2.39)

Assuming the cubic coupling effects is an order lower than the quadratic coupling
effects, then, when the expansion parameter A is introduced as before in Eq. 2.12, the

following is the result.

0 O2 (A )
S+ -C2 + 1 P7 --I)-C2.P) P2)E P30 0

Following the identical procedure used in finding the responses to the
solutions to the ECNE, to the first four orders are as follows.

S ) (mlF )p = - m(• -F) IM),a

p (m= I 2  );

((mlFdI3)
) 2 - k );

(4) (M dr4
M= 

k 2-k

IFdr2)= equa P))* P(1))

IFdr3)= 2eqdlp P)*l P (2)

+eobicp IP,)) l pI' , ) .p+ '

(2.42)

(2.43)

IFdr4) = ad(2 p )*IP3))+IP)) *I)) (2.44)

+3ecp') ,P )p') )*P(2)

The first and second-order solutions are, as expected, the same as the first and
second-order solutions to the EQNE. The third-order solution Jp '), however, has an

extra cubic coupling term that also generates two harmonics. Suppose as before, the input
forcing function Fdr is of frequency oadr (near the first resonant frequency co of the
resonator), then the drive term Fdr3 will generate a total of two harmonics. The first
component of F, 3 generates a wo and a 3wo harmonic through the interaction between

Ip' 2') and Ip'')). The second component of Fdr3 also generates a oadr and a 3 mdr
harmonic, however, the interaction is between Jp(l)) and itself. Thus, pure cubic coupling

will generate a third harmonic 3co, without the presence of a second harmonic 2w,. The

(2.40)

EQNE, the

(2.41)



Chapter 2 Nonlinear Acoustic Waves in Confined Geometries

frequency convolution integrals in Eq. 2.44 show that quadratic and cubic coupling effects

will both generate the same harmonic frequencies, 2c, and 4o,o. Table 2.1 shows the

frequency terms generated for up to the fourth-order solutions for the EQNE and ECNE
when the input drive frequency is co,.

PerturbationP ideraion EQNE (Eq. 2.11) ECNE (Eq. 2.39)

p(2) 20cd. (204)quad

p(3) d,, 3codr (odr, 3d)quad, (odr, 30dr)cubi c

p(4) 2Odr, 4Odr (2Odr, 44,d)quad , (2dr,, 4dr)cubic I

Table 2.1 Frequencies present in quadratic and cubic responses, up to fourth-order.

When the nonlinear coupling is only of quadratic order, Table 2.1 shows that the

first four perturbation order solutions correspond approximately to the first four frequency
terms of p, p -"' = p,, n = 1, 2, 3, 4. This is true because the d, term in p(3 ) is two orders

smaller than the o, term from p(l), and the 2o, term in p(4) is also two orders smaller

than the 2o, term in p(2) . However, with the additional cubic coupling effects present,

more terms are generated in each perturbation order. The total effect of the additional terms

is unclear and thus approximating the perturbation order solutions to the frequency terms of

p is not appropriate. Fortunately, the objective is to suppress nonlinear effects, thus the

goal is to control the larger quadratic coupling effects before cubic coupling effects are

considered. How energy is transferred from one harmonic to another with quadratic

coupling effects is discussed next.

2.2.3 Energy transfer path for quadratic coupling

The frequency convolution integral p ) * I p(l)) provided the mechanism for

energy to leak from p')p to p(2 ) in Eq. 2.22. Interactions between p(2 ) and p() then allow

further energy from pl) to leak into p(3) and so on. Graphically, the energy transfer path

is illustrated in Fig. 2.2. In a), with a nonzero p(2), energy is leaked into higher-order

responses. However, in b), if p(2) is somehow suppressed, then no energy can be leaked

to the higher-order responses, as shown by the dashed lines and shaded boxes.
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Figure 2.2 Quadratic nonlinear response, up to fourth-order solutions.

a) Energy leakage path with nonzero p(2) , b) Energy leakage path with p(2 ) =0.

The question is: how can p(2 ) be suppressed? One method is to design an

anharmonic resonator such that its resonant frequencies are not integral multiples of the
fundamental, wco;nco. When such a resonator is driven near its fundamental resonant
frequency o•=w1, the harmonic generated, with frequency 2co, will have a non-resonant

response because (k2 - k ) is large in Eq. 2.22. Thus, with a small p(2 ), the higher-order

responses will be small as well. As stated before, this method of suppressing energy
leakage through nonlinear effects is currently used for both the thermoacoustic devices and
sonic compressors. However, another possible approach is to add an additional
(frequency) term to F, which generates a term that cancels with p(2). Since p(2 ) has only
a 2o, component, clearly, the additional term to F, should also be of frequency 2 cor.

This approach was discussed briefly in Chapter 1 and will be the main topic of Chapter 3.
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Chapter 3 Active Control Approach

T he theory of nonlinear waves in confined geometries was presented in the last

chapter, with the emphasis on a model based on effective nonlinear coupling

coefficients. In the case of just quadratic coupling, the discussion on solutions to the
quadratic EQNE showed that by suppressing the second-harmonic response, P2, no other

(higher) harmonics can be generated, thus disabling the nonlinear effects altogether. This

chapter will discuss the method by which the suppression of P2 can be accomplished by the

active control approach. The basic concept is presented in the first section and basic

equations established with arbitrary forcing functions and resonator design. In the second

section of the chapter, the basic concept is applied theoretically to a specific resonator

design. The decision to use a harmonic cavity, versus an anharmonic cavity, will be

discussed, the actual forcing functions modeled, and the parameters needed in the

computational model presented. Finally, the experimental setup of the active control

approach will be discussed in the third section. The actual control loop will be presented,

followed by descriptions of some equipment and their functions, as well as some problems

encountered.

To clearly understand the objectives of the active control approach, and to establish

the data analysis technique to be used later on, the notion of an amplitude-spectrum analysis

is now discussed. Any waveform, whether periodic or not, can be expressed through a

Fourier transform as the sum of many single-frequency terms. The amplitude-spectrum

displays the amplitude of each of these terms as a function of frequency. A purely
monotone signal, say p = Iplsin(cwat + 0), where Ip l is the magnitude of p, oa is the

signal's oscillation frequency, and 01 is the phase, will have exactly one peak in the
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amplitude-spectrum plot (Fig. 3.1). The spike has a magnitude of IpIl and resides on ,a of

the frequency axis.

SAT7'f\ +I 14N77¶

p = pl, sin(mt t
(A

Figure 3.1 Monotone signal (left) and its amplitude spectrum (right).

When a nonlinear wave is analyzed, its frequency components are shown as a
series of peaks in Fig. 3.2. The amplitudes of these components depend on the particular
resonator design and the forcing function, and the nonlinearities of the acoustic medium.

S P2 Ip431
t 'I .oP41 IP51

P= IP p, = Ip,sin(noat +0,) I I
Oa 2oa 3oa 4aa 5aoa o

Figure 3.2 Multi-tone signal (left) and its amplitude spectrum (right).

In an acoustic compressor or a thermoacoustic refrigerator, the device is often
designed to operate optimally at the fundamental frequency, therefore, the transfer of
energy to higher harmonics represents a parasitic loss . The path of energy transfer for the

EQNE case starts from the fundamental to the second harmonic, then interaction between

the fundamental and the second harmonic generates the third harmonic as discussed in

Chapter 2 and shown schematically in Fig. 3.2, above.

1 D. F. Gaitan and A. A. Atchley, J. Acoust. Soc. Am. 93, 2489-2495 (1993).

N41h.-&-
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Quadratic coupling

•On'

31

Co 2w 3w 4w 50 m o)a 2wa 3wa

Figure 3.3 Preventing the second harmonic from being generated eliminates all higher harmonics.

If the generation of the second harmonic can be prevented (Fig. 3.3), then no

subsequent harmonic can be generated. The preceding is only true when only quadratic

nonlinear coupling exists. When cubic nonlinear coupling exists, in addition to the

quadratic, solutions to the ECNE show that both the second and third harmonics must be
eliminated to prevent leakage to higher harmonics (Fig. 3.4). The third harmonic (p3) must
also be curtailed because it is generated by just the fundamental component, not by the
interaction between pI and P2 in the EQNE case.

Quadratic coupling

Onl 1 Cubic coupling

2w I 031

S 2(oa 3 a 4 a 5 a a

'Pn' |1

oCa
2oa 3 a O)

Figure 3.4 With an addition cubic coupling, both second and third harmonics need to be quenched.

The objectives for using the active control approach in both scenarios are the same:

to eliminate the necessary harmonic(s) so that only the fundamental response remains. The

basic concept is discussed next.

3.1 Basic Concept: Multiple-Frequency Input Forcing Function

The discussion in Chapter 2 showed how harmonics were generated due to a
single-tone forcing function Fd, at a frequency war near that of the fundamental resonance

of the cavity wo. Although nonlinear effects generate all harmonics of the driving

frequency, most harmonics can be prevented by quenching just the lowest harmonic(s). To
eliminate the second harmonic, the active control approach introduces a second frequency
term into Fdr. The second forcing component is to produce a response at the second

co

m

On'l (Oll

71>

· B
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harmonic frequency 2cw so that the total second harmonic P2 is reduced to a very small

value. In effect, there are two components to the second harmonic p2:

P2 = P2 (nonlinear response to first drive tone) + p2 (linear response to second drive tone).

Clearly, both components must be on the same order to result in a small total P2.
The second drive tone can thus be designated the same order as the P2 (nonlinear response to

first drive tone) by using the expansion parameter XA (the value will be eventually be set to 1):
F,,, = A.Fz sin(2w,t + p2), where F2 is the amplitude of the drive, 2o0, is the frequency,

and 2 is a phase difference relative to the first drive tone. The complete driving function

can now be written as follows.

F, = F1 sin(w,t) +A.F2 sin(2 wo,t+4 ). (3.1)
Ft FIt

To find the solution to the EQNE with the above forcing function, follow the exact
same procedures as presented in Section 2.2. Eq. 2.16 thus becomes the following:

S p) = -k F,,) - A( F,,,) + eqwlp) * I p)). (3.2)

Now, substituting the perturbation series, Eq. 2.13, into Eq. 3.2, and equating

coefficients of like powers of A, the first three terms of Ip) are found.

S) - (m F,,) m), (3.3)

IP()== M I Fr2)Im); IFM) )= FdF,,)+e,~,lp(l))*lp(l)), (3.4)

((mIF&3-) IM) IF 3)=2eq p())*1p(2)). (3.5)

Eqs. 3.3 and 3.5 are the same as Eqs. 2.21 and 2.23, the only difference in the

perturbation solutions is the extra forcing term IF,,,) in the equation for Jp(2)). If the

cavity has harmonic resonances and if the input driving frequencies are near the
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fundamental and second resonances, od,--I and 2 cod,=-, then following the steps in

Section 2.2.1, the second perturbation solution, p(2), is written as follows.

p(2) = p 2 = B sin(2o, t + 022 )g2 (x) + B sin(2,,t + 022 ')g2' (x). (3.6)

The first term is as before (Eq. 2.32), the harmonic generated by the interaction
between po) with itself. The second term is the response to the additional forcing

function. The constants B' and O22', and the function g2'(x) are to be determined by the

additional forcing tone. Since the first term of Eq. 3.6 is fixed by the first forcing tone, to
quench p'2), adjust the parameters to the second forcing tone so the magnitudes of the two

terms are equal and the phase difference 1800 apart: Bg 2(x)=B'g 2'(x), 022-022'=1800. The

adjustable parameters are F2 and 0 and can be determined given empirical values of p, and

P2 when only the first forcing function is applied. Section 3.2 will discuss in detail the

determination of these parameters as well as the effective quadratic nonlinear coupling
coefficient rqad.

Note that for the EQNE, p(2) =P2, since the only frequency dependence in Eq. 3.6

is 2cdr. Clearly, if the term p'2 ) is small, then by Eq. 3.5, p(3 ) will also be small.

Consequently, all higher order perturbation terms (and therefore higher harmonics) will be

negligible.

If cubic nonlinear coupling is included, then a third driving tone must be introduced
to quench the third harmonic in addition to the second harmonic (Fig. 3.4). The complete
driving function would be written as follows, where .A is the expansion parameter used

previously.

F, = F, sin(c,,,t) + F2 sin(2,t + 2) + 2 F3 sin(3w,t + 3). (3.7)
,I + u  Frn

The first two orders of the perturbation solution are the same as before, Eqs. 3.3
and 3.4. The third order solution Ip ) now has the following forcing function:

IFdr3) = FdII) + 2e.?uadlp) ) * p2)) + cubI(1)) * I) * p 0)). (3.8)

Of the two harmonic frequencies generated by the quadratic and cubic effects, codr,
and 3co,, if emphasis is first placed on the latter, then the solution to p(3) would be
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p(3)(3w,t)= p, = C'sin(3dt + 033')g93'(x)+
Thrdforingon (3.9)

Csin(3w,t+033)g3(x)+C" sin(3o,t + 33")g3" (x).
Quawaic effects Cubic effects

If the second harmonic has already been quenched by the second forcing tone, then
in Eq. 3.9, the 3wd, term created by quadratic effects can be neglected, leaving just two

terms for p(3) . To quench the component generated by cubic effects, adjust the variables

in Fdrll: F3 and 03.

P(3) (3d,t) = p3 = C' sin(3ao,,t + 033')g 3 (x) + C sin(3od,t + 033" )g3" (x). (3.10)
Third forcing tone Cubic effects

If a third forcing tone had not been added, then the cubic effects can be observed

directly. Thus, in addition to quenching nonlinear effects, active control allows for direct

observation of individual coupling effects as well as other phenomena which could not be

experimentally shown before.

3.2 Concept applied to specific resonator design

The previous section presented the basic concepts of the active control approach.

The discussion assumed arbitrary resonator designs and forcing functions. To carry out

the active control approach computationally, this section will discuss the choosing of a

specific resonator design. After a design is chosen, the forcing functions will be modeled.

Finally, specific variables to the computational model will be discussed and solved for

explicitly. Some of these variables are: F2, 2, and eq ad, all are necessary in quenching

quadratic nonlinear coupling effects. The Q's of resonances and the value of the resonant

frequencies are determined empirically, as discussed in Section 3.3 where the experimental

setup is presented.

3.2.1 Resonator Design

The concept of the active control approach can be better demonstrated with a

harmonic resonator design. The reason is that a harmonic resonator will have more

pronounced magnitudes of the generated harmonics P2, P3, P4, etc. The quenching of these

harmonics is clearly evident in an amplitude-spectrum plot. However, with an anharmonic
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cavity, quenching of the harmonics is not as dramatic since the harmonics are already of
small values.

Before choosing a harmonic resonator design, a question arises: will the quenching

process be more difficult to execute in a harmonic than in an anharmonic resonator? This

question comes about due to experimental concerns that the resonant frequencies may drift
during the quenching process due to temperature fluctuations and other factors. Drifts in

the resonant frequencies will affect the magnitudes of the harmonics more strongly in a
harmonic resonator. Since the objective is to quench the harmonics, will the changing
magnitudes of the harmonics require changes to the quenching forces (Fd,1 , Fd,1 1), to keep

the harmonics quenched? If the answer is yes, then quenching harmonics in a harmonic

cavity should be more difficult since the changes in the harmonics magnitudes are greater.
To answer these questions, first recall that the magnitudes of the harmonics is a strong

function of (k/ - k,)- (see Section 2.2.1), where k is associated with the mt resonant

frequency and k with the nh harmonic frequency as shown here.

k= -, ( (3.11)
Co

nod 2 (n,)2 no, (n) (312)
= 2 + Mt, 2 . (3.12)

QCo Co Co0

Qm is the quality factor of the mth resonance nearest to the nh harmonic: o- nmo,.
Given these definitions, the following is the result, where K is a function of neod, and o .

K(no,,o)=(k-k)-1n ) (3.13)
c2 Qm c2

Since the quality factors are typically several hundred in value, Eq. 3.13 shows that
the magnitude of K will be largest when nw•=wm. For harmonic resonators, o =mwl,
thus if o,= -o, then no, = w, and K will be large. For anharmonic resonators, on
-mojl, thus when o,= - c , no, c• (n_2) and K will be small.

In a harmonic resonator, because K is so sensitive to o, and cm, if either value is
even slightly changed, K will change dramatically. For example, if Q2 is 200 and the
second resonant frequency changes by 0.5% (corresponding to a temperature change of
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about 10 F to 20 F): ((.2)new=l.005(%0)old, then the magnitude of K(2co,coz) is reduced by

55%. The K change is not as dramatic in an anharmonic resonator. Does this change in
the value of K affect the quenching process in the active control approach? In quenching
the second harmonic P2, the two terms in Eq. 3.6 are both dependent directly on

K(2cod,,)=( -•- k). However, since the desired result requires the sum of the two

terms to equal zero, the function K can be factored out of both terms. This can be shown
explicitly by reverting Eq. 3.6 to Fourier space and using Eq. 3.4:

(2) _(1_._ (2je.,(p(1))2)
=2 1) 2) 12). (3.14)

When the sum is set to zero, noting that the functions K and 12) are common

factors, the following is the result:

0=(2F,,,j)+(2eq,,(p(1) )2), (3.15)

where Farj was defined as the second driving tone in Eq. 3.1, F 11, = F2 sin(2w,t+ 2).

