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Abstract

This thesis represents a continuing effort toward developing a new framework for
dynamic system regulation in a competitive electric power industry environment. It is
a follow-up to two earlier PhD theses done on this topic at M.I.T. The emphasis here,
relative to the earlier work, is on (1) model development for large power electric power
systems, and extensive simulation studies, and (2) the notion of minimal regulation.
(2) is proposed in this thesis for the first time.

A particular modeling approach introduced in the earlier work is used. It simplifies
the dynamics of a very complex system by extracting only relevant information at
each level of hierarchy. This modeling approach is shown to be particularly useful for
modeling large horizontally structured electric power systems under competition.

The newly proposed control technique consists of fringe control and minimal regu-
lation. The fringe control is decentralized and used to preserve the frequency quality
within a certain administrative area. Minimal regulation is coordinated. It is imple-
mented on a slower time scale than the fringe control. Minimal regulation reschedules
the entire system generation and minimizes generation cost relevant to system-wide
performance. This control design is subject to the constraints on both generator
power and tie-line flows for security and reliability purposes.

The simulations carried out on the standard IEEE 39-bus system show that mini-
mal regulation leads to improved dynamic performance and economic efficiency when
compared to the presently used control. The results are interpreted as a function of
the industry structure for which they may be used.

Thesis Supervisor: Marija D. Ilid
Title: Senior Research Scientist
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Chapter 1

Introduction

1.1 Introduction

The work in this thesis is motivated by the need to revisit automatic generation con-

trol principles of large electric power systems. These systems have traditionally been

horizontally structured into administratively separate areas of an, otherwise, large

interconnected system. Each (control) area is at present equipped with an automatic

generation control (AGC) scheme that is used to regulate net generation-demand im-

balance and maintain average frequency in the area within technical specifications.

This is done so that the net tie-line power flow exchanges with the neighboring sub-

systems are also stabilized to their scheduled values.

Scheduling of tie-line flows among the areas is not automated, nor coordinated

from the interconnected system level. Instead, these schedules are established through

bilateral negotiations among the areas, and are primarily done for economic reasons.

Any deviations from scheduled flows are made up on daily basis by means of com-

pensating the so-called inadvertent energy exchange (IEE). The IEE reflects the fact

that there exists an unavoidable cumulative deviation of tie-line flows from their de-

sired (scheduled) values. The compensation of IEE is done in such a manner that

each area observes its own IEE and adjusts schedules accordingly the following day.

This process is based on a voluntary cooperation among the control areas. It results

in a relatively high quality frequency regulation of the entire interconnected system.



The use of generation at the interconnected level is generally sub-optimal. One could

observe, however, non-uniform values of IEE as a result of non-uniform ACE's over

a daily deviation. Consequences of this non-uniform regulation are economic since

particular areas use more of their own resources, and others use less'.

Recent studies have shown that it is difficult to meet the performance criteria in a

changing industry when only the current ACE-like control signals, which combine

both frequency and net tie-line flow deviations, are used. As the United States

utility industry undergoes rapid restructuring, a new control technique that makes

market trading feasible is more urgently needed and should be developed as quickly

as possible.

This thesis addresses the modeling and control design aspects of the future op-

eration framework. An earlier developed hierarchical modeling approach is used to

develop the models for large scale electric power systems. It eliminates the tradi-

tional modeling assumptions with respect to system decomposition and the strength

of interconnections among different areas. While the structure of the electrical power

industry is gradually transforming from a vertical structure into a "nested" structure,

the new modeling technique is sufficiently general for an arbitrary industry structure.

Furthermore, because this approach allows unbundling of information within a control

area, the control design can include generation costs.

The suggested control scheme for future industry is called minimal regulation. It

consists of fringe control for frequency regulation and minimal regulation for optimal

generation dispatch at different hierarchies. By including economic dispatch concepts,

the proposed control technique can achieve economic efficiency and maintain high

power quality at the same time. In addition, minimal regulation can guarantee system

reliability and security. Simulation results illustrate that this control technique can

meet the performance criteria in the changing industry and can adapt to the future

operating structure.

'This is often referred to "riding" on the neighbors for frequency regulation.



1.2 Thesis Format

This thesis is organized in the following format:

* Before discussing the details of control design, Chapter 2 reviews our general

modeling approach. This chapter also reviews the hierarchical modeling con-

cepts as well as succinct derivations of new structure-based models relevant for

frequency and tie-line power flow control. This is done for completeness.

* Chapter 3 reviews the Automatic Generation Control (AGC) presently used in

industry for system regulation in a normal operating environment 2 . It addresses

two different kinds of AGC approach, ACE-based AGC and the proposed ad-

vanced AGC. The first one is used in the current utility industry for average

frequency and net tie-line flow stabilization at each control area level. The

newly developed control technique separates AGC into two subtasks, frequency

regulation and tie-line flow control. Advanced AGC combines the two subtasks

individually at different control levels. Simulation results show that the system

performance improves greatly with the use of advanced AGC. In particular,

one could guarantee a prespecified frequency response at each subsystem level,

independently from the activities in other subsystems.

* Chapter 4 briefly reviews the ongoing regulation changes in the utility industry

that lead to the restructuring of utility. Two often discussed proposed industry

structures are described. This chapter also discusses the role of independent

system operator (ISO) for coordinating activities at the interconnected system

level.

Next, Chapter 4 also introduces the new notion of minimal regulation. It is

the minimal coordination needed to maintain system integrity and provide the

essential system regulation at the same time. Model development, control laws,

and detailed algorithms are presented.

2 "Normal" stands here to imply no unexpected equipment failures. [16]



* Chapter 5 presents simulation studies of the proposed minimal regulation. The

results are compared to those of conventional AGC. It also illustrates the possi-

ble ways for using the minimal regulation while observing physical constraints

on generator outputs and tie-line flows.

* Chapter 6 studies some cases of system operation in a bilateral industry envi-

ronment. Since the US utility industry restructuring could be partially based on

a bilateral model, it is important to prove that our method can be implemented

successfully in a bilateral environment.

* Chapter 7 offers conclusions and future research.



Chapter 2

Review of the Modeling Approach

Adopted

A new modeling approach to large scale electric power networks was recently intro-

duced in [1-3]. This approach was further developed in [4-6]. This general approach

eliminates the need for the modeling assumption with respect to system interconnec-

tion strength. Conventional models were based on an assumption that the intercon-

nections within a particular area of a horizontally structured electric power system

are tighter then those among the areas. Therefore, no specific restrictions on the

decomposition of the interconnected system are needed. Furthermore, this approach

also makes it easier to associate system dynamics evolving over different time scales

with the specific levels of system hierarchy. As such, it provides a potentially powerful

tool for control designs of complex multi-functional large scale electric power systems.

2.1 Hierarchies in Large Scale Power Systems

Because of their complex structures and large sizes, electric power networks are typ-

ically monitored and controlled according to their hierarchical structures. Instead of

modeling the intricate dynamics of the entire system, the system dynamics is mod-

eled by deriving submodels relevant for each particular sub-process. This is based

on observing different time scales over which sub-processes evolve under certain as-
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Figure 2-1: An example of different hierarchies in large scale power systems

sumptions. The overall system behavior can be fully portrayed by piecing together

those simpler, yet essential, elements. The theoretical basis for this type of modeling

in large electric power systems was introduced in [8]. The basic submodels are the

(i) primary (local) model at a device level, (ii) secondary (area-wide) level for each

administrative area, and (iii) tertiary (global) level representing the interconnected

system, Figure 2-1.

The primary control level is entirely decentralized at present. Within this level,

controllers respond to the small but fast local disturbances appearing at the terminals

of each generator. The speed governor units in electric machines maintain the control

of this level. Primary controllers stabilize system dynamics within a very short time

constant, T,, i.e., on the second scale, with the performance specification of a minute,

or so.

The secondary control level is decentralized and is particularly useful in analyzing

7



and controlling the dynamic performance within an administrative area (subsystem

level). This model represents all generators and large number of loads connected by

transmission lines in each administrative area. The secondary control is implemented

at a slower time scale, T,, than that of the primary control (i.e., T, is typically on

the several-second scale, with the performance objective over 10 minutes, or so). The

secondary control is intended to stabilize system outputs within the administrative

area that are disturbed by changes within the area as well as by the changes in neigh-

boring areas. Presently implemented AGC is based on this control structure. Seen

from the interconnected system level, each subsystem uses AGC using decentralized

measurements at its own level only.

The theoretical tertiary control level is coordinated. The aggregate tertiary-level

models describe the inter-area dynamics among administrative areas and are useful

for regulating inter-area variables such as tie-line power flows. These models evolve

on an even slower time constant, Tt, than the secondary level rate, Ts, i.e., on the

minute scale. This higher level structure is not currently used in the utility industry.

However, its importance is increasing as the electric power market is changing and

becoming more competitive. It is plausible that in the future, decentralized regulation

at the secondary-level would not be sufficient to respond to intense interactions among

the areas under an open access environment. The later parts of this thesis provide

examples illustrating potential problems of this sort.

Hierarchical level models higher than the tertiary control level described in this

thesis can also be developed. For example, in present utility industry, the control

centers reset the scheduled values of transmission power among the areas and the

phase angle of the slack generator at a much slower rate for economic reasons. The

unit commitment procedures such as turning on- and off- the available generators in

anticipation of demand on a daily basis, is yet another process of interest. These

processes, at least in concepts, could be regarded as evolving at hierarchies beyond

the tertiary level. However, these models are beyond the scope of this thesis.
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Figure 2-2: A simple scheme of the primary control unit
Source: [7]

2.2 Modeling

In this section a brief summary of the modeling done in [1] is reviewed for complete-

ness.

2.2.1 Individual Control Unit

The governor systems are the main controllers responsible for frequency regulation of

local generation units. An illustration of a typical turbine controlled by a governor

is shown in Figure 2-2. Neglecting the effects of transmission networks, a completely

decoupled dynamics of generation unit can be modeled by using its local state vari-

ables. Under the assumption of real power/frequency and reactive power/voltage

decoupling', linearized state space model of a single generator can be written as [1]

1This assumption has generally been used in many Automatic Generation Control studies, for
example, reference [9].



1ýG D 1 G1 0[M M M ]
Pta 0 - t Pt, + 0 PG + 0 w~f[k] (2.1)

1a 0 a 0 1

The variables in the Equation (2.1) are

* WG, the generator frequency;

* Pta, the turbine mechanical power;

* a, the governor-controlled valve2 opening;

* M, the moment of inertia of the generator;

* D, the generator's damping coefficient;

* Tg, the governor time constant;

* Ta, the turbine time constant;

* eT, Kt, and r, linearizations of governor characteristics.

The two variables in Equation (2.1) to which local dynamics of each generation unit

responds, are PG and w' l. PG is the real electric power output of a generator and 'ef

is the governor reference frequency set point. If the generation unit were completely

disconnected from the electric power network then these two variables can be treated

as two independent inputs to the local dynamics. However, when the single generation

units are connected by transmission lines, generator power outputs will be constrained

by network power balance and are no longer independent. Therefore, the key control

signal of generator frequency control is the reference frequency set point, weef for a

governor unit. For e.g., by updating the wGf every T, seconds, the speed governor

can drive the generator frequency deviation to zero.

2This is used to control turbine power.
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Figure 2-3: Network power balance

2.2.2 Network Constraints of Interconnected Systems

Every administrative area consists of a set of generation buses and load buses, and

transmission lines that connect those generation and load buses. As each generation

unit is connected to the electric power system network, PG, the real power output of

a generator is no longer an independent input in Equation (2.1). The transmission

network which connects all generators and loads, constrains the variables of individual

units by imposing power balance conditions on some related variables. The complex-

valued power injections into all nodes, a combination of real power P and reactive

power Q, can be expressed as

S= P + jQ (2.2)

Complex-valued power injected into network can also be found by computing the

following equation:

N = diag(E)Yb,,V (2.3)

where .N = pN + jQN; Yb,, is the admittance matrix of the sub-network; and

S= [Viei , V2ei 62,... ] is the vector of all nodal voltage phasers, with magnitude VI

and phase 6i of each bus.

The power into a network should balance automatically so the complex-valued

power into all nodes will be equal to that injected into the network, namely,

N = _ 
(2.4)



Partitioning only the real part of this equation under decoupling assumption of real

power from voltage, network constraints of real power take on the form

PN = G + FG (2.5)
-PL + FL

where PG represents real power injections into the network from generator buses, PL

represents real power sinked from load buses, and FG and FL represent tie-line power

flows from adjacent area into the network at generator and load buses, respectively.

Equation (2.5) is further linearized around a typical nominal operating point3 as

PG + FG JGG JGL (26)
-PL + L JLG JLL L[

where
OpN

4J = (2.7)

i,j, E 1,..., I (NG + NL) (2.8)

Jij is a Jacobian matrix of real power injections for each bus. NG and NL represent

the number of generator and load buses respectively. In practice, the Jacobian matrix

elements, Jij, are obtained easily by load flow calculations. Solving Equation (2.6),

which is a very important expression for real power, PG is

PG = KP6 G - (F - DpPL) (2.9)

where

Dp = - JGL JL (2.10)

K, = JGG +DpJLG (2.11)

F = F G +DFL (2.12)

3 This linearization point can be repeated as new information about the operating conditions is
available.



In Equation (2.9), F stands for "mapped" tie-line power flows; they represent tie-line

flows into generating units, FG, while "mapping" the tie-line flows into loads FL. Via

computing F = FG + DFL, tie-line flows are projected back onto the generator

buses4 . In area-wide level models, these mapped tie-line flows will be treated as

disturbances coming from adjoining areas.

2.2.3 Secondary Level Model

In the secondary control level, the fast transient responses of generators are no longer

of direct interest to control design engineers. Assuming that primary level controllers

are designed to stabilize individual generators, while observing the system on the

secondary time scale, only the steady state values will be present5 . This assumption

allows one to simplify the system complexity when deriving the secondary and tertiary

level models.

Let us start the derivation using a linearized model of a single generator [1]

D 1 1e
ý ) M M 0

ta = 0 T gj Pt~a 0 PG + 0 w6f[k] (2.13)

a1 0 a 01
Tg Tg TJ

In order to find the steady state solution of Equation (2.13), set all terms on the

left-hand side equal to zero. Therefore, the generator frequency can be solved,

wG[k] = (1 - aD)wf [k] - uPG[k] (2.14)

where a is the droop characteristic constant of the generator:

S=r (2.15)eT + rD + Kt

4Use of this mapping technique to design controllers was shown in [5], [4], and [6]. For further
developments reported in this thesis it is relevant to observe that the actual tie-line flows may still
become unstable even though the mapped tie-line flows are regulated.

5This is a strong assumption since it has been documented that at present many governors are
not tuned adequately [1].



The droop characteristic equations of all generators within a certain area are stacked

to obtain a multigenerator area-wide expression:

WG[k] = (1 - ED)wf [k] - EPG[k] (2.16)

where

D = diag[DiD2 .. Dm]

E = diag[ala2 .. 'm]

(2.17)

(2.18)

The generator power can be expressed in the following way so as to satisfy the network

constraints:

PG = Kp6G - F + DPEL (2.19)

By replacing PG in Equation (2.16) with Equation (2.19) the droop characteristic

equations and network constraints are combined to form a complete secondary fre-

quency model:

WG[k] = (I - ED)wef[k] - E(KpS6G[k] - F[k] + DpPL[k]) (2.20)

WG[k + 1] - WG[k] = (I - ED)(wf [k + 1] - w f [k]) - Y {KP(6G[k + 1] - 6G[k])

-(F[k + 1] - F[k]) + Dp(PL[k + 1] - PL[k])}

Using the backward difference approximation,

+ G[k + 1] - JG[k]
WG[k + 1] T

T G[k],

wG[k + 1]T, e JG[k + 1] - JG[k],

(2.21)

(2.22)



the load bus phase angles, 6L, are eliminated and a frequency model is found:

wc[k + 1] = (I + EKpT>)-'{wG[k] + (I - ED)u[k] - E(f[k] + Dpd[k])} (2.23)

where

u[k] = w•f[k + 1] - wf [k] (2.24)

f[k] = F[k + 1]- F[k] (2.25)

d[k] = PL[k+ 1]- PL[k] (2.26)

In this model, generator frequencies are the only state variables for an administrative

area. Another generator real power model6 for secondary level control can also be

obtained by eliminating wG in Equation (2.16) and Equation (2.19). However, these

two models are duals of each other. If one tried to use both models in secondary

level simultaneously, controllability problems will emerge. The controls, u[k], are

the difference of governor reference frequencies. From Equation (2.13), the reference

frequencies for primary level control is simply wef[k + 1] = wref[k] + u[k]. The

reference frequencies are the only control signal for real power and frequency control'.

2.2.4 Tertiary Level Aggregate Model

An entire electric power system network is formed by several administrative areas

interconnected through the transmission lines between areas. The area-wide dynamics

is coupled through tie-line power flows. In this section, we derive the relationship

between tie-line power flows and generator frequencies on the tertiary time scale by

using the new hierarchical structural modeling approach.

At first, considering the real power transmission in tie-lines, one can directly write

6 The generator real power model may be used for other purposes. In this thesis, however only
the generator frequency model will be used.

7 This idea is very important and no matter what signals are sent from tertiary level control to
secondary level or from secondary level control to primary level, only G 's are acting as real control
signals.



down the expressions of a certain tie-line flow in terms of voltage phasors at the end

of its two terminal nodes and the line impedance of that line. According to the

decoupling assumption, the voltage will not be affected by the frequency deviations.

Therefore, the power flows depends solely on phase angle. The sensitivity matrix

defining change in tie-line power flows with respect to voltage phase angles is

JfG = (2.27)86G

iJfL = (2.28)
06-L

The dependence of real power flows on voltage phase angles is

Pf = JfG JfL E 6G (2.29)
LL

Secondly, recall that when looking at the overall Jacobian expression of generator

real power output, Equation (2.6), the tie-line flow terms FG and FL are not present

in the equation. Consequently, the phase angles on load buses can be expressed in

terms of the phase angles on generator buses and loads on load buses:

6L = -J-L(JLGG + L) (2.30)

Substituting Equation (2.30) into Equation (2.29) eliminates the load phase angles

in Equation (2.29):

P_[K] = Kf6G[K] + DfPEL[K] (2.31)

where

Kf = JfG-JfL JEJLG (2.32)

D = -- JILJL (2.33)



Hence

Pf [K + 1] = Pf[K] + Kf (A_[K + 1]- _G[K][K + 1] - K + 1] - PL[K]) (2.34)

One can easily obtain the relationship between phase angle differences and gener-

ator frequencies.

wG[K]Tt f0 6G[K + 1] - 6G[K] (2.35)

Thus, the tertiary level tie-line power flow model is found:

EP[K + 1] = P [K] + KfTtwet[K] + D1 d[K] (2.36)

where d[K] is the load difference, (PL[K + 1] - PL[K]). This is the disturbance to

the system. wet [K] signal will be sent to the secondary level controller as a reference

input. The details of controller implementation will be presented in the next chapter.

Note that some tie-line flows might be sums or linear combinations of other tie-line

flows. The independence of tie-line flows is determined by network topologies but can

also be detected by checking eigenvalues of matrix K1 . Namely, model (2.36) may have

some controllability problems if one tried to control every single tie-line, including

independent tie-lines and dependent tie-lines. Only the subgroup of independent

tie-lines are fully controllable. The subgroup of dependent tie-line flows are linearly

dependent on the independent ones. Therefore, the tie-line flow deviations of those

dependent tie-lines will be driven to zero as well once all independent tie-line flows

are regulated.

2.3 Simulation Setup

The standard IEEE 39-bus system was chosen to illustrate theoretical ideas intro-

duced in this thesis. The system data were created by the New England Electric

System (NEES) several years ago. This system is a simplification of the 345 kV

transmission system in the New England region, with 10 generators and 29 loads, as
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Figure 2-4: A illustration of 39-bus New England transmission network
Source: [10]

shown in Figure 2-4. In the figure, individual generation nodes are identified with

individual plants rather than aggregations of many units.

For purposes of this study, this system is partitioned into four administrative

areas. As shown in Figure 2-3, generator bus 30 and bus 38 and load buses 1 through

9 with the exception of bus 6 are in area 1; generator bus 31 and slack bus 0 as well

as load bus 6 and buses 10 through 15 are in area 2; generator buses 32 through 35

and load bus 16 and bus 19 through 24 are in area 3; all others are in area 4. The

areas are interconnected through seven tie-lines. The tie-lines are connecting buses 2

and 25, 3 and 18, 4 and 14, 5 and 6, 6 and 7, 15 and 16, and buses 16 and 17. This

is an arbitrary decomposition and it is not based on the strength of interconnections

among the subsystems. Areas 1 and 3, and areas 2 and 4 are not directly connected.

The generator and line parameters8 are shown in Tables 2.1 and 2.2, respectively9 .

For the system inputs (generation and demand) shown in Table 2.3, the load flow

solution for system voltages and angles is shown in Table 2.4.

8 Repeated connections mean that there are more than one line between two buses; for example,
two lines exist between bus 1 and bus 38.

9All data are in a per unit system.
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Table 2.1: Generator parameters for 39-bus example (per unit)

Generator M D eT Ta Kt r Tg
30 4.0 5.0 39.4 0.2 250 19 0.25
31 2.5 4.0 39.4 0.2 250 19 0.25
32 4.0 6.0 39.4 0.2 250 19 0.25
33 2.0 3.5 39.4 0.2 250 19 0.25
34 3.5 3.0 39.4 0.2 250 19 0.25
35 3.0 7.5 39.4 0.2 250 19 0.25
36 2.5 4.0 39.4 0.2 250 19 0.25
37 2.0 6.5 39.4 0.2 250 19 0.25
38 6.0 5.0 39.4 0.2 250 19 0.25
0 3.0 4.0 39.4 0.2 250 19 0.25

Table 2.2: Line parameters for 39-bus example (per unit)

line 1-2 1-38 1-38 2-3 2-25 3-4 3-18
r 0.003500 0.002000 0.002000 0.001300 0.007000 0.001300 0.001100
x 0.041100 0.050000 0.050000 0.015100 0.008600 0.021300 0.013300

line 4-5 4-14 5-6 5-8 6-7 6-11 7-8
r 0.000800 0.000800 0.000200 0.000800 0.000600 0.000700 0.000400
x 0.012800 0.012900 0.002600 0.011200 0.009200 0.008200 0.004600

line 8-9 9-38 10-11 10-13 13-14 14-15 15-16
r 0.002300 0.001000 0.000400 0.000400 0.000900 0.001800 0.000900
x 0.036300 0.025000 0.004300 0.004300 0.010100 0.021700 0.009400

line 16-17 16-19 16-21 16-24 17-18 17-27 21-22
r 0.000700 0.001600 0.000800 0.000300 0.000700 0.001300 0.000800
x 0.008900 0.019500 0.013500 0.005900 0.008200 0.017300 0.014000

line 22-23 23-24 25-26 26-27 26-28 26-29 28-29
r 0.000600 0.002200 0.003200 0.001400 0.004300 0.005700 0.001400
x 0.009600 0.035000 0.032300 0.014700 0.047400 0.062500 0.015100

line 2-30 6-0 6-0 10-31 12-11 12-13 19-20
r 0.000000 0.000000 0.000000 0.000000 0.001600 0.001600 0.000700
x 0.018100 0.050000 0.050000 0.020000 0.043500 0.043500 0.013800

line 19-32 20-33 22-34 23-35 25-36 29-37
r 0.000700 0.000900 0.000000 0.000500 0.000600 0.000800
x 0.014200 0.018000 0.014300 0.027200 0.023200 0.015600



Table 2.3: Generation and demand data for 39-bus example (per unit)

bus 1 2 3 4 5 6 7 8 9
PL 0.0000 0.0000 3.2200 5.0000 0.0000 0.0000 2.3380 5.2200 0.0000
QL 0.0000 0.0000 0.0240 1.8400 0.0000 0.0000 0.8400 1.7600 0.0000
PG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

QG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
bus 10 11 12 13 14 15 16 17 18
PL 0.0000 0.0000 0.0850 0.0000 0.0000 3.2000 3.2940 0.0000 1.5800
QL 0.0000 0.0000 0.8800 0.0000 0.0000 1.5300 0.3230 0.0000 0.3000
PG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

QG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

bus 19 20 21 22 23 24 25 26 27
PL 0.0000 6.8000 2.7400 0.0000 2.4750 3.0860 2.2400 1.3900 2.8100
QL 0.0000 1.0300 1.1500 0.0000 0.8460 -0.9200 0.4720 0.1700 0.7550

PG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

QG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

bus 28 29 30 31 32 33 34 35 36
PL 2.0600 2.8350 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

QL 0.2760 1.2690 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PG 0.0000 0.0000 2.5000 6.5000 6.3200 5.0800 6.5000 5.6000 5.4000

QG 0.0000 1.0000 1.3620 1.7590 1.0334 1.6439 2.0483 0.9688 -0.0443

bus 37 38 0
PL 0.0000 11.0400 0.0920

QL 0.0000 2.5000 0.0460
PG 8.3000 10.0000 5.7286
QG 0.1938 0.6845 1.7034



Table 2.4: Load flow data for 39-bus example (per unit)

bus 1 2
V 1.0163 0.9979

3 4 5
0.9616 0.9267 0.9299

6
0.9327

7 8 9
0.9223 0.9223 0.9861

6 -0.1779 -0.1269

bus 10 11
V 0.9421 0.9372
6 -0.1083 -0.1247

bus 19 20

-0.1811 -0.1959 -0.1709
12 13 14

0.9165 0.9377 0.9334
-0.1251 -0.1229 -0.1572

21 22 23

-0.1565
15

0.9393
-0.1668

24

-0.2015 -0.2119 -0.2097
16 17 18

0.9606 0.9584 0.9572
-0.1390 -0.1590 -0.1760

25 26 27
V 0.9795 0.9808
6 -0.0461 -0.0713

bus 28 29
V 0.9817 0.9940

0.9721 1.0075 1.0052
-0.0921 -0.0073 -0.0114

30 31 32
1.0475 0.9831 0.9972

0.9697
-0.1368

33
1.0123

1.0059 0.9725 0.9571
-0.0997 -0.1213 -0.1620

34 35 36
1.0493 1.0635 1.0278

J -0.0517 0.0015

bus 37 38
V 1.0265 1.0300

-0.0836 0.0325 0.0451
0

0.9820
6 1 0.1270 1 -0.2074

0.01941.0~F 0.0807 0.1304 0.0211

I II

2.4 Summary

In this chapter, present hierarchies, the primary, secondary, and tertiary levels, in

electric power systems are briefly reviewed first. This is followed by the review of new

hierarchical models originally conceived in [1].

Two models which are frequently used in this thesis are (i) the secondary-level

frequency model given in Equation (2.23) that describes the local frequency dynamics

in each administrative area, and (ii) the tertiary level tie-line flow model given in

Equation (2.36) that establishes the relation between tie-line flows and generator

frequencies at the interconnected system level.

In order to avoid repeats and for convenience, the expression wG[k + 1] = (I +

EKpTs)- 1{wG[k]+ (I- D)u[k]-E(f [k] +Dd[k])} in the secondary frequency model

is simplified to

WG[k + 1] = AwG[k] + Bwu[k] + Lw(f[k] + Dpd[k])

Y

0

--

'

0 1 1 I I

(2.37)



Similarly, for the tertiary tie-line flow model, Pf[K + 1] = Pf[K] + Kf TtG_ [K] +

Dfd[K] is simply expressed as

PJ[K + 1] = AfPE[K] + Bf t [K] + Lfd[K] (2.38)

in the rest of this thesis.

Finally, the IEEE 39-bus system is used as an example system to approximate the

real electric network. All simulations in this thesis are based on this system.



Chapter 3

Conventional AGC and Advanced

AGC

This chapter reviews two approaches to the automatic generation control at the sec-

ondary (subsystem) level of an interconnected system. The first one is the conven-

tional AGC [11], [12], which is the control technique currently used for generator

frequency and tie-line flow regulation in electric power industry. It automatically

responds to the deviations in Area Control Error (ACE) signals that, in steady state,

represent the mismatch between load and generation within a certain administrative

area. By using bundled and decentralized ACE signals, conventional AGC ingeniously

simplifies the two major control tasks, frequency regulation and tie-line flow control,

into ACE signal regulation.

The second approach is referred to as an advanced AGC 1, and it represents a

recently developed method for automatic generation control. This new technique

separates and realizes two tasks of AGC at different control levels. The control

models of advanced AGC are the hierarchical models which have been addressed in the

previous chapter. These structure-based models allow for unbundling of information

at each administrative area level. In addition, by using centralized control, advanced

generation control can globally coordinate and actually stabilize tie-line flows.

'This notation was first used in [5] and [6].
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3.1 Conventional AGC

Before discussing the advanced automatic generation control, a very simple example

is provided to demonstrate the basic role of AGC in electric power systems. Assume

that the standard IEEE 39 bus system is operating under its nominal conditions

defined in Chapter 2. At t = 30 seconds, a 0.2 per unit load disturbance occurs at

bus 25 causing deviations from the system equilibrium. Figures 3-1 to 3-4 show system

response to this disturbance when only primary control is active, i.e., without AGC.

Every generation unit increases power generation to meet the increased load so as to

balance the real power in the network. Frequencies of all generators settle to non-60

Hz steady-state values. It is shown, by simulations, that the frequency deviations are

not truly regulated when only primary control is used. If these deviated values are

sufficiently large and kept over long-term horizons, the system may become unstable.

Some system equipment may also be sensitive to these deviations and damaged.

Figures 3-1 to 3-4 illustrate that in order to guarantee the quality of system

response over long-term horizons, it is necessary to provide an area-wide coordination

x 10
- 4
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for frequency regulation. The conventional AGC has a very simple but surprisingly

efficient control algorithm. The conventional AGC approach is based on the Area

Control Error (ACE) measurement. In the next section, the functions and ways to

compute ACE are discussed.

3.1.1 ACE Signal and Participation Factor

When a load in a particular subsystem (control area) increases, generator frequencies

tend to decrease and tie-line flows from adjacent areas increase. The ACE signal

reflects the power mismatch causing by load change and it is defined as

The ACE is defined as:

10
ACE1 (t) = biwave(t) + lnet(t) (3.1)

27r

i= 17,-., R (3.2)

where

V 17
- 4



e 4We denotes the average frequency offset from 60 Hz in area i.

* Fnet denotes the net tie-line flow deviation, the algebraic sum of all tie-lines

flows, into area i.

* bi is the frequency bias2 , which is a scaling factor that represents the sensitivity

of ACEi(t) to the average frequency Wve.

* R stands for the number of areas.

Several issues arise and need to be discussed. First, the ACEi(t) signal is a scalar,

bundled measure of average frequency deviations from nominal and the net deviations

of tie-line flows associated with a certain area. This measure is based on an implicit

assumption that the frequency deviations within an administrative area change by the

same amounts. In other words, it is based on the assumption that the interconnections

within an administrative area are tighter than the interconnections among different

areas. Once the topology of a network violates this assumption, ACE signals no

longer represent the true situation on the system. Second, the frequency bias, bi,

is used as a scaling factor to map the average frequency offset into an equivalent

power deviation. Some guidelines on how to choose better bi are provided by the

North American Electric Reliability Council (NERC). It is generally suggested that

the frequency bias should not be less than 1% of the total peak load in the area, and

the larger the values the better. Even though some recommendations about how to

choose the frequency bias, bi, exist, they are not based on explicit calculations that

could be used to guarantee a prespecified performance of each control area. Typical

industry standard, referred to as Al, recommends that ACE cross zero at least once

each 10 minutes. The choice of bi is not directly related to this present standard.

The ACE signals represent the total power generation needed for each area. How

much power should be generated by each electric machine is determined by the so

called participation factors, a,. The power which generator n should provide is simply

2 The units of bi usually are MW/0.1 Hz, or p.u./O.1 Hz



computed from

PGn(t) = anACEi(t) (3.3)

n= 1, , NGi (3.4)

NGi indicates the number of generators in area i. Obviously, the sum of all partici-

pation factors for a certain area should be one.

NGi

San= 1 (3.5)
n=l

A general rule for assigning participation factors is based on both dynamic response

characteristics of machines participating in AGC and possibly their cost characteris-

tics. In the ideal case, if the generation costs of some generators are less than others

(for example: hydroelectric power plants are cheaper than fossil-fueled plants), then

cheaper generators should be assigned larger participation factors as long as they have

the capacity to generate the required amount of power. It is relevant to observe that

at present most of the regulating machines are not optimized for cost [13]. The eco-

nomic use of generation is basically attempted only through the economic dispatch,

a function that schedules generation for the anticipated (known) demand. System

regulation, such as AGC, in response to demand deviations from their scheduled

quantities is not necessarily decided on economics as the major criterion; dynamic re-

sponse, such as using flexible units that are capable of meeting standards such as Al is

the prime concern. This fact should be kept in mind when attempting to understand

costs associated with dynamic regulation of present electric power systems.

3.1.2 Simulation Example for Conventional AGC

This section presents a simple example of conventional AGC in response to the same

0.2 per unit disturbance on bus 25 with bi = 20 pu/0.1 Hz; all generators are given

the same participation factor within an area, i.e., ai = 0.5 for all i in area 1, 2, and

4, and ai = 0.25 for all i in area 3. In the simulation, ACE signals are reset every 20

seconds.
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Figures 3-5 to 3-8 show the system response within 200 seconds. A comparison

of this to the system response without AGC as shown in Figure 3-1 to Figure 3-4

shows that the conventional AGC successfully reduces the frequency deviations from

the scheduled values as well as inadvertent tie-line power flows from adjoining areas.

The generator frequencies and tie-line flows settle to some values which are close to

the predisturbance conditions.

However, because of using bundled ACE-based signals, AGC cannot actually make

frequencies or tie-line flows return to the initial values. Since the definition of Area

Control Error is ACEi(t) = - •b•w e(t) + Fnet(t), even though ACE signals are

regulated to zeros, neither average frequency nor net tie-line flow offsets are necessarily

zero. Furthermore, even if average frequency deviation is decreased to a smaller value,

this does not necessarily apply to individual frequency. Similarly, Figure 3-5 to Figure

3-8 show that in order to limit Fnet(t) to small values, some individual tie-line flows

deviate to positive values and others to negative values.

3.2 Advanced AGC

Recently an advanced approach to modeling and control of real power and frequency

for large scale electric power systems was conceived [1-3]. This work was carried

further in [4-6].

Revisiting present state-of-the-art of AGC and system-wide frequency/real power

regulation was motivated by several factors.

* At present ACE-based AGC is prone to difficulties with choosing frequency bias,

bi, for the recommended industry standards, such as Al, to be met.

* Furthermore, the impact of generation/demand imbalances in the area on changes

in ACE is bundled with the impact of deviations in tie-line flows coming from

the neighboring areas.

* Meeting an industry standard, such as Al, does not guarantee that the specifi-

cations on frequency deviations (neither average, nor at the specific locations)



would be met.

* Generally, the sensitivity of frequency with respect to real power generation,

Pc, is very small. This fact directly follows from the droop characteristic of

each generator, given in Chapter 2, Equation (2.14); this is simply because

coefficient a is typically small.

Implication of this is that even though particular generating units do not re-

spond to the ACE signal, the effect of this is small, and it will not be seen much

in the wave of the control area. This further means that certain units can "ride"

on the others for frequency regulation in response to ACE deviations.

* The same problem of "riding" for frequency regulation is seen at the intercon-

nected system level, since meeting Al criteria for ACE does not imply that

areas would actually regulate tie-line flow exchanges.

All of these facts are easily supported by the simulations in the previous section.

An overall relevant conclusion is that the presently implemented frequency reg-

ulation is not capable of meeting the end-user needs by whom the quality of power

delivered can be thought of in terms of allowable thresholds of frequency deviations

from 60 Hz3 .

At advanced notion of frequency and real power regulation discussed in this thesis

is intended to

* Allow each subsystem (area end-user) to prespecify the quality of frequency

response desired.

* Not require regulation of tie-line flow deviations at a subsystem level.

* Develop a slower, minimal order, scheme for regulating tie-line flow deviations

at the interconnected system level. This regulation scheme is described and

supported by simulations in the remainder of the thesis.

3Here the thinking is only for very small, order of 10-3 Hz, yet nonuniform.



3.2.1 Secondary Control Only

The goal of the secondary control is to regulate generator frequencies, wG[k], within

an area in order to reach the desired values. The secondary control alone will regulate

generation frequencies at the location of interest to 60 Hz, and allow for fast deviations

in net tie-line flows. Recall the secondary level model that was reviewed in Chapter

2,

WG[k + 1] = A,wG[k] + B,u[k] + L,(f[k] + Dpd[k]) (3.6)

This model lends itself in a straightforward way to the standard Optimal Linear

Quadratic Regulator (LQR) theory [14], [15]. In [1], [16], a LQR problem formula-

tion for the secondary level frequency regulation was introduced. The objective cost

functional used is of the form

00

J = E{wT[k + 1]Qwa[k + 1] + uT[k]Ru[k]} (3.7)
k=O

In the cost functional, Q and R are state and control weighting matrices, respectively.

These matrices should be chosen to reflect the relative quality of frequency regulation

and the cost of regulation. For example, at the locations where higher quality of

frequency response is required, the corresponding diagonal element in the matrix Q

should be relatively high. Based on LQR method, the control law is

u[k] = -KswG[k] (3.8)

where control gain, K,, is

K, = (R + BTSB,)-'BTSA., (3.9)

and S is the solution of

= ASA, - S + Q - ATSB,(R + BTSB,) - 1 B SA,. (3.10)



Table 3.1: Generator parameters for 39-bus system (per unit)

Generator 30 31 32 33 34 35 36 37 38 0
E 4.94% 5.19% 4.71% 5.33% 5.48% 4.39% 5.19% 4.60% 4.94% 5.19%
D 5.0 4.0 6.0 3.5 3.0 7.0 4.0 6.5 5.0 4.0
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Figure 3-9: System response to 0.2 p.u disturbance with secondary control (Area 1)

Equation (3.10) is the discrete version of algebraic Riccati equation. If the system

is controllable, the solution to the Riccati equation is also symmetric and at least

positive semidefinite.

The LQR control of this type will guarantee stability; in this model the tie-line

flows are treated as disturbances. For robustness with respect to these disturbances,

the gain margin should range from 0.5 to infinity and the phase margin from negative

60 degrees to positive 60 degrees [14], [15].

3.2.2 Simulation Examples for Secondary Control

Table 3.1 shows all generator parameters for secondary control simulations. Time

period for applying secondary control, Ts, is 2 seconds in the simulations. The ma-



x 10-4 Fre
P,x0______

"-0.5 -

-1.5
0 10 20 30 .4

Gene

quency Deviations

- grslack)

rator r0wer Outs 70 80 90 100

D
Time(sec)

Figure 3-10: System response to 0.2 p.u disturbance with secondary control (Area 2)
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Figure 3-12: System response to 0.2 p.u disturbance with secondary control (Area 4)

trices Q and R for Riccati equation are equal to 100I and I, respectively. Where I is

the identity matrix. By increasing the same amount of load disturbance on bus 25,

readers can compare the results of ACE-based AGC case with the secondary control

case.

The simulation results show that the secondary control is not only able to actually

regulate the undesired frequency offsets but is also much faster than the conventional

way. In addition, secondary control also could be designed to meet different frequency

quality requirement. Figure 3-13 shows that by putting heavier weight, the frequency

deviation of generator 33 is regulated faster than other three generators in area 3.

However, the secondary control is only in charge of regulating the frequency de-

viations from 60 Hz so it does not try to regulate any tie-line flows. It will let them

flow and balance freely. In this case, the tie-line flow deviations are larger than that

with conventional AGC.
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Figure 3-13: Frequency performances in area 3 with putting different weights on G33

3.2.3 Combining Tertiary and Secondary Level Control

The secondary control is designed to take care of the frequency regulation only, so a

centralized coordination for tie-line flow control is needed. Even though the tie-line

flow control has been discussed in the earlier AGC literature [18], [19], due to the usage

of hierarchical control method, our approach is simpler and more straightforward. The

derivations of the tertiary control from the tie-line flow model are presented below:

Pf[K + 1] = A1fEf[K] + Bf__et[K] + Lfd[K] (3.11)

The object performance functional which needs to be minimized in LQR method is

J = _ {fP[K + 1]QPf[K + 1] + __etT [K]Rwy t[K]} (3.12)
K=O

The feedback gain in tertiary level can be computed by solving the Riccati equation:

]G t [K] = -K(EP [K]) (3.13)

Q=I, R=I
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Figure 3-14: System response to 0.2 p.u. disturbance with advanced AGC (Area 1)

where Kt is defined as

K, = (R + BTSBf)-'BT SAf, (3.14)

and S is the solution of

0 = ATSA, - S + Q - ASB,(R + B SBf)-iB SAf (3.15)

The signals computed by tertiary control wet[k] are sent to secondary control as

reference inputs. Therefore, the control law in secondary level should be slightly

changed to adapt to the reference input. For discrete time state feedback control

with reference input [17], [4], secondary control law should be modified to

[k] = -Ks,(G[k] - wjt [K]) + B,-L( - A,)•g t [K] (3.16)

The secondary control gain K, is still the same.

3.2.4 Simulation Examples for Advanced AGC
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Figure 3-17: System response to 0.2 p.u. disturbance with advanced AGC (Area 4)

In the simulations where secondary level and tertiary level control are applied simulta-

neously. Tt is ten times4 larger than T,. In other words, secondary control runs every

2 seconds and tertiary control runs every 20 seconds. Both tertiary-level weighting

matrices Q and R are I.

Figures 3-14 to 3-17 show that both frequency and tie-line flow deviations are

completely eliminated by the advanced AGC. There are some interesting properties.

First, compared to the frequency response in the secondary control, frequencies are

regulated more slowly if both tertiary and secondary controls are applied. This is

a trade-off between frequency and tie-line flow regulations. Theoretically, frequency

control is done right after that of tie-line flows, because the sensitivities of tie-line

flows to generation frequencies are large, namely,

W < 1 (3.17)
Pfj

4In typical control design, the time constant of outer loop, tertiary control, is chosen larger than
the inner loop control, secondary control, to make sure that inner loop can be stabilized within the
time period so that the basic assumption in hierarchical modeling is not violated. 10 times larger is
generally considered an appropriate value.



(3.18)

j E 1,...*, Nine (3.19)

where NG and Nline represent the number of generator participating in the tertiary

control and tie-line respectively. In other words, tiny frequency deviations result in

sufficient tie-line flow changes.

Regarding the behavior of tie-line flows, there are two kind of responses in non-

disturbed areas. The first kind is like that of area 1 and area 2. Due to the tie-line

flow control, the disturbance in area 4 only effects area 1 and area 2 in a very short

time. All generators in area 1 and 2 return to their original settling points after the

system has reached the steady state. The second kind of response is like that in area

3. All generators in area 3 are adjusted to help the system achieve the regulation. It

is impossible for area 4 alone to make tie-line flow deviations between area 3 and 4

return to zero, so area 3 rearranges the generation to create counterflows and cancel

the tie-line flow effects from area 4.

3.3 Summary

Two Automatic Generation Control (AGC) methods are introduced in this chapter.

The conventional AGC is the current technique widely used in electric power system

industry. The advanced AGC is the newly developed control technique for generator

frequency and tie-line power flow control.

The conventional AGC functions by responding to the bundled control signals

called Area Control Errors (ACEs). However, because of the inherent nature of ACE

signals, conventional AGC cannot regulate separately both frequencies and tie-line

flows. In addition, even though some suggested solutions are made, the uncertainty

of choosing frequency bias, bi, still exists as an open question.

The general idea of advanced AGC control is that by using a hierarchical structure-

based models, the complex control tasks are shared by different hierarchical levels.

Therefore, its development is totally based on the significant progress in modeling



technique. The conventional AGC includes unbundled information into control de-

sign. It is seen, from the representative simulation results, that the advanced AGC

is not only faster and more effective than ACE-based AGC, but it can also allow all

frequencies as well as tie-line flows to be regulated to their initial scheduled values.



Chapter 4

Automatic Generation Control

Under Open Access

4.1 Changing Electric Power Industry

The traditional structure of the electric power industry consists of a number of strict,

mandatory pools owned by utility industry investors. These investors own all gener-

ation and transmission resources, which provide customers with most of their electric

energy. Under this structure, customers have few choices for services or billing and

pricing. However, recently, there has been a strong movement toward deregulating

this industry [28].

Over the past several years, most of the new sources of electrical generation in

the United States were built by independent power producers (IPPs). Usually IPPs

sold power to their local investor-owned utility services. In 1992, the Energy Policy

Act (EPAct) required utility investors to open wholesale access to the transmission

systems. In other words, independent power producers could use the transmission

services provided by investor utilities in order to sell wholesale electricity to any

qualified wholesale buyer. Obviously, as competition among different producers of

electricity increased, the electricity market in the United States became more and

more competitive.

As the environment of the power industry shifts and varying system inputs change



their patterns (i.e., more and more profit-driven energy exchanges or independent

injections of demand or generation), the performance criteria for system functions

should also change. In order to propose future system regulation, it is essential to

study the basic "rules of the game" and to re-examine the criteria in this coming

competitive environment. A standardized performance criterion for system oper-

ations needs to be found. There are some general rules that have been outlined in

recent economic studies and that provide guidelines for the competitive electric power

industry in the future [28]:

* Competition should be allowed in generation with open access to transmission

and distribution systems.

* Transmission and distribution systems will continue to be well regulated mo-

nopolies.

* An independent system operator (ISO) should be established to provide network

coordination.

* Ancillary services, such as frequency control, voltage support, and transmission

services, are needed to guarantee system reliability as well as power quality.

Some emerging proposals on new industry structures are discussed in the next section.

4.2 Future Operating Framework in a Competi-

tive Environment

The new operating structure in a competitive industry must be able to coordinate

the system and preserve overall reliability and security. It should also allow the

competitive generation to participate in system-wide regulation, if desired. In this

situation, it is essential to make a distinction between (i) technical functions for

system-wide performance, and (ii) commercial functions of purchasing and selling.

At present the two most discussed proposals for industry restructuring are so

called Pool-Co model and Bilateral model [28], [29], [30]. The Pool-Co model is



Figure 4-1: The competitive market

based on having a pool in charge of dealing with the energy distribution among

sellers and buyers of electricity. The Pool-Co model would allow all customers to

buy the electricity at a spot price. On the contrary, in the Bilateral environment,

the decentralized bilateral contracts among sellers and buyers determine the price

of electricity. The competition of generation is expected to lead to the economic

equilibrium.

A latest example of the Pool-Co model is the restructuring of the United King-

dom (UK) power system[31]. UK experience shows that using the Pool-Co structure

achieves only partially competitive market. However, it is feasible to create a fully

competitive environment that is totally different from the traditional vertically inte-

grated structure in the United States.

Figure 4-1 indicates a possible structure of the future US utility industry under

open access to transmission and distribution systems. In fact, the restructuring is



already in progress. In this structure, ISO provides network coordination and other

ancillary services. Unlike the UK's approach of a common pool, the restructuring of

the electric supply industry in the US is totally based on bilateral contracts. This

model provides each customer chances to seek his own supplier. These bilateral

transactions are potentially more efficient and could lead to greater customer choices

and lower costs.

In fact, both models provide a centralized pool and bilateral contracts, which,

however, are given different priority, in the different models. The ultimate goal of

these different models is to create a free market-like utility environment, but these

models use different ways to approach it.

Once the competitive utility market is established, a lot of "profit-driven" energy

may be transferred across the different areas which are physically apart so the orig-

inally weakly connected administrative areas will become more strongly connected.

In this sense, the vertical hierarchy structure changes into "nested hierarchy" [16].

Within this nested hierarchy structure, new performance objective for system oper-

ation should be defined so that the utility industry can build the new market model

directly onto the present market structure by providing open access for increased

number of players.

Obviously, it will be extremely complex to meet the performance objectives in

the real-time operations of a very large nested hierarchical system. It is essential to

assign performance objectives relevant to different levels of hierarchy with minimal-

order models and minimal coordination for both security and efficiency purposes.

4.2.1 Interconnected Operations Services: The Role of Sys-

tems Control

The independent system operator (ISO) will provide the basic coordination in fu-

ture competitive power markets. The ISO not only needs to have authority to act

in emergencies but also has to provide sufficient system control services1 that can

'In this thesis, the NERC term interconnected operations services is used interchangeably with the
FERC introduced term ancillary services and, furthermore, with the term systems control services



preserve the operation reliability of the system and facilitate trades. These services

are fundamental and important for keeping the system's integrity under competition

[20].

Systems control services include compensation of transmission line losses, main-

taining of the system within the operating constraints, frequency regulation, etc.

Without them, the system would break down. As the electric power market becomes

more and more competitive, the load and flow changes will become more difficult to

predict. Therefore, it is impossible for the system manager to know precisely where

the violation of the constraints will happen, and a higher burden may be placed on

automated systems control services.

This thesis introduces a possible approach to system regulation under competition.

This approach separates and simplifies the control objective into two subobjectives,

i.e., its secondary and tertiary levels. The secondary level is a regulating level in

which fringe control is in charge of frequency regulation. The tertiary level is an

economic level. The main objective of this level control is cost optimization.

4.3 Minimal System Regulation under Competi-

tion

At present, the set values of tie-line flows are established through arrangement among

specific companies. Any deviations from the original set values will very likely violate

the optimal dispatch. They are usually treated as "Inadvertent Energy Exchange."

As the utility market undergoes severe structural changes, the main objectives of

AGC diverge from the traditional ones. Since price and cost will dominate most en-

ergy exchanges, the interconnection between the administratively separated areas will

become more intensive. Any flow regulation that fails to consider of those economic

issues will decrease the economic efficiency. Because making supply and demand com-

petitive achieves the economic efficiency, the performance objectives should induce

in [16].



economic tie-line power flows so that the system can continue to provide a competi-

tive environment for all suppliers and buyers. The use of cost-based control structure

will keep the system together in response to the strictly profit-driven system distur-

bances under open access. The main idea of minimal regulation is to use system-wide

resources with the least amount of total generation cost while preserving the system

security [32].

4.3.1 Cost

As mentioned earlier in this thesis, at present performance objectives for system regu-

lation in response to unscheduled deviations are mainly technical. However, it is likely

that the performance objectives under competition may account for the economics

of system regulation. Depending on how the systems control services are charged

for, the economics may reflect either cost or profit associated with providing these

services. In any event, the cost associated with AGC will take on a new importance.

Typically, the generation cost is directly dependent on the power generated. The hi-

erarchical models described in this thesis can provide the unbundled generation cost

information to the individual users of systems control services such as AGC. The fuel

cost of a generator is a nonlinear function of generation produced.

C(PG) = h(PG) (4.1)

where h() is a nonlinear cost function, and PG is the actual real generator power

rather than the incremental one, PG2. In other words,

PG = PGO + PG (4.2)

where PGo is the nominal, scheduled, value of the generator real power output.

2In the previous part of this thesis we considered only the deviations, increment, of real power,
PG -
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Figure 4-2: Generation cost curve

The nonlinear fuel cost curves are usually approximated by quadratic functions

C(PG) = ao + aiPG + a2 p (4.3)

In addition,

C(P)G) = ao + aPG +a P
= ao i(Pco + PG) + a 2(PGO + PG) 2

= (ao + alPGo + a2PG0) + (alPG + 2a2PGOPG) + a2PG

ac(PG) p + aP= costo + PG 2 G
&PG pO

C(PG) = APG+a 2 P

Therefore, the cost deviation can be expressed as

Ci(PG,[k]) = A•PG,[k] + a2i(PG, [k]) 2  (4.4)

The Ai term in the equation is the first order sensitivity of cost at its nominal operating

value, PGo. It is also known as a Short Run Marginal Cost (SRMC).

The SRMC is typically used to express optimal economic dispatch conditions for

scheduled (known) demand: If the system is operating in the optimal condition that



minimizes the total cost, A2 of all participating generation units will be the same

as long as the operating constraints are not violated and transmission losses are

neglected. Namely, this condition is often referred to being the economic equilibrium.

4.3.2 Economic Dispatch

Some former studies have developed Economic Dispatch (ED) methods and many

control centers currently use it routinely for scheduling generation for the anticipated

demand [24-27]. ED functions to schedule the real power outputs of the on-line

generators so as to meet the net total load with least fuel cost.

Mathematically, the basic ED problem is to find the optimal value of generator

power Pý that minimizes the total generation cost. Namely,

NG

minE C (PG) (4.5)
i=1

subject to
NG NL

P P = + POS (4.6)
i=1 j=1

3 When the transmission loss, Pos,, is neglected, the necessary condition for an opti-

mal solution to this problem is known as

1C1 (PG 1) _ OC2 (PG 2 ) _ CNG(PGNC) =A* (4.7)
PG 1 aPG, 2PG N,

Pm•n p, < pm7a (4.8)

iE 1, ... , NG (4.9)

where A is the SRMC. At the optimal operating condition, all generation units have

the same value, A*. Sometimes, that optimal value of SRMC is called the "system

lambda." When all SRMCs approach the system lambda, the system will achieve its

maximum technical efficiency in operating an electric power system.

3 Symbol A stands here for the actual rather than the incremental values.



For security reasons, the system control should achieve system-wide optimum

performance but not violate technical constraints. These constraints must be met for

various reasons.

The constrained ED problem that meets constraints on thermal transmission line

limits must account for

pminf pIj < pmax (4.10)

jE 1, "-, N*ine (4.11)

4.3.3 Fringe Control

Mr. C. Nichols first proposed the idea of fringe control in 1953 [23], [13]. Before

discussing the fringe control, we differentiate between two load components, fringe

and sustained loads. The fringe load is the noisy portion of a load signal that changes

rapidly. The bandwidth of fringe load is much wider than that of sustained load.

Fringe control has an impact on the frequency regulation, since the local generation

frequencies are much more sensitive to those small changes than tie-line flows. Osten-

sibly, the fringe loads do not actually reflect the load fluctuation. Therefore, fringe

control may not respond according to cost minimization criteria observed in the eco-

nomic dispatch. Our control approach separates regulation and economic signals into

two different hierarchies. The fringe control is at the secondary level and always in

charge of regulating frequency deviations caused by the fringe load components. The

control algorithm of the fringe control is the same as that of secondary frequency

control addressed in the previous chapter. The objective performance criterion for

fringe control control is

00

J = E {T[k + 1]QwG[k + 1] + uT[k]Ru[k]}. (4.12)
k=O

The performance criterion is sufficiently general to reflect the specifications of the

output variables at the area-wide level. The elements in the weighting matrices Q

and R can be chosen differently to reflect different frequency quality requirements



at individual generators throughout the area. In other words, one can design the

secondary control gain, K,, according to the desired frequency qualities at different

locations in the area. This is very easy and straightforward for the unbundled ap-

proach but hard for the ACE-based AGC. In an open access environment, this feature

is potentially quite important.

4.3.4 Minimal Regulation

Minimal regulation is designed to regulate system-wide response to sustained load

deviations from scheduled [32]. The sustained loads are bulks of load changes. These

loads change more slowly than fringe loads and some are predictable. Strictly speak-

ing, these sustained loads should be optimally dispatched to every generator partic-

ipating in the system regulation to minimize total generation cost. To make this

idea feasible requires a dynamic controller at the interconnected level. The minimal

regulation is placed in the tertiary level and is in effect a dynamic Economic Dispatch

control 4.

In order to cause all generation power to approach the optimal dispatch, Ps,

we need to develop a generation power model. From the Jacobian expression of

generation power output in Equation (2.6), for computing the entire Jacobian matrix

at the tertiary level, the tie-line flow terms, FG and FL, are not present in the equation:

PEG[K] = KPG[K] + DPEL[K] (4.13)

Hence,

EG[K + 1] = PG[K] + KP(_G[K + 1] - 5G[K]) + D (EL[K + 1] -PL[K]) (4.14)

4 This term is used to indicated the emphasis on the cost of system-wide regulation. However, one
must carefully differentiate between responding scheduled (known) load changes, and the known,
yet sustained load deviations from scheduled. The dynamic tertiary control described in this thesis
could be applied to both cases.



Again, the approximation of the phase angle is

WG[K]Tt , 6[K + 1] - 6[K]. (4.15)

Then the model defining deviations in power at the interconnected level take on the

form

PG[K + 1] = PG[K] + KTwet [K] + Dpd[K] (4.16)

where w" t [K] is the reference value sent to the fringe control. This model can be

simply expressed as:

PG[K + 1] = ApPG[K + 1] + Bpw~ý,t [K] + Lpd[K] (4.17)

The reference input, wrt[K], for the secondary level control is

_•t[K] = -Kt(EG[K] - PE*[K) (4.18)

The Performance criterion for minimal regulation is defined as:

00

J = Z {pT[K + 1]QEp[K + 1] + ,setT[K]Rpg_•t[K]} (4.19)
K=O

The matrix Kt that optimizes the performance criterion at the interconnected system

level, is, again, obtained from the LQR calculation. The optimal values of real power

generation, Pý, are obtained from the economic dispatch calculation, which is men-

tioned earlier. Due to the network power balance", the sum of all generator power

outputs will be the sum of total demand and transmission losses

NL NG

EPLJ + PtosS PG (4.20)
j=1 i=1

Therefore, we can update the demand and losses information that are needed for

economic dispatch every Tt seconds. Assuming that the sustained load fluctuation

sOf course, we assume that the network power equilibrium can be achieved within Tt seconds.



is relatively small within one Tt interval, we could use the information at KTt to

compute the optimal set point of generator power for [K + 1]Tt. Besides, since all

generator cost curves are approximated by quadratic functions, the solution, Pý, of

the economic dispatch problem is already known.

In practice, the frequency set values, w" t , are sent to secondary controllers to

computer the reference frequencies, w" f of all generators. Finally, the reference

frequencies are sent to the primary controllers, speed governors. Remember that,

no matter how many hierarchies are adopted in the control design, the only tuning

factors, real control signals, for real power and frequency control in electric power

systems is wGef

Intuitively, not all the power from generators are independent variables because

they have to satisfy the constraint:

NG

E PGi = Z Pdemand (4.21)
i=1

Namely, total generation has to meet total demand. This phenomenon also emerges

in a mathematical form. In the tertiary generation model, matrix K, does not have

full rank and the number of the rank always lacks one. The slack generator that is

in charge of balancing the electric system is designed to make up the defect. In the

interconnected system level, the slack generator is not controlled and only the other

(NG - 1) generators are controlled. However, once other generators approach Pý,

slack power generation will approach its own value automatically due to the power

balance in the network. Mathematically, output power of the slack generator can be

expressed as a linear combination of other (NG- 1) values so it is not an independent

state.

4.4 Summary

As more independent power producers participate in electrical power generation, the

utility industry of the United States is becoming more competitive. Moreover, the



mandate of open access to transmission and distribution systems made by the Energy

Policy Act (EPAct) in 1992 makes restructuring of the utility industry an actively

studied problem.

Two possible models for the future utility industry are Pool-Co model and Bi-

lateral model. Both of them need an independent system operator (ISO) to provide

essential systems control services that make all market trades feasible and also guar-

antee the system security and reliability.

As the operating environment changes, the performance criteria for operation

should be changed. Market activities will determine the strength of interconnection

among areas. Hence, tie-line flows should be regulated in the most economic way

rather than forced to return to their original set values. In this sense, using a cost-

based performance objective for system control is fairly straightforward.

Since the traditional control assumptions on which AGC is based are hard no

longer valid due to the increase of market-driven energy exchanges, the conventional

control will be inadequate for future operation.

A new control scheme for systems control services is called minimal regulation.

Table 4.1 shows the hierarchical structure of the minimal regulation. The minimal

regulation is a tertiary level control that minimizes the total generation cost of the

entire system by optimally arranging the generation.

The minimal regulation will indirectly cause optimal rescheduling of tie-line flows

in response to the load variations, PL[K], while maintaining the system frequency

quality. The optimally rescheduled tie-line flows can also preserve transmission secu-

rity. In other words, they will not exceed transmission limits.

In an open access and competitive environment, the size and the number of con-

trol areas are no longer based on traditional decomposition rules, i.e., the physical

topology or the strength of interconnection, because the profit-driven power flows will

dominate all energy exchanges. The strength of interconnection is going to fluctuate

dynamically with market activities.



Table 4.1: Hierarchical measurement/control structure of systems control services

TERTIARY LEVEL (NA)

All real power

tie-line flows

so--

Real power

tie-lineflows

of area I

Real and reactive power
tie-line schedules for

SECONDARY LEVEL (N) the entire system

AREA 1 ... AREA K

Supplementary Control Signal

For Area (AVC,AVC)

Real power

set points for

all controllers

in the area

Real power
output/frequency

Voltage

set points for

all controllers

in the area

All reactive power
tie-line flows

No----

PRIMARY LEVEL (NA)

Reactive power

output/voltage

* Unit Commitment

' Feasibility Studies Demand forecast
* Transient Stability Studies '0 for real/reactive

* Security Studies power

* Optimization

PRIMARY CONTROLLER 1 ... PRIMARY CONTROLLER J
IN AREA 1 IN AREA 1

Real Pwer Controllers Voltage Controllers
SGenerators

* Generators
SPhase Shifters Shunt Capacitors/Inductors

SPhase ShiftersTranfrmr
*Onn-V llTnfnndprf,

!

[
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Chapter 5

Minimal Regulation in a Pool-Co

Environment

5.1 Pool-Co Market

One proposed model of the operating framework that has been successfully imple-

mented in UK is called Pool-Co model. The Pool-Co is an independent coordinator

of buyers and sellers of electricity. It is regulated to provide open access and com-

parable services so that customers can buy electricity at spot prices. It establishes a

competitive market which is accessible to all buyers and sellers.

The entire utility industry in the United Kingdom functions as a single power pool

with a uniform energy price across the country. In the Pool-Co model, ISO controls

all generation in its own control area and it buys power from all generators and sells

power to all customers simultaneously.

5.2 Conventional AGC and Minimal Regulation

Assume that the IEEE 39-bus system is operating in a Pool-Co environment and the

power pool includes all 10 generators. In the beginning, the electric market is at the

economic equilibrium and the short run marginal costs (SRMCs) of all generation

units are equal to the system lambda, A*. In the following simulation examples,
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Figure 5-1: Conventional AGC response in the Pool-Co environment (Area 1)

the original value of A* is 0.7. The quadratic term coefficients of the cost curve of

generator 30, 31, 32, 33, 34, 35, 36, 37, 38, and the slack generator, 0, are 0.002,
0.005, 0.2, 0.25, 0.17, 0.21, 0.1, 0.15, 0.03, and 0.07 respectively. Since the nominal

generation costs of all generators are minimized, the fuel costs of those generators that

have larger quadratic term coefficients will grow faster than that of the generators

having smaller coefficients. In this case, these values are set in such a way to make

the generation in area 1 cheapest (in Figure 2.3, Chapter 2) and generation in area 3

the most expensive. Consequently, generation is area 2 is cheaper than that in area

4 but still more expensive than area 1.

At time t=30 seconds, a large load increase 9 p.u. occurs. In the Pool-Co envi-

ronment, the load requirement is shared by all generators in the pool. The generator

frequencies drop at the instant of load changing. Therefore, system control, AGC,

immediately acts and starts regulating the system.

Figures 5-1 to 5-4 show how conventional AGC responds to this large load de-

mand increase. In the conventional AGC, ACE combines average frequency and net

tie-line flow. As mentioned earlier, sensitivities of the tie-line power flows to the
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Figure 5-4: Conventional AGC response in the Pool-Co environment (Area 4)

power mismatch caused by this load increase are much larger than the sensitivity of

frequency deviations. Therefore, at the beginning of the ACE regulation, net tie-line

flow regulation will dominate. For example, in this case, the peak value of frequency

deviation is about 0.01 Hz in area 1. Generator frequencies are regulated after the

net tie-line flow offsets return to small values.

Figures 5-5 to 5-8 illustrate the system response to the same load change under the

minimal regulation. In this case, the maximum value of frequency deviation in area

1 is only 1.8 x 10-3 p.u. Unlike the conventional AGC, the fringe control regulates

generator frequencies continuously while minimal regulation control is working simul-

taneously. Hence, the frequency performance of minimal regulation is much better

than that of conventional AGC.

In addition, the load increase occurs on bus 25 in area 4, Figure 2.3, and area 4

is the second most expensive area. Simulations of the minimal regulation show that

generators in the cheapest area, area 1, generate more power than the generators

in other areas and the power is transfered to area 4 via the transmission line 2-25.

Similarly, the generators in area 2 also generate a lot of power and inject it into area

^^
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Figure 5-5: Minimal regulation response in the Pool-Co environment (Area 1)
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Figure 5-7: Minimal regulation response in the Pool-Co environment (Area 3)
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Figure 5-9: Cost allocation analysis

4 via tie lines 15-16 and 16-17.

In contrast, conventional AGC suppresses the tie-line flows and forces the system

to use expensive generation to meet the demand. Figure 5-9 illustrates the generation

cost needed to regulate the system by ACE-based AGC and minimal regulation. The

figure shows that the cost of minimal regulation is much less than that of conventional

AGC.

5.3 Minimal Regulation with Constraints

Just like saturation to power amplifiers and maximum speed to DC motors, generation

and transmitted power in electric power systems have limits.

- Minimal Regulation
- - ACE-based AGC

I ......



5.3.1 Incorporating Generation Constraints

Only the constraints on generator power are included. The Economic Dispatch prob-

lem is modified to be
NG

minr{ C} (5.1)
i=1

subject to
NG NL

ME P, = E PL + P0 oss (5.2)
i=1 j=1

and
Pmin < pi < pmaz (5.3)

i E 1,-.-, NG (5.4)

Pý. is the solution of the constrained Economic Dispatch problem. These values will

be used in minimal regulation. Assume that generator 30 in Figure 2.3 in area 1 has

smaller-scale and, for security purposes, its extra generation capacity is constrained

by 1 p.u.. In the same situation, the real power outputs of generator 31 in area 2,

generator 32 in area 3, and generator 36 in area 4 have to be maintained within 1

p.u. limits.

Figures 5-10 to 5-13 show that the real power outputs of generator 30 and 31

hit the 1 p.u. limits and the minimal regulation can constrain them within the safe

operation efficiently. This example shows that minimal regulation is able to maintain

the generator outputs within the limits while it minimizes total generation cost.

5.3.2 Incorporating Transmission Constraints

One of the AGC objectives is to regulate tie-line flows back to their nominal set

points. These set points are obtained from OPF and are within the transmission

limits. At present, it is assumed that AGC has sufficient regulation to stabilize system

frequencies without violating these tie-line constraints. However, these assumptions

are not easily met under the new open access assumptions. This makes the system

regulation subject to constraints on transmission lines potentially more complex in a
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competitive utility market than in the present industry.

Now, the Economic Dispatch problem with tie-line flow constraints becomes

NG

min{- Ci (5.5)
i=1

subject to
NG NL

P~i = PLj + Plo,, (5.6)
i=1 j=1

and
pmn < p < pmax (5.7)
fZ -- ;- f,

nE 1, - , Ntine (5.8)

To solve this optimization problem we observe that a direct relation between

generation power, PG, and tie-line power flows, Pf, of the form

P = f (PG1, PG2, ''',''' PGNG) (5.9)

To derive this relation, recall, from Chapters 2 and 4, the linearized expressions for

generator and tie-line power

G = KpSG + DPEL (5.10)

P- = KfAG + DIfL (5.11)

However, only PG1,'" ' PGNG-1 are independent variables. The real power of the

slack generator, PGNG is linearly dependent. By solving Equation (5.10) and (5.11)

the relation between tie-line flows and these (NG - 1) generators is found to be

Pf = KfIpK-1P G1-(NG-1) + (Df - Kif KP-D )PL (5.12)

where •p is an ((NG - 1) x (NG- 1)) matrix. It is submatrix of the matrix Kp whose

elements correspond to the (NG - 1) generators. Similarly, I•f and Dp are matrices



Frequency Deviations in Area 1

N~
I

I le-iine rLows ino Area 1

0 20 40 60 80 100 120 140 160 180 200
Time(sec)

Figure 5-14: Minimal regulation with transmission power constraints (Area 1)

whose dimensions are (Nline x (NG - 1)) and ((NG - 1) x NL) matrices, respectively.

The following simulations illustrate the system response to the same system input,

9 p.u., on bus 25, but with +/- 3 p.u. imposed transmission constraints on all tie-

lines. Figures 5-14 to 5-17 show that minimal regulation can constrain tie-line

power flows within the prespecified constraints. In this case, the tie-line from bus

2 to 25 is constrained. This simulation indicates that the minimal regulation can

allow the market to carry on profit-driven energy exchange and monitor tie-line flow

automatically and simultaneously.

5.3.3 Incorporating both Generator Power and Tie-Line

Flow Constraints

Obviously, both generator power and tie-line flow constraints can be incorporated si-

multaneously to the minimal regulation by slightly modifying the Economic Dispatch

problem as:
NG

minf{ Ci} (5.13)
i=1

)0

- 2-25
-- 3-18
- -4-14
... 5-67-6
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Figure 5-17: Minimal regulation with transmission power constraints (Area 4)

subject to
NG NL

E P = Z PLJ + PIosS (5.14)
i=1 j=1

and

Pmi  ` P< pmAG (5.15)

i E 1, ... , NG (5.16)

pm _< P* < pmax (5.17)

n E 1, -, Nuine (5.18)

Figure 5-18 to 5-21 demonstrate the system response with both generation power

and tie-line flow constraints. The output power of generators 31, 32 , and 36 are

constrained by 1 p.u. and the three tie-lines, 2-25, 3-18 and 16-17, reach the +/-

3 p.u. transmission constraints. Compared to the case in which only tie-line flow

constraints are incorporated, due to binding generation power of generators 30, 31,

32 and 36 at the same time more tie-lines reach the constraint.

Figure 5-22 shows the total generation cost deviation in four scenarios with differ-
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Figure 5-20: Minimal regulation with both generator Power and tie-line flow con-
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Frequency Deviations in Area 4

I r-0

" -0.01
LL

-0.02
0 20 40

I I I TTI

8nerat 108. .120 Area 0enerator iPower outputs in Areaia 160 180 200

o

--. 25-2 1
- ~~ ~ ~ - -I

0 20 40 60 80 100 120 140 160 180 200
Time(sec)

Figure 5-21: Minimal regulation with both generator Power and tie-line flow con-
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Total Cost Deviation (Sum of Area I, II, III, IV)
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Figure 5-22: Total cost deviations of four different constrained situations

ent degrees of constraints: (1) without any constraint, (2) with generation constraints

only, (3) with tie-line flow constraints only, and (4) with both generation power and

tie-line flow constraints. Figure 5-23 shows the cumulative cost deviations for these

four cases. Figures 5-22 and 5-23 show that when tie-line flow constraints are ignored,

generation power constraints affect the system cost only slightly because the system

is free to choose other cheaper units to generate more power and to compensate the

power shortage. However, when some tie-line flows hit the transmission limits, the

same generation power constraints lead to a significant cost increase.

5.4 Summary

In this chapter, system regulation in the Pool-Co environment are examined. Pool-Co

service is a pool of generators that supply a demand and it makes the utility market

more competitive by providing access to transmission and selling electricity at spot

prices.

By comparing the system response of conventional AGC to that of minimal regu-
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Figure 5-23: Total cumulative cost deviations of four different constrained situations

lation, the regulation cost of the former is much higher than the latter. Furthermore,

because the minimal regulation separates two control objectives into different control

levels, the frequency performance under the minimal regulation control is much bet-

ter than that of the conventional AGC. Frequencies only deviate in a very short time

period and quickly return to 60 Hz. In other words, the minimal regulation preserves

higher service quality of overall at a lower total cost.

Next, the minimal regulation subject to the operating constraints is studied. By

solving the constrained economic dispatch problem, minimal regulation can effectively

maintain generator power as well as tie-line flows within the limits. Namely, the

proposed minimal regulation minimizes the total system generation cost and also

preserves system security and reliability.
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Chapter 6

Minimal Regulation in a Bilateral

Environment

6.1 Bilateral Market

The restructuring based on the model with bilateral transactions is another main

alternative to the current industry structure. In the bilateral model, the role of

ISO becomes seemingly simpler than that in the Pool-Co model. ISO is only in

charge of preserving system reliability but it is responsible for economic dispatch.

The importance of ISO emerges when the bilateral trades reach various operating

constraints on the system. Otherwise, ISO will only serve to compensate for the

transmission losses caused by the bilateral trades of power. Since the ISO does not

facilitate the market, in an entirely bilateral environment, each seller has to seek its

buyer(s), and vice versa. The ISO will have a major responsibility to preserve system

security when system inputs deviate from the agrees upon values. These system

imbalances must be compensated for by systems control services of interest in this

thesis.

The US utility restructuring is based, at least partially, on the bilateral model so

it is important to demonstrate that our approach can function appropriately in the

bilateral environment.
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Figure 6-1: A scheme of different types of market transactions

6.2 Firm Contracts

Bilateral transactions in competitive markets could consist in principle of at least

three quantatively different components. They are firm and nonfirm contracts and

noncompliant inputs that reflect deviations from the firm and nonfirm transactions.

Firm contracts are long-term contracts and have impacts on the system-wide ef-

ficiency over long-time horizons. In the Pool-Co environment, static optimization

tools, such as Optimal Power Flow (OPF) and Economic Dispatch (ED) programs,

plan and schedule these long-term transactions in advance. In the entirely bilateral

environment, however, these firm contracts are between two specific points i and j on

the system; the simplest version' is such that a firm contract in established to inject

+X MW into point i and take the same amount of -X MW out at point j. The

net effect of such firm transaction is only seen through transmission losses created by

power flows from i to j.

1The only we considered in this thesis.

---
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Figure 6-2: A bilateral contract between bus 3 and bus 21

In contrast, nonfirm contracts are short-term contracts and more responsive to the

market status. These short-term transactions are usually harder to plan for. Both

firm and nonfirm contracts are price-driven inputs to the transmission system.

The noncompliant inputs may display wide ranges of rate and magnitude and they

are superposed to the firm and nonfirm signals. The noncompliances are not neces-

sarily price-driven2 . In addition, the system is always subject to various uncertainties

that must be compensated for by system regulation. Figure 6-1 shows a scenario of

a typical bilateral transaction.

This section investigates the system responses to the firm transactions under dif-

ferent control methods. In Chapter 5, the assigned cost curves of generators in area

2 Except for intentional gaming.



1, 2, 3, and 4 make the generation in area 3 the most expensive and that in area 1

the cheapest. These operation costs make selling power from area 1 to area 3 eco-

nomically attractive. Assume that bus 3 in area 1 is an independent power producer

(IPP) that does not participate in system regulation. In other words, bus 3 is free

to sell power to any customer buses. The generator buses 30, 31, 32, 33, 34, 35, 36,

37, 38, and 0 are either utility-owned generators or IPPs participating in the system

regulation. These ten generators are controlled by ISO and are in charge of providing

system ancillary services. Load bus 21 in area 3 has a bilateral agreement with bus

21 in area 1 to buy 9 p.u. power as shown in Figure 6-2. The transaction starts at

time=30 seconds.

Figure 6-2 shows that there is no transmission line directly connecting area 1 and

area 3 so the transaction has to be facilitated by the entire transmission network and

proper coordination provided by an ISO.

Typically, there are two different ways for conventional AGC to respond to the

transaction. If the transaction is not known to the control areas, for example, neither

bus 3 nor bus 21 informs the control centers in area 1 and area 3 that the transaction

will happen, and then the conventional AGC will treat those inputs as noncompliant

type disturbance3 . On the other hand, if the transaction is made known to the

control areas, area 1 and area 3 can reschedule the net tie-line flows and help the

transmission4 . In other words, area 1 redefines its ACE and sets the net tie-line flow

deviation to -9 p.u. Similarly, area 3 sets it to +9 p.u.. Since other areas still regulate

the net tie-line flow into the area to zero, a very big portion of power flow existing

from area 1 is injected into area 3.

Figures 6-3 to 6-6 show the system response to an scheduled bilateral transaction

of 0.9 p.u. under the conventional AGC. In this case, no tie-line flow rescheduling

takes place, and the conventional AGC responds automatically to suppress the effect

of the transaction. The simulations show that the conventional AGC regulates the

net tie-line flow in each area. It makes bus 21 withdraw 9 p.u. power only from the

3This could represent for example, a noncompliance with a contract.
4This could represent either firm or non-firm scheduled transactions.
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generation in area 3 so all other generators in area 3 have to create more power to

meet the demand increase. Similarly, all generators in area 1 reduce the generation

because of an extra power injection from bus 3. In other words, no physical change

of power flows outside of the control area takes place. The agreed upon economic

transaction never materializes in the real time operation of the power system.

Figures 6-7 to 6-10 show the second kind of system response to the same trans-

action. Area 1 and area 3 are informed that the transaction will occur in advance so

they reschedule the tie-line flows to allow the transaction. From the simulations, when

the system reaches the steady state, the real power of all generators controlled by ISO

only deviates a little from the previous schedules. This indicates that the power taken

out from bus 21 basically comes from bus 3, and other generators are only needed

to compensate for the transmission losses. The power is transfered successfully from

bus 3 to bus 21.

Figure 6-11 shows the total generation cost deviation and total cumulative gen-

eration cost deviation of these two cases. In the first case, the ACE-based AGC

obstructs the transmission among the different areas and forces the system to use



Frequency Deviations in Area 2

0

0 50 100 150 200 250 300
Time(sec)

Figure 6-8: ACE-based AGC response to a known bilateral transaction (Area 2)

Frequency Deviations in Area 3

Time(sec)

Figure 6-9: ACE-based AGC response to a known bilateral transaction (Area 3)

Y 1
- 3



X ev "t10 o-si a

Generator Poweir5utputs in Ar 4

50 100 150
Time(sec)

250 300

200 250 300

Figure 6-10: ACE-based AGC response to a known bilateral transaction (Area 4)

Total Cost Deviation (Sum of Area I, II, III, IV)

0 50 100 150 200 250
Time (sec)

Total Cumulative Cost Deviation (Sum of Area I, II, III, IV)
1500

- AGC w/ Tie-line flow scheduling
1000 - - AGC w/o Tie-line flow scheduling -

500

0

0nn I
0 50 100 150

Time (sec)
200 250 300

Figure 6-11: Cost allocation analysis of two different types of conventional AGC

N

0)
L 0U.

-_]

I I I I

•A

I I I ~ _ _ ;-C - - - - - C - - - - - ~ - - - - - ~

0 r1%~'~

4I SI - AGC w/ Tie-line flow scheduling

4- I - AGC w/ Tie-line flow schedulingAGC w/o Tie-line flow scheduling

o

0

-2 J

I I I

erF 
uenc 

D eviations in Area 4



Frequency Deviations in Area 1

I

a,

a)
U-

0.

a.

Time(sec)

Figure 6-12: Minimal regulation response to a 9 p.u. firm transaction (Area 1)

some more expensive units to generate the needed power. In the second case, the

system is regulated properly and the generators participating in the regulation only

need to compensate for the transmission losses. Therefore, the total generation cost

of the second case is much less than that of the first case.

Actually, this kind of transmission benefits the entire network because it transports

power from a low generation density area to a high generation density area and also

from a low generation cost area to a high generation cost area. The steady state value

of total cost deviation should be a negative value. Figure 6-11 shows that the final

total cost deviation in the second case is indeed negative.

This is an illustration that under present regulation, the control areas in the

interconnected system should know each transaction. Otherwise, system regulation

will effectively block any power changes outside of the area in which the transactions

in located.

Figures 6-12 to 6-15 illustrate system response to the minimal regulation. The

system takes 40 seconds (from 30 to 70 seconds) to reach the steady state. In addi-

tion, all tie-lines connected to area 1 transmit power out of the area and all tie-lines

x 10
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connected to area 3 transmit power into the area. Area 2 and area 4 merely serve

as transmission media. In this case, the generator power and frequencies of the ISO

controlled generators are only affected by the transaction over a short period of time,

then they return to the original set values.

The costs needed for the regulation of the conventional AGC and the minimal

regulation are shown in Figure 6-16. The total generation costs of both controls

at the steady state are almost the same, since all generators controlled by ISO are

only used to make up the transmission losses. The small cost deviations only reflect

the difference in the transmission losses before and after the transaction. However,

because the conventional AGC responds rather slowly, a significant amount of extra

cost accumulates during the regulation. In contrast, minimal regulation completes its

function in a very short time and makes the transaction more economically efficient.
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Figure 6-17: Power variation of a short-term bilateral transaction

6.3 Nonfirm Contracts

Unlike firm contracts, nonfirm contracts are short-term energy exchanges that reflect

the changes of spot prices. Generally, these short-term transactions are fast and not

predictable thus they cannot be scheduled in advance. However, these short-term

transactions are likely to occur more frequently in the future operation of the utility

industry.

An example of nonfirm input is shown in Figure 6-17. It illustrates that when the

9 p.u. long-term power transaction occurs between bus 3 and bus 21, some short-

term, nonfirm transactions happen spontaneously. The magnitude of these short-

term transaction is 20% that of long term transaction, +/- 1.8 p.u.. In the following,

we analyze the system response and cost of regulation associated with this kind of

transaction.

Figures 6-18 to 6-21 show the ACE-based AGC response to the nonfirm transac-

tion. Because the conventional AGC responds slowly, the frequency response under

the conventional AGC is unsatisfactory. The simulations show that generator fre-

quencies deviate whenever the transactions happen. Furthermore, they deviate even

more when AGC begins regulating.

Figures 6-22 to 6-25 show that the minimal regulation reacts automatically to the

nonfirm transactions and regulates the generator frequencies quickly and efficiently.
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Figure 6-22: Minimal regulation response to the nonfirm transaction (Area 1)

By using fringe control in the secondary control level, our control design is able to

guarantee the system frequency quality.

In Figure 6-26, case 1 indicates system response to the 9 p.u firm transaction

under the minimal regulation; case 2 indicates system response to the nonfirm trans-

action under the minimal regulation; case 3 indicates system response to the 9 p.u.

firm transaction under the conventional AGC; and case 4 indicates the system's re-

sponse to the nonfