
Software Architecture, Path Planning, and

Implementation for an Autonomous Robot

by

Terence Y. Chow

S.B., Massachusetts Institute of Technology (1994)

Submitted to the Department of Mechanical Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1996

© Terence Y. Chow, 1996. All rights reserved.

A uthor
Department of Mechanical Engineering

May 1996

Approved by

Certified by.

Y David S. Kang
Technical Supervisor

Kamal Youcef-Toumi
Associate Professor

Thesis Supervisor

Accepted by .

OF T.ECH-iNOLOGY
Ain Sonin

Chairman, Departmental Committee
JUN 2 71996

LIBRARIES

Eng.

. /

. O. .

Software Architecture, Path Planning, and Implementation for
an Autonomous Robot

by
Terence Y. Chow

Submitted to the Department of Mechanical Engineering
on May 1996, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

A software architecture, including path planning capabilities, was designed and
implemented for Companion, an autonomous mobile robot. The software architecture
consists of modules with specific responsibilities, and these modules were implemented
in the C programming language on the QNX operating system.

Modules performing functions such as navigation, trajectory following, and path
planning were implemented and tested. Navigation, achieved through dead reckoning,
was accurate to a position within 1.2 percent of path length. A trajectory following
system, which allowed the robot to follow lines and circles, worked adequately despite
some transient overshoot and a steady-state off line error of 0.03 meters. Satisfactory
path planners for a point robot in a plane and for a rectangular robot with a turning
constraint were implemented and tested.

Although individual functions were tested, the primary focus was to achieve good
overall system performance. The software architecture and implementations are a
strong framework from which improvements and additions can be made.

Technical Supervisor: David S. Kang

Thesis Supervisor: Kamal Youcef-Toumi
Title: Associate Professor

Acknowledgments

For this opportunity, I must first thank my Draper supervisor Dr. David Kang,
my MIT advisor Prof. Kamal Youcef-Toumi, and my first Draper colleagues: Mark
Abramson, Bill Hall, and Bob Powers.

I am forever grateful to Steve Steiner, my partner in crime, who endured endless
hours of debugging with me. Kudos to everyone else who participated on the project, in
particular to Sean Adam, for his patience in debugging; Bill Kaliardos, for replacing all
those pots and encoders; and Chuck Tung for the new gyro that got really going. I must
also acknowledge all the other guys in the lab who provided endless entertainment.

I thank all of my friends. They have made MIT much more than an engineering
experience.

Finally, thanks to family: Irene, Mom, and Dad.

Biographical Note

Terence Chow was born and raised near Dayton, Ohio. He graduated from
Centerville High School in 1990 and completed dual Bachelor of Science Degrees in
Mechanical Engineering and Mathematics at the Massachusetts Institute of Techno-
logy in May 1994. He completed his Master of Science degree at MIT in May 1996
and will begin a career in software development at Oracle in California.

This thesis was supported by The Charles Stark Draper Laboratory, Inc. (Integ-
rated Sensor Fusion Demo Project IR&D 514). Publication of this thesis does not
constitute approval by The Charles Stark Draper Laboratory, Inc., of the findings or
conclusions contained herein. It is published for the exchange and stimulation of ideas.

I hereby assign my copyright of this thesis to The Charles Stark Draper Laboratory,
Inc., Cambridge, Massachusetts.

Terence Y. Chow

Permission is hereby granted by the Charles Stark Draper Laboratory, Inc. to the
Massachusetts Institute of Technology to reproduce part or all of this thesis.

Contents

1 Introduction
1.1 Companion: A Brief History
1.2 Reaching Companion Goals
1.3 This Thesis

2 Hardware and Operating System
2.1 Mobility Platform
2.2 Sensors .

2.2.1 Hazard Detection Sensors
2.2.2 Mapping Sensors
2.2.3 Navigation Sensors
2.2.4 Actuator State Sensors
2.2.5 Other Proposed Sensors

2.3 Computers.
2.3.1 Tower
2.3.2 Laptop

2.4 Operating System
2.4.1 QNX: An Overview
2.4.2 Message Passing in QNX

3 Software Architecture and Implementation
3.1 Software Architecture
3.2 Implementation Models

3.2.1 Blocked Process Model
3.2.2 Spinning Process Model

3.3 M odules
3.3.1 Sound Module
3.3.2 Cycle Module
3.3.3 Sonar Module
3.3.4 Laser Module
3.3.5 Trajectory Module
3.3.6 Mapper Module
3.3.7 Search3d Module
3.3.8 Search2d Module
3.3.9 Planner Module

25
.. 25
... 27
. 28
. 29
.... 31
.... 31
.... 32
.... 33
.... 33
.... 34
.... 34
.... 35
.... 35
.... 35

Models
. •.. . .•

.•

3.3.10 User M odule

4 Implementation and Testing of the Cycle Module 37
4.1 Hazard Detection 37
4.2 M otor Actuation 37

4.2.1 Drive Motor Actuation 38
4.2.2 Steering Motor Actuation 38

4.3 Navigation 40
4.3.1 Dead Reckoning Equations 40
4.3.2 Testing of Dead Reckoning 44

5 Implementation and Testing of the Trajectory Module 47
5.1 Circle Following 47

5.1.1 Circle Following Controller Derivation 47
5.1.2 Stopping Condition 50
5.1.3 Parameter Selection and Testing. 50

5.2 Line Following 52
5.3 Multiple Command Execution 52

6 Path Planning: Background and Overview 55
6.1 Requirements 55
6.2 Background 56

6.2.1 A* Algorithm 56
6.2.2 Visibility Graph Path Planning 57
6.2.3 Configuration Space Path Planning 59
6.2.4 Potential Field Path Planning 61

6.3 Overview of Companion Path Planning 61

7 Implementation and Testing of the Search3d Module 63
7.1 Search3d Implementation Details . 63

7.1.1 Neighboring Rule 64
7.1.2 Cost Calculation 67
7.1.3 Heuristic Calculation 67

7.2 Testing of the Search3d Algorithm 68

8 Implementation and Testing of the Search2d Module 73
8.1 Derivation of the Search2d Algorithm 73

8.1.1 Revised A* Algorithm74
8.1.2 Neighboring Rules 75
8.1.3 Cost and Heuristic Calculation 77
8.1.4 Review of the Search2d Algorithm 77

8.2 Testing of the Search2d Module 77

9 Implementation and Testing of the Planner Module 79

10 Conclusions and Recommendations 83
10.1 Ideas for Improvement 83
10.2 Ideas for New Development 84
10.3 End Game-A Final Commentary 84

A Search2d Neighbor Tests 87

B Implementation of the User Module 89

List of Figures

1-1 Companion

3-1 Modules in the Software Architecture . . .
3-2 Flow Chart for Blocked Process Model
3-3 Flow Chart for Blocked Process Parent
3-4 Flow Chart for Spinning Process Model
3-5 Flow Chart for Spinning Process Parent

4-1 Steering Model
4-2 Dead Reckoning: Motion During a Cycle
4-3 Dead Reckoning: Center-Rear Motion . .
4-4 Dead Reckoning: Robot Center Motion .
4-5 Long Distance Testing of Dead Reckoning
4-6 Sharp Turning Testing of Dead Reckoning

5-1
5-2
5-3
5-4
5-5
5-6
5-7

Geometry of Circle Following
Transformed Geometry of Circle Following
Circle Following-No Error Case
Circle Following Tests, dt = 0.25
Circle Following Tests, dt = 0.50......
Multi-Command Trajectories
Multi-Command Cusp Trajectory

6-1 A Visibility Graph
6-2 A Reduced Visibility Graph
6-3 A Configuration Space
6-4 A Neighborhood......
6-5 An Expanded Neighborhood

7-1 Neighbors for Search3d-First Iteration
7-2 Adjustment of Path at a Cusp
7-3 Adjustment of Path at a Steering Transition
7-4 Neighbors for Search3d-Second Iteration
7-5 Turning Circles for Search3d Heuristic Calculation
7-6 External Tangent Paths for Search3d Heuristic Calculation
7-7 Internal Tangent Paths for Search3d Heuristic Calculation.
7-8 Example of the four Paths for One Tangent

. 48

. 49

.... 50

.... 5 1

.... 51

..... 52

..... 53

7-9 Sample Paths Generated by the Search3d Module

8-1 Sample Search Situation 74
8-2 Example of a New Obstacle Found 76
8-3 Sample Run of Search2d 78

9-1 Corner-Turning Plan Execution 80
9-2 Doorway Plan Execution 80

A-1 Tangency Test for Neighbors 88
A-2 Close up of an Obstacle 88

List of Tables

2-1 Modules on the Companion Tower 22

3-1 Module Implementation Summary 31

4-1 Results of Steering Control Testing 39
4-2 Results of Long Distance Dead Reckoning Testing 44
4-3 Results of Sharp Turning Dead Reckoning Testing 46

7-1 Allowed Neighbor Transitions 67

Chapter 1

Introduction

Companion, shown in Figure 1-1, is an autonomous mobile robot in the Intelligent

lity
r

Figure 1-1: Companion

Unmanned Vehicle Center at the Charles Stark Draper Laboratory. It is a test bed

for mapping, navigation', and path planning. It features an array of sensors including
bumpers, proximity detectors, sonars, a laser range finder, a gyroscope, and encoders.
Its mobility platform is an outfitted electric wheelchair. Its on board processing is
done by a networked pair of computers running a real time operating system.

This thesis is a description of the design, development, and testing effort on Com-
panion since October 1994. At the time, most of Companion's electrical and mechan-
ical components had been built and some software had been written, but the system
had not been tested. Not surprisingly, the robot did not work. The task was to bring
Companion to a "working" state. What "working" meant was nebulous at the time,
but a set of goals was eventually formulated. The achievement of those goals are the
basis of this thesis.

The software development of Companion since late 1994 was led by this author
and another M.I.T. graduate student, Steve Steiner. The goals, as they evolved during
work on the project were the following:

* Write device drivers to interface all sensors and actuators with software

* Design a software architecture capable of coordinating robot motion, world map-
ping, and path planning, and also develop implementation models for software
components that leverage the existing operating system

* Implement the software system-motion control, mapping, and planning

* Test the system and evaluate the system's performance

The work was collaborative on most of these areas. Exceptions are that Steiner de-
signed and implemented most of the mapping software and this author implemented
most of the planning software. In this thesis, all of the above topics are covered, with
the exception of device drivers2 and the mapping software. 3

The remainder of this chapter is an introduction to Companion, including a history
of the project and a description of goals for Companion. In the final section, a road
map for the rest of this document is provided.

1.1 Companion: A Brief History

The Companion project began in 1993 with the initiative of Dr. David Kang and
internal funding from the Charles Stark Draper Laboratory. At the time, the unnamed
robot was billed as an earth-based, integrated sensor fusion platform. Soon after, the

1The meaning of navigation throughout this document is the practice of recording the position of
the robot, usually as a triple (x, y, 0).

2The device drivers are a difficult issue. Their development was the most frustrating, difficult,
and time-consuming problem overcome on the project. For that reason, they cannot be neglected.
However, they are more a means than an end: sensors and actuators had to function in order to test
mapping and planning programs.

3The mapping software is fully documented in Steiner's thesis, [16].

official focus shifted to developing a robot that could serve as a soldier's companion
in the battlefield. From this original proposal, the robot was dubbed "Companion."

A team of students and Draper employees hence began work on Companion. To
expedite the development of a working mobility platform, Companion took the form
of an outfitted electric wheelchair. It was designed to house a variety of sensors,
with significant processing capabilities. In the ensuing two years, work on Compan-
ion included construction on the mobility platform, wiring of electrical circuits, and
installation of a operating system for the robot's computers. This continuing effort
resulted in a collection of components, some reliable and some hacked. The interface
of the hardware to software (device drivers) also spanned the spectrum of reliability.

In late 1994, Companion still suffered from problems ranging from incomplete
mechanical systems to electronic circuitry bugs to software bugs. At that time, little
focus had been placed on software-neither the development of custom planning and
mapping software nor the testing of device drivers. Over the following year, we worked
to build reliable device drivers and debug previously unseen hardware problems. In
February 1996, the last of the known critical hardware problems was solved, and the
drivers had been completed.

In nearly all cases, efforts were spent on writing reliable drivers for existing sensors
and actuators. This work, with respect to hardware, was a debugging role rather than
a design role. The foresight of Companion's first designers resulted in a sensor-rich
robot capable of autonomous behavior.

During the development and debugging of device drivers, a parallel effort resulted
in the design of the robot's software architecture. Strategies for mapping and path
planning were also researched. The eventual implementation and testing of mapping
and path planning software is the most recent event in Companion's evolution.

1.2 Reaching Companion Goals

The real-world goal for Companion is the ability to autonomously navigate though
cluttered environments. As an example, Companion might be able to roam the halls of
the Draper Laboratory without colliding with photocopiers, door jambs, or engineers.
Such performance requires minimum competence in the areas listed at the beginning
of this chapter. This section is an expansion of the intermediate tasks that progressed
Companion towards its ultimate goal.

The first area of work consisted of the implementation of reliable device drivers.
These routines linked the hardware and software. Companion, having a wide array
of sensors and actuators, required a substantial development and debugging effort in
this area.

The second area of work was the design of a software architecture and imple-
mentation models for its components. The architecture organized the function and
interaction of the different software components. The models were paradigms from
which actual code was developed. Following these skeletal examples provided a sane
manner in which to manage the multi-process, multi-processor, multi-person develop-
ment effort.

Implementation of the software was the third task, and it was divided into three
main areas. The first area, motion control, required navigation and the ability to
follow simple trajectories such as lines and circles. The implementation of mapping
involved the fusion of sonar and laser readings into a single representation of the
environment. This map had to be accurate so that the robot could plan paths based on
the information obtained from it. The third area of implementation was path planning.
Companion's path planner had to quickly generate commands to the actuators to move
the robot around obstacles to a goal position.

The final job, which actually occurred all through development, was the testing
of the system. The testing included testing on individual segments of the software
system as well as on the overall system.

1.3 This Thesis

The main purpose of this thesis is to document Companion's main software com-
ponents, with the exception of the mapping software. The next chapter is an overview
of Companion's electrical hardware, mechanical hardware, computers, and operating
system. Following that is a description of the software architecture and implementa-
tion models. Two components of the software system, Cycle and Trajectory, are then
discussed. After that, four chapters discuss the robot's planning system. Finally, the
conclusion of this document contains suggestions for future work. The time has come
to begin.

Chapter 2

Hardware and Operating System

Companion is a collection of commercial and homemade components, acquired
or built by Draper students and staff. This chapter describes many of the robot's
important components, including the mobility platform, sensors, and computers. The
QNX operating system running on the system's computers is also discussed.

2.1 Mobility Platform

Companion began as a Joystick Sparky electric wheelchair made by the Electric
Mobility Corporation. The main considerations in the selection of the mobility plat-
form were the performance of the vehicle and the ease with which it could be outfitted
for robotic purposes. The Joystick Sparky was selected because it has a powered drive
motor, a powered steering motor, and a small turning radius (0.7 meters). Accord-
ing to the Joystick Sparky specifications, the platform has a top speed of 2.5 meters
per second, a load capacity of 200 kilograms, and a range of 32 kilometers. Because
Companion's batteries supply power to other motors and electronic components, the
range is actually smaller.

The electric drive motor passes through a two-speed gear box and a differential to
provide power to the rear two wheels. The front wheels are not powered but steerable.
During a turn, the inner wheel turns more sharply than the outer wheel, such that the
projections of the axles of all four wheels meet at a single point. This is the geometry
of the Ackermann steering gear layout[l] that minimizes tire slippage.

The Joystick Sparky's original hardware included a joystick that drove circuitry
to control speed and steering. Although this circuitry has undesirable hysteresis and
delay, it was left intact. The joystick was replaced with outputs from a D/A converter.
Hence, control of the mobility platform's motors first passes though the original Joy-
stick Sparky control circuitry.

2.2 Sensors

Companion features a variety of sensors. They can be divided into four categories
by their purpose: hazard detection, mapping, navigation, and actuator state. This

section describes these sensors and briefly discusses some others that were at one time

considered for implementation and that may be added in the future.

2.2.1 Hazard Detection Sensors

For hazard detection, Companion has bumpers and proximity detectors. The eight
bumpers form a ring around the robot's outer circumference, with the exception of
the front wheels, which are exposed. The bumpers behave as electric switches when
objects come in contact with them.

Companion also has eight Aromat area reflective photoelectric sensors. These
proximity sensors are tuned to trigger when objects are about 0.15 meters away. Four
of the sensors are rear-facing. Two are mounted on the steering mechanism and rotate
with the front wheels. The last two are side-facing near the front of the robot.

2.2.2 Mapping Sensors

For environmental mapping, Companion possesses an array of sonars and a laser
range finder. The sonar array consists of 24 Polaroid ultrasonic transducers and
ranging modules. The sonars have a cone width of 0.32 radians and a range up
to 10 meters. An 8-bit A/D conversion limits the resolution of the readings to about
0.04 meters. The sonars are configured in an outward-facing ring of radius 0.21 meters
mounted 0.76 meters off the ground (refer back to Figure 1-1); this provides good sonar
coverage in lateral directions.

Companion also has a laser range finder (an Acuity Research AccuRange 3000)
configured for 300 samples per second at 0.008 meter resolution. The laser is mounted
vertically inside a cylindrical housing protruding from Companion's sonar structure
(again see Figure 1-1). The housing also contains a mirror that can both yaw and pitch.
This provides a full lateral coverage around the robot at pitch angles ranging from
straight down to beyond horizontal. Both motors have encoders and are controlled
by a Motion Engineering motor controller board (see Subsection 2.3.1). Although use
of the laser requires actuation of yaw and pitch motors, the laser and its motors are
usually regarded as a single sensor.

2.2.3 Navigation Sensors

For navigation, Companion carries a gyroscope and two encoders. The rate gyro-
scope, a Systron Donner GyroChip II, drifts at less than 0.06 radians per hour and a
linear acceleration sensitivity less than 0.06 degrees per second per g. The gyroscope
has a dedicated Little Giant Zilog processor responsible for sampling and integrating
angular rate to angular position. The processor also manages serial line communica-
tion to other computers.

Companion has BEI incremental optical quadrature encoders mounted on each of
the front two wheels. The encoders yield 580 counts per meter traveled by the robot,
for a resolution of 0.00172 meters.

2.2.4 Actuator State Sensors

The actuator state sensors provide feedback for the control of motors. The laser
pitch and yaw motors have built-in encoders monitored by the motion control board.
The only actuator state sensors are two steering potentiometers. These potentiometers
measure the position of each of the front wheels relative to the chassis. Their use in
the actuation of the steering motor is discussed in Subsection 4.2.2.

2.2.5 Other Proposed Sensors

Other sensors have been proposed for Companion, including a compass, acceler-
ometers, a vision system, and GPS. Some of these sensors are partially completed,
but because they are not yet integrated into the system, they are not of specific in-
terest. However, the software architecture should allow for easy integration should
these sensors become available.

2.3 Computers

Companion's main processing is done by two networked 486 computers.' One
computer (referred to as the "Tower") is dedicated to communication with the robot's
hardware-the reading of sensors and the actuation of motors. The other computer
(called the "Laptop") is devoted to sensor fusion and path planning. The two com-
puters are networked via ethernet and are both running the QNX operating system
(described in Section 2.4).

The motivation behind the selection of these computers is that they are off-the-
shelf, commercial products. This provides the advantages of technical support, easily
replaced parts, and in some cases, more affordable components. In addition, it allows
work to focus on integration of the components rather than debugging them.

2.3.1 Tower

The first computer, the Tower, is a stack of PC/104 boards: a CPU module, a
serial/parallel port module, a digital/analog I/O module, an ethernet module, and a
motor control module. The manufacturers and relevant specifications of these modules
are summarized in Table 2-1.

The primary function of the Tower is to communicate with the robot's sensors and
actuators. Most of the Tower modules were purchased prior to the full design of the
robot system, i.e. before it was known how many serial lines, digital I/O lines, etc.
would be needed. The requirements of the modules were overestimated so that we
could accommodate the addition of new sensors and actuators to the system. The
minimal requirements were several digital I/O lines, several analog I/O lines, several

1Companion actually has a third processor, a Z-World Z180 mentioned in Subsection 2.2.3. It is
not discussed here because it is dedicated to Companion's gyroscope.

Table 2-1
Modules on the Companion Tower

Module Manufacturer and Product

Specifications/Features
Processor Ampro CoreModule/486

Cyrix CX486SLC CPU and 2MB RAM
I/O Real Time Devices DM406

16 analog and 16 digital I/O lines
Serial/parallel port Ampro MiniModule/SSP

2 serial and 1 parallel ports
Ethernet Ampro MiniModule/Ethernet-TP

Motor Control Motion Engineering 104/DSP
4 axis control

serial ports and a parallel port. The use of a PC/104 bus also provides the ability to
add special modules to the stack (such as the motor control module).

The configuration of the Tower went through several iterations before the final
state described here. However, the primary function of the Tower has not changed: it
is still a processor dedicated to interfacing with the robot's hardware.

2.3.2 Laptop

Companion's second computer is a Winbook XP laptop computer with an Intel
486DX4/100 CPU, 16MB of RAM, and a Linksys Combo PCMCIA EthernetCard. It
is called the Laptop. Its function is to perform sensor integration and path planning.
In the selection of this computer, interest was primarily in portability, processor speed,
and cost. In essence, the requirement was a fast, affordable, laptop computer. The
Laptop, with its own battery and display, has the additional feature of being an off-line
development environment.

Historically, the Winbook is the second of two computers used for Companion's
mapping and planning functions. An Inex Notebook Computer (486SLC/25) preceded
it. Companion's performance improved with the faster computer, and because the
transition from one laptop to another was relatively simple, processor upgrading may
in the future be a efficient means of improving the robot's performance.

2.4 Operating System

At the heart of Companion's software is an operating system that manages the
computers' resources, including the scheduling of programs running on the system and
communication among them. This section discusses the QNX operating system, first as

an overview, and then in terms of its interprocess communication (IPC) architecture.

2.4.1 QNX: An Overview

QNX is the operating system running on Companion's computers. QNX is a UNIX-
like, real time operating system achieving its efficiency, modularity, and simplicity
through its microkernel architecture and its message-based IPC[14]. The QNX Kernel
is small (8K) and dedicated to only two functions: the routing of messages among
processes running on the system and the scheduling of processes to execute. IPC, a
key in developing applications with multiple cooperating processes, is handled in QNX
with message passing. QNX messages are packets of bytes sent from one process to
another-the meaning of the bytes is left for the two processes to interpret.

The beauty of QNX's message passing IPC is that it can be done transparently
over a network. Packets can be sent to and received from processes running on re-
mote resources as though they were on the same computer. This architecture allows
the development of a multi-process software system executing on several computers
simultaneously without the difficult task of managing the inter-computer communic-
ation. In addition, it provides a convenient way to decrease the load of any one
processor: distribute simultaneously running processes over more computers on the
same network.

As a historical note, in the early stages of Companion design, a third computer
was included as a dedicated processor for a vision system. This system has not yet
been completed, but if it ever is, the use of QNX will allow easy integration of the
new computer into the network and communication to processes running on it.

2.4.2 Message Passing in QNX

QNX message passing is accomplished through four library functions. These func-
tions, provided in the C programming language,2 are Send(, Receive(, CreceiveO,
and Reply(. To describe the procedural flow of a program utilizing these functions, a
typical interaction of two processes using message passing is presented. The follow-
ing sequence is based on an example in [14]. Suppose two processes, A and B, are
running on the same network. The following events occur:

1. Process A issues a Sendo request to process B. The request contains a packet
of bytes for process B to interpret. After issuing the request, process A halts
execution until it receives a reply to that request.

2. To accept the message, process B issues a Receive(request. It can then in-
terpret the packet sent from process A. If no message is waiting for process B
when it issues the Receive0 request, it halts execution until a message becomes
available.

2The implementation of QNX's message passing functions in C all but required Companion's
software to be developed in C, but no one is complaining.

3. Once process B receives the message, it may interpret the data and possibly
execute other instructions. It then issues a Reply(to the message. The reply
also contains a packet of bytes that may be interpreted by process A. Process A
resumes execution when a reply from process B becomes available, and the cycle
is complete.

The Creceive0 function was not used in this example. This function is similar
to Receive(except that it does not block the issuing process. Instead, it accepts a
message if there is one waiting and returns immediately. Creceive(allows a process
to periodically poll for messages without causing the process to block. In the example,
had process B used CreceiveO instead of Receive(, it would have only accepted the
message sent from process A if it were already waiting when Creceive(was called.

Processes in QNX are always in one of four states with respect to their communic-
ation with other processes. An executing process is in a READY state. If it issues a
Send(request, it is SEND-blocked until the destination process receives the message,
at which time it becomes REPLY-blocked. It returns to the READY state after it
receives the reply. A process is RECEIVE-blocked if it has issued a Receive(request;
it returns to the READY state after the message arrives.

As a preface to the next chapter, one finds that message passing is the best way
to manage IPC in QNX. Failure to use message passing can only create inefficiencies
in a QNX software system. With that in mind, read on.

Chapter 3

Software Architecture and
Implementation Models

An important step in Companion's development was the design of a software ar-
chitecture to allow Companion to execute its mission. The point of the software
architecture was to divide the large implementation task into smaller pieces. In the
end, the development task was divided into individual modules that had their own
specific responsibilities. The modules were integrated as they were completed.

The modules themselves also conformed to a standard. Implementation models
were created to serve as paradigms for the real development. By following these
paradigms, a standard interface among the modules was maintained. This made the
integration of the components an easy task. The paradigms were also important
because they leveraged the message-passing IPC feature of QNX.

This chapter first presents the software architecture-a network of modules. Then
it describes the module models-a pair of implementation examples. Finally, the
function of the individual modules are described. In later chapters, the inner workings
of th some of the modules are covered. For now, the main interest is in the organization
of the system and the interconnectivity of the modules.

3.1 Software Architecture

The software architecture, a product of legacy code, iteration, and foresight into
the needs of the system, appears in Figure 3-1. To date, this figure is the best one-page
summarization of Companion's software yet devised. Each of the boxes, rounded and
square, is one module in the system. Each module is a separate process running on
Companion's computers with its own responsibilities.

There is a hierarchical implication from Figure 3-1. "Parent" modules are con-
nected to "child" modules via directed arrows. The User module tops the hierarchy;
the Sound and Cycle module reside at the bottom. Although planning hierarchies
are a current topic of research, they are not a primary interest in this thesis. The
evolution of this structure came about mostly from an interest in manageable software
implementation.

aptop

ower

Figure 3-1: Modules in the Software Architecture

Although specific details about the modules appear later in this chapter, it is
informative to have a brief functional overview here:

Sound This module manages the built-in speakers on the two computers.

Cycle This module reads hazard sensors, actuates motors, and performs navigation.

Sonar This module collects readings from the sonar array.

Laser This module collects readings from the laser range finder.

Trajectory This module commands the robot to follow line and circle trajectories.

Mapper This module integrates sensor readings into a map of the environment.

Search2d This module is a low-detail path planner.

Search3d This module is a high-detail path planner.

Planner This module coordinates path planning with plan execution.

User This module is the interface to the user.

The architecture is designed for extensibility. As an example, consider the vision
system was once proposed for Companion. Based on the architecture, a Vision module
would fit nicely in parallel with the Sonar and Laser modules. Naturally, the Mapper
module would change to accommodate the new sensor, but the Search2d and Search3d
modules' interface to the Mapper would not. As another example, a compass could be
added as a new navigation sensor. Integration of the compass would require changes
in the Cycle module, but to no other.

3.2 Implementation Models

QNX's interprocess communication features made it clear that each of the modules
in the software architecture should be implemented as separate processes. Each process
is a main program running on either the Tower or the Laptop that communicates
via message passing to other processes. The models provide guidelines on how to
implement a process with standard procedural execution and a standard interface.
By developing all modules as processes following these models, a system consisting of
uniform components is created. The hope is that such a system is easier to develop,
debug, and learn.

there is a semantic clarification to make about the use of the terms "module" and
"process." A module, such as Cycle, is a component of the software architecture
and exists independently of its implementation. Now, as discussion shifts to actual
development in QNX, the Cycle process is discussed; this is the implementation of the
Cycle module.

The models are based on the execution of commands. A process accepts a com-
mand (via message passing) from a parent process, executes it, and replies to the

parent (again via message passing). A process may have more than one parent. A
complete system consists of a set of active processes, each commanding their child
processes and executing commands from their parents. Two models for the modules
have been developed: the blocked process and the spinning process. A blocked process
performs no function until requested to do so. A spinning process continually per-
forms its functions and periodically checks if a command has been sent to it. These
models are discussed in detail below.

3.2.1 Blocked Process Model

A blocked process normally sits idle. When it receives a command, it executes
it, and replies to the commanding process with data or an acknowledgment of the
completion of the command. It is then idle once again. A flow chart for this type of
process appears in Figure 3-2. The parent of a blocked process is not required to wait

Figure 3-2: Flow Chart for Blocked Process Model

for the completion of the command before continuing execution. Instead, it can issue
the command, go about its own business, and periodically check for the completion of
the command. A flow chart for such a parent program is shown in shown in Figure 3-3.

The blocked process is tailored for tasks that take "a long time" to complete. A
long time is really just the length time that one is unwilling to halt execution to wait
for the completion of a command. In the Companion system, a long time is on the
order of several milliseconds or longer. An example of a blocked process is the Sonar
module. For an object 10 meters away, roughly 50 milliseconds elapse between a
sonar ping and the return signal. Since this program uses the blocked model, a parent
process can request a sonar reading, perform other useful tasks for 50 milliseconds,
and then collect the range reading.

From Figure 3-2 and Figure 3-3, there is a reversed SendO, CreceiveO, and Reply0
sequence between the blocked process and its parent. The parent process "spawns"
the blocked process and waits for a message from it. The blocked process initializes
by sending a message to the parent and remains suspended until it gets a reply. The
parent issues a command by replying to the blocked process. At this point, both

Figure 3-3: Flow Chart for Blocked Process Parent

processes are in the READY state. The child executes the command and when it is
finished, it sends a message to the parent and repeats the cycle. The parent process
continues execution and periodically checks if a response is available. When it is, the
cycle is complete and the parent can issue another command with a Reply(.

3.2.2 Spinning Process Model

The spinning process model is simpler than the blocked model. Flow charts for
this model and its parent appear in Figure 3-4 and Figure 3-5.

The spinning process continually cycles through an execution sequence. One step
in the sequence is a Creceive0 call that checks if a command is waiting. If one is, then
it is immediately processed, and a reply sent. The spinning process then continues. A
parent can issue a command to the spinning child but is blocked until the child replies.
Thus, for this model to be efficient, the spinning process must execute in a fast loop,
so that the parent does not have to wait long for the execution of a command.

An example of a spinning process module on Companion is the Cycle module,
which is responsible for navigation. It is implemented as a spinning process so that
parent processes can quickly obtain the most recent position information and so that
Cycle can continually update the robot's position.

Figure 3-4: Flow Chart for Spinning Process Model

I Start spinning process I

Issue command/wait for response
Send();

Process responseI

Figure 3-5: Flow Chart for Spinning Process Parent

3.3 Modules

This section discusses the modules in the software architecture in more detail. This
includes a general description of their function and full sets of commands that each
module is able to execute. By enumerating these commands, one can gain insight on
how each modules is used in the overall software scheme. Table 3-1 is a summary of the

Table 3-1
Module Implementation Summary

Module Model Computer Timing Notes
Sound spinning Tower spins at about 20 cycles per second
Cycle spinning Tower spins at about 5 cycles per second
Sonar blocked Tower takes about 0.025 seconds for a reading
Laser blocked Tower takes about 2 seconds for a full theta sweep

Trajectory spinning Tower spins at about 2 cycles per second
Mapper spinning Laptop n/a

Search3d blocked Laptop takes about 2 seconds for a search
Search2d blocked Laptop takes about 1 second for a search
Planner spinning Laptop n/a

User n/a Laptop n/a

implementation of the modules on Companion. Note that although the Mapper and
Planner modules are implemented as spinning processes, their spinning rates are not
of particular significance because they do not really affect the systems' performance.
Implementation and testing results for the Cycle, Trajectory, Search2d, Search3d, and
Planner modules are provided in later chapters of this document. The User module
is explained in Appendix B.

3.3.1 Sound Module

The Sound module, implemented as a spinning process, is the simplest of the
Companion modules. It is responsible for managing the built-in speakers on the Tower
and the Laptop. Each built-in speaker (one per computer) is capable of emitting a
single tone at one frequency. The Laptop is node 1 on the network, and the Tower is
node 2.

The Sound module is used primarily as a diagnostic and debugging tool. For
example, as a safety feature, whenever the laser beam is powered, the Tower speaker
is commanded to PULSE. Sound has also used during program testing and debugging
to detect when certain blocks of code were executing. The final version of Companion's
software system uses Sound only as a warning for the laser. It features the following
commands:

STOP() Causes the Sound module to exit.

ON(n, p, oct) Turns on the speaker on node n at pitch p in octave oct.

OFF(n) Turns off the speaker on node n.

BEEP(n, p, oct, dur) Turns on the speaker on node n at pitch p in octave oct for a
dur seconds, then off.

PULSE(n, p, oct, dur) Repeatedly toggles the speaker on node n at pitch p in octave
oct at intervals of dur seconds.

3.3.2 Cycle Module

The Cycle module, also a spinning process, is the interface to actuators, navigation,
and hazard sensors. Through this module, we can command the robot to move and
turn. A parent module can also query the position of the robot and the state of its
hazard sensors. Although the Cycle module monitors the hazard detectors, it takes
no action when they are triggered-that is the responsibility of the Trajectory module

(see Subsection 3.3.5).
The Cycle module internalizes the sensory information required to determine the

robot's position. Companion happens to use a gyroscope and encoders for navigation,
but if, say, it used GPS instead, the interface to Cycle would remain the same. From
the perspective of a parent of the Cycle module, the means by which the position is
determined is not relevant-at that level, the parent just wants to know where the
robot is.

The Cycle module supports the following commands:

STOP() Causes the Cycle module to exit.

READ() Requests the current state of the robot: elapsed time since the beginning
of the mission; the robot's position (x, y, 0); the state of the eight bumpers and
eight proximity detectors; and the robot's current speed and curvature (s, p).

MOVE(s) Commands the robot to move at a speed s meters per second. (The value
of s is positive for forward motion and negative for reverse motion.)

TURN(p) Commands the robot to turn at a radius 1/p. (The value of p is positive
for right turns and negative for left turns.)

FIXX(newx) Changes the x position of the robot to newx.

FIXY(newy) Changes the y position of the robot to newy.

FIXH(new9) Changes the 9 position of the robot to newO.

3.3.3 Sonar Module

The Sonar module, not unexpectedly, manages Companion's sonar array. A sonar
reading consists of both a range measurement and the position of the robot when the
reading was taken. Hence the Sonar module is a parent of the Cycle module. Sonar
uses the Cycle READ() command to determine the robot's position. It is a blocked
process and supports the following commands:

STOP() Causes the Sonar module to exit.

PING(x) Pings the xth sonar and responds with the range of the reading, the (x, y, 0)
position of the robot during the ping, and the angle of the sonar with respect to
the robot's chassis.

3.3.4 Laser Module

The Laser module, a blocked process, manages Companion's laser range finder
and its associated positioning motors. Like Sonar, Laser uses the Cycle module to
determine the position of the robot at read times. The Laser module is also a parent
of the Sound module: as a safety feature, whenever the laser beam power is on, the
the Laser module commands the Tower speaker to pulse. This module supports the
following commands:

STOP() Causes the Laser module to exit.

POSITION() Requests the current position of the laser (0, 0), where 0 is the yaw
angle and 4 is the pitch angle.

PHISWEEP(new€, n) Sweeps the laser from its current position (0, €) to the pos-
ition (0, newo) while taking up to n readings. The Laser module responds with
an array of range readings, the positions of the laser, and the positions of the
robot at which the readings were taken.

THETA_SWEEP(newO, n) Sweeps the laser from its current position (0, q) to the
position (newO, €) while taking up to n readings. The Laser module responds
with an array of range readings, the positions of the laser, and the positions of
the robot at which the readings were taken.

READ() Takes a single reading of the laser at its current position. The module
responds with the range reading, the position of the laser, and the position of
the robot at which the reading was taken.

HOME() Moves the laser to its "home" position (0, 7r/2).

BEAMPOWER(flag) Turns on or off the laser beam depending on the value of
flag. Naturally, readings can only be taken when the beam is on.

MOTOR_POWER(flag) Turns on or off the position controller for the laser motors
depending on the value of flag. The laser will not move unless the motor power
is on.

3.3.5 Trajectory Module

Companion's Trajectory module provides powerful commands that allow Compan-
ion to perform line following and circle following. Naturally, it must issue commands
to Cycle in order for the robot to move. Trajectory can accept a set of lines and circles
and execute them sequentially. Trajectory also protects the robot by halting its mo-
tion when hazards are detected and has provisions for escaping from hazard-triggered
states.1 Commands supported by the Trajectory module are:

STOP() Causes the Trajectory module to exit.

READ() Requests the status of a line or circle following command. Returned para-
meters include the robot's off line distance, the distance remaining on the com-
mand, flags for hazard detection, and the number of commands yet to be ex-
ecuted.

FOLLOWLINE(x, y, 0, dir) Adds to the queue a command that causes the vehicle to
follow the line passing through (x, y) with direction 0. The sign of dir specifies
whether robot should move forwards or backwards in following the line. The
robot stops when it passes the point (x, y).

FOLLOWCIRCLE(x, y, r, 0, dir) Adds to the queue a command that causes the
vehicle to follow the circle with center (x, y) and radius r. The sign of dir
determines whether the robot moves forwards or backwards. The robot stops
when its heading is 0.

CANCEL() Clears the queue of commands

HALT() Temporarily stops the robot from moving without disturbing the queue.

CONTINUE() Resumes execution of commands disrupted by a HALT command.

3.3.6 Mapper Module

The Mapper module, the main topic of [16], is implemented as a spinning process.
It is the parent of both the Laser and the Sonar processes. Its responsibility is
to generate a representation of the robot's environment. It supports the following
commands:

STOP() Causes the Mapper module to exit.

FREEZE(flag) Depending on the value of flag, causes the Mapper to halt or resume
updating of the map. This is useful because it allows the search modules to
perform their function on a static map. When halted, the Mapper may continue
to collect sensor readings but cannot incorporate them into the map.

SENSE(flag) Depending on the value of flag, causes the Mapper to halt or resume
sensing of the environment.

Inot yet implemented

3.3.7 Search3d Module

The Search3d module, a blocked process, is a high-resolution search routine. It
generates paths that consider the robot's environment and its kinematic constraint. It
is really an extension of the Planner module, but implemented separately because of
its special functionality. It has only two commands:

STOP() Causes the Search3d module to exit.

SEARCH(x8 , y., 0,, x,, y9 , O9) Generates a sequence of commands compatible with
the Trajectory module for moving the robot from (x,, y,, O,) to (x, y9 , Og).

3.3.8 Search2d Module

The Search2d module, also a blocked process, is a low resolution search routine.
It generates coarse paths consisting of one or more way points and ignores the robot's
kinematic constraint. Each way point is an intermediate position on the path specified
by x and y coordinates. It, like Search3d, is an extension of the Planner module. Its
two commands are:

STOP() Causes the Search2d module to exit.

SEARCH(x,, y,, x, y,) Generates a sequence of way points for moving the robot
from (x,, y,) to (xg, yg).

3.3.9 Planner Module

The Planner module, implemented as a spinning module, is the coordinator of path
planning and plan execution. In the future, it may support a variety of missions. At
this time, it only supports a way point command that moves the robot to the point

(xg, yg, 0,). Its commands are:

STOP() Causes the Planner module to exit.

WAYPT(x,, y., 0,) Causes the Planner to begin a mission to move the robot to the
goal point (xz,y 9 , 9 g) (using the Search3d, Search2d, and Trajectory modules).

HALT() Causes the Planner to give up on the mission and stop the robot.

READ() Requests that the Planner provide information regarding the status of the
mission.

3.3.10 User Module

The User module is the top level of Companion's software. It is not a true module
because it has no parents, and hence cannot accept commands. Instead, it is the
parent of the Planner module. Through the user interface in this module, Companion's
operator can specify a way point or abort a mission.

Chapter 4

Implementation and Testing of the
Cycle Module

The Cycle module has three responsibilities: hazard detection, motor actuation,
and navigation. Hazard detection serves as the last line of defense against collisions
with obstacles. Motor actuation provides an interface to the robot's drive and steering
motors. Navigation is the monitoring of the robot's position. These three functions,
as implemented for Companion, are described in this chapter.

4.1 Hazard Detection

Cycle's hazard detection consists of reading Companion's bumpers and proximity
detectors. When these sensors are triggered, an obstacle has violated the robot's safety
radius. In the Cycle process, this hazard detection is the simple matter of regularly
reading all bumpers and proximity detectors (via the digital I/O board on the Tower).

4.2 Motor Actuation

Cycle controls Companion's drive motor and steer motor. To provide a convenient
interface to external programs, the Cycle module allows the drive and steer motors to
be commanded with speed and curvature (the inverse of turning radius) arguments,
respectively. This interface is convenient for other modules, such as Trajectory, and
portable to other robots.

As described in Section 2.1, Companion's mobility platform originated as an elec-
tric wheelchair. Cycle's interface to the motors are D/A lines, each having a range of
0 to 4095 with 8 bits of resolution. The wheelchair's control system uses these analog
signals as a reference for its own closed loop control over the drive speed and steering
angle. The task here is to determine the appropriate digital values to make the robot
move at the desired speed and curvature.

4.2.1 Drive Motor Actuation

It turns out that fine control over the robot's speed is not necessary-for safety
reasons, all testing was done with the robot moving at very slow speeds. Consequently,
no time was spent developing a real controller for speed. However, the digital value
which resulted in a speed of zero was found. Values greater than that give forward
motion, and smaller values give reverse motion. The Cycle module has five speeds:
fast reverse, slow reverse, stop, slow forward, and fast forward. These speeds are not
calibrated but instead represent what can be considered reasonable. They are slow
enough that there is no fear of a runaway robot, but fast enough that patience is not
lost.

4.2.2 Steering Motor Actuation

To command the robot's curvature, the desired curvature (p) is first mapped to
the equivalent angles of the front wheels. This mapping is based on a no-slip model
of motion. The vehicle is modeled as rectangle, with a wheel a fixed distance, D,
from each vertex. The rear wheels are aligned with the robot chassis and cannot be
steered. The front wheels may be steered, but only such that the projections of all
four wheels' axes intersect a common point (see Figure 4-1). The front wheels rotate

•¢d!

L

o --__ _ _ _ _ _ _ _--- -

1/p

Figure 4-1: Steering Model

about one vertex of the rectangle, but the effective contact point with the ground is
offset from the vertex by the distance D. The axle-to-axle length of the robot is L,
and the width of the robot is W. With this model, the instantaneous direction of
travel is perpendicular to the rear axle, and no wheel is ever slipping.

The curvature command uses the center of the rear axle as the reference point of
the curvature, as shown in Figure 4-1. In other words, this point ideally travels in the
path of a circle with radius 1/p. The angle that each of the front wheels (q, and 1)
should have to achieve the desired curvature are given by:

O = tan- 1 PL)

01 = tan-1' PL

(4.1)

(4.2)

These are the desired steering angles for the front two wheels. Note that for a straight
line, p = 0 and the equations are still well-behaved.1

To move the steering wheels to the desired angle, a lookup table is used. The
lookup table maps the desired steering angle to the digital value that causes the wheel-
chair control system to maintain position control at that angle. The lookup table was
generated once and stored as a static array in the Cycle program. It was known that
the lookup table would provide only marginal performance, but it was an easy way to
get the robot up and running.

The performance of the lookup table was tested by commanding curvatures and
observing the actual turning radius of the robot. For the rest of this section, commands
are given as radius commands, which are easier to interpret. Testing involved left and
right turns with radii ranging from 0.5 to 1.5 meters (negative radius for left turns),
as shown in Table 4-1.

Table 4-1
Results of Steering Control Testing

Desired Radius Radius Commanded Actual Radius Error
meters (1/meters) meters (1/meters) meters (1/meters)

-1.500 (-0.667) -1.504 (-0.665) -1.613 (-0.620) 7.53% (7.00%)
-1.250 (-0.800) -1.250 (-0.800) -1.350 (-0.741) 8.00% (7.38%)
-1.000 (-1.000) -1.006 (-0.994) -1.073 (-0.932) 7.30% (6.80%)
-0.750 (-1.333) -0.760 (-1.316) -0.823 (-1.216) 9.73% (8.80%)
-0.500 (-2.000) -0.501 (-1.998) -0.585 (-1.709) 17.00% (14.55%)
0.500 (2.000) 0.546 (1.830) 0.583 (1.717) 16.60% (14.15%)
0.750 (1.333) 0.776 (1.288) 0.805 (1.242) 7.33% (6.85%)
1.000 (1.000) 1.022 (0.978) 1.068 (0.937) 6.80% (6.30%)
1.250 (0.800) 1.287 (0.777) 1.338 (0.748) 7.04% (6.50%)
1.500 (0.667) 1.572 (0.636) 1.655 (0.604) 10.30% (9.40%)

In each test, a turning radius was selected (first column of table). The lookup

'Using curvature instead of turning radius avoids the numerical problem
turning radius when the robot is commanded to move straight.

of specifying an infinite

table selects a digital value, sends it to the steering motor controller, and the wheels
move. The inverse lookup table then takes readings from the steering potentiometers
and predicts the radius that the robot will actually move (second column). The robot
then actually goes in a circle. The radius, as physically measured, is shown in column
three. Finally, the computed error between the measured and commanded radii is
shown in column four. The average error was less than 10%-not particularly good,
but adequate.

4.3 Navigation

Navigation, the monitoring of Companion's x, y, and 0 positions, can be accom-
plished in many ways, depending on the availability and accuracy of sensors. Some
sensors, such as GPS and compasses, give reading relative to the earth. Other sensors,
such as encoders and gyroscopes, provide readings relative to a starting position. Com-
panion only has sensors of the latter type. Hence, Cycle's navigation is done through
dead reckoning-the robot's position is found by integrating readings from sensors
and is known relative to a starting position.

This section first presents the geometry required to determine the motion of the
robot from the available sensors. Results of testing with this dead reckoning system
are then shown.

4.3.1 Dead Reckoning Equations

Companion's position is represented by the triple (x, y, 0). The robot position is
recorded in a coordinate frame fixed relative to the ground. Typically, this frame is
oriented such that the robot begins its mission at the origin.

Dead reckoning is accomplished using three sensors. The integrated gyroscope
reading gives the heading of the robot. Thus, the 0 position of the robot is simply
a matter of reading the gyroscope. The other navigation sensors are wheel encoders,
one attached to each of the two front wheels. The wheels encoders give the distance
traveled by these wheels. The dead reckoning scheme resolves the measured heading
and wheel motions to the motion of the center of the robot. The motion is based on
the steering model described in Subsection 4.2.2.

The strategy for dead reckoning is to discretize time into cycles (lasting from about
0.01 to 0.1 seconds). At the end of each cycle, the program notes how much the heading
of the robot has changed since the beginning of the cycle, and it reads the encoders to
determine how far (and in which direction) each of the front wheels has moved during
the cycle. It is assumed that the steering angle of the robot was fixed during that
time; hence the path of the robot is an arc of a circle (if the heading has not changed,
the arc degenerates to a straight line). The dead reckoning scheme described here can
be divided into three steps. First, it determines the radius about which the center-
rear of the robot has traveled. Second, based on the heading change, it computes
the displacement of the center-rear of the robot (relative to the robot position at the
beginning of the cycle). Finally, the motion of the center-rear is transformed to the

motion of the center of the robot in global coordinates. The scheme yields a new
position for the robot at the ith cycle:

0i = Oi

Xi = Xi-1 + Ax

Yi = yi-_1 + Ay

(4.3)

(4.4)

(4.5)

During a cycle, as shown in Figure 4-2, the robot has moved forward and turned

Adl

.. rr"

. - - - --- .-
-.

Figure 4-2: Dead Reckoning: Motion During a Cycle

clockwise. In doing so, the robot's gyroscope measures a heading change of AO; the
left and right encoders measure distances Ad1 and Adr, respectively.2 The figure also
shows re, the radius traveled by the center-rear of the robot and rr, the radius traveled
by the right-front corner of the robot. To avoid cluttering the figure, the radius of
the left-front corner, rl, is not shown. Note that due to the wheel offset, r, is slightly
larger than the radius traveled by the right-front wheel on a right turn, but smaller
on a left turn.3 On the other hand, rt is smaller than the radius traversed by the
left-front wheel for right turns, and larger for left turns. The difference in the radii is
the size of wheel offset D shown in Figure 4-1.

Two values for rc are now computed, one from each of the front encoders in
combination with the heading change. They are rt and rcr. The two values are

2To determine the heading change, the heading as given by the gyroscope at the beginning of the
ith cycle, Oi-1, is subtracted from the heading at the end of the ith cycle, Oi, i.e.:

AO = Oi - 0i-1

Similarly, encoder distances are the distances traveled during the ith cycle.
3 A right turn is one in which the center of the circle is to the right of the robot. A left turn has

the center on the left.

averaged as the mechanism for smoothing the readings. Note first that:

Adr
r, = A + D (4.6)

Adne

r= - D (4.7)
AO

where rr and rl are positive for right turns and negative for left turns. From the
geometry of Figure 4-2:

rcr = r - L 2 +) (4.8)

rcL = ± (1 L2 - W) (4.9)

where again the left turn/right turn sign convention is used. Substituting for rr and
ri, rci and rcr can be rewritten:

Ad, DAO 2 LA0 2 WA0r = =A 1(+ - LAO + (4.10)0 Ad, Ad, 2Ad,

Ad DAO 2 LAO 2 WAO
AA , =A1) 2 A (4.11)

This form preserves the turn direction sign convention. Once the two are averaged,
the radius about which the center-rear of the robot is rotating can be obtained:

11 dl DAO) 2 LAO)2 DAO 2 LAO)2
r = Adi 1 d - + A d, 1 +A0 2 Adl ad; ad, A ad,

(4.12)

With re, the displacement of the center-rear during the cycle relative to the position
of the robot at the beginning of the cycle can be determined. From Figure 4-3, the
center axis of the robot is tangent to the circle of radius rc at the center-rear of the
robot. The change in position of the rear-center of the robot is:

Ax = r sin AO = (rcAO) sinA (4.13)

(1- cosAO
AyC = rc(1 - cosAO) = (rcAO) -Cs AO (4.14)

A singularity occurs when AO = 0. As AO approaches 0, Axc approaches
S(Ad1 + Ad,) and Ayc approaches 0, as expected. The expression (rcAO) is well

behaved for all AO, since the equation for rc already contains AO in the denominator.
To perform dead reckoning numerically, AO is assumed to be small, and the ill-behaved

e< rc B

Figure 4-3: Dead Reckoning: Center-Rear Motion

terms are replaced by the first few terms of their series expansions:

Ax, % (rAO)((A)6 + 120) (4.15)

Ayc (rcAO) (A)24 + 72 (4.16)

A problem also arises if the quantities under the square root are negative. If this is the
case, assumptions about the robot's geometry and no-slip motion have been violated,
and dead reckoning is not performed in this case.

The final step of the dead reckoning scheme is to transform the motion of the
center-rear in robot coordinates to the motion of the center of the robot in global
coordinates. In Figure 4-4, the problem can be seen vectorially. The motion of the
center of the robot is a matter of adding four vectors together:

L L
Ax = - Cos i- 1 - Ay sin Oj- 1 + Ax, cos Oi-1 + - cos 0; (4.17)2 2
Ay = -- sin Oi_- + Ay cos Oji_ + Ax sin Oi_1 + -L sin 0i (4.18)

2 2

The formulation of the dead reckoning scheme is now complete:

O9 = Oi (4.19)

Xi = Xi- 1 + L(cos 0 - cos 0_-1) + Ax0 cos Oi-1 - AyY sin Oi-• (4.20)

AO

i-i -

I .

Figure 4-4: Dead Reckoning: Robot Center Motion

y = Yi- + L (sin O - sin Oi1) + Ax, sin _O-1 + Ay, cos Oi-_ (4.21)

4.3.2 Testing of Dead Reckoning

Among the most interesting of all tests on Companion were for its dead reckoning.
Figure 4-5 shows the paths of four long distance dead reckoning tests and Table 4-2
summarizes the results. In each case the robot was required to move at least 85 meters

Table 4-2
Results of Long Distance Dead Reckoning Testing

Path Length Final Position Error Error

(meters) (meters)
94.12 1.05 1.12%
99.52 0.08 0.08%

216.18 1.55 0.72%
85.40 0.26 0.30%

in a path that returned it to its starting location.4 Of the four paths shown, only the
bottom right sample had the robot moving in reverse. The dead reckoning performed
well: in all test runs, the error in dead reckoning was less than 1.2% of the length of
the path.

Tests that required the robot to make sharp turns and changes in direction were
also conducted. Four of the paths are shown in Figure 4-6 and performance is sum-

4It is not a coincidence that the paths trace out the hallways of the Draper Laboratory.

0 10 20
Y Position (meters)

0 50
Y Position (meters)

-20 0
Y Position (meters)

0 10 20
Y Position (meters)

Figure 4-5: Long Distance Testing of Dead Reckoning

o Start Position

x End Position

Y Position (meters)

2

0E
o

S-2
0

x
-4

0
Y Position (meters)

0 5
Y Position (meters)

0
Y Position (meters)

Figure 4-6: Sharp Turning Testing of Dead Reckoning

(D E -5
C0-

-10

x -15

E
C
0

0~.o_
x

E
C
0

n00L
0x

marized in Table 4-3. Again, the final position was the same as the initial position.

Table 4-3
Results of Sharp Turning Dead Reckoning Testing

Path Length Final Position Error Error

(meters) (meters)
18.59 I 0.11 0.59%
30.36 0.09 0.30%
26.36 0.11 0.42%
19.44 1 0.05 1 0.26%

The robot performed well on these tests as well. The largest dead reckoning error was
0.59% of the length of the path. This quality of navigation was fine for this robot.

.. _ __,

'

Chapter 5

Implementation and Testing of the
Trajectory Module

The Trajectory module's main function is to provide the correct sequence of speed
and curvature commands to the Cycle module so that the robot follows a specified line
or circle. In addition, the Trajectory module manages sequences of lines and circles
to follow. The idea is that one can input a series of lines and circles and have the
Trajectory module execute them one-by-one.

With Companion's system architecture, the initial position of the robot is assumed
to be near the line or circle to be followed (within a couple of centimeters and a fraction
of a radian). This provides an important advantage in developing the Trajectory mod-
ule: initial conditions far from the desired path are not critical. However, providing
smooth transitions between commands is an issue.

This chapter presents the controller used for circle following and its special use
as a line following controller. Plots of testing with different parameters are shown,
along with measures the quality of the robot's performance. Finally, results of multi-
command trajectories are shown.

5.1 Circle Following

This section contains the derivation of the proportional controller used in circle
following. It also explains the stopping condition and shows results of experiments
run with the controller.

5.1.1 Circle Following Controller Derivation

In circle following, the robot is to trace a trajectory along the circumference of
a circle. As shown in Figure 5-1, the circle is specified by its center (xg, yg) and
radius r. The robot, located at (x, y, 0), should stop when its heading reaches 0,; for
convenience, the center and stopping heading are discussed together as (xg, yg, 0g). In
the figure, the radial vector is (xg, yg, 09 - 7r/2) because the robot's heading is tangent
to the circle. Using a translation and a rotation, the robot is mapped to (0,0,0) and

-3 y

Figure 5-1: Geometry of Circle Following

the circle's center relative to it:

Xr cos 0 sinO 0 0 - x

yr -sin0 cosO 0 y,-y (5.1)

, O0 0 1 09 - 0

Without the loss of generality, the robot at (0, 0, 0), and the desired circle is of radius
r with center (xr, Yr, Or), as shown in Figure 5-2.

A simple proportional controller for circle following is now devised. From Figure 5-
2, the point (xt, Yt, Ot) is a distance dt (along the perimeter of the circle) from the
robot's projection onto the circle. The heading Ot is the heading from the position of
the robot directly to (xt, yt). The measure of error 0e is the difference between the
heading of the robot and Ot. Since the robot's heading is identically zero:

Oe = 0, (5.2)

The commanded curvature Pcmd is proportional to the heading error:

Pcmd = KpOe (5.3)

From the geometry of this configuration intermediate quantities are computed:

(- y, dt d-r de
tan - 0 - -- = tan- +-•• (5.4)

S- r X)r
xt = Xr + r cos (5.5)
Yt = yr+rsino (5.6)

(xt,y

IX
Figure 5-2: Transformed Geometry of Circle Following

O = tan- (Yt - 0) =tan- ()
st - j x,:

Using all these
parameters KiP

equations, Pcmd is expressed in terms of known quantities and the two
and dt:

Pcmd = K tan- ' (y + r sin [tan-i

Xr + r cos [tan - 1
(i Xyr

(-Xy)
1+

+ r

(5.8)

A special situation, when the robot is exactly on line and headed in the right
direction, as in Figure 5-3, is the case where:

dtOe= (5.9)

Since the robot is on the circle with the right heading, it is commanded the very
curvature that gives us the radius r:

Pcmd = - (5.10)

Combining Equations 5.3, 5.9, and 5.10:

dt 1

r r

(5.7)

I

(5.11)Pcmd = Kpoe

(0, 0, 0)

X

•Y

Figure 5-3: Circle Following-No Error Case

and solving for K,:

1K = (5.12)

So, in general, the commanded curvature is:

1 r + r sin tan) +](5.13)Pcmd = 1 tan-1 y, +r sin I -Xr r (5.13)dt 2 +r cos [tan- Y (r-)+]

and a single parameter dt must be selected.

5.1.2 Stopping Condition

The robot is instructed to stop when its heading (0) approaches the stopping
heading (0,). In the transformed coordinate system, the stopping heading is Or and
the robot's heading is 0. Hence, as Or nears 0, the robot is instructed to stop. Another
useful piece of data is derived here-the distance left to travel (dt,,o) is given by:

dtogo = r,r (5.14)

In Section 5.3, dtoqo is used to execute smooth transitions between commands.

5.1.3 Parameter Selection and Testing

Figure 5-4 and Figure 5-5 show test results for dt equal to 0.25 meters and
0.50 meters. For each of the values of dr, trajectories starting with different initial off

a,

E

W
a,

O

-1 0 1 2 3 4 5 6 7
Heading (radians)

-- J

-1 0 1 2 3 4 5 6 7
Heading (radians)

Figure 5-4: Circle Following Tests, dt - 0.25

CO

a,
a,

L-

0

-0.1

0 1 2 3
Heading (radians)

4 5 6 7

Figure 5-5: Circle Following Tests, dt = 0.50

-0.
-1

_ I r,-.
-1 0 1 2 3 4 5 6 7

Heading (radians)

9..
2 -- ~--

0n r
'

I I I [I I I I

,,
U.Z r"

I I I I I I I I

,,U0.5 r

line and heading errors were recorded. With dt at 0.25 meters, the robot performed
acceptably, with an off line steady state bias less than 0.03 meters, no bias on heading,
and a reasonably fast settling time.

5.2 Line Following

Line following is interpreted as a special case of circle following, in particular,
when the radius is very large. Hence the circle following controller is also used for
line following. The Companion implementation treats line following as circle following
with radius 1000 meters. Test results showed similar results as in the case of circle
following.

5.3 Multiple Command Execution

The final important task of the Trajectory module is to sequentially execute a
series of commands in an open loop fashion. That is, a set of commands is issued to
Trajectory to be executed sequentially without updating the commands to compensate
for line/circle following errors. That means that the accumulation of off line and head-
ing error should not render later commands impossible to complete. To demonstrate
this capability, a'series of tests were conducted. In Figure 5-6, the robot executed a

(D

E

0.oIX
X

U)

U)

E

v,

o -1x -1

-2

-2 0 2 -2 0 2
Y Position (meters) Y Position (meters)

0
Y Position (meters)

Figure 5-6: Multi-Command Trajectories

0
Y Position (meters)

set of figure eight trajectories. In each case, the robot was commanded to traverse
the path twice, all from commands issued at the beginning. The left two graphs are
plots of forward motion, and the right two plots show backwards motion. In all cases,
the robot performed well, staying within about 0.06 meters of the desired trajectory,
shown as dotted circles in the plots. Figure 5-7 shows a particularly difficult trajectory

-0.5

-1.5

-1.5 -1 -0.5 0 0.5
Y Position (meters)

1 1.5

Figure 5-7: Multi-Command Cusp Trajectory

pattern-several cusps. In this pattern the robot must reverse directions and change
turning directions. Again, the robot performed well.

To allow for the smooth transition between commands, a set of rules for command
completion were implemented. Suppose the robot is executing a command that re-
quires forward motion. If the next command to be executed also requires forward
motion, the current command is considered complete 0.3 meters' before the actual
goal point for that command, i.e. when dtogo is less than 0.3 meters. When this con-
dition is met, Trajectory begins executing the next command. This permits a smooth
transition between commands. If, however, the next command requires a change in
forward/backward motion, the current command is executed until the robot is within
0.05 meters of the goal point. The multi-command trajectories in Figure 5-6 and
Figure 5-7 are based on these command-transition rules.

1The distance 0.3 meters was selected empirically by observing the robot's performance with
different distances.

U.i

E.

P

I !

Chapter 6

Path Planning: Background and
Overview

Although path planning is a well explored topic, Companion required its own cus-
tom system to meet its performance requirements and for compatibility with other
module implementations. This chapter presents requirements for Companion's plan-
ning system and a survey of some existing path planning strategies with references
to others. These systems have advantages and disadvantages, and Companion's path
planner combines some of them into a practical system. As a prelude to the descrip-
tions of the Search3d and Search2d modules, an overview of the path planner is also
included in this chapter.

6.1 Requirements

There were several requirements for the path planning system to be developed
for Companion. The first was that the path planner incorporate the robot's envir-
onment. The system had to be general enough to devise paths through an array of
environments, some as tightly constrained as indoor hallways. In addition, for imple-
mentation purposes, the path planner had to be compatible with the Mapper module's
representation of the environment. For reasons described in [16], Companion's Map-
per module was implemented as a probability grid with resolution 0.015 meters per
pixel. The map also had resolutions of 0.15 meters per pixel and 1.5 meters per pixel.
This representation is relevant because individual obstacles were not represented as
single entities in the map; instead, they were individual pixels in the map labeled as
obstructed.

The second requirement was that the planner had to consider the robot's geometry
and kinematic constraint. Because the robot's motion is automobile-like, the problem
is nonholonomic: three variables (x, y, 0) were needed to describe the vehicle's state,
yet the direction of the vehicle's motion always tangent to its heading. This kinematic
constraint made path planning a more difficult task.

The final and most important requirement was that the path planner be fast enough
to operate in real time situations. Lengthly delays during robot operation for path

planning would be unacceptable. As a general goal, several seconds was roughly the
appropriate time scale for the path planner. This requirement underlies Companion's
basic goal of being a practical, working robot.

6.2 Background

Practical path planning can be divided into two (possibly coupled) tasks. One
is the task of searching. It is the process of finding a path, hopefully minimizing a
cost function, between a start node and a goal node. At this level, the robot and the
environment have been idealized into a mathematical construct: a graph with known
connectivity costs. In the last 40 years, research on graph searching has yielded many
algorithms including the A* algorithm. This algorithm, because of its efficiency and
widespread use, is the focus of this survey of graph search routines.

The second task is the conversion of environmental information (the map) into a
searchable form. With sensor data accumulating over time, the world map changes,
and the path planner must be able to efficiently translate the representation of the map
into a graph-searchable form. This need has implications on how both the map and
the planner are implemented. The following subsections describe the A* algorithm
and three common path planning strategies that have appeared in the literature.

6.2.1 A* Algorithm

There are a fair number of algorithms for search graphs for the shortest path
between two nodes. Among these are Dijkstra's algorithm[3], variations of Moore's
algorithm[10][13][11], and the A* algorithm[12]. All of these are sequential and can
be implemented on single-processor machines. Among them, the A* algorithm is the
most commonly used in path planning problems. It is distinguished from the others
by its use of a heuristic to accelerate the search process. The quality of the heuristic,
an optimistic estimate of the cost from a node to the goal, affects how quickly the
algorithm runs.

Because the A* algorithm is used in Companion's path planners, it is explicitly
described here. Descriptions of the other algorithms may be found in the references.
As it appears in [12], this is the A* algorithm:

1. Put the start node s on OPEN.

2. If OPEN is empty, exit with failure.

3. Remove from OPEN and place on CLOSED a node n for which f is minimum.

4. If n is a goal node, exit successfully with the solution obtained by tracing back
the pointers from n to s.

5. Otherwise expand n, generating all of its successors, and attach to them pointers
back to n. For every successor n' of n:

a. If n' is not already on OPEN or CLOSED, estimate h(n') (an estimate
of the cost of the best path from n' to some goal node), and calculate
f(n') = g(n') + h(n') where g(n') = g(n) + c(n, n') and g(s) = 0.

b. If n' is already on OPEN or CLOSED, direct its pointers along the path
yielding the lowest g(n').

c. If n' required pointer adjustment and was found on CLOSED, reopen it.

6. Go to Step 2.

Although the A* algorithm is well known in AI circles, there are several points
worthy of clarification. First, the algorithm maintains OPEN and CLOSED lists,
which contain nodes in the search. Elements of the OPEN have yet to be expanded
and elements of the CLOSED list have been completed. The value of g(n) is cost of
the best known path from s to n, and c(n, n') is the transition cost from node n to n'.
When deciding which node to expand next, the algorithm considers the value of of f
for all nodes on OPEN. The quantity f is the sum of the cost from s to the node and
an estimate of the the cost from it to the goal. Using the minimum f as the expansion
criterion, the node with the shortest possible total cost is expanded first.

In practical applications, A* works better than brute force algorithms like Dijk-
stra's algorithm when generation of successors (also called neighbors) is time-
consuming and heuristic calculation is accurate. Under these circumstances, only
a a small portion of the graph enters the search, resulting in an accelerated search.
These are the important factors in the development of the Companion search routines.

6.2.2 Visibility Graph Path Planning
Visibility graphs, the first of three path planning strategies discussed here, can

be used to generate optimal paths for a point robot moving about on a plane surface
with polygonal obstacles. The technique can be generalized to a translating polygonal
robot by augmenting all obstacles by the shape of the robot; the robot is then a point
in a new obstacle field[8]. It can also be generalized into three dimensions.

The visibility graph of an obstacle field consists of all line segments joining any two
vertices of any polygonal obstacles such that the segment does not intersect any of the
obstacles. Adjacent vertices of one obstacle are included in the visibility graph. The
start and goal points can be considered single-point obstacles and segments joining
these points to the rest of the graph are included. The visibility graph necessarily
contains of all line segments and vertices in the optimal path from start to goal, hence
it suffices to search the visibility graph for the optimal path. Figure 6-1 is a visibility
graph for a search between point A and point B in an environment with two obstacles.

A reduced visibility graph, a subgraph of the visibility graph that still contains the
optimal path, can also be constructed. Different strategies for constructing reduced
visibility graphs have been presented by [9], [5], and others. These techniques include
omitting line segments whose two end points are not convex vertices of obstacles and
removing non-obstructing obstacles from the graph altogether. Figure 6-2 shows a
reduced visibility graph of the obstacle field from Figure 6-1. In it, segments touching

Figure 6-1: A Visibility Graph

Figure 6-2: A Reduced Visibility Graph

the left-most obstacle have been removed. The A* algorithm is typically used to
find the optimal path in the visibility or reduced visibility graph, and the heuristic
in the A* search is usually the straight line distance between the node and the goal.
Naturally, the search is faster when the graph is smaller.

The visibility graph method works well under some circumstances, but has two
important shortcomings with respect to Companion. First, it assumes that any path
consisting of straight line segments is feasible. Companion's kinematic constraint,
however, renders many paths impossible, in particular, those with sharp turns. Second,
Companion's mapping software does not represent obstacles as polygons. Hence, to
to construct a visibility graph, the planner must first take time to preprocess the
probability map into a list of polygonal obstacles.

6.2.3 Configuration Space Path Planning

Configuration space path planning (dubbed "cost wave propagation" in [4] and
[18] and "potential diffusion networks" in [15]) discretizes the states of the robot at
some finite resolution. The robot can be thought of as a point moving about from
pixel to pixel on a fixed grid. Each pixel is said to be one configuration of the robot.
For a robot such as Companion, the configuration space is three dimensional: it has
x, y, and 0 positions. A simplified, holonomic version might ignore 0 and represent
the configuration space two-dimensionally.

A search algorithm such as A* can be used to find a path from the start configur-
ation to the goal configuration. Each pixel in the grid is one node on the graph. The
successors of a configuration are nearby configurations corresponding to small motions
moving forward or backward, with steering full left, full right, or straight ahead, as
in [18]. Successors causing collisions with obstacles are, of course, disallowed.

The simplified two-dimensional version is a good example for visualization of the
configuration space planner. In Figure 6-3, the objective is to move the robot from
point A to point B. The world is divided into squares and the robot occupies one
of them at all times. The shaded squares are obstructed. A neighborhood, shown in
Figure 6-4, defines permissible transitions and their costs. In this example, a config-
uration P has up to eight transitions. Sideways transitions incur a cost of 1, while
diagonal motions cost vi. These costs correspond to the distance between the centers
of the two configurations. Transitions do not occur of the square is obstructed. The
eight-neighbor rule limits motion to sideways and diagonal motion, but the neighbor-
hood can be expanded to allow more neighbors, as shown in Figure 6-5. The larger
neighborhood make the search larger, but improves results because it allows motion
in more directions.

The important advantage of configuration space planning is flexibility in the se-
lection of configuration successors. The robot's kinematic constraint can easily be
imposed on the search by selecting appropriate neighbor nodes. This feature was not
seen in the visibility graph method.

The configuration space approach also has a significant disadvantage, however.
The discretization of three-dimensional space at high resolution requires a large
amount of memory. Array representation of the configuration space quickly becomes

I-.

1 : P : 1
Figure 6-3: A Configuration Space

T2 i t 2

Figure 6-4: A Neighborhood

60

..
B:..........·

.

1 P 1

Figure 6-5: An Expanded Neighborhood

prohibitive as distance between start and goal increases. Resolution may be sacrificed
for increased overall grid size.

6.2.4 Potential Field Path Planning

Potential fields are a different approach to the path planning problem. In principle,
this strategy generates a safe trajectory by applying a force on the robot such that it
is attracted to the goal and repelled by obstacles[6]. This tends to generate safe paths
rather than optimally short ones. Although the potential field approach works for
many obstacle fields, in some cases, local minima may trap the robot and oscillatory
paths may be generated[6]. Some methods exist to resolve these difficulties[17][7].
The potential field approach, like the visibility graph technique, does not consider the
kinematic constraint.

6.3 Overview of Companion Path Planning

Companion's path planner is a hybrid of variations of visibility graph and con-
figuration space path planning. The principle behind the scheme is to divide and
conquer. First, a visibility graph-based scheme generates a coarse path from start to
goal. This coarse path consists of a series of way points connected by straight line
segments. Second, a series of configuration space searches generates paths between
each of the way points until a full path is complete. This approach, although it does
not guarantee the optimal path, yields a feasible path given the robot's environment
and kinematic constraint.

The configuration space planner, called Search3d in the software architecture, is
similar in many respects to implementations seen in the literature. Important differ-
ences, described in Chapter 7, include a hash table representation of the configuration

space, a specialized heuristic calculation, and a limited neighborhood.
The visibility graph planner, called Search2d in the software architecture, is a

specialized version of the visibility graph method described in this chapter. The
differences are that Companion's implementation of search2d generates the visibility
graph incrementally to avoid preprocessing the map before a search. This requires a
change in the A* algorithm usually used to search the graph. The Search2d module
is described in Chapter 8.

Chapter 7

Implementation and Testing of the
Search3d Module

The Search3d module is a high resolution search program for generating obstacle-
free paths for Companion. At this level, the robot is modeled as a rectangle translating
and rotating in the plane. Legal motions are constrained by the no-slip condition
(similar to dead reckoning) and the turning radius limitation. Because the robot has
two translational coordinates (x and y) and a rotational coordinate (0), the search is
in effect, three-dimensional. It is from this understanding that the module bears the
name "Search3d."

The Search3d process uses the A* algorithm to generate the least-cost path from
the start node at (xz, y,, 0,) to the goal node at (x, , yO8). Like most implementations
of the A* algorithm, the generation of the successors of a node, the calculation of cost,
and the computation of an accurate heuristic are the important areas of discussion.

This chapter first provides these implementation details. Results of testing of the
implementation on simulated environments are then presented.

7.1 Search3d Implementation Details

The Search3d module uses a hash-table representation of the configuration space
path planning approach with the A* algorithm. The basic trade-off in the configura-
tion space method is between resolution and memory. For Companion, a reasonable
map size is a 3.0 meter by 3.0 meter region at 0.015 meter resolution and 64 distinct
headings. This corresponds to a configuration space containing over 2.5 million cells.
The array is not only large, but it is also difficult to expand once created. To resolve
this difficulty, the configuration space is represented in a hash table. The hash table
maps the configuration space into a much smaller block of memory. Since the search
typically hits only a small portion of the configuration space, the hash table is par-
ticularly appropriate. In addition, the hash table can represent an arbitrarily large
region.

For searching the configuration space, a basic A* algorithm is used. It suffices to
describe three aspects of the search: the neighboring rule, the cost calculation, and

the heuristic calculation.

7.1.1 Neighboring Rule

The design of neighbor generation rules for the Search3d module went through
two iterations. The first attempt closely modeled the ideas in [2]. The resulting paths
too difficult for the robot to follow and hence the neighboring rules were revised.

The description of the generation of neighbors as in [2] is done in terms a typical
parent node n. Suppose a parent node n specified by its position (xG, yn, Os). Then this
node has at most six neighbors. The potential neighbors are small motions forward
and backward with the steering full left, full right, or straight, as qualitatively shown
in Figure 7-1. The numbers in the figure indicate neighbor types, e.g. a neighbor

,

-3
-2

Figure 7-1: Neighbors for Search3d-First Iteration

of Type 2 is a forward curve to the right. The actual distance between node and
neighbor is selected by a parameter. Small distances give a finer search resolution
at the expense of a larger search. In practice, rotations of 1/64 of a circle provide
sufficient resolution in searches that take a reasonable amount of time.

The size of the search is reduced by removing unnecessary and impossible neigh-
bors. One neighbor is always disallowed because it returns the robot to where it
came.1 . For example, if the robot moved straight forward to get to the current po-
sition, the algorithm does not generate the neighbor that moves the robot straight
backwards. Each potential neighbor is also checked against the map to determine if
the new position causes a collision with an obstacle. To do this, a small polygon cor-
responding to the new space covered by the robot in moving from the current position
to the neighbor position is constructed. The Mapper module provides an interface
from which it can be determined if any point inside a polygon is obstructed.

1There is an exception. When expanding the start node, the robot did not come from any other
direction. In this case, all six neighbors are possible.

Paths generated using this neighboring rule were indeed optimally short, but they
were difficult for Companion to follow. The reason was because the optimal paths
frequently included cusps in which the the robot would have to change the direction of
turning and the direction of motion. Companion's performance on cusps was tested

(recall Figure 5-7), and although the performance was fairly good, it was decided not
to require Companion to perform such tight maneuvers. The solution to the problem
of cusps was to extend cusps tangentially outward, as shown in Figure 7-2. The

becomes

Figure 7-2: Adjustment of Path at a Cusp

parameter d, denotes how far the robot must overshoot the cusp. To be even more
conservative, immediate transitions from turning left to turning right and vice versa
were also disallowed. Tests of this type of motion are shown in the bottom two plots
of Figure 5-6. The adjustment to the path is shown in Figure 7-3.

becomes

Figure 7-3: Adjustment of Path at a Steering Transition

The limitation on trajectories resulted in the addition of two new neighbors, as
shown in Figure 7-4, and more constraints were imposed on the types of neighbors
allowed. Specific rules on which types of neighbors could be generated depending on
the type of the parent were now needed. Table 7-1 outlines case-by-case which types
of neighbor were legal for each type of parent. An example assists in the interpretation
of the table. The start node is of Type 0 (and is the only node of that type). From
the table, this node has up to six neighbors (Types 1, -1, 2, -2, 3, and -3), depending
on the obstacles in the environment. Suppose the Type 2 neighbor (forward to the

4I

3 1

4I

2

-2

Figure 7-4: Neighbors for Search3d-Second Iteration

66

·ic

C

Table 7-1

Parent Neighbor Type Allowed
Type 1 -1 2 -2 3 -3 4 1 -4

0 yes yes yes yes yes yes no no
1 yes no yes yes yes yes no no
-1 no yes yes yes yes yes no no
2 no no yes no no no yes no
-2 no no no yes no no no yes
3 no no no no yes no yes no

-3 no no no no no yes no yes
4 yes yes yes yes yes yes no no

-4 yes yes yes yes yes yes no no

right) is expanded. From there the only neighbors are of Type 2 and 4, corresponding
to continuing along the circle and moving straight forward a distance d,.

The severity of the limitations on allowable neighbors provides the benefit of imme-
diately eliminating difficult paths. Generating fewer neighbors also typically result in
faster searches. Most importantly, as shown later in this chapter, it gives satisfactory
performance.

7.1.2 Cost Calculation

The transition cost from a node to its neighbor is the computed as the length of the
path plus a penalty if moving to the neighbor requires a change between forward and
backward motion. The direction-change penalty encourages the search to minimize
gear changes, which tend to make the robot's motion appear jerky. In practice a
direction change incurs a penalty of about 0.5 meters.

7.1.3 Heuristic Calculation

Significant computational effort is invested in generating a good heuristic for the
nodes in the graph. Again the heuristic is an optimistic estimate of the cost between
the current node and the goal node. The heuristic is computed by examining a set
of up to 32 paths from the current node to the goal node. One of these paths is the
shortest possible path from the current position to the goal. These paths each consist
of three segments: a turn, a straight line, and a second turn. The generation of the
paths begins by constructing the circles corresponding to left and right turns from
both the current and goal nodes. The circles, with radii equal to the robot's minimum
turning radius, are shown in Figure 7-5. When one is facing in the same direction as
the current node, the distinction between the left current circle and the right current

Figure 7-5: Turning Circles for Search3d Heuristic Calculation

circle becomes apparent. Similarly for the goal node, there exist a left goal circle and
a right goal circle.

External tangent lines are then drawn between the circles. Figure 7-6 shows the ex-
ternal tangents between pairs of circles on the same side of the current and goal nodes.
External tangents connecting the left current circle and right goal circle generate paths
with the robot facing the wrong way at the goal. A similar problem arises from the
external tangents connecting the right current circle and left goal circle. Hence those
paths are not of interest.

It may also be possible to construct internal tangents between circles, as shown
in Figure 7-7. In the case of internal tangents, the interesting tangents are the ones
connecting the left current circle with the right goal circle and the tangents connecting
the right current circle with the left goal circle. The same-side tangents cause the robot
to be facing backward. Internal tangents exist only when the circles are sufficiently
far apart.

For each of the tangents (four external and up to four internal), yields four possible
paths. To get to the tangent line from the current node, the robot moves forward or
backward along the current circle. To get from the tangent line to the goal node, it
again moves either forward or backward. This results in a total of four different paths,
and an examples are shown in Figure 7-8.

Lengths of each of these paths are then measured. This task is a matter of geometry
and details are not provided here. The shortest of these is the shortest path from the
current node to the goal. Hence it is used as the heuristic to the goal.

7.2 Testing of the Search3d Algorithm

The search routine was tested, primarily in simple environments. In Figure 7-9,

Figure 7-6: External Tangent Paths for Search3d Heuristic Calculation

Figure 7-7: Internal Tangent Paths for Search3d Heuristic Calculation

Figure 7-8: Example of the four Paths for One Tangent

70

a)
a)
E 1

0o
0

0u

x-1

2

CD
S2
E

20

E 1
a

0

0

x -1
0

-2 0 2 -2 0 2
Y Position (meters) Y Position (meters)

c 2
E

0Ao_
0 o

a

* * * *

-2 0 2 4 -2 0 2 4
Y Position (meters) Y Position (meters)

Figure 7-9: Sample Paths Generated by the Search3d Module

four typical paths planned by the Search3d program are shown. In the top two plots,
the robot began at (0, 0, 0) and the goal was (0, 0, 7r), i.e. a turn in place. In the left
plot, the environment was completely empty and the program took 0.49 seconds to
generate the path. Walls, shown as the dotted lines, were added for the right plot,
and the routine took 4.06 seconds. In the bottom two plots, the robot again began
at the origin; its goal, however, was (3,3, 3r/2). The unconstrained search (left plot)
took 0.35 seconds to complete, and the constrained search took 0.57 seconds. In all of
these exercises, direction changes incurred a penalty of 0.5 meters, and an overshoot
distance d, of 0.3 meters was used.

The results here are representative of the result obtained from other testing. In
particular, in the absence of obstacles, the the search was reliably fast. With obstacles,
however, the variance in search times skyrocketed. As a general rule, the search routine
performed reasonably well when the straight line path between the start and goal was
not obstructed. As explained in the next chapter, the Search2d module guarantees
that the straight line path is in fact clear. Read on.

n

............................
-f -

Chapter 8

Implementation and Testing of the
Search2d Module

The objective of the Search2d module is to efficiently generate an optimal path
between a start and a goal point. At this level, the robot's steering constraint and its
rectangular shape are ignored; instead, the robot is modeled as a square translating
in a plane. The two-dimensional search generates a coarse path from which a more
detailed search routine (Search3d) can fill details.

As previewed in Chapter 6, the Search2d module is implemented as a variation of
the basic visibility graph/A* search method of path planning. Search2d increment-
ally generates a visibility graph as the search is being conducted. Only the portions
of the visibility graph relevant to the search are generated. This feature saves the
computational effort needed to preprocess the entire map into obstacles and to create
the visibility graph.

The following two sections describe Companion's Search2d process, first in terms
of implementation and second in terms of testing.

8.1 Derivation of the Search2d Algorithm

This description of the Search2d algorithm begins from simple heuristic notions
for finding the shortest path between a start and a goal point on a planar surface.
Suppose the robot begins at point A, as shown in Figure 8-1, and is trying to reach
point B. The obstacles in the environment are "known" in the sense that one can
query if a particular point region of space is obstructed or not, but it is assumed that
there is no useful a priori representation of the obstacles.

As a first step, the straight line path between the start and goal is examined for
obstacles. This is simple given the Mapper's grid representation of the environment.
If the path is clear of obstacles, the search is complete-a straight path is feasible.
Otherwise the nearest obstructed point (point C in the figure) becomes the starting
location of an obstacle. By examining the map, the boundary of the obstacle can
be found and represented as a series of segments, i.e. in polygonal form. Now, a
portion of the visibility graph is constructed. In particular, unobstructed paths from

B

B

Figure 8-1: Sample Search Situation

the start node to vertices of the obstacle are found. In the figure, the path to point D
is unobstructed and hence that point enters the graph as a successor of point A. The
path to point E, however, is obstructed by an obstacle. The recursive formulation
creates a new obstacle an ultimately creates two successors: point F and point G.

This principle of examining the map for straight line paths to the goal and creating
polygonal representations of obstacles as they are encountered is the basis of the search
process. Because the search is based on the generation of successors of nodes, an A*-
type algorithm can be used. Subtleties, however, require that the algorithm be revised.
The next few subsections present the revised A* algorithm and how it can be applied
to this search problem, including neighbor generation and heuristic calculation.

8.1.1 Revised A* Algorithm

The revised A* algorithm is shown here:

1. Put the start node s on OPEN.

2. If OPEN is empty, exit with failure.

3. Remove from OPEN and place on CLOSED a node n for which f is minimum.

4. If n is a goal node, exit successfully with the solution obtained by tracing back
the pointers from n to s.

5. Otherwise expand all the nodes ni on the optimal path from n to s, generating a
subset of successors, and attach to them pointers back to ni. For every successor
n' of ni:

a. If ni is not already on OPEN or CLOSED, estimate h(nW) (an estimate
of the cost of the best path from ni to some goal node), and calculate
f(n9) = g(n+) + h(ný) where g(n,) = g(ni) + c(ni, ný) and g(s) = 0.

b. If nW is already on OPEN or CLOSED, direct its pointers along the path
yielding the lowest g(n).

c. If n' required pointer adjustment and was found on CLOSED, reopen it.

6. Go to Step 2.

The expansion of a node in the normal A* algorithm entails finding all successors
of that node. In that way, that node need not be revisited for further expansion. In the
revised algorithm, only a subset of successors is found. No specification is made as to
which successors must be found, but generating a node on the optimal path accelerates
the search. This revision alone would result in a non-optimal search if a node on the
optimal path is not in the subset of generated successors. This problem is resolved
with a second revision: the expansion of a node now includes finding successors on
all nodes on the optimal path from the start to that node. In this way, successors
previously omitted can be added. The task is to ensure that all successors of a node
are generated at some point.

In the context of an incremental search, the algorithm provides a means of only
creating successor nodes located on known obstacles. As new obstacles are found,
successors from old nodes to that obstacle are generated. This topic is the subject of
the next subsection.

8.1.2 Neighboring Rules

The rules for generating successors (neighbors) are given here, and explanations
follow. For each node ni in the optimal path from s to n:

1. If ni is n, then add the goal obstacle to OBSTACLE(n/).

2. For each vertex vjk of each obstacle bj in OBSTACLE(n,):

a. If vjk is the same as ni, this is not a neighbor.

b. If the angle made by ni-1 to ni to vjk is greater than 900, this is not a
neighbor.

c. If the straight line path from ni to vjk does not form a tangent at obstacle
bij, this is not a neighbor.

d. If the straight line path from ni to vjk does not form a tangent at the
obstacle associated with ni, this is not a neighbor.

e. If the straight line path from ni to Vik intersects any segments in the known
obstacle field, this is not a neighbor.

f. If the straight line path from ni to vjk is obstructed by an obstacle b1, for
each node nm on the optimal path from s to ni, add bi to OBSTACLE(nm).
This is not a neighbor.

g. Otherwise, Vijk is a neighbor.

OBSTACLE(n2) is a list of obstacles of interest to node ni. These are the obstacles
to which visibility graph lines will be constructed. The goal obstacle is just the goal
point itself-in the context of this search, it is convenient to think of the goal as an
obstacle with a single point. The goal point always appears on the OBSTACLE(ni);
hence, the search always attempts to find the direct path from the node to the goal.

Items a-f are series of tests that must be passed before a vertex can qualify as
a neighbor. They are not critical to the algorithm but rather accelerate it. For con-
ciseness in this section, these tests are outlined in Appendix A. In test f, the straight
line path between a node and a potential neighbor is examined for obstructions. If an
obstruction is found, it is added the the OBSTACLE lists. When the algorithm cycles
again back to testing vertices on other obstacles, this new obstacle has been inserted
on the list. Hence, all new obstacles discovered during the expansion of a node are
tested for legal successors.

A visualization of this circumstance appears in Figure 8-2. In this example, the

0
B

I

Figure 8-2: Example of a New Obstacle Found

search in progress has generated two successors, point C and point D, of the start
node point A, and is about to expand point C. The discovery of the obstacle between

point C and the goal point B results in the addition of point E as a successor of
point C. However, because a new obstacle was found, the search also attempts to find
successors of point A on the new obstacle. This results in the successor point E of
point A. The natural process of the A* algorithm immediately determines that the
shortest path to point E is the direct line from point A and eliminates the path from
point A to point E via point C.

8.1.3 Cost and Heuristic Calculation

The cost and heuristic functions are unusually simple. The transition cost from
node n to node n' is simply the distance between them. Similarly the heuristic from
node n' to the goal is just the distance from n' to the goal. It is reassuring that not
all things are difficult.

8.1.4 Review of the Search2d Algorithm

A look at the algorithm, after the fact, provides insight into its construction. The
algorithm solves the basic problem of transforming a grid representation obstacles to a
polygon representation. Because obstacles are "created" only when they interfere with
potential paths, only relevant regions of the environment are examined for obstacles.
Since obstacles are first identified by boundary pixels, one can march around the
obstacle, identifying vertices as they appear. Hence, the algorithm solves the problem
of transforming the map representation from grid to polygon without preprocessing
the entire map. This gives the Mapper the ability to cover large regions without
affecting path planning.

8.2 Testing of the Search2d Module

The search2d module is one of the better performers on Companion. Figure 8-3
shows a sample test run of the program. This sample ran in less than 0.12 seconds.
This result is typical for this module.

rm TTTIITTIII

0 10 20 30 40
Y Position

TgVE

II II Rll l

50 60 70

Figure 8-3: Sample Run of Search2d

18

14

c0 1o
0 10

8

6

4

2

0

v-o
°m•1o
G.
X

8

-

-

-

Chapter 9

Implementation and Testing of the
Planner Module

The Planner module is the coordinator of planning and plan execution. As the par-
ent module of Search3d and Search2d, it manages their execution status. As the parent
of Trajectory, it supervises the execution of circle and line following commands. In
effect, the Planner is a middleman, interpreting way points from the User, generating
plans via Search3d and Search2d, and issuing them to Trajectory.

This task can be simple and it can be complex. Due to time constraints, a full
implementation of this module has not been completed. The current Planner process
is instead a simple test program for the coordination of the path planning and path
execution. It operates in a simple sequential manner. First, it awaits a way point from
the User module. Second, it generates a coarse path to that goal using the Search2d
modules. Then, for each of the points in the coarse path, it generates a fine path
using the Search3d module. When the plan is complete, the entire plan is issued to
the Trajectory module, which then executes the commands.

The Mapper plays only a passive role in this implementation. Again, due to time
constraints, full integration of planning with mapping has not been completed. The
Mapper is instead loaded with a simulated environment. The Search2d and Search3d
modules treat this information as though it were real. Hence the Planner was tested
with the real robot on simulated environments.

Figure 9-1 and Figure 9-2 are two samples of experiments with this planner. Fig-
ure 9-1 represents a way point that requires the robot to turn two corners (walls
denoted by dotted lines). Although the robot successfully navigated the path, it col-
lided with the simulated wall. This error can be attributed to an underestimate of
the robot's size in the Search3d process. In Figure 9-2, the robot was required to
pass through a doorway. The robot was originally facing in the direction of the x-axis
on the left side of the opening, and the commanded way point was on the other side
again with the robot facing along the x-axis. Planning and execution were successfully
completed.

It is important to emphasize that this implementation of the Planner module
is merely a simple demonstration of coordination among the Search2d module, the
Search3d module, the Trajectory module, and to a lesser extent, the Mapper module.

-2 -1 0 1 2 3 4 5 6
Y Position (meters)

Figure 9-1: Corner-Turning Plan Execution

2
Y Position (meters)

Figure 9-2: Doorway Plan Execution

0.5

-0.5

-1

-1.5

-2

S~ · I I W, ,

I I I

E

E

This Planner module is a program that unifies all of the modules into one. During test-
ing, more than ten processes implemented for Companion are running simultaneously
on the robot's two computers.

Possible improvements to this module abound and are probably more important
that the results given here. First, the planner needs a good mechanism for connecting
Search3d paths. In particular, the path given by Search2d does not constrain the
robot's heading at any of the intermediate points. In the current implementation,
headings are artificially imposed prior to the path planning with Search3d. This
results in awkward transitions between intermediate points, as evidenced in Figure 9-
1. The second area of possible improvement is in the area of replanning. Currently,
the planning is based on an artificial environment and executed with no regard to real
obstacles. An important element of a real planner is the ability continually adjust
the path as new obstacles become known and as the robot's strays too far from the
original path. This requires the system to replan and to integrate the new plan into
the execution sequence. It also requires the integration of real sensing in the Mapper
module. These two ideas are the most important goals to achieve with the planner.
Longer term ideas are provided in the conclusion.

Chapter 10

Conclusions and Recommendations

Companion has come a long way, but much more can be done. With working
device drivers, a flexible software architecture, and good software implementations,
Companion is a working test bed for mapping, navigation, and path planning, and it
has the potential to become a more intelligent machine.

10.1 Ideas for Improvement

There are many areas of possible improvement. Consider the interface to the
drive and steering motors. The software controls the speed of the drive motor and
the position of the steering motor by simulating commands the wheelchair's original
control system, which results in undesirable delay and hysteresis. The existing lookup
table used for steering control performs only marginally, and there is no controller for
speed. A better control system, one that compensates for the those idiosyncrasies,
could be implemented. Better still, the wheelchair control system could be completed
bypassed. The control of speed, though not a critical part of Companion, a desirable
feature.

Currently, Companion lacks absolute sensors for navigation. Position is only
known relative to the starting position of the robot. This is adequate when no in-
formation is carried over from previous missions. However, there are circumstances
when localizing the robot is useful, for example, in localizing the robot within an a
priori map or in generating a single map from multiple missions. The addition of GPS
or at least a compass would provide some measure of absolute position.

Companion's navigation can also be improved. Currently, three sensors (a gyro-
scope and and two encoders) perform dead reckoning. The existing steering poten-
tiometers are not used. A new dead reckoning scheme, one that filters the redundant
sensors, could be implemented. Any absolute sensors, like GPS or a compass, could
also be integrated into the filter.

The implementation of the Trajectory module performs fairly well, but improve-
ments could be made. The 0.03 meter steady state bias and trajectory overshoot in
the circle-following routine could be eliminated by replacing the current proportional
controller with a better system, such as a PID controller. Improvements in Trajectory

would make higher level modules, such as the Search3d more flexible. Limitations on
the allowable sequences of lines and circles could be removed, and overall performance
of the robot would improve.

The main shortcoming of the implementation of the Search3d module is its speed.
Although it frequently executes searches in under a second (excellent performance), it
may take up to several minutes for searches to fail (e.g. in obstructed environments)
or for difficult trajectories to be found. The current implementation allows a search
to time out after a set period of time to avoid indefinite blocking of the search process.
The most important improvement that could be made to Search3d is to make it run
at a reasonable speed more reliably.

10.2 Ideas for New Development

With satisfactory performance of low-level systems, development on Companion
can proceed to a higher level. The most pressing need is for a better planning system.
Ideas for development appeared in Chapter 9. New types of missions are also a
possibility for higher level planning. The current nominal goal of moving to a way
point can be expanded. One interesting mission is exploration. The objective in
exploration is to acquire a full representation of a particular region in the robot's
environment. Path planning is necessary for the robot to move about, but the point
to which it moves changes. One scheme might continue to move the robot towards
areas not already well mapped. The exploration mission is the beginning of practical
use for Companion, as it can be used to explore areas too dangerous for humans.

Multiple robot cooperation is a goal for the longer term. With its mapping and
planning capability, Companion can be important component in a team of cooperat-
ing agents. A current project at Draper's Intelligent Unmanned Vehicle Center is a
mission to clear unexploded land mines. Lacking a manipulator, Companion is in-
capable of actually picking up mines; however, its mapping ability could be useful in
describing the environment for the other agents.

Teleoperation is also an interesting area to explore. Experience with other robots
in the Intelligent Unmanned Vehicle Center has shown that radio modems can provide
reasonable bandwidth communication between a remote robot and a ground station.
A ground station can command the robot at different levels-from simple actuator
commands up to way point commands. Because it can provide excellent feedback
for a remote operator, a ground station it an important step towards practical use of
autonomous mobile robots.

10.3 End Game-A Final Commentary

I1 believe that the work on Companion thus far has been a marvelous effort requir-
ing the contribution of many people with skills in a broad range of technical fields.

'The time has come to abandon the third person.

Although at least two theses have been written on the robot, there is still more to be
done than has already been finished. I sincerely hope that the ideas for new work on
Companion outlined in the chapter someday come to fruition. It will be then that the
effort that I have invested in Companion will be finally rewarded.

Appendix A

Search2d Neighbor Tests

In the context of a two-dimensional search, Subsection 8.1.2 enumerated a series
of tests that a potential neighbor must pass in order to qualify as a neighbor. This
appendix provides the rationale behind the rules. They are again listed here:

a. If vjk is the same as ni, this is not a neighbor.

b. If the angle made by ni- 1 to ni to vik is greater than 900, this is not a neighbor.

c. If the straight line path from ni to vik does not form a tangent at obstacle bij,
this is not a neighbor.

d. If the straight line path from ni to vjk does not form a tangent at the obstacle
associated with ni, this is not a neighbor.

e. If the straight line path from ni to vjk intersects any segments in the known
obstacle field, this is not a neighbor.

f. If the straight line path from ni to vik is obstructed by an obstacle bl, for each
node nm on the optimal path from s to ni, add bl to OBSTACLE(n,). This is
not a neighbor.

g. Otherwise, vijk is a neighbor.

Of these, rule e and rule f make sense by definition of a neighbor. If the straight
line path between the node and the potential neighbor is obstructed either by a known
or a new obstacle, that point cannot be a neighbor. Rule a is a reflexive test-if the
potential neighbor and the node are one and the same, there is no reason to add it as
a new neighbor.

Rule c and rule d can be made clear from Figure A-1. The claim is that the line
segment joining the node and its neighbor must form tangents on the obstacles at
both ends, i.e. the extension of the line segment does not immediately intersect either
obstacle. In the figure, the potential neighbor point C does not form a tangent at its
obstacle. A better path can be constructed by moving from point A to the vertices
adjacent to point C. The tangency rule implies that all neighbors are convex vertices
of obstacles.

n.

A

Figure A-1: Tangency Test for Neighbors

Rule b, unlike the others, is a result of the grid representation of obstacles. Because
each pixel in the map is a square, obstacles, at the finest level of detail, consist of
nothing but 900 turns, as shown in Figure A-2.' As a result, a turn of more than

Figure A-2: Close up of an Obstacle

900 either results in intersection with the obstacle or makes the configuration a non-
tangent situation. Because this is a simple test to perform, it is done second only to
the reflexivity test.

10bstacle concept courtesy of Chuck Tung.

Appendix B

Implementation of the User Module

The User module, as previewed in Subsection 3.3.10, is the responsible for in-
teraction with Companion's operator, i.e. the user. For now, the User module is
implemented as a simple user interface from the Laptop console. By running the User
process, an operator can select a way point, change the way point, halt the mission,
or quit. It is really nothing more than a front end for the Planner process.

Ultimately, the User module will be implemented as an interface between the
Laptop and a remote ground station. An operator at the ground station can com-
municate with the robot via a radio modem. The User module will be responsible
for managing this communication on Companion and for its normal duties as the par-
ent of the Planner module. Ground station implementation is an area of design and
implementation yet to begin.

Bibliography

[1] Eugene A. Avallone and Theodore Baumeister III, editors. Marks' Standard
Handbook for Mechanical Engineers. McGraw-Hill, New York, 9th edition, 1987.

[2] Jerome Barraquand and Jean-Claude Latombe. On nonholonomic mobile ro-
bots and optimal maneuvering. In IEEE International Symposium on Intelligent
Control, pages 340-347, 1989.

[3] E. W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269-271, 1959.

[4] Leo Dorst and Karen Trovato. Optimal path planning by cost wave propogation
in metric configuration space. In Mobile Robots III, pages 186-197, 1988.

[5] Li-Chen Fu and Dong-Yueh Liu. An efficient algorithm for finding a collision-
free path among polyhedral obstacles. Journal of Robotic Systems, 7(1):129-137,
1990.

[6] Kikuo Fujimura. Motion Planning in Dynamic Environments. Springer-Verlag,
Tokyo, 1991.

[7] Y. Koren and J. Borenstein. Potential field method and their inherent limitations
for mobile robot navigation. In IEEE International Conference on Robotics and
Automation, pages 566-571, 1990.

[8] J. C. Latombe. Robot Motion Planning. Kluwer Academic, Norwell, 1991.

[9] M. Montgomery, D. Gaw, and A. Meystel. Navigation algorithm for a nested
hierarchical system of robot path planning among polyhedral obstacles. In IEEE
Conference on Robotics and Automation, pages 1616-1622, 1987.

[10] E. F. Moore. The shortest path through a maze. In Proceedings of the Interna-
tional Symposium on Theory of Switching, pages 285-292, 1957.

[1.1] U. Pape. Implementation and efficiency of moore-algorithms for the shortest
route problems. Mathematical Programming, 7:212-222, 1974.

[12] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, Reading, 1984.

[13] M. Pollack and W. Wiebenson. Solutions of the shortest-route problem-a review.
Operations Research, 8:224-230, 1960.

[14] QNX Software Systems, Ltd. QNX 4 Operating System: System Architcture,
1993.

[15] Wei Shen, Jun Shen, and J. P. Lallemand. Path planning by potential diffusion
networks. In Mobile Robots VII, pages 13-24, 1992.

[16] Steve Steiner. Mapping and sensor fusion for an autonomous vehicle. Master's
thesis, Massachusetts Institute of Technology, 1996.

[17] R. B. Tilove. Local obstacle avoidance for mobile robots based on the method
of artificial potentials. In IEEE International Conference on Robotics and Auto-
mation, pages 566-571, 1990.

[18] Karen I. Trovato. Autonomous vehicle maneuvering. In Mobile Robots VI, pages
68-79, 1991.