Eq. 3.15 will be used later to determine the values of F2 and 4~ for the second driving tone.
The interesting result, however, is that slight changes to odr or CO, will not affect the

quenching process. The individual terms of Eq. 3.14 will both change in magnitude with a
change in K, but the sum remains zero. Thus quenching is not more difficult for a
harmonic resonator than for an anharmonic resonator. The magnitude of the second
driving tone depends only on the initial resonant frequency C0, and not the changes that

may occur during the quenching process.

Of the many types of harmonic resonator designs, the simplest is the right circular
cylinder. The following presents a discussion on this type of resonator and why it cannot

be used for the planned experimental setup. Then the chosen design is presented and its

eigenfunctions found.
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3.2.1 (a) Straight Cylinder

Fig. 3.5 shows an example of earlier resonator setups used by past investigators .

The piston at the left-end excites the gas (air) inside the resonator, setting up an intense

standing wave whose magnitude is measured at the right, closed-end.

end

Figure 35 Previously used harmonic resonator setup.

To avoid problems of sliding or flexing seals present in a piston setup, both ends

can be sealed and the entire resonator driven by a shaker, a device that supplies vibrational

excitation to a test object. The shaker is an integral component of a vibration and shock test

system which tests dynamic stability of items such as automobile parts like head lamps and

clocks. The items are typically mounted directly to the shaker armature which vibrates with

the designated force and frequency. Here, the mounting for the resonator could be secured

with bolts, as shown in Fig. 3.6a. When the entire resonator is vibrated back and forth,

the source of the forcing function on the gas inside can be envisaged as two pistons moving

in tandem at the two ends (Fig. 3.6b).

2 Coppens, 1968, and Gaitan, 1993.

................................... ''..'..- ;'
Piston 1 "Pso

(b) Resonator (fixed)

Figure 3.6 Enclosed resonator secured to shaker and its modeled setup.
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Having two pistons moving in tandem presents another problem for the right
circular cylinder cavity: the even modes cannot be excited by the pistons. For example, the
second acoustic pressure mode 2wo can be shown to have the spatial function shown in

Fig. 3.7a. The fluid velocity is the same as the piston velocity at both ends while the fluid
pressure is equal in magnitude and phase at the piston faces. In an odd mode (Fig. 3.7b),
the piston velocities remain unchanged, but the fluid pressures are now out of phase by r.

Figure 3.7 Even and odd mode pressure profiles in cylindrical resonator.
a) The second mode. b) The third mode. p(x,t) and u(x,t) are the acoustic pressure and velocity.

To setup a standing wave of any mode, power must be continuously supplied into

the fluid by the piston faces. The power is calculated as the time average of the force

(pressure p times area S) on the pistons and the velocity of the pistons. In the even mode,
the average input power Wiko,,, is zero:

T

1,.,,,, = + J [p(S[p(O,t)u(,t)- p(Lt)u(L,t)]dt = 0, (3.16)
0

where T is the period of oscillation, p(O,t) and u(O,t) are the acoustic pressure and velocity

at x-0 and time t, respectively, and p(L,t) and u(L,t) are the acoustic pressure and velocity

at x=L, respectively. Without input power, a second forcing tone will be unable to quench
the nonlinearly generated second harmonic p2.

T T

Wav.ov, = + j S[p(O,t)u(O,t) - p(L,t)u(L,t)]dt = J 2S[p(O,t)u(O,t)]dt (3.17)
0 0
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The net power into an odd mode, W.id, is nonzero (Eq. 3.17), thus enabling the

generation of a standing wave by the pistons to quench nonlinearly generated odd
harmonics. However, since quadratic nonlinear effects are expected stated to be stronger
than cubic effects, the emphasis should first be placed on being able to set up the second
mode by the pistons. To maintain harmonic resonances in the resonator and to allow for
net input power into the even modes (at least the second, 2co), a two-radii design was

used.

3.2.1 (b) Two-Radii Resonator

In a two-radii resonator (TRR), shown in Fig. 3.8a, if the position of the area
transition is at the halfway point, then the resonant frequencies are still integral multiples of
the fundamental. However, by having two sections to the resonator, the area transition at
the center effectively introduces a third annular piston (Fig. 3.8b).

x=-L x-0O x=L
(b)

Figure 3.8 Two-radii resonator (TRR).
a) Physical appearance of the TRR. b) The TRR modeled with three pistons at x=-L, 0, and L.
The 2Coo mode wave is shown. p(x,t) and u(x,t) are the acoustic pressure and velocity, S1 and S2
are the two areas.

Although the end pressures (at x=+±L) are still the same for the second mode, the
areas of the pistons have changed, S, is the area of piston at x=-L, and S2 is the area of the
piston at x=L. In addition, an annular piston with area SI-S2 now acts on the fluid at x=O
where the pressure is out of phase by 7c. The net input power into the second mode for the
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TRR, WZi,•, is then calculated as follows, noting p(-L,t)=p(L,t)=-p(O,t) and u(-

L,t)=u(L,t) =u(0,t).
T

W2TRR =I[Sp(-Lt)u(-Lt)]-((S - S2)p(O,t)u(O,t)]-[S2p(L,t)u(L,t)]} dt
0T (3.18)

= T 2(S1 - S2)p(-L,t)u(-L,t)dt.

The average power transfer is clearly nonzero for the second mode unless area S1 is

equal to area S2, or the case of a straight cylinder. Eq. 3.18 shows that the amount of
power that can be coupled into the 2ct mode depend on the area ratio S11S2 ; a larger ratio

will lead to stronger coupling between the drive and the second resonant mode.

Eigenfunctions of the TRR

SI I (x),v 1(x) p, (x),v,(x) WS2I I

x=-L x--O x=L

Figure 3.9 TRR modeled in two sections.
p(x) and vt(x) are the spatial acoustic pressure and velocity in the left half, respectively. Pr(x) and
vr(x) are the pressure and velocity in the right half of the resonator.

Here we generate the orthonormal set of eigenfunctions im) for the TRR. In Fig.

3.9. pi(x) and vl(x) are the pressure and velocity of the fluid in the left section. pr(x) and

Vr(x) are the pressure and velocity of the fluid in the right section. The four boundary

conditions are

1) @ x=O, pj(O)=p.(O) (continuous pressure),
2) @ x=O, Sivi(O)=S2Vr(O) (continuity), (3.19)3) @ x=-L, v1=O,
4) @ x=+L, v,=O.

The eigenfunctions are found using standing wave solutions:

p, = Asin kx + Bcoskx (-L : x 5 0), (3.20)
p, = Csinkx + D coskx (0 < x 5 +L),
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where A, B, C, D , and k are coefficients determined by the boundary conditions.

The first two boundary conditions result in B=D and C=SA, where S,=SI/S2.
Applying the last two conditions yields

nxc
k, =- (n = 1,2, 3,...). (3.21)

2L

As expected, k is discrete, designating the eigenmodes of the TRR. If n is odd,
then B is found to equal 0; if n is even, then A=0. Thus the eigenfunctions can now be
written as follows.

Odd n's: p, =Asin(k.x); p,. = SA sin(k.x)
(3.22)

Even n' s: pm = p,. = Bcos(k.x)

Note that the even modes have the same amplitude B throughout the TRR whereas
the odd modes change in amplitude from A to S,A at the transition point (x=0). The first
four eigenfunctions are shown in Fig. 3.10.

AZrooeN

S+

too

Figure 3.10 First four pressure eigenfunctions for the TRR.

The constants A and B are found by noting that these functions have to be
orthonormal. This means the volume integral of the product of one mode p, with itself is

(p. IP.) = .p.dV = 1,

and the volume integral of the product of one mode p, and some other mode p, is

(pp.) =p.p.dV = 0 ,

:8~~~

~~R~~:
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where nom, and V is the volume of the TRR. To find A, compute (p, Ip)= f pidV = 1

using dV=Sdx, where S=S 1 for -L < x 5 0 and S=S2 for 0 < x 5 L:

0 L
SdV = j pdx + jSfpdx - A = A(2 (3.23)

-L 0 0SL(+ Sr)

B is found using (p2 p2) =pdV= 1:

0 L
p pdV= fSP22dx+ J S2p22dx --  B= L(S1+2 (3.24)

-L L(S1 + S2)

Finally, the orthonormal set of eigenfunctions is written as

-2 sin(kx) -L5 x5 0
'S,rL(1+ S,) S, sin(k,x) 0 < x < L

(3.25)

mven 2 cos(kx) - L 5 x 5 L
L(S, +S2)

where k, has been defined in Eq. 3.21. The kn's determine the calculated resonant

frequencies:

kn=.c -+ o,.cCa = kco. (3.26)
co

Because the exact value of k, is critical in calculating the generated harmonics'
magnitudes, the computational model will use empirical values of k, by measuring the
actual resonant frequencies o,. The sound speed will be assumed constant at all times,

calculated as

where yis the ratio of specific heats of the fluid, R is the gas constant, and To is the starting

temperature.

3.2.2 Input Forcing Function Modeled

The modeling of the forcing functions (piston motions) is presented in this section.
When the TRR is vibrated by a shaker, Fig. 3.8b shows that there are effectively three
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pistons acting on the fluid inside. The three pistons can be treated as 'mass' generators3

located at x=-L, 0, and L. In terms of G, the mass rate per volume, the forcing function

Fdr is the sum of three Dirac delta functions:

GL = pour(t)(x +L)
F = G : Go = -Pou,(t) (x) (3.27)

GL = -pou,(t)8(x - L)

where Po is the ambient density of the fluid, and udr(t) is the velocity function of the

pistons, and 8 is the Dirac delta function. The forcing function can be written as the

product of its time and spatial components:

Fdr = Fdr(t). F. (x). (3.28)

Since the piston velocity function is the only time dependent variable, and a
common factor of G (udr(t) is the same for all pistons in the experimental apparatus) then

the separated components of Fdr are

F(t du(t) _ a,(t), F,(x) = p0 [3(x + L) - 8(x) - 8(x - L)]. (3.29)
dt

The forcing frequency information is in the time-dependent component Fd(t) and is

simply the acceleration function a,(t) of the pistons. Introduction of actual acceleration

functions into the equations developed thus far requires special care. When only one
driving frequency cdr, equal to the fundamental resonant frequency o1 of the resonator, is

present in the acceleration function, say

F&,(t) = a,(t) = F, sin(cWat)

then the entire forcing function can be used directly in finding the first-order perturbation

solution Ip''") (Eq. 2.20). The higher-order perturbation solutions are then found from the

information already known (Eqs. 2.21-2.23). When a second driving frequency is

introduced to quench the second harmonic generated by the quadratic nonlinear coupling

effects, the acceleration function will look like

3L. E. Kinsler, et al., Fundamentals of Acoustics, 120 (1982).
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F&,(t) = iid,(t) = FI sin(o,t)+ F2sin(2•ot + 2).

F, F

In this case, the total forcing function must be separated into two terms, F,, and

F,&,, to find the first and second-order perturbation solutions, as discussed in Section 3.1

(Eqs. 3.3-3.4). Similarly, when a third tone is introduced to quench the third harmonic

generated by the cubic nonlinear coupling effects, the total forcing function needs to be

separated into three terms. Each term then contributes to each of the first three-order

perturbation solutions (Eqs. 3.3, 3.4, and 3.8).

Fd,(t) = ui,,(t) = F, sin(wt) + F, sin(2wo,t + •) + Fsin(3wt + 43).
F, F&u, Fu,,

3.2.3 Variables in the Computational Model

The discussions to this point have concentrated on formulating expressions for the
perturbation solutions p'"'. The first three order perturbation solutions pO), p(2) and p(3 )

are to a first approximation also the frequency solutions Pi, P2, and P3. (see Section 3.1).

Since the objective is to quench nonlinearly generated harmonics, the computational model
will not be set up to compute for harmonics higher than P3-. One reason is that once

quenching of the lower harmonics is attained, previous discussions have shown that higher

harmonics cannot prevail and will thus be quenched as well. Another reason is that the

computations for higher harmonics are too complex and time-consuming.

The computational modeling was performed on an IBM-compatible Pentium 75

Mhz computer from Micron Computers, Inc. The software used is Maple V (Release 3), a

system for doing mathematics by computer. Maple was used in the thesis to symbolically

generate the resonator response equations and then to produce real-valued results by

substituting variables with actual values. The following discussion will formulate
equations for eq,, F2, and 2, the variables needed to generate as well as to quench the

second harmonic. Although not shown here, variables for quenching the third harmonic

may be formulated in a similar fashion.
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3.2.3 (a) The Effective Quadratic Coupling Coefficient

The generation of harmonics via quadratic nonlinear coupling effects depends on

the quantity Eqad, which was assumed constant and shall be derived here for its explicit

form. The magnitude of Eqad will be shown to require empirical values of the first two

frequency terms at x=L, p (L) and p 2(L), when driven by only one tone. To begin the

analysis, recall the second-order perturbation solution, Eq. 2.21:

IP(2) (mF=_ lm); F )=Erpo

When a single forcing tone is present, F,(x,t)= F (x)-F1 sin(wot), with the drive

frequency Odr equal to the fundamental resonant frequency co of the resonator, the

frequency convolution Ip ))*lp(')) yields two terms, one is of 0 frequency and the other of

frequency 2wdr, the second harmonic. Fdr(x) is the spatial component of F,(x,t), shown in

Eq. 3.29, and F, sin(w,t) is the time component of Fdr(x,t). Removing the 0 frequency

term (see Section 2.2.1) then results in the following for jp(2 )), which is now

approximated as I P2):

p(2) =P)= (2F(2,)2); F(2w)= ep j, (3.30)

where •z and k 2 have been defined in Eqs. 3.11-12.

The first-order response p-) =p, is assumed the form:

p, (x,t)= paf1 (x)sin(wot), (3.31)

where pia is an effective amplitude of the response and f,(x) is the first eigenfunction, I1).
The nonlinearly generated second harmonic is a function of 2od, and is assumed the form:

P2 (,t)= p.f (x)sin(2w~t+ 02), (3.32)

where p2a is the amplitude, f2(x) is the second eigenfunction 12), and 02 is a phase offset.

The effective forcing function on p 2(x,t) is proportional to the square ofpl(x,t):

Fdr2(X,t) = E•qadP(Xt)= eq2 dpf (x)sin2 (Wd,t). (3.33)
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Using the trigonometric identity sin 2 (ot) = 1 - cos(2,t)] and keeping only

the 2wco, term results in

F, (x,t)= -• e p,p,f (x)cos(20c,t ) . (3.34)

In determining the value of eqd, the temporal components are neglected when

Eqs. 3.32 and 3.34 are substituted into Eq. 3.30:

I ~' p2 (x)f2(X))
P2af 2 (X)•qdl 2  (x ), (3.35)

where (f2(x)f (x)) is the volume integral of the product of f2(x) and f,(x), and

means the amplitude of. Since all experimental measurements will be made at x=L (right-
end of resonator, Fig. 3.8), the value of P2 is determined by using Eq. 3.32, noting that
the magnitude of P2 at x=L is P2(L)= p 2af2(L)I. The magnitude of p, at x=L is
p,(L)= Pl, f(L)j. pI(L) and p 2(L) are to be measured experimentally, thus the values for

Pla and p2a are

pl_1p, (L). _ p2(L)(If1 (L)I' P20 If2(L)• (3.36)

Evaluating Eq. 3.35 at x=L with Eq. 3.36 and solving for eqd results in

2 2p2(L) f (L) 2-k2)k (3.37)
Sp2 (L) f2z(L)(fz I(x)) I '

The dependence of eqd on the quantity (k4-kg), a complex number, would

seemingly violate the assuming made in Chapter 2 that q6qa is a real number. However,

eq•d is calculated in Eq. 3.37 to depend on the magnitude of (2 -k2 ), a real number, thus

eq.d is real. The information inherent (phase) in the imaginary portion of (Jý -k~ ) is not

really lost when eqad is used to calculate the nonlinearly excited second harmonic because

the quantity ( -k22) is present in both the numerator and denominator of Eq. 3.30, and is
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thus irrelevant in calculating the second harmonic. The same cannot be said for calculations
of higher harmonics.

With equad, the magnitudes of nonlinearly generated harmonics can now be

predicted computationally. More importantly, the analysis can now be extended to include
a second forcing function, F,,,(x,t)=F2,F 2sin(2wo,dt+ 2), to quench the nonlinearly

generated second harmonic. F, is the spatial dependent component of Fdl and is equal to
Fd, (x), since for the resonator used, all forcing functions are physically applied at the same

locations (Eq. 3.29).

3.2.3 (b) Second Forcing Tone Amplitude and Phase

This section will formulate expressions for F2 and 02, the amplitude and phase of

the second forcing tone, respectively, necessary to quench nonlinear effects when only
quadratic nonlinear coupling is considered. In Section 3.2.1, Eq. 3.15 was established as
the criterion for quenching the nonlinearly generated second harmonic. This equation
shows that quenching occurs when the two volume integrals are equal in magnitude but
opposite in sign:

2Fdr= -(2Fd ) , (3.38)

where Fdr, = F2F2,sin(2o,t + 2), Fa2 dFr2x dr2, = eq.(P(1)) 2  p()=p is the

fundamental harmonic response, Fdr2 and Fdr2 are the spatial and time component of Fdr2,
respectively, 12)=f 2(x) is the second eigenfunction, and eqa is a real constant determined
in the preceding discussion. The unknown variables are F2 and 4~, which are now found.

The inverse Fourier transform of Eq. 3.38 results in The analysis is commenced by
transforming Eq. 3.38 to time space. The equation will not be affected because the volume
integrals, (21F,,,) and (2Fdr2), are spatial:

f2 (x)F,,adV = - f2 (x)F, 2dV. (3.39)

If the time components are factored out, and noting that the fundamental response
p, to the first driving tone F,(t) = F1 sin(wdt) will behave as cos(o,rt), then Eq. 3.39 is

rewritten as
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sin(2w,&t+ 2)J f 2(x)FF22 dV = -cos2'(,t) f2 (x)FdV . (3.40)

Expanding cos 2(cot) and retaining just the time-dependent term (2c0t) results in

sin(2ot + 2 )f f2 (x)F2F2xdV =-cos(2•t)f f 2(x)Fa,dV. (3.41)

Assuming the volume integrals will be equal in amplitude and sign when computed
(if the sign is opposite, simply change the sign of 02), then looking at just the time-

dependent terms, 4~ can be calculated as

sin(2o,t+ 02) =-cos(2o,t)
2 = -900 or 2700 (3.42)

F2 is now determined by concentrating on just the volume integral portions of Eq.

3.41. F2 is a constant and can be taken out of the integral, resulting in

F = f,(x)F 2WdV (3.43)

F2 - jf 2(x)F2xdV

Eq. 3.43 predicts the amplitude of the second forcing tone necessary to quench the
second harmonic, given some amplitude F, on the first tone. If F, is too large, having just

a second forcing tone to quench the second harmonic may be insufficient in quenching all
nonlinearly generated harmonics, and a third tone is needed, Fd, t = F3F3. sin(3W~ t + 03),

to quench the third harmonic generated by cubic nonlinear coupling effects. Although not
shown here, the values of F3 and 3 may be determined in a similar fashion to the above.

3.3 Experimental Setup of Concept

This section will now discuss the experimental setup used in demonstrating the

active control approach. The first part of this section will present the setup in simple block-

diagram form. The feasibility of the proposed setup is then discussed and the actual
experimental setup presented. Equipment of particular importance will be looked at and

finally, concerns and problems encountered in matching experimental to computational
results are discussed.
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3.3.1 Active Control Loop Devised

Given the chosen TRR harmonic resonator and a forcing function that drives the
standing waves with the fundamental resonant frequency, nonlinear effects will generate
harmonics P2, P3, and so on to yield in a total pressure waveform of p=p1 +p2+p3+...,
where p, is the fundamental/linear response to the forcing function. The previous sections

have shown that harmonics can be quenched by using additional forcing tones. A simple
active control loop is shown in Fig. 3.11, this will serve as the starting point in devising
the actual setup to be constructed.

I+ 2)

Figure 3.11 Simple active control loop to eliminate the second harmonic.
The total acoustic pressure p(t) is filtered for the first two frequency component amplitudes, PlL
and P2L, which are used to calculate equa and then a starting value ofF2 . The actual value ofF2
and 0 are controlled manually, to compensate for experimental and computational differences.

Before analyzing the loop, the fact that only one set of pressure measurements will
be taken, at x=L, should be reiterated. Being able to quench the nonlinearly generated
harmonics at this location implies that the rest of the resonator is also quenched of the
harmonics. This is because the frequency (time) dependent component of the acoustic
waves can be treated separately from the spatial dependent component,

p = pl(t)Pl(x)+ p2(t)p,(x)+ p(t)p3 (x)+....

Clearly, when P2(t) is quenched at one location, it is quenched everywhere else,
provided P2(x)•O at that location. Thus, from here on, the symbols p1 , P2, P3, etc. will be
understood to be just the time portions of the harmonics evaluated at x=L: p, = p, (t),
p, = p2(t), p3 = p3(t), etc.

Fig. 3.11 shows how an active control loop might be assembled to quench the
second harmonic. Quenching the third harmonic will only require minor modifications to
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the loop and will be discussed briefly later. Now, the control loop to quench the second
harmonic can be explained as follows.

A controller first generates a single tone forcing function (at the resonator's
fundamental frequency, woa=co)), which is amplified by the vibrator setup and applied to

the resonator cavity. The pressure signal at x=L is detected with a pressure gauge and then
filtered to retain the amplitudes of the fundamental harmonic PIL, and the amplitude of the

second harmonic P2L, generated from nonlinear effects. From this information, the

amplitude of a second forcing tone is calculated and added to the original forcing function.
The phase has already been determined to be 4=-900, see Section 3.2.3(b). Finally, the

revised forcing function is amplified and applied to the resonator. The resulting pressure
signal should then be free of all nonlinearly generated harmonics, assuming no cubic
nonlinear coupling effects are present.

The above description of the basic setup has assumed that information such as the
resonant frequencies co,'s and quality factors Q,'s of the resonator are already known and

unchanging. Also, this simple setup has assumed that the experimental equipment to be
used can be controlled precisely to produce the desired results. For example, the drive
amplifier is assumed to only amplify the forcing function and not introduce a phase
difference. In designing this setup with actual equipment, all of these assumptions must be
questioned and necessary steps taken to either accept them or to devise safeguards against
possible problems. With the precautions in mind, the actual setup is now shown in
modular form in Fig. 3.12.

A

Initial i
pararhe

SILi4u Y Y L aT~ViV NL U )L

Section I. Control/analysis Section II. System/signals

Figure 3.12 Actual setup in modular form.
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The setup is divided into two main sections. In section I, a computer and a
software package (LabVIEW) are utilized to generate the forcing functions (B) that will be

supplied to the shaker/resonator setup, given initial input parameters specified by the user

(A). The pressure and acceleration signals (F) from the system are then analyzed by the

same software package as well as by several lock-in-amplifiers. One part of the
information (F) is used to automatically make changes to the forcing function, while

another part is processed by the user and manual changes (G) made to the forcing function.

In section II, the overall system is separated into two systems; the first is the

resonator shell and the second is the fluid inside the shell. The acceleration amplitude of

the resonator shell is measured, providing information on the actual forcing amplitude (C)

applied to the fluid inside. This information (F) is sent back to section I to compare with
the desired forcing function (B) in terms of amplitude and phase, so that any differences

here can be compensated for in the computational model. Finally, the acoustic pressure (D)

at the end cap of the TRR is measured with a pressure transducer and transferred to section

I where it (F) is analyzed for the amplitudes of the harmonics.

3.3.2 Processes and Equipment in Experimental Setup

The experimental setup is shown in Fig. 3.13, it is comprised of about twenty

major pieces of hardware and one major software package (LabVIEW). A schematics of

the setup is shown in Fig. 3.14, following the modular form shown in Fig. 3.12. Two

major processes of the control loop are now discussed followed by a brief description of

the major components of the setup.

3.3.2 (a) Process 1: Generation of the Forcing Function

To generate the forcing function on the acoustic waves, the forcing function signal

must proceed through the equivalent of eight transfer functions (Fig. 3.15). Each transfer
function, K1 through Ks, will alter the desired signal in terms of a gain difference or a

phase offset.
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1. Computer - Gateway 2000 P5-60 12. Resonator
2. Data Acquisition Board - NI ATM-MIO-16E-2 13. Pressure transducer - Endevco 8510C
3. Data Acquisition Board - NI Lab PC+ 14. Pressure indicator - Endevco 4428A
4. Computer - Micron P75 15. Charge accelerometer - PCB J357B01
5. Data acquisition Board - NI ATM-MIO-16F-5 16. LDS Sine controller (used as
6. Oscilloscope -Tektronix 475 acceleration indicator)
7. Attenuator -resistors setup 17. Pre-amp for pressure - PAR 113
8. Signal filter - Krohn-Hite 3202 18. Pre-amp for acceleration - PAR 113
9. LDS Power Amplifier 19. Lock-in-amplifier 1 - EG&G 124A
10. LDS Field Generator 20. Lock-in-amplifier 2 - EG&G 124A
11. LDS 722 Vibrator 21. Lock-in-amplifier 3 - EG&G 124A

Figure 3.13 Experimental setup.

W
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S.E
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Figure 3.14 Experimental setup - schematics.
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K K2K3 K4

LabVIEW DAB 2: E2 Attenuator Low-passfilter

KS Kg K7 Kg
PA1000 FPS-1 722 Vibrator Resonator
Amplifier Field Generator (w/ armature)

Figure 3.15 Path for the forcing function signal.

The user first specifies the desired values of the forcing function (A) into the

computer software (National Instruments LabVIEW). Two essential variables that the user
will need to enter are the driving frequency o, and the amplitudes of the desired forcing

function F1, F2, and F3. Since the software will be generating digital signals, the user will

also need to specify variables such as the update rate and the resolution of the signals. The

update rate is the number of points generated per second, and the resolution is the number

of points, or steps, per cycle of waveform generated. The (time) resolution must be kept as

high as possible to approximate a smooth waveform. The amplitude of the waveform must
be converted from a force (g's) to a voltage via the gain K,.

Once the digital waveform is generated, it must be converted to an analog signal

using a digital-to-analog (DAC) converter. In this setup, a data acquisition board (DAB)

from National Instruments was used: ATM-MIO-16E2, referred to as E2 in Fig. 3.15. The

E2 has built-in digital-analog as well as analog-digital (ADC) converters, allowing analog

input and output. The converters have fixed (amplitude) resolutions (12 bits, ±5 V Full

Scale output, 2.44 mV/step) which limit the signal amplitude resolution. For example, if a

high resolution (At small) digital signal has a peak-to-peak amplitude of only 15 mV, then

when it is converted to an analog signal with a 12-bit converter, the resulting waveform is

very coarse, having just six steps between the maximum and minimum points (Fig. 3.16).

The resolution is fixed at 2.44 mV per step, thus to increase the smoothness of the analog

signal, the initial digital signal amplitude is made as large as possible. The preceding

condition helps in part to determine the magnitude of K1. The gain K2 is assumed to be one

(1); the conversion from digital to analog will not alter the amplitude nor the phase of the

signal if the amplitude is initially large (>>2.44 mV).
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Lv timte

Figure 3.16 Digital signal converted to analog signal with a DAC.

The vibrator amplifier (PA1000) does not accept an incoming voltage signal (B) of
amplitude greater than 1 V., therefore, the high amplitude signal emanating from the DAB
must be attenuated by K3 so that when the signal is amplified by K5 through K8, the desired

forcing function is generated. The low-pass filter (Krohn-Hite 3202) is used to smooth out
the analog signal by filtering out the high-frequency steps and can be adjusted so the
amplitude and phase offsets are negligible, thus K4 is assumed the value one (1) with zero

phase offset.

When the signal (B) reaches the vibrator setup (PA1000 to 722 Vibrator in Fig.
3.15), the three transfer functions, K5, K6, and K7, combine to amplify and convert the

voltage signal into a forcing function on the resonator. The resonator is mounted directly
onto the armature of the vibrator, thus K8 includes the information on the dynamics of the

armature-resonator combination. The amplitude and phase response of the resonator-
vibrator armature assembly is frequency dependent. This was measured using an
accelerometer mounted at the base of the resonator. The deviations measured will

determine the necessary modifications to the computational model to maintain consistency
between theory and experiment. Finally, the mass of the air inside the resonator is

assumed negligible compared to the resonator/armature mass, therefore, the forcing
function on the fluid is assumed to be unaffected by the gas dynamics. The process by
which the forcing function is summarized in Fig. 3.17.

(F,)•,ciPd = Fj sin(dt) +F2 sin(2mt + 02) A: user input values

I \

(F,).•,ooo =Flo sin(tod)+F2,sin(2ct+02) B: voltage signal to
r otarbiv setup

(Fdr,), = =Fl sin(Odrt+ 1c)+ F2,sin(2 rt+ 02 + 2c ) C: actual forcing/
acceleration
function

Figure 3.17 Generation of theforcingfunction.

I \
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In the above figure, Fla and F2, are the actual forcing function amplitudes. These

values must be compared with the user input values, F, and F2, and appropriate actions

taken to either keep Fl, and F2a as the forcing amplitudes (in the computational model) or to

change initial input values so that the desired amplitudes are the result. Thus, if the desired
amplitude of F, is 1.5 g, but measurements show the actual amplitude to be only 1.2 g (a

reduction factor of 1.2g/1.5g=0.8), then the initial value of F1 should be increased to

1.5g/0.8= 1.875g. Similarly, the transfer functions Ks, K6, K7, and K8 may have
introduced phase offsets, 01c and 2c, which must also be included in the computational

model as correction factors. Actual measurements of F1JF1 , F2a/F2 , 1c, and 2c will be

presented in Section 3.3.3.

3.3.2 (b) Process 2: Quenching the Second Harmonic

To quench the second harmonic, the pressure signal p is first be analyzed for the
magnitudes of its frequency components p,'s. The pressure is measured with a pressure

transducer (Endevco 8510C), shown in Fig. 3.18, and amplified (pre-amplifier PAR 113)
before it is converted from an analog to a digital waveform by another data acquisition
board (Lab PC+). The digital signal is processed by the same LabVIEW software which
generates the forcing function signal. The LabVIEW VI (virtual instrument - object
oriented program written for the experiment) uses an amplitude-spectrum analysis routine

on the pressure signal, breaking down the pressure into its frequency components. The
amplitude of the second harmonic P2 is then used to determine any changes necessary to F2

and 2: AF2 and A02. The changes are currently performed manually (to LabVIEW)

because the computer processing capacity had been reached and further data processing
was not feasible.

In order to quench the second harmonic, the discussions so far have assumed that
the first forcing tone frequency 0,. is always equal to the fundamental resonant frequency
ct. The fundamental resonant frequency is not a constant and fluctuates with temperature.

The forcing tone frequency has to be changed accordingly, to keep it equal to the changing
fundamental resonant frequency. A lock-in-amplifier (LIA #1) was used to track co, and a
loop was set up to change cod, to match col.
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I LabVIEW
manual changes

Figure 3.18 Section I of active control loop: Control/analysis.

The ingredients needed to track and match the fundamental resonant frequency are:
a reference signal with which the actual pressure signal can be compared with to determine
the resonant frequency, the pressure signal, and a routine in the LabVIEW VI that
processes the LIA output and adjusts the driving frequency w,. The reference signal is
shown in Fig. 3.18 as Fa,, the fundamental forcing signal generated by LabVIEW. The

pressure signal is a voltage waveform directly from the pressure transducer. The LIA
compares the phases and amplitudes of the reference and pressure signal, and generates a
DC output P1. This output is set to zero at the initial resonant frequency ow. When co,
starts to drift, AI will become nonzero. The LabVIEW routine then calculates an updated
driving frequency od, to push A1 to zero again. The routine was written with proportional
control so that the correction frequency, Acw, is equal to a constant KUA times the LIA
output f1: Ao, = KuAfi. Thus, when A, is zero, then the correction frequency Aoc, is
zero as well, and the driving frequency o, is exactly equal to the fundamental resonant
frequency c1.

Fz, Fz,, Q ---r - -- ----- - --· -- -- -- -- --
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3.3.2 (c) Resonator / LabVIEW Description

The main objective in this section is to introduce the resonator design, calculate the
expected resonant frequencies o,cic', and to describe briefly how the software LabVIEW

was used to control and analyze the force and pressure signals.

The TRR body consists of five sections, all made of aluminum 6061 (Fig. 3.19).
The topmost section, A, is one of the two end-caps. At the exact center of the plate, a
threaded thruhole is machined. The pressure transducer is flush mounted against the inside
surface of the top end-cap. Another cavity is machined one inch off the center of the end-
cap. In this cavity is a valve where the gas is to be extracted or exchanged. The opening of
the cavity into the inside of the resonator was kept as small as possible to avoid disturbing
the main flow dynamics.

The two tubes, B and D, are both of thickness 0.125". and have diameters 2.75"
and 3.75", respectively. The area ratio is thus S, = 3.752/2.752 = 1.86. The overall length

of the resonator was decided to be 2L=0.6 meter, or about 23.62". While the lower tube D
is of length L, the upper tube B is slightly shorter, with the remaining length provided by
the transition plate C. Note that the location where the radius should have abruptly
changed has been smoothed to mitigate turbulence and other effects which may alter the
expected behavior of the gas significantly. In experiments, the second resonant frequency
was found to be slightly higher than two times the fundamental: Co2=(2+A)) 1, A=0.02.

Whether the deviation was the result of smoothing the corner is unclear, however, this
deviation can be easily included in the computational model. The other end-cap, E, has
been machined with eight thruholes through which 3/8-24 UNF screws will secure the
resonator to the armature of the vibrator.

Given the geometry of the resonator, from Eqs. 3.21 and 3.26, the resonant
frequencies in Hertz, are calculated as

fn•,• • = -nco, (3.44)
2w, 4L

where n=1, 2,3,..., and co is the speed of sound co= ;J.
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A. Top plate - 4" outer
diameter; includes
gas input valve and
pressure transducer.

3/16 (.18751

B.Upper cavity - 3.00" outer
diameter, 2.75" inner. Length
is 11.41" (289.8mm)

ransition plate - 5.00"
• • . • t . . . .

5 5- - - - - - IC -- - ~

I1 - - -

UULuI udiametrc connects

upper and lower cavities.

D. Lower cavity - 4.00" outer
diameter, 3.75" inner. Length
is 11.81" (300mm)

E. Lower plate -7.09" outer
diameter; includes 8
thruholes for 3/8-24 UNF

Figure 3.19 Resonator design.
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Using air at ambient temperature (To=296 K), R=287 J/kgK, -y1.4, the first three
resonant frequencies are: flic= 287.39Hz, fz,c, = 574.78Hz, and f,,, = 862.17Hz.

These values are purely theoretical and can only be used as starting points in the

experiments. Actual resonant frequencies will need to be experimentally determined and

the information incorporated into the computational model.

LabVIEW is a graphical programming system for data acquisition, control,

analysis, and display. The programs created are called virtual instruments, or VI's, that

can be assembled to create a more complex system. For example, a VI was written to

continuously generate the forcing function signals. Another VI was written to acquire the

pressure signals and to analyze them. Each of these VI's in turn may be composed of other

VI's, and so on (Fig. 3.20).

Figure 3.20 LabVEW I structure.

Each box is a VI and is connected to the topmost VI in some order, like a subroutine or sub-
program in a text-based computer program.

In the topmost VI, the user inputs values for variables such as the starting forcing

frequency, the forcing amplitudes, range of the amplitude-spectrum, update rate of the

I
.4_ý

A1
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signals, etc. These variables are then sent to the various VI's that are responsible for
specific tasks. In tracking the fundamental resonant frequency, one VI acquires and
analyzes the LIA data, the VI then signals another VI that generates the forcing function to

execute a change to the frequency information. The time interval between changes is kept
by another VI, and so on. In this way, a loop is created that constantly checks fluctuations
to the resonant frequency and initiates the necessary changes to track the resonance.

3.3.3 Concerns with the Active Control Loop

There are two main concerns with the active control loop presented, both have
already been discussed briefly in Section 3.3.2. The first concern is the drifting of the
fundamental resonant frequency when quenching the second harmonic. The drifting will
affect the experimental results for reasons discussed in Section 3.3.2(c). To address this
concern, a control loop using a lock-in-amplifier and a routine in LabVIEW was developed.
The loop tracks the fundamental resonance and adjusts the driving frequency accordingly.
However, the drifting is not a phenomenon that needs to be included in the computational
model because the two frequencies can be forced equal at all times.

The second concern does affect the computational model, and is associated with
using the model to predict the quenching forcing amplitude F2 and phase 02. As discussed,
the actual values of F2 and 0 will deviate from the initially assigned values as the forcing
function signal progresses from the computer to the resonator. The deviations can be
determined experimentally by analyzing the ratio of the amplitudes and the phase difference
of the forcing function signals at the resonator base and after the low-pass filter (C and B in
Fig. 3.15). A VI was designed for the purpose of measuring the deviations and functions
as follows. With one forcing tone of constant amplitude, its frequency is swept from 50
Hz to 1000 Hz. This forcing function signal, once applied to the vibrator setup, undergoes
changes in responding to the resonator/armature dynamics. The altered forcing function is
then compared with the initial function from the computer for amplitude and phase
deviations. This process is repeated for several forcing function amplitudes to determine if
the deviations are amplitude dependent. The results are shown in Figs. 3.21 and 3.22.
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Figure 3.21 Amplitude ratio of actual acceleration to specifiedforcing function.
The specified forcing amplitude is 1.5 g, data points are 1 Hz apart. The amplitude ratio is
indicative of the frequency response of the vibrator and shaker setup. Near the three resonant
frequencies, the amplitude ratios are all about 1.2.
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Figure 3.22 Phase deviation of actual acceleration to specifiedforcing function.
The specifed forcing amplitude is 1.5 g, data points are 1 Hz apart. At a driving frequency near
700 Hz, the vibrator and shaker setup experiences a resonance.
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Fig. 3.21 shows the amplitude ratio of the two measured signals as a function of
the driving frequency. The ratio is gactualRgspecified, where gactual is the actual forcing

amplitude in g's on the resonator, and gspectied is the user-specified forcing amplitude, also

in g's. The figure shows the amplitude response of the resonator/armature setup and is

quite complicated in some frequency ranges. At the frequencies of interest, i.e. the first

three resonant frequencies, the ratios have values of about 1.25, 1.2, and 1.2, respectively.

The frequency step size used in measuring the amplitude response was very rough at 1 Hz,

thus the amplitude ratio values in Fig. 3.21 fluctuated quickly from one point to the next.

To determine the ratio values more accurately, the frequency step size was reduced to 0.05

Hz in the vicinity of the resonances. The resulting, more exact, amplitude ratio values (at

the first four resonances) are presented in the first section of Chapter 4. These amplitude

ratio values are correction factors and will be used to adjust the experimental results when

comparing with the computational results. For example, if a specified forcing amplitude of

1 g produced a 1200 Pa pressure amplitude, but the actual forcing amplitude was measured

at 1.2 g, then the forcing amplitude used in the computational model should also be 1.2 g

The phase deviation is shown in Fig. 3.21. The phase offset of the actual forcing

function relative to the specified forcing function is shown as a function of the driving

frequency. From the figure, the actual signal lags behind the specified signal at the

fundamental resonant frequency but leads the specified signal at the next two resonant

frequencies. The values of the deviations are approximately -100, 110, and 200,

respectively, for the first three resonances. The same results were found when the forcing

amplitude was changed to a low of 0.5 g and a high of 3.5 g. In the computational model,

therefore, these phase deviations must be incorporated by subtracting them from the forcing

functions. Thus, the first and second forcing tones would be changed as shown:

F,(t)= F, sin(w,t)+F2 sin(2w,t+ 0 2)

F,(t)= F1 sin(wot+100)+F2 sin(2wo,t+ 2 -110). (3.45)

The experimental and computational results are discussed next in Chapter 4.
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Chapter 4 Experimental and
Computational Results

T he results will be presented in three sections in this chapter. The first section
presents the preliminary empirical information that must be determined to

allow calculation of qua d, F2, and 42. This includes the resonant frequencies f,'s, the

quality factors Q.'s, and the amplitudes of the fundamental and second harmonic, P•L and
p2, measured experimentally at the fundamental resonant frequency.

The second section presents the experimental and computational results for a setup
where only one forcing tone, F,(t)= F, sin(cot), is imposed on the resonator. In the first

part of this section, the forcing tone amplitude F1 is fixed while the forcing frequency car is
swept through each of the first four resonant frequencies, co to w4. In the second part, the
forcing frequency is kept at the resonant frequencies while the forcing amplitude F, is

varied.

In the last section, the experimental and computational pressure harmonics are
shown and compared as additional forcing tones are imposed to quench the quadratic and
cubic nonlinear effects. In addition to quenching the second and third harmonics, other
combinations of interest will also be presented. These other combinations may be useful in
probing coupling effects among the harmonics.

4.1 Preliminary Empirical Information

4.1.1 Measurement of co,'s and Q.'s, PL and P2L

Two virtual instruments (VIs) were constructed with LabVIEW to collect the data
required for determining f,'s, Q,'s, and q,,d. The first VI generated a forcing function of
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constant amplitude but allowed the user to adjust the frequency. As the frequency was
swept from below to above the nth resonance, the amplitude of the nth mode response was
measured. Another part of the VI then determined the quality factor Q, and resonant
frequency f, from the amplitude responses to the frequency sweep through the nth

resonance. The frequency sweep rate was set at 0.05 Hz per second, thus each sweep took
one to two minutes, depending on the frequency range swept. During this time, the
temperature of the air in the resonator rose due to the continuous power supplied to the
resonator by the vibrations.

An upper bound in the frequency deviation due to rising temperatures was found by
driving the resonator continuously locked onto the resonant frequency and observing the
value of the resonant frequency as a function of time. As shown in Fig. 4.1, the value of
the fundamental resonant frequency increased by less than 0.1 Hz over a period of 240
seconds. Since a typical frequency sweep time in determining f, and Q, was about 100

seconds, the fundamental frequency increase should therefore not exceed more than 0.05
Hz from the beginning to the end of the sweep. Similar levels of error on resonant
frequencies were found for sweeps through the second, third, and fourth resonances.

These levels of frequency deviations decrease the actual values of the Q,'s by only

one to two percent, thus to a first approximation, the measured Q,'s will be used in the

computational model. Each set of resonant frequencies varied from one day to the next,
depending on the room temperature. In any particular day, however, the frequency
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Figure 4.1 Fundamental resonant frequency increases slowly with time.
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deviations due to the heating of the medium by the vibrations are small enough so that
ratios of the n t h resonant frequency to the fundamental resonant frequency could be
measured with good accuracy. These ratios should be independent of day-to-day room
temperature variations and were incorporated into the computational model by applying the
ratios to the wave numbers k,'s. In theory, the kn's are perfect integral multiples of the
fundamental: k,=nk1, where n is an integer. However, to be able to compare

computational with experimental results, the actual values of the multiples must be used:

kn = n/,k, (4.1)

where nr is the measured ratio of the nth resonant frequency to the fundamental resonant

frequency. Although the computed resonant frequencies will no doubt be different from
actual resonant frequencies because of some assumptions made in the model, the ratios of
the resonant frequencies will be the same. The importance of the ratios will be discussed
shortly.

Figs. 4.2 to 4.5 show the amplitudes of the harmonic responses to sweeps through
the first four resonant frequencies. In each figure, the measured acceleration and pressure
amplitude are graphed as a function of the driving force frequency. The two symbols and
the connecting curves represent data points which are 0.05 Hz apart. For simplicity, all
forcing amplitudes will from hereon be designated in terms of acceleration, in g's. The gas
in the resonator is air at room temperature and pressure - about 298 K and 101.3 kPa,
respectively. The estimated values of the resonant frequencies and the quality factors are
summarized in Table 4.1.
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Figure 4.2 Amplitude response through the fundamental resonance.
Specfied force F1= 1.0 g, amplitude at the fundamental resonant frequency is pl = 773 Pa, resonant
frequency fl= 285.98 Hz, Ql = 173. -- : pressure response amplitude through the first resonance,
left scale, -0-: measured acceleration, right scale. The symbols and the connecting curves
represent actual data points which are 0.05 Hz apart.
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Figure 43 Amplitude response through the second resonance.
Specified force F2= 3.0 g, amplitude at the second resonant frequency is p2= 374 Pa, resonant
frequency f 2= 577.3 Hz, Q2 = 220, f 2/f l= 2.02. --- : pressure response amplitude through the
second resonance, left scale, -0-: measured acceleration, right scale. The symbols and the
connecting curves represent actual data points which are 0.05 Hz apart.



Chapter 4 Experimental and Computational Results

856 857 858 859 860 861

Frequency (Hz)

Figure 4.4 Amplitude response through the third resonance.
Specified force F3= 2.0 g, amplitude at the third resonant frequency is p3= 431 Pa, resonant
frequency f3= 858.73 Hz, Q3 = 300, f 3/f l= 3.00. --- : pressure response amplitude through the
third resonance, left scale, --- : measured acceleration, right scale. The symbols and the
connecting curves represent actual data points which are 0.05 Hz apart.
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Figure 4.5 Amplitude response through the fourth resonance.
Specified force F4 = 4.0 g, amplitude at the fourth resonant frequency is P4= 240 Pa, resonant
frequency f 4= 1155.60 Hz, Q4 = 320, f4/fl = 4.04. -- : pressure response amplitude through the
fourth resonance, left scale, -0-: measured acceleration, right scale. The symbols and the
connecting curves represent actual data points which are 0.05 Hz apart.
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* : Specified Actual Pressure amp. Resonant Quality Ratio
n force (g) force (g) at resonance (Pa) frequency (Hz) factor

....... p•..... n cified g~n,acal P (t f) . Qn fn f

Fundamentalresonance 1 1.00 1.18 773 285.98 173 1.00
Second resonance 2 3.00 3.36 374 577.30 220 2.02
Third resonance 3 2.00 2.18 431 858.73 300 3.00

Fourth resonance 4 4.00 3.38 248 1155.60 320 4.0 4

Table 4.1 Thefirstfour quality factors and resonant frequencies.

Table 4.1 includes the specified and actual forcing amplitudes in g's, and the

corresponding peak response amplitudes at the resonances. For the fundamental response,

the measured acceleration is about 18% higher than the specified value. For the next two

resonances, the acceleration responses are also slightly higher than specified values, by

about 12% and 9%, respectively. The measured acceleration is lower than specified,

however, for the fourth resonance, by about 15%. From hereon, all experimental forcing

amplitudes refer to actual, measured values in g's. The forcing amplitudes used in the

computational model are these actual values. A direct comparison can thus be made

between the experimental and computational responses.

Another important piece of information shown in Table 4.1 is the ratios of the

resonant frequencies to the fundamental resonant frequency, n,. For the first four

resonances, the ratios of the frequencies show that the even modes are slightly higher in

actual frequency values. The measured value of the second resonant frequency showed it

to be about 1% higher than the calculated value, an increase of about 5.5 Hz. This was not

the result of a temperature change, which would have required an increase of almost 6 K

(the temperature was monitored to have been constant at 800 F during the actual

experiment). Tests performed with other forcing amplitudes verified that the ratio nr=2.02

for the second resonance is inherent to the resonator and not due to temperature fluctuations

in the room. For the third resonance, the frequency ratio is 3.00, and the ratio is 4.04 for

the fourth resonance, again resulting in a frequency of about 1% (or about 11.5 Hz) higher

than the calculated value. These ratios are incorporated into the computational model by

Eq. 4.1.

The values of the quality factors are higher for higher resonances. By Eq. 3.13, a

higher Q. means a larger response for the nth harmonic, if the difference in the nt harmonic

driving frequency nodr and the nth resonant frequency nrW is very small. Thus, nonlinear
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coupling to higher harmonics should become stronger and stronger, if the resonant
frequencies of the resonator are integral multiples of the fundamental. If the resonant
frequency ratios are far from integers, then the value of Q. is less important. For the

resonator (TRR) used in this research, the largest deviations of the resonant frequency
ratios n,'s from integer values are for the even modes: 2.02 and 4.04 for the second and
fourth modes, respectively. Thus, because of the high values for Q2 and Q4, the

nonlinearly excited second and fourth harmonic responses will be weak since the

frequencies of these harmonics do not overlap with the second and fourth resonant
frequencies, i.e, when the n,'s are integers.

In past research efforts, the Q.'s and f.'s were measured in the linear acoustic

regime, because when nonlinear effects become more significant in amplitude, the values of

Q,'s and f.'s change. In Fig. 4.6, the pressure amplitude and quality factor of the first

resonance are graphed as a function of the forcing amplitude Ft. Clearly the value of Q,
decreases and the rate of increase of the pressure amplitude also decreases.
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Figure 4.6 Fundamental harmonic response amplitude and quality factor offirst resonance.
The slope of thefundamental harmonic response amplitude (---, left scale) decreases, as well as
the quality factor Q1 (-0-, right scale) of the fundamental resonance, both nonlinearly due to
emergence of nonlinear effects. The line with arrow shows how the pressure amplitude would
increase in the absence of nonlinear effects.

At low forcing amplitudes, the amplitude of the pressure response is proportional to
the forcing amplitude (FI) imposed on the resonator. As nonlinear effects start to emerge,

the pressure response amplitude at the fundamental resonance decreases because energy is
now being extracted from the fundamental response to the second and higher-harmonics.
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The decrease in Q1 is clearly nonlinear and can be explained in part by the behavior of the

first nonlinearly generated harmonic (the second harmonic), which for the quadratic

nonlinear coupling case, is to grow as the square of the amplitude of the fundamental

harmonic. The second nonlinearly generated harmonic (the third harmonic) grows as the

cube of the fundamental harmonic. As the amplitudes of these harmonics increase with the
forcing amplitude, Q, decreases faster and faster. The decrease in Q1 decreases fl, to be

discussed shortly.

Before determining the values of the fundamental and second harmonic responses at

the fundamental resonant frequency, the effect of the specified force on the pressure

amplitudes at each of the first four resonances is now discussed (Fig. 4.7). The pressure

amplitudes were calculated as one-half of the peak-to-peak value of the acquired pressure

waveform. Thus, if nonlinear effects were present, they were assumed small so that the
one-half of the peak-to-peak pressure waveform represented the dominant linear response
at each resonance.

Fig. 4.7 shows that given the same forcing amplitude, the pressure response
amplitudes are in the following descending order: fundamental resonance, third resonance,
second resonance, and fourth resonance. When quenching nonlinear effects, the forcing
amplitude of the tone required to quench the second harmonic can be expected to be much
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Figure 4.7 Experimental pressure response amplitudes at the first four resonances.
-0-: Amplitude of the first resonance response, -9-: at the second resonance, -o-: at the third
resonance, and, -t0-: at the fourth resonance. Even modes respond weaker than odd modes.
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larger than the forcing amplitude of the tone to quench the third harmonic. There are two

reasons for this: the second resonant frequency is not an exact integral multiple of the

fundamental nr 2 , thus the response to the forcing tone is small, and the second mode

cannot be excited as easily as the fundamental or third mode in the TRR design, thus a

much larger force is required to drive the second mode to an equivalent amplitude.

Using Eq. 3.37, the value of eqa was determined using empirical values of the

fundamental and second harmonic response amplitudes when the resonator is driven at the

fundamental resonant frequency. In the following discussions, the subscript "L" is used to

designate the amplitude of the harmonic responses at the resonator's upper end-cap (x=L),
ignoring the time-dependent components. Thus Pit is the amplitude of the fundamental

harmonic, p2L is the amplitude of the second (nonlinearly generated) harmonic, and so on.

In Eq. 3.37, pl(L)=pl and P2(L)=p2 at the fundamental resonant frequency f 1.

The value of eqa is proportional to the ratio of p. to pb2; assuming the other variables

have already been determined and are constant.

e i(P2LP•L. (4.2)
\ PIL J f"

Thus, the essential information in determining eq,d is not the absolute values of the

first two harmonic responses, but rather the ratio as seen in Eq. 4.2. Since metric units

were used in all analysis, the unit to quad, consistent with Pascals (Pa) for the pressure

amplitudes, was determined as s 2 / kg . m. To determine the ratio in Eq. 4.2, a second

LabVIEW VI was constructed so that at a fixed forcing amplitude, the forcing frequency fd,
is swept from slightly below to slightly above the first resonance f, (Fig. 4.8), while

maintaining a constant forcing amplitude. The pressure amplitudes P•L and p2 needed to

determine eqa were measured when fdr=f (Fig. 4.8b).

The VI also acquired the amplitude of the third harmonic, P3L, to show its growth

behavior compared to that of p•, and p,1. The results to the frequency sweeps through the

fundamental resonance at three specified forcing amplitudes, 0.35 g, 1.2 g, and 2.1 g, are

shown in Figs. 4.9 to 4.11. The three harmonic amplitudes, when the forcing frequency is

locked onto the fundamental resonant frequency, are graphed as a function of the forcing

amplitude in Fig. 4.12.
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Figure 4.8 The pressure waveform and amplitude spectrum near the first resonance.
The driving frequency is increased from below (a) to above (c) the fundamental resonance,
producing maximum nonlinear effects at the resonant frequency (b), where PIL and pzL are measured
to determine equa.

In Fig. 4.9, the forcing amplitude is low, at 0.35 g, and the resulting nonlinear

effects is small. The second harmonic, the only nonlinearly generated harmonic, is still
very small, with a peak amplitude of about 3 Pa which is only about 1.4% of the

fundamental harmonic amplitude (210 Pa) at the fundamental resonant frequency. In Fig.

4.10, the forcing amplitude was increased to 1.2 g, resulting in a proportional increase in

the fundamental harmonic, from 210 Pa to 700 Pa (3.33 times). However, the second

harmonic amplitude has increased by more than 12 times (from 3 Pa to 36 Pa), and the

third harmonic has risen to almost the same amplitude (from near 0 Pa to 33 Pa).
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Figure 4.9 First three harmonic responses when driven near the fundamental resonance.
Forcing amplitude is F 1 =0.35 g. The third harmonic (-0-, right scale) is not yet evident, the
second harmonic (-0-, right scale) is still small, with a maximum amplitude of about 3Pa,
compared to 220Pa of the fundamental harmonic (-e-, left scale).
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Figure 4.10 First three harmonic responses when driven near the fundamental resonance.
Forcing amplitude is F1=1.2 g. Both the second (--, right scale) and third harmonic (---, right
scale) are of considerable amplitudes now, see text for the discussion on the second hump in the
second harmonic response at about 2.7Hz above the resonance. -0: amplitude of the
fundamental harmonic, left scale.



Chapter 4 Experimental and Computational Results

1,300 200

160

120

80 &

40

0
282 283 284 285 286 287 288 289

Frequency (Hz)

Figure 4.11 First three harmonic responses when driven near the fundamental resonance.
Forcing amplitude is F 1=2.1 g. The third harmonic amplitude (---, right scale) exceeds that of
the second harmonic (-, right scale) at the resonant frequency fl. -- : amplitude of the
fundamental harmonic, left scale.
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Figure 4.12 First three harmonic responses when driven at the fundamental resonance frequency.
Forcing amplitude is increased from 0.35 g to 2.1 g. The amplitude of the second (--, right
scale) and third harmonics (-0-, right scale) behave as the square and cube of the forcing
amplitude, respectively. --- : amplitude of the fundamental harmonic at f l, left scale.



Chapter 4 Experimental and Computational Results

In Fig. 4.10, the presence of the second hump in the second harmonic response, is
explained by the mismatch between the second mode's resonant frequency and the

fundamental mode's resonant frequency. The second mode's resonant frequency is 1%

above the calculated value, or about 5.5 Hz above twice the fundamental resonant

frequency. This means that when the driving frequency is the fundamental resonant

frequency, the effective driving frequency on the nonlinearly generated second harmonic is

not quite equal to the second resonant frequency, it is about 5.5Hz below where the

resonant response would occur. However, the amplitude of the second harmonic depends

on the square of the amplitude of the fundamental harmonic, thus when the resonator is

driven at the fundamental resonance, the second harmonic response is still large despite the

fact that the effective driving frequency is not resonant with the second mode's resonant

frequency. The same dependence on the fundamental harmonic response limits the size of

the second hump. No hump is expected for the third harmonic response because the third

mode's resonant frequency was found to be almost exactly three times that of the

fundamental.

When the forcing amplitude is increased further to 2.1 g (Fig. 4.11), the amplitude

of the third harmonic becomes larger than that of the second harmonic. The pressure

amplitudes of the first two nonlinearly generated harmonics have now increased to about

8% and 11%, respectively, of the fundamental harmonic. Fig. 4.12 shows the amplitudes

of the fundamental, second, and third harmonics as a function of the forcing amplitude.

The fundamental harmonic amplitude is seen to increase linearly with the forcing amplitude

while the second and third harmonic amplitudes increase quadratically and cubically,

respectively. These behaviors correspond to the perturbation solutions found in Chapter 2.
For the second harmonic (see Eq. 2.22), the effective forcing function Fd2 was E,CpP.

For the third harmonic (see Eq. 2.23), the effective forcing function Fdr3 was the product of

pi and P2, but since P2 behaves as p2, then the third harmonic should behave as p3, which

has now been shown in Fig. 4.12.

The value of p2L/p2, gradually decreases as the forcing amplitude increases (Fig.

4.13). The decrease is expected because the third harmonic is increasingly extracting

energy from the second harmonic as the forcing amplitude rises, thereby decreasing the
increase in the second harmonic amplitude. Equad is thus dependent on the forcing

amplitude since p2/p 2 is not quite constant. However, since this dependence (see



Chapter 4 Experimental and Computational Results

9.0 10'-

8.6 10-5-

8.2 10
"5-

57.8 10'-

7.4 10-5-

7.0 10-5

-286.5

286.0

S285.5

- 285.0

-284.5

S284.0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Forcing amplitude F1 (g)

Figure 4.13 p2/ p2 and the fundamental resonant frequency as afunction offorcing amplitude.

Both the resonance frequency (---) and the equafactor p2 /P 2 (-0-) decrease with the forcing
amplitude.

Section 4.1.2) is small, a single representative value of p2,pL2 corresponding to a forcing

amplitude of 1.2 g was chosen in determining the value of eq, to use in the model.

The fundamental resonant frequency also seen to decrease as a function of the

forcing amplitude. The decrease can be explained if the energy loss from the fundamental

harmonic to higher harmonics is blithely interpreted as an effective nonlinear "dissipation".

When nonlinear effects are small, the main damping factor is the viscous losses at the

resonator walls. However, when nonlinear effects are large, it can be thought of as another
damping factor. If P is an overall damping coefficient, then from classical dynamics, the

resonant frequency fI can be defined1 as the following,

f ,= f-2I p22 (4.3)

where flo is the resonant frequency in the absence of damping. When nonlinear effects are

neglected, P is constant. Once the nonlinear effects are included in 3, however, the value

of 8 will increase as the forcing amplitude is increased, resulting in a lower resonant

1 J. B. Marion, Classical Dynamics of Particles and Systems, 121 (1970).
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frequency. The increase in Pf can be calculated from the decrease in Q1, which has already

been discussed. Using the information acquired on Q1, the decrease in fl was calculated,

although it was found to be smaller than the observed values. The causes for the

discrepancy are unclear at this time.

4.1.2 Variables to Quench the Second Harmonic

The three parameters needed to quench the second harmonic were presented in
Chapter 3. These are: q•ad - the effective quadratic nonlinear coupling coefficient, F2 - the

forcing amplitude of a second forcing tone, and, 0 - the relative phase between the second

and the first forcing tone. The one variable that was shown to be independent of the

amplitudes of the nonlinearly generated harmonics is 02, the relative phase angle of the

second forcing tone to the first forcing tone. In Section 3.2.3(b), the value of 02 was

found to be 2700, a value which assumed that the vibrator setup had zero phase shift

between the electrical input and its mechanical response to that input. However, the

vibrator setup did not respond with constant gain or phase (Figs. 3.21 and 3.22). The

phase deviations (actual forcing signal to the specified forcing signal) were found to be

about -100 and 110 at the fundamental and second resonant frequencies, respectively.

Incorporating these deviations results in the following for the two-tone forcing function

used in the computational model:

F,(t)= F sin( ,dt+100)+F2sin(2wt+ 22-1 10), (4.4)

where odr is the fundamental resonant frequency: co,=co,=2itf,. In Eq. 4.4, the relative

phase angle between the second and first forcing tone is a function of the phase deviations
and the originally calculated 02=2700. If the phase on the first tone is set to 00, then the

following is the result:

F,(t) = F sin(,t)+ F2sin 2dt+2-_1-2(l00) . (4.5)

The new value of 02 is then calculated as 2700+310=3010. The second harmonic,

therefore, should be quenched when 2 is about 3000, given the appropriate amplitude (F2)
on the second forcing tone. The amplitude of the second forcing tone depends directly on

the amplitude of the second harmonic, which depends on the quadratic nonlinear coupling
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coefficient equad. The coupling coefficient and the amplitude of the second forcing tone

were found explicitly in Eqs. 3.37 and 3.43, rewritten here as

2f2(L)(k•-k•) ( (.
f12 -k22) (P2L (4.6)

,I= f2(L)(f(x)f(x)) P-• ),

and

F jf 2 (x)Fd2.dV (4.7)
2 jf 2(x)F2 .dV

The ratio P,/Pjlp in Eq. 4.6 was determined experimentally in the previous section

and was shown to depend weakly on the amplitude of the first forcing tone F1. Using the

values in Table 4.1 and Fig. 4.13, the values of eq• as a function F1 is shown in Fig.

4.14. These values are approximate and will only be used as starting points in the

quenching process; adjustments to the experimental setup are expected.

To determine the value of F2, the amplitude of the second forcing tone, Eq. 4.7

shows that the only variable subject to change is F&2, the spatial component of Fd2 (the

effective forcing function that generates the second harmonic):

Fd2 =Fdr2 F2 = equad[p (x,t)]2 -- Fdr2• =eqd[p1(x)] 2, (4.8)

where p,(x,t)=p,(x)p1(t) is the fundamental harmonic response, and p,(t) has an

amplitude of unity. In Eq. 4.8, the amplitude of p, (x) is a function of P L, thus the value

of F2 can be expected to grow as the square of P1L. Since P1L depends directly on F1, then

the amplitude of the second (quenching) forcing tone F2 can thus be written

F2 = F2o,,F,2, (4.9)

where F2,,c•,t is a constant of unit g' which includes the ratio of the volume integrals in

Eq. 4.7 and depends directly on Eqd. Since equja depends only weakly on F1, one value of

e is chosen corresponding to F,=1.2 g, then F2 should behave quadratically as shown in

Fig. 4.15.
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Figure 4.14 Quadratic nonlinear coupling coefficient as afunction offirst forcing tone amplitude.
-4-: The quadratic nonlinear coupling coefficient eqad. The dashed line is a guide to the eye.
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Figure 4.15 Modeled second forcing tone amplitude versus first forcing tone amplitude.
-0-: Second forcing tone amplitude F2.

From Eq. 4.7, the constant F2,co. was calculated as about 1.6 g-'. Thus, given an
amplitude of 1 g on the first forcing tone, to quench the nonlinearly generated second
harmonic, the amplitude of the second forcing tone should be approximately 1.6 g. If the
amplitude of the first forcing tone is doubled to 2 g, then the expected quenching amplitude
of the second forcing tone increases four times, to 6.4 g. The second forcing tone can only
quench the second harmonic, thus if the first forcing amplitude is large, another forcing
tone needs to be introduced to quench the third harmonic due to a combination of quadratic
and cubic coupling effect.

--
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4.2 Single forcing frequency response

This section will compare the single forcing tone response results obtained from the

experimental setup and the computational model. The computational model was limited to

calculating just the first three harmonics. Among other assumptions, the model calculated
the amplitude of the first harmonic assuming no energy loss to the higher harmonics.
Thus, the model will become invalid when significant energy is coupled to modes above
the third harmonic for very large forcing amplitudes. The responses as a function of
frequency with a constant forcing amplitude will be discussed first. Then, as the forcing
frequency is fixed at the fundamental resonant frequency, the responses of the harmonics
as a function of the forcing amplitude will be presented.

4.2.1 Amplitude response (to frequency)

The experimental and computational responses of the gas to frequency sweeps
through the first three resonances with specific forcing amplitudes are shown in Figs. 4.16
to 4.18. Although the forcing amplitudes were kept small, experimentally, nonlinear
effects were still evident by observing the amplitude spectrum. Only the dominant
harmonic components are shown in these graphs. Thus, when the driving frequency is
swept through the second resonant frequency %2, although harmonics with frequencies
2t%, 4%, and so on are excited, Fig. 4.17 assumes these harmonics to be small and only
graphs the dominant response, the o component of the amplitude spectrum. On the other

hand, the computational model assumes linear response so that near the resonant
frequencies, the only response is of the same frequency, no nonlinearly excited harmonics
are present. The variables Q. (quality factors) and n, (resonant frequency ratios) needed in

the model were determined experimentally in Section 4.1. The forcing amplitudes are
F1=1.18 g, F2=2.24 g, and F3=1.64 g, respectively, through the first three resonances.
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Figure 4.16 Experimental and computational response through the fundamental resonance.
Forcing amplitude is 1.18 g. -0-: experimental pressure response amplitude, -U-:
computational values of pressure response amplitudes near the fundamental resonant frequency.
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Figure 4.17 Experimental and computational response through the second resonance.
Forcing amplitude is 2.24 g. -o-: experimental pressure response amplitude, -0-:
computational values of pressure response amplitudes near the second resonant frequency.
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Figure 4.18 Experimental and computational response through the third resonance.
Forcing amplitude is 1.64 g. --&-: experimental pressure response amplitude, -A-:
computational values of pressure response amplitudes near the third resonant frequency.
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The amplitude deviation was smallest for the first resonance, computational values

were about 7% above measured values. The amplitude deviation was much larger for the
second and third resonance responses, the modeled response amplitudes were about 17%
and 35% lower, respectively, than the measured values. The shifts in the values of the
resonant frequencies are mainly the result of assumptions made in determining the resonant

frequencies in the model. For example, the flow of the medium through the area transition

at the center of the resonator is not smooth and will certainly affect the resonant

frequencies.

The next set of graphs (Figs. 4.19 to 4.28) show how the experimental and
modeled amplitudes of the fundamental harmonic (PL) and the first two nonlinearly
generated harmonics (p2 and p3L) behave as the single forcing tone frequency is swept

from a few Hertz below to a few Hertz above the fundamental resonant frequency at a fixed
force.

The forcing amplitude in Figs. 4.19 to 4.23 is FI=1.2 g. Fig. 4.19 shows the

experimental response where the amplitudes of the second and third harmonic are seen to
be about equal at the fundamental resonant frequency fl. The amplitudes of the nonlinear
effects are not maximized at fl, but slightly above it. This pulling effect may be explained
by the non-integer resonant frequency ratios n, which is especially apparent in the second
harmonic response amplitude p2L. A thorough investigation of the pulling effects has not
been conducted. The second maxima or hump on p,2 occurs as a result of the effective

driving frequency on the second harmonic finally matching the actual second resonant
frequency. The effect is better displayed in Fig 4.20, where the amplitude ratios of the
second and third harmonic to the first harmonic are graphed against the driving frequency.
The amplitude of the second harmonic is smaller than its peak value when the driving
frequency is at the fundamental resonant frequency. However, relative to the first
harmonic, the amplitude of the second harmonic is largest when the driving frequency is
exactly one-half of the second resonant frequency (nr=2.02), or about 1% higher than the

fundamental resonant frequency. There is no hump seen for the third harmonic because the
third resonant frequency is almost exactly three times the fundamental, i.e., n,=3.00 .
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Figure 4.19 Experimental amplitudes of thefirst three harmonics near the first resonance.
Forcing amplitude is F1 =1.2 g. The forcing frequency f&. is swept through the fundamental resonant
frequency fl. p2L and P3L (-- and "-, right scale) are about equal at f 1. Changes in P3L occur more
quickly about f l than does p2L because Q3>Q2 . The three arrows refer to frequencies at which the total
pressure profile and amplitude spectrum will be shown in Fig. 4.23. -*-: PIL' left scale.
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Figure 4.20 Experimental amplitude ratios of the second and third harmonics near the first resonance.
Forcing amplitude is F1 =1.2 g. The ratio of the second to first harmonic, 2L P1L (-0-) is largest
when the effective driving frequency (2f&) on the second harmonic is equal to the resonant frequency of
the second mode. p3L/PIL (- -) is maximum at slightly above f l.
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Figure 4.21 Modeled amplitudes of thefirst three harmonics near the first resonance.
Forcing amplitude is F1 =1.2 g. p2L (-0-, right scale) is much larger than measured values while P3L
(-", right scale) is about equal to measured values at f l. P2t is larger because it depends on the square

of PL (-*-, left scale) which is also larger than measured values.
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Figure 4.22 Modeled amplitude ratios of the second and third harmonics near the first resonance.
Forcing amplitude is F1=1.2 g. The ratio of the second to first harmonic, P2LIP1L (-D-) is largest
when the effective driving frequency on the second harmonic is equal to the resonant frequency of the
second mode. P3LP/L (-4-) is maximum at f 1.
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Figure 4.23 Experimental pressure profile and amplitude spectrum about the first resonance.
Forcing amplitude is F1 =1.2 g. (a) top two graphs: driving frequency (283.5 Hz) is below fl.
(b) middle two graphs: driving frequency (284.3 Hz) is at f 1. (c) bottom two graphs: driving
frequency (285.8 Hz) is above f 1. -*-: pressure profile, -0-: amplitude spectrum.
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Figure 4.24 Experimental amplitudes of the first three harmonics near the first resonance.
Forcing amplitude is F1=1.78 g. P3L (-- right scale) is larger than P2L (-0-, right scale) at f i. The
three arrows refer to frequencies at which the total pressure profile and amplitude spectrum will be
shown in Fig. 4.28. -*-: PiL, left scale.
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Figure 4.25 Experimental amplitude ratios of the second and third harmonics near the first resonance.
Forcing amplitude is F1=1.78 g. The ratio of the second to first harmonic, P2LIPL (-0-) is largest
when the effective driving frequency on the second harmonic is equal to the resonant frequency of the
second mode. P3LIPIL (-) is maximum at slightly above f l.
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Figure 4.26 Modeled amplitudes of the first three harmonics near the first resonance.
Forcing amplitude is F, =1.78 g. p2 (--D, right scale) is much larger than measured values while
P3L (---, right scale) is still about equal to measured values at f l. -0-: PitL, left scale.
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Figure 4.27 Modeled amplitude ratios of the second and third harmonics near the first resonance.
Forcing amplitude is F 1=1.78 g. The ratio of the second to frst harmonic, P2LIPIL ( -) is largest
when the effective driving frequency on the second harmonic is equal to the resonant frequency of
the second mode. P3L/PIL ("4) is maximum at f l.
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Figure 4.28 Experimental pressure profile and amplitude spectrum about the first resonance.
Forcing amplitude is F1 =1.78 g. (a) top two graphs: driving frequency (283.3 Hz) is below fl.
(b) middle two graphs: driving frequency (284.23 Hz) is at f . (c) bottom two graphs: driving

frequency (286.7 Hz) is above f l. --- : pressure profile, -0-: amplitude spectrum.
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The modeled results of the frequency sweep through the fundamental resonant

frequency with a forcing amplitude of F1=1.2 g are shown in Figs. 4.21 and 4.22. The

hump in the second harmonic is also present because in the computational model, the
resonant frequency ratios were defined from experimental values of n,. The amplitude of

the modeled second harmonic (Fig. 4.21) at fI is much higher (40%) than experimental

values because the computed amplitudes of the first harmonic is already larger than

measured values, and the second harmonic amplitude depends on the square of the first

harmonic amplitude. The modeled amplitude of the third harmonic P3L, is slightly lower

(12%) than experimental values. Fig. 4.22 shows the amplitude ratios from the model,

P2IIPIL is again maximum at the second hump where the effective driving frequency on the

second harmonic is equal to the second resonant frequency.

The experimental pressure profile and the breakdown to its harmonic components at

three frequency points labeled (a), (b), and (c) in Fig. 4.19 are shown in Fig. 4.23. The

amplitude spectrums in this figure are rough (the frequency resolution is: Af=14.6 Hz), but

sufficient to show harmonics generation. The resolution was kept low to reduce

processing time required by the LabVIEW VI's, which are currently set to calculate the

amplitude spectrums continuously once every two seconds. In Fig. 4.23a, the driving
frequency is at about 0.8 Hz (0.3%) below f,, the amplitude spectrum shows that only the

second harmonic is of significant amplitude. The third harmonic is just beginning to
emerge from the background. In Fig. 4.23b, the driving frequency is at f, and the

nonlinearly excited harmonics have reached near-maximum values. While the pressure

profile show that the overall pressure amplitude is at a maximum, the shape is not as

sinusoidal as in Fig. 4.23a or 4.23c. In Fig. 4.23c, the driving frequency is about 1.5 Hz
(0.5%) above f1. The second harmonic is still of significant amplitude relative to the first

harmonic but the higher harmonics have diminished to negligible levels, which results in a

near sinusoidal pressure profile.

Figs. 4.24 to 4.28 show the same information as Figs. 4.19 to 4.23, except that the
forcing amplitude has been increased by 50% to F,=1.78 g. In Fig. 4.24, the experimental

amplitude of the third harmonic P3L is larger (35%) than the amplitude of the second

harmonic p2 at f1. This was expected since P3L had been found to grow as the cube of PlL,
and p2 only the square of PIL. Fig. 4.25 shows the experimental amplitude ratios P21JP1L
and P3JPIL as a function of forcing frequency. Both ratios have increased from values

corresponding to a lower forcing amplitude (Fig. 4.20), with the ratio P3,pIL increasing
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faster than P2tJPpL. The modeled results for this forcing amplitude are shown in Figs. 4.26

and 4.27. In Fig. 4.26, the amplitude of the third harmonic has increased to about the

same level as the measured values, but the amplitude of the second harmonic is still larger
(46% over experimental p2,) even though its growth rate is lower than the third harmonic.

The modeled amplitude ratios (Fig. 4.27) have also increased from before (Fig. 4.22) in

the similar manner to the experimental results.

The experimental pressure profile and the breakdown to its harmonic components at

three frequency points labeled (a), (b), and (c) in Fig. 4.24 are shown in Fig. 4.28. When
the driving frequency is at fl and F1= 1.78 g, many more harmonics are generated through

nonlinear effects (Fig. 4.28b) than when F1=1.2 g. These higher harmonics are generated

by the increased amplitudes and interactions among the lower harmonics. The pressure

profile in Fig. 4.28b is clearly much less sinusoidal (than the pressure profile in Fig.

4.24b) because of the emergence of the higher harmonics at a larger forcing amplitude.

4.2.2 Amplitude response (to forcing amplitude)

In Section 4.2.1, the experimental and modeled pressure response amplitudes of

frequency sweeps through the first three resonant frequencies were shown (Figs. 4.16 to

4.18). Each of the three resonance-sweep response comparisons corresponded to a

specific forcing amplitude. Now, the frequencies are kept at the three resonant frequencies

while the forcing amplitudes are changed. The experimental and modeled response

amplitudes are compared in Fig. 4.29. The modeled response amplitudes at the

fundamental resonant frequency matched well with experimental values. At both the

second and third resonant frequencies, the modeled response amplitudes were smaller than

experimental values for all forcing amplitudes. Furthermore, the growth rates (slopes) of

the modeled response amplitudes corresponding to the second and third resonant

frequencies are clearly less than that actually measured, especially at the third resonant

frequency (Fig. 4.29c). The cause of the deviations may be related to the assumptions

made in the model on boundary conditions and should be investigated in more detail in the

future.
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Figure 4.29 Experimental and modeled response amplitudes at the first three resonant frequencies.
Response amplitudes at (a) the fundamental resonant frequency, (b) the second resonant frequency,
and (c), the third resonant frequency. -- : modeled response amplitudes, -o-: experimental
response amplitudes.
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The discussion is now turned to comparing the modeled and measured values of the
first three harmonics when the forcing tone is at the fundamental resonant frequency f, and
the forcing amplitude F, varied. Fig. 4.30 shows the experimentally measured values of
the harmonics and Fig. 4.31 shows the computed values with the same scales. In Fig.
4.30, the fundamental harmonic pressure amplitude behaves linearly with the forcing
amplitude at first, when nonlinear effect losses are small, but becomes more and more
nonlinear as the forcing amplitude is increased. The computed fundamental harmonic,
however, behaves linearly with the force because of the assumptions made in the
computational model. In the model, the reduction in the amplitude of the fundamental
harmonic due to energy transferred to the higher harmonics was not included, thus the
computed fundamental harmonic is strictly a function of the force, not of all other
harmonics.

The second and third harmonics increase quadratically and cubically as discussed.
The measured values of p2 and P3L show that experimental curves are approximately equal
at F1=1.3 g while the computed values are equal at F1=1.9 g . The differences between the
measured and computed values for each of the three harmonics are compared individually
in Fig. 4.32. In (a), the measured values are always smaller than the modeled values and
as nonlinear effect losses increase with the forcing amplitude, the measured values increase
with a decreasing rate. In (b) and (c), the same effects are evident. The increases in the
measured values of the second and third harmonics eventually deviate from strictly
quadratic and cubic behavior, respectively, as higher harmonics are generated and extract
energy from the lower harmonics.

Thus, the computational model is seen to predict the amplitudes of the first three
harmonics well for forcing amplitudes below about F1=1.25 g. Beyond this forcing
amplitude, the present model grossly over-predicts the harmonic amplitudes.
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Figure 4.30 Experimental pressure response amplitudes of thefirst three harmonics.
The driving frequency is held at the fundamental resonant frequency f 1. The fundamental harmonic
amplitude Pit (--, left scale) is almost linear, the decrease in the slope is due to losses to higher
nonlinearly generated harmonics which increase rapidly, especially P3L (--0-, right scale). P3L
exceedsp2 (r-, right scale) at about F1 =1.3 g.
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Figure 4.31 Modeled pressure response amplitudes of thefirst three harmonics.
The fundamental harmonic is linear by assumption, p2L=P3L when F1 is about 1.9 g. - I: pit,
left scale, -2-: p2L, right scale, and -: P3L, right scale.
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(a) The fundamental harmonic response at f,
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Figure 4.32 Experimental and modeled pressure response amplitudes of the first three harmonics.
The driving frequency is held at the fundamental resonant frequency f 1. (a) The fundamental
harmonic, (b) the second harmonic, and (c), the third harmonic. -0-: experimental response
amplitudes, -0-: modeled response amplitudes.
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4.3 Multiple forcing frequencies response

In this section, the principle of the active control approach is demonstrated

experimentally. The first objective is show experimentally and computationally that the

nonlinearly generated second harmonic can be quenched by a second forcing tone
(frequency 2f,). If the amplitude of the first forcing tone is kept low (to avoid direct cubic

nonlinear coupling effects), quenching the second harmonic with the second forcing tone

will also result in the quenching of all higher harmonics, as discussed in Chapter 3. When

a second forcing tone is no longer sufficient in quenching all of the higher harmonics

because of the emergence of cubic nonlinear coupling effects, the amplitude of the

unquenched third harmonic is then used to calculate the direct cubic nonlinear coupling
coefficient, eci . A brief discussion on calculating e,ic will be presented, followed by a

discussion on the experimental results to a three-tone (frequencies fl, 2fl, and 3f1) forcing

function that quenches both the second and third harmonics. Finally, the responses to

other combinations of frequency tones in a forcing function will be briefly discussed.

4.3.1 Quenching the Second Harmonic

In Section 4.1.2, the amplitude of the second forcing tone necessary for quenching
the quadratic response of the resonator, F2, was calculated as approximately 1.6Ff g,
where F, is the amplitude of the first forcing tone. The value of F, used here to

demonstrate the quenching of the harmonics is a fixed 1.2 g.

In Eq. 4.5, the relative phase angle between the second and the first forcing tone
was estimated at about 42=300'. If the amplitude of the second forcing tone is fixed while a

sweep of 02 is performed, then the behavior of the amplitudes of the second and third

harmonics can be shown as a function of 02. Three values of F2 were imposed; the

corresponding responses of p2 and P3L as a function of 4 are shown in Figs. 4.33 to 4.38.

In Fig. 4.33, the value of F2 is 1.12 g and is too weak to quench the harmonics

experimentally. Computationally (Fig. 4.34), similar behavior is seen, except that the
computed pL is larger than the experimental values seen in Fig. 4.33. The value of O at

which the second forcing tone destructively interferes with the second harmonic is indeed
seen to be about 3000. The actual measured value of 0 was about 3060.

107



Chapter 4 Experimental and Computational Results

Figure 4.33 Experimental response amplitudes of the second and third harmonics.
Forcing amplitudes are F1 =1.2 g and F2 =1.12 g. The first forcing tone is fixed at frequency fl
while a second forcing tone offrequency 2f I and amplitude F2 is applied and its phase relative to
the first tone, 2, swept from 0* to 360". P3L (-0-) decreases along with P2t (-o-), as expected.
F2 is too weak to quench p2L totally.
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Figure 434 Modeled response amplitudes of the second and third harmonics.
Forcing amplitudes are F1=1.2 g and F2=1.12 g. p2, (--) is larger than experimental values, but
behavior is similar. -o-: P3L.
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Figure 4.35 Experimental response amplitudes of the second and third harmonics.
Forcing amplitudes are F1=1.2 g and F2=1.62 g. Both P2L (-) and P3L (-o-) have been quenched
at i-3062 . The increased F2 also increased the constructive interference amplitude; compare P2L
and P3L at 021300 to Fig. 4.33.
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Figure 4.36 Modeled response amplitudes of the second and third harmonics.
Forcing amplitudes are F1 =1.2 g and F2=2.23 g. Both P2L (---) and P3L (-0-) have been
quenched. F2 here is higher than the experimental F2.
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4

02

Figure 4.37 Experimental response amplitudes of the second and third harmonics.
Forcing amplitudes are F 1=1.2 g and F2 =2.24 g. F2 is too strong so that no value of 02 can
quench P (-*-) and p3L (-0-).
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Figure 4.38 Modeled response amplitudes of the second and third harmonics.
Forcing amplitudes are F 1=1.2 g and F2 =2.78 g. F2 is too strong so that no value of 02 can

quench P21 (-0-) and P3L (--).
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In Fig. 4.35, the second and third harmonics are totally quenched at 4=3060. The

value of F, is 1.62 g and is lower than the computed value of 2.23 g (Fig. 4.36). If the
value of F2 is increased further to 2.24 g, then the quenching of p2 and P3L is not possible
(Figs. 4.37 and 4.38). For all values of F2,, the preceding graphs have shown that

although p, is the only harmonic being quenched, by quenching it, the other (higher)

harmonics are also quenched.

p,'s for all three values of F2 are graphed as a function of I2 in Figs. 4.39 and

4.40. For clarity, not all data points are delineated by symbols for the unquenched p2 and

P3L curves, for both experimental and modeled results. In both experimental and
computational setups, the results show that by increasing F2, the maximum (at 4•1300) of

p, increases, but the minimum (at 42=3060) first decreases to zero and then increases
again. The same behavior is observed about P3L in Figs. 4.41 and 4.42.

When p2L and higher harmonics have been quenched, the leaking of energy from

the first harmonic, PIL, should have been minimized. P1L should behave opposite to p2 and

P,3L when P1L is minimum, p2L and P3L should be maximum, and vice versa. The

experimental PIL's for the three values of F2 are graphed against 0 in Fig. 4.43. Although
for each value of F2, PlL do go through a cycle like p, and P3L, the maximum value of plL
(4=2300) does not occur at where p2 and P3L are minimums (02=306 0). Similarly, PiL is
minimum at 4=600 whereas p2L and p3L are maximums at ~= 1300. The differences in 4 of

(P1L)maximum and (PlL),miniwu from (p2 and P3L)minimum and (p2 and P3L).axim, are both about

700. The causes of the differences have not yet been determined.

Since the nonlinearly generated harmonics represent effective dissipation on the
fundamental harmonic, from previous discussions, the value of the fundamental resonant
frequency f, should increase as the amplitudes of the second and third harmonics decrease.
Similarly, when p, and P3L are at their maximum values, fI should be at its minimum. The
values of f, as a function of 0 and F2 are shown in Fig. 4.44. The vertical shifts in fI as
F, is increased from ig to 2g are due to temperature rises as each experiment was
performed. Without effective nonlinear dissipation, fI should only increase due to the
temperature rise, but fI does decrease as shown, and the cause must be related to the
effective nonlinear dissipation (see Eq. 4.3 and the discussion following it). In fact, fl,
like P,I1 should also behave opposite to p2 and P3L.
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Noting that the temperature rises during the phase sweep from 42=-0 to 4)=3600, the

behavior of fI due to nonlinear effects will be offset by a continuous tendency for the

increasing temperature to increase fl. In Fig. 4.44, f, decreases to a minimum at 4z=1300,

or about the same angle at which P2L and P3L are at their maximums. The amount of

decrease and increase in fI becomes more apparent as F2 is increased because of the

increased amounts of effective nonlinear dissipation in the system. When p•z and P3L are at

their minimums, fl should have increased to a maximum. However, because the

temperature continues to rise beyond 02=3060, fl does not decrease appreciably and in fact,
increases slightly. The increase of f, due to the temperature rise beyond 42=3060 is more

apparent at a low F2 because of smaller effective nonlinear dissipation effects.

The preceding discussions have shown that given F1=1.2 g, with the appropriate

value of F 2, p2 and P3L (and higher harmonics) can be quenched at 42=3060. With a higher

value of F1, however, P2L may be quenched but a nonzero P3L still remain. The remaining

P3L is the result of cubic nonlinear coupling, to be discussed in the next section. Here, two
graphs of P2L and P3L corresponding to F 1=1.78 g and two values of F 2 show

experimentally the emergence of cubic nonlinear coupling effects. In Fig. 4.45, the value

of F2 is 1.68 g and is insufficient to quench the second harmonic p2L. In Fig. 4.46,

F2=3.64 g and is seen to quench p2L at 4)=3060. However, P3L, which was larger than p2

before p2 is quenched, reaches a minimum at )2=3060, but not zero. The unquenched p3L

is the result of direct leakage of energy from the fundamental harmonic to the third

harmonic, a cubic nonlinear coupling phenomenon.
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(P 30 60 90 120" 150" 180 20 24 2701 3000 3300 360W

Figure 4.39 Experimental response amplitudes of the second harmonic.
Forcing amplitudes are F1=1.2 g and F2=1.12 g, 1.62 g, and 2.24 g. The maximum of P2L
increases with F2, the minimum first decreases to zero, then increases again. -0-: F2=1.12 g,
-0: F2=1.62 g, and-*-: F2 =2.24 g. For clarity, not all data points are delineated by symbols
for the F2=1.12 g and 1.62 g curves.

12

Figure 4.40 Modeled response amplitudes of the second harmonic.
Forcing amplitudes are F1 =1.2 g and F2=1.12 g, 2.23 g, and 2.78 g. -o-: F2=1.12 g, -- :
F2=2.23 g, and -*-: F2=2.78 g. Not all data points are delineated by symbols for the F2=1.12 g
and 2.78 g curves.

113

4



Chapter 4 Experimental and Computational Results
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0F 300 600 900 120" 1500 1800 2100 240 2700 300* 3300 3600

Figure 4.41 Experimental amplitudes of the third harmonic.
Forcing amplitudes are F1=1.2 g and F2 =1.12 g, 1.62 g, and 2.24 g. The maximum of P3L
increases with F2, the minimum first decreases to zero, then increases again. -0-: F2=1.12 g,
-0-: F2 =1.62 g, and---: F2 =2.24 g. For clarity, not all data points are delineated by symbols
for the F2=1.12 g and 1.62 g curves.

en

0F 300 600 900 1200 1500 180" 2100 240 2700 300W 330* 3600

#2

Figure 4.42 Modeled response amplitudes of the third harmonic.
Forcing amplitudes are F1=1.2 g and F2=1.12 g, 2.23 g, and 2.78 g. -0-: F2 =1.12 g, --- :
F2=2.23 g, and- -: F2=2.78 g. Not all data points are delineated by symbols for the F2=1.12 g
and 2.78 g curves.

114



Chapter 4 Experimental and Computational Results

Ul

Figure 4.43 Experimental response amplitudes of the first harmonic
Forcing amplitudes are F1=1.2 g and F2=1.12 g, 1.62 g, and 2.24 g. PIL goes through a cycle,
like p21 and P3L , but not entirely opposite in trend as expected. -0-: F2=1.12 g, -0-: F2=1.62
g, and --A-: F2 =2.24 g.

285. 80-
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I
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285.50-
30" 60" 9W 120 15' 180I 210 240" 270W 30" 330" 360"

Figure 4.44 Experimental values of the resonant frequency.
Forcing amplitudes are F1 =1.2 g and F2=1.12 g, 1.62 g, and 2.24 g. The behavior of f is
approximately opposite to the behavior of p2L and P3L; nonlinear effects present an effective
dissipation which decreases the value of f 1. -o-: F2 =1.12 g, --- : F2 =1.62 g, and -- :
F2=2.24 g.
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a0 30" 60" 90W 120" 1500 1800 2100 240" 270" 3000 3300 360'

02

Figure 4.45 Experimental amplitudes of the second and third harmonics.
Forcing amplitudes are F1 =1.78 g and F2=1.68 g. F2 is too weak to quench p2L. P3L ( ) is
seen to be larger than p2 (-4-) at all values of 02.

I
Nr

Figure 4.46 Experimental amplitudes of the second and third harmonics.
Forcing amplitudes are F, =1.78 g and F2=3.64 g. Although p2L (--) is quenched at 02 306 *, P3L
(-0-) is nonzero due to direct nonlinear coupling from the fundamental to the third harmonic- a
cubic nonlinear coupling effect.
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4.3.2 Cubic Nonlinear Coupling

The effective cubic nonlinear equation (ECNE) includes both quadratic and cubic
nonlinear coupling effects:

cCV2- + • = -F, - qp 2 ec, 3 . (4.10)
) C0

When the forcing function Fd consists of two forcing tones,

F,, = F, sin(c,, t)+F 2 sin(2w,t+2 ), (4.11)

where Fr is the drive at the fundamental resonant frequency and Fdri is the drive at twice
the fundamental resonant frequency, then with appropriate values of F2 and 2, quadratic
nonlinear effects (equap2 in Eq. 4.10) are eliminated on average throughout the resonator.

When quadratic nonlinear couplings effects are eliminated, Eq. 4.10 can effectively be
rewritten as

c0V2 _d+- d • •=-F-ecp, 3 (4.12)

where the forcing function F, is modified with a third tone at three times the fundamental
resonant frequency, Fdr 11, to quench cubic nonlinear coupling effects:

Fý = Fsin(o,t)+ F 3sin(3wd,t+ 3) +
Fd F&III

Average cancellation

Fý = F, sin(ot)+ F3 sin(3o,,t+ 03) .
F& __I %, - Fr" (4.13)
FM FM,,

The effective cubic nonlinear coupling coefficient, ecbic, was determined with the
same procedure used to determine eqd With the assumption that ecbic is a real-valued
constant, the explicit form of Ecubic is found to depend on the ratio of the empirical
amplitudes of the third and fundamental harmonics, P3L, / p3:
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=4f(L)2 - k P3L (4.14)
c 3f (L) (3 (x)f, ( (x )) p'at f,pLqawhed

where P L and p3L are the experimental amplitudes of the fundamental and third harmonic

when the first forcing tone is fixed at the fundamental resonant frequency f, and the second
harmonic p, has been quenched by an appropriate second driving tone, f, (x) and f 3(x)
are the first and third eigenfunctions, respectively, (f3(x)f (x)) is the volume integral of

f3(x) and f3(x), k3 is the wave number of the third mode, and k3 is a function of the

driving frequency 3Ro, and dissipation.

Figs. 4.47 to 4.53 show the pressure profiles and the corresponding amplitude

spectrums when the resonator is at the fundamental resonant frequency and the second
harmonic has been quenched. Fourteen values of F1, from 0.6 g to 2.16 g, were used to

show how F, affected the amplitude and shapes of the responses. As these graphs show,

as F, is increased, the increased response amplitude is accompanied by increasing

nonlinearities, seen clearly in both the pressure profiles and the amplitude spectrums.
When F1=2.16 g, the amplitude of the second and third harmonic (Fig. 4.50) are seen to be

about 10% of the fundamental harmonic, resulting in a very nonlinear pressure profile.

When an appropriate second forcing tone is applied to quench the second harmonic,

Figs. 4.51 to 4.54 show the pressure profiles are once again sinusoidal. The
corresponding amplitude spectrums show that for small values of F1 (5 1.08 g), once the

second harmonic is quenched, so are the higher harmonics. As F, increases, however,

cubic nonlinear effects (e.g. the third harmonic) emerge and grow quickly. The amplitude

spectrums also show that the third harmonic is interacting with the fundamental harmonic to

generate a fourth harmonic, and the fourth harmonic interacting with the fundamental

harmonic to generate a fifth harmonic. (The spike at 1500Hz is not a natural harmonic of
the resonator system, it was generated by the computer analysis routine.) At F1=2.16 g,

the total acoustic pressure amplitude was about 155 dB (re 20 gPa) and although its

pressure profile was very nonlinear initially, after the second harmonic was quenched, the

profile is sinusoidal.
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Figure 4.47 Pressure profile and amplitude spectrums, second harmonic not quenched.
Forcing amplitudes are F1 =0.6 g to 0.96 g. The single driving tone's frequency is equal to the
fundamental resonant frequency.
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F1=1.08 g
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Figure 4.48 Pressure profile and amplitude spectrums, second harmonic not quenched.
Forcing amplitudes are F1=1.08 g to 1.44 g. The single driving tone's frequency is equal to the
fundamental resonant frequency.
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Figure 4.49 Pressure profile and amplitude spectrums, second harmonic not quenched.
Forcing amplitudes are F=1.56 g to 1.92 g. The single driving tone's frequency is equal to the
fundamental resonant frequency.
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Figure 450 Pressure profile and amplitude spectrums, second harmonic not quenched.
Forcing amplitudes are F1 =2.04 g and 2.16 g. The single driving tone's frequency is equal to the
fundamental resonant frequency.
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Figure 451 Pressure profile and amplitude spectrums, second harmonic quenched.
Forcing amplitudes are F1=0.6 g and 0.72 g, F2=0.44 g and 059 g. A second tone of amplitude
F2 , at twice the fundamental resonant frequency, is used to quench the second harmonic.
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Figure 452 Pressure profile and amplitude spectrums, second harmonic quenched.
Forcing amplitudes are F1 =0.84 g to 1.2 g, F2=0.80 g to 1.66 g. A second tone of amplitude F2,
at twice the fundamental resonant frequency, is used to quench the second harmonic.
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Figure 4.53 Pressure profile and amplitude spectrums, second harmonic quenched.
Forcing amplitudes are F1 =1.32 g to 1.68 g, F2=1.99 g to 3.18 g. A second tone of amplitude F2,
at twice the fundamental resonant frequency, is used to quench the second harmonic.
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Figure 4.54 Pressure profile and amplitude spectrums, second harmonic quenched.
Forcing amplitudes are F1=1.8 g to 2.16 g, F2 =3.66 g to 5.24 g. A second tone of amplitude F2,
at twice the fundamental resonant frequency, is used to quench the second harmonic.
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In Fig. 4.55, the measured and modeled amplitudes of the second forcing tone
required to quench the second harmonic are graphed as a function of the amplitude of the
first forcing tone. Both measured and computed F2's grow quadratically, but the measured

values at a slower rate than the computed. One cause for this phenomena is that at large
Fj's, the emergence of cubic nonlinear effects competes with quadratic nonlinear effects in

extracting energy from the fundamental harmonic. Since less energy is extracted to the
second harmonic, quenching it will not require as large of a F2 as in the case when only

quadratic nonlinear effects were present.

The amplitude of the cubically generated third harmonic and the ratio pa /P are

shown in Fig. 4.56. The amplitude of the third harmonic is seen to grow approximately
cubically with F1, resulting in a relatively constant value for the ratio P3L / P3. With the

value of this ratio, the amplitude of the third forcing tone, F3, can be calculated that would

quench the third harmonic. The next section will show experimental results to when both

the second and third harmonics have been quenched by the active control approach.
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Figure 4.55 Experimental and modeled second forcing tone amplitude to quench the second harmonic.
Experimental values of F2 (---) are smaller than modeled values of F2 (-0-) because energy leakage
from the first harmonic to the third harmonic is increasing faster than to the second harmonic as the
first forcing tone amplitude F1 increases.
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Figure 456 Amplitude of the third harmonic generated by cubic effects, and the ratio P3L / p.
When the second harmonic has been quenched, the remaining third harmonic P3L (--, right scale)

increases in amplitude as the cube of Fj. The ratio p 3 / p• (-o-, left scale) remains approximately
constant at I x 10-8 (PalPa3).
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4.3.3 Quenching the Second and Third Harmonics

The value of F3 was computed using the empirical data on PIL and P3Li when P2~ has
been quenched by a second forcing tone of amplitude F2. The ratio pX. p,3 enabled the

calculation of C,,bi, whose value is computed to approximately e.i, = 1.7 x 10-7 s4/kg

Fig. 4.57 shows the behavior of F3, which, like F2, can be written as

F3-=F3,,,,,F1,  (4.15)

where F,,, , is a constant of unit g-2 that depends directly on eu.b F3,,o, is found to be

about 0.022 g-2, compared to 1.6 g-1 for F2 om, . Although the units of Fo,,, and F3.,,,

are not the same, with the values of F1 investigated (F,<2 g), the small value of F,, , ,
means that the direct cubic nonlinear coupling effects are weak. Thus, in an amplitude
spectrum, the amplitude of the third harmonic, when only one forcing tone at f, is driving

the resonator, is mainly the result of quadratic nonlinear coupling effects. For F, =2.16 g,

the value of the third harmonic (Fig. 4.54), when the second harmonic is quenched, is

about 16 Pa. This is only about 13% of the full amplitude of the third harmonic (120 Pa)

when the second harmonic is not quenched (Fig. 4.50).

In Fig. 4.57, the computed value of F3 to quench cubic nonlinear effects, given

F1=1.8 g, is about 0.126 g. The experimental amplitudes of the third harmonic as a

function of the relative phase angle between the first and third forcing tones, 03, are shown

in Fig. 4.58. Three values of F3 were applied: 0.033 g, 0.080 g, and 0.164 g. The

behavior of the third harmonic with 43 and F3 is similar to the behavior of the second

harmonic with 02 and F2 discussed in Section 4.3.1. The value of 03 at which the

amplitude of the third harmonic is quenched is about 3080 and F3--0.080 g is about 35%

lower than the computed 0.126 g.

Figs. 4.59 and 4.60 each show three sets of pressure profiles and amplitude

spectrums corresponding to: a single forcing tone at fl, two forcing tones at f, and 2fI

that quench the second harmonic, and, three forcing tones at f,, 2f, and 3f I that quench

both the second and third harmonics. The amplitudes of the first forcing tone are 1.8 g in

Fig. 4.59, and 2.16 g in Fig. 4.60. For both values of F1, the active control approach was

used successfully in quenching both quadratic and cubic nonlinear coupling effects by first

quenching the second harmonic and then the third harmonic.
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Figure 4.57 Computed third forcing tone amplitude to quench the third harmonic.
In this range of the first forcing tone amplitude, 1.0 gSFl53 g, cubic nonlinear effects are small, thus
the third forcing tone amplitude F3 (-0-) needed to quench the third harmonic are small (in the absence
of quadratic coupling through the second harmonic).
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Figure 4.58 Experimental response amplitudes of the third harmonic, the second harmonic is quenched.
Forcing amplitudes: F1 =1.8 g, F2=3.76 g (to quench the second harmonic), and F3= 0.033 g, 0.080 g,
and 0.164 g. The first forcing tone is fixed at f , the second forcing tone at 2f 1 , and the third forcing
tone at 3f . O3 is relative phase between the third and the first forcing tone. -0-: F3 =0.033 g, -o-:
F3=0.080g, and--a-: F3=0.164 g.
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Figure 459 Pressure profile and amplitude spectrums, quenching the second and third harmonics.
Forcing amplitude is F1=1.8 g. Top: single tone at the fundamental resonant frequency, middle:
the second harmonic is quenched by a second tone of amplitude F2, and bottom: the third
harmonic is quenched by a third tone of amplitude F3.
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Forcing amplitude is F1=2.16 g. Top: single tone at the fundamental resonant frequency, middle:
the second harmonic is quenched by a second tone of amplitude F2 , and bottom: the third
harmonic is quenched by a third tone of amplitude F3.
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4.3.4 Controlling Arbitrary Harmonics

In previous discussions, the active control approach had been used to first quench

the second harmonic, and then to quench the third harmonic. In such a sequence, the
effective nonlinear coupling coefficients, q,,d and Ecubic, were measured. The active

control approach can also be applied to quench or amplify any individual harmonic. By
noting the responses of the other harmonics around the harmonic being quenched or

amplified, coupling effects among the harmonics can be directly observed. In Fig. 4.61,

the third and fourth harmonics are each individually quenched.

When the third harmonic is quenched, the higher (fourth and up) harmonics are

seen to decrease to small values. This observation confirms the quadratic nonlinear
coupling model where, without the third harmonic, the fourth harmonic cannot be readily
generated. The energy transfer path is blocked off at the third harmonic (the third order
solution to EQNE, p(3), shown in Fig. 2.2) and higher harmonics are suppressed. The

interaction of the second harmonic with itself is of higher order and does not produce an
appreciable fourth harmonic because of the TRR design.

When the fourth harmonic is quenched, interaction between the second and third

harmonic generate the fifth harmonic. The newly generated fifth harmonic then interacts
with the first three harmonics to generate the sixth, seventh, and eighth harmonics.

Depending on the strengths of the interactions, some harmonics may not be of significant

amplitudes. In Fig. 4.61, the fifth harmonic is clearly present whereas higher harmonics

are negligible in amplitude.
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Figure 4.61 Pressure profile and amplitude spectrums, quenching arbitrary harmonics.
Forcing amplitude is F1=1.8 g. Top: response to single forcing tone at f 1, middle: quenching the
third harmonic blocks energy transfer to higher harmonics, bottom: quenching the fourth
harmonic.
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Forcing amplitude is F1=1.2 g. Top: interaction between the first and fourth harmonics, middle:
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harmonics
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Another method of observing interactions between two harmonics is shown in
Figs. 4.62 and 4.63. First, the amplitude of the first forcing tone is kept low (F1=1.2 g) so

that cubic nonlinear coupling effects are small (Fig. 4.62, top two graphs). A second
forcing tone is then applied to quench the second harmonic and the result is an essentially
linear response - the fundamental harmonic (Fig. 4.62, middle two graphs). Interaction
between the fundamental and another harmonic can be easily observed by introducing the
second harmonic with a third forcing tone with frequency nfl (n_3). In Fig. 4.62, the

bottom two graphs show that the interaction between the fundamental and third harmonic
generated the second and fourth harmonic - the difference and sum of the initial two
harmonics, respectively. The fifth harmonic is also visible and is the result of the
interaction between the second and third harmonics.

In Fig. 4.63, the interaction between the fundamental and the fourth harmonic is
observed first, followed by the interaction between the fundamental and the fifth harmonic,
and finally, the interaction between the fundamental and the sixth harmonic. The sum and
difference harmonics have clearly been generated in each set of interactions. Subsequent

interactions among the generated and existing harmonics help to generate even more
harmonics, as seen in the middle two graphs of Fig. 4.63.

This section (4.3.3) consisted of all experimental results in graphical form,
quantitative analysis of these results have not yet been performed. Proposed future work
on the active control approach and conclusions will be discussed in the next chapter.
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Chapter 5 Conclusions

R results presented in this thesis prove the feasibility of the active control

approach in suppressing nonlinearly generated harmonics. The active control

approach was also shown to be useful in measuring and understanding the interactions

between modes. This chapter will summarize the findings of the current research efforts,

discuss some of the problems encountered, and suggest areas of interest and importance for

future work.

5.1 Summary

An empirical model was developed to model the nonlinear response of an acoustic

resonator. The required empirical data included the actual resonant frequencies f,'s and

quality factors Qn's measured in a linear-amplitude response regime, and the amplitudes of

the fundamental and second (nonlinearly generated) harmonic (p1 and P2) in a finite-

amplitude response regime where the quadratic nonlinear coupling effects dominate.

The model was based on the effective quadratic nonlinear wave equation, EQNE,

where the small-amplitude data were used to determine an effective quadratic nonlinear

coupling coefficient, q,,ad. Although most of the results presented were based on this

model, a more complete model which included cubic nonlinear coupling effects was also

discussed. In this more extensive model using the ECNE (effective quadratic and cubic
nonlinear wave equation), the amplitude of the third (nonlinearly generated) harmonic P3,
when the second harmonic has been quenched, was required in determining the effective
cubic nonlinear coupling coefficient, Ce•,i.
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Resonator Design and the Forcing Function

A harmonic two-radii resonator (TRR) was chosen to demonstrate the quenching

effects more clearly. Quenching nonlinearly generated harmonics in a harmonic resonator
was found to be no more difficult than in an anharmonic resonator. The reason is that the
amplitude of the nonlinearly generated second harmonic and the amplitude of the quenching

harmonic driven by a second forcing tone are both dependent on the factor (2 - k )- .

When the value of this factor changes, say due to a temperature change that changes k2,
both harmonic amplitudes will change by the same amount, resulting in no net change if the
sum of the two amplitudes was zero initially. The amplitudes of the harmonics generated
by nonlinear effects in the TRR, however, are much larger than in an anharmonic
resonator. Thus the TRR was chosen to demonstrate the quenching effects more clearly.

The area ratio between the two ends of the TRR, S,, determined how much power
can be coupled into the second mode of the resonator, in order to quench the nonlinearly
generated second harmonic. The larger the ratio, the more power can be coupled to drive
the second mode. The ratio used in this experiment was S,=1.86 (11.04 in2/5.94 in2).

The forcing function was modeled computationally as a set of Dirac-delta functions
at the three locations of the pistons. This model worked well since the actual displacement
of the pistons was usually less than 5 gm. The actual forcing amplitudes were found using
an accelerometer mounted on the resonator to be 9% to 20% higher than the specified
forcing amplitudes defined in the LabVIEW virtual instruments (VI's). To avoid
confusion, all results presented herein have been based on actual forcing amplitudes. There
were also phase offsets between the measured and specified signals due to phase lags in the
vibrator and the vibrator amplifier. At the fundamental resonance, the offset is about -100 ,

while at the second resonance, the offset is about 100, and at the third resonance, about 200.
These phase offsets were included in the computational model as part of the forcing
functions.

Response Through the First Three Resonant Frequencies

When working within the small-amplitude linear regime, the computed pressure
response amplitudes to a single-tone forcing function F, was found to match well that of

measured response amplitudes. However, the model underestimated the response
amplitudes significantly at the second and third resonances, by about 17% and 35%,
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respectively (Fig. 4.29). The cause of the deviations may be related to the boundary
conditions and other assumptions used in the model, further studies on the deviations are
needed.

The actual values of the resonant frequencies were found to be smaller than the
computed values. The main reason for the differences is the simple boundary condition
assumptions used in the model. Another reason is that the room temperature at any given
day may be a few degrees more or less than any other day, resulting in overall resonant
frequency shifts. Thus, instead of recalculating the resonant frequencies each time, the
more important resonant frequency ratios n,'s, measured experimentally, were imposed
into the model. Another cause for the actual resonant frequencies to be smaller than the
computed values is the effective nonlinear "dissipation", which extracts energy from the
first harmonic into the higher harmonics. Such an extraction of energy is more evident
when the forcing amplitude is larger and affects the quality factor of the fundamental
resonance, Q1, by making it and therefore the resonant frequency fl smaller. Experiments
showed that Q, decreased from about 180 to 140 as the forcing amplitude F, was increased
from 0.36 g to 3.6 g. The decrease in Q, then prompted a decrease in the fundamental
resonant frequency f 1. Other forms of effective dissipation must also be present because
the calculated differences of the measured to computed resonant frequencies due to
decreases in Q, were found to be smaller than the measured differences. A more thorough
investigation of the types and strengths of effective dissipation present in the resonator
system is desirable.

Harmonics Generation by Nonlinear Effects

Measurements of the amplitudes of the harmonics generated by nonlinear effects
were performed by an amplitude spectrum analysis on the pressure response signal. The
modeled response amplitudes of each of the first three harmonics as a function of a single
forcing tone (driving the resonator at the fundamental resonant frequency f, and variable
forcing amplitude F1 ), were found to match well with measured response amplitudes when
the forcing amplitude F, was small (Fig. 4.32). The modeled response amplitude of the
first harmonic was about 10% higher than measured values at F1 =0.5 g, but the over-
estimation increased to about 20% at F1=2.0 g. Similarly, the modeled response amplitude
of the second harmonic is about 20% higher than measured values at F1=0.75 g, and
almost 60% at F,=2.0 g. For the third harmonic, the modeled response amplitude matched
very well with experimental values up to about F1 =1.75 g, the differences between the two
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being less than 5%. Overestimation by the model is over 30% when F1=2.3 g and

continues to grow at an increasing rate. The growth of the modeled response amplitudes is

faster because the effective dissipation (transfer of energy) to higher harmonics was not
included in the model. Thus, with large values of F, (>1.5 g), some assumptions made for

the computational model are no longer applicable and correction factors must be introduced.

The value of eq, was determined from the ratio between the measured amplitudes
of the first and second harmonics: e,,,q pj/pi, where P,, and p, are the amplitudes of

the first and second harmonics, respectively, measured at the right-end of the resonator
(x=L). The forcing frequency is equal to the fundamental resonant frequency. The ratio
p2,/p decreased slightly with the forcing amplitude F1 because as F1 increases, the third

harmonic p3L extracts more and more energy from the lower two harmonics, especially the

second. The value of q,,d used in the experiments corresponded to F,=1.2 g, where

p3L<<p,, and was calculated as about eq,-0.0013 S2 /kg-m.

Quenching the Second and Third Harmonics

In theory, quenching the second harmonic stops the generation of all higher

harmonics in the case when only quadratic nonlinear coupling effects exist. If cubic

nonlinear coupling effects also exist, then the third harmonic will also need to be quenched
in order to eliminate all nonlinearly generated harmonics. The research presented in this
thesis has clearly shown the validity of the theory by use of the active control approach.

Given the responses to a single-tone forcing function, the computational model
successfully calculated the forcing amplitude of the second forcing tone F2 necessary to

quench the second harmonic. For the given resonator design, the relationship between F2

and F1 was determined to be F2,=(1.6g- 1 )F,~, where the constant 1.6 g-' was directly

dependent on equd. The computed F2's were larger than the measured values, especially

for large Fj's because ed was assumed constant when it actually decreases slightly with

Fl (about a 7.5% decrease in eqd from F --0.5 g to Fl =1.5 g).

As the value of F, was increased while actively quenching the second harmonic, the

third harmonic mode began to be excited due to cubic nonlinear coupling effects. Cubic
nonlinear coupling directly couples energy from the fundamental to the third harmonic. To

quench cubic nonlinear coupling effects, a third forcing tone is introduced to quench the

third harmonic after the second has already been quenched. The amplitude of the third
forcing tone F3 can be determined once eCubi is known. e,,bi was determined to depend on
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P3APL,pI where PlL and P3, are the empirical amplitudes of the first and third harmonics.

The value of e,,.b computed was about 1.7 x 107 s4 Ikg, and the relationship between F3

and Fl was determined to be F3=(0.022g-2)F3. The small value of the constant 0.022

g-2 suggested that cubic nonlinear effects (ecubi~p 3) were indeed much smaller than

quadratic nonlinear effects (equJ# 2) in the range of F1 investigated. Experimental results

have shown that quenching both the second and third harmonics virtually eliminated all

higher harmonics, resulting in very clean, sinusoidal pressure profiles. The actual values
of F3 to quench the third harmonic were found to be lower than the calculated values by

about 35%. The phase between the third and first forcing tones, 03, was not calculated

beforehand but was experimentally found to be about the same as 0, at 3000.

Controlling Specific Harmonics

The last sections of Chapter 4 demonstrated that the active control approach could

be used to measure coupling coefficients among the harmonics. The first of two methods

to measure coupling coefficients is to quench a particular harmonic and to see what effect

that has on the other harmonics. The second method is to first quench most of the
harmonics so that only the fundamental harmonic remains. The user then introduces
another tone of interest and observes how this harmonic interacts with the fundamental

harmonic. For example, the interaction between the third harmonic and the first harmonic
was shown to generate the sum and difference harmonics - the second and fourth
harmonics. In turn, the second and third harmonics interact to generate the fifth harmonic.

Similar observations were made on interactions between other combinations of harmonics.

5.2 Conclusions and Future Work

The active control approach has been shown to be effective in quenching
nonlinearly generated harmonics as well as in investigating the coupling effects among the
various harmonics. Much work remain to extend this research to practical applications.
The basic concepts, however, have been shown to work as theorized, in both the

computational model and experimental setups. The following briefly state the conclusions
and suggestions for future work.
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5.2.1 Conclusions

* Amplitudes of nonlinearly generated harmonics can be determined using the
effective quadratic nonlinear wave equation, EQNE. This is a semi-empirical

equation that models quadratic nonlinear effects by an effective forcing term:

eq,,p2, where equad is the effective quadratic nonlinear coupling coefficient and p

is the total acoustic pressure. The model is currently limited to computing the first
three harmonics.

* The effective quadratic nonlinear coupling coefficient in the EQNE was

determined with empirical data on the amplitudes of the fundamental and second

harmonics when the resonator is driven at its fundamental resonant frequency.
The value of eqa, assumed real and positive, was determined as a constant,

eqs,,=0.001 3 s 2/kg.m.

* The amplitudes of the first three harmonics were computed and compared to

experimental values. In each case, the computed values grow faster than the

actual values because effective nonlinear dissipation (energy leaked) from each of

the harmonics to higher harmonics had been neglected.

* Using the model, the forcing amplitude F2 needed to quench the second harmonic

was computed to be related to the first forcing tone amplitude by:
F2 = (1.6 g-L)F'. Applying the active control approach to the experiment setup,

actual values of F2 were found to be slightly lower than computed values.

* Cubic nonlinear coupling effects could be observed and measured after the second

harmonic was quenched. Cubic nonlinear effects were clearly visible when
F1>1.44 g.

* Introducing another effective forcing term to the EQNE results in a quadratic and
cubic nonlinear wave equation, ECNE. The additional forcing term is eci"cP 3,

where e•ai is the effective cubic nonlinear coupling coefficient.

* Harmonics generated by the ECNE were not modeled but ccubic was

experimentally determined to be about 1.75 x 10-7 s4 kg.

142



Chapter 5 Conclusions

* The forcing amplitude F3 to quench the third harmonic was computed and

compared with experimental values. The computed values were higher than
experimental values by about 35% and can be expressed as: F3= (0.0022g-2)F:.

Cubic nonlinear effects were found to be much smaller than quadratic nonlinear
effects in the range of F, probed (0.36 g to 2.4 g).

* The active control approach were used to observe interactions among different

harmonics.

5.2.2 Suggestions for Future Work

Theoryl modeling
* Append computational model to account for current discrepancies found between

computed and measured values of the amplitudes of the harmonics, especially the

higher harmonics. The sources of dissipation need to be investigated more

thoroughly.

* Develop theoretical expressions for the effective nonlinear coupling coefficients,

equa, cubic, etc. Current expressions of these coefficients depend on empirical

data on amplitudes of the harmonic responses.

* Develop expressions for coupling coefficients among the harmonics.

Experimental

* Compute the actual amount of energy extracted from the fundamental harmonic to

higher harmonics.

* Improve and further develop the current feedback system.

* Design and test an anharmonic resonator.
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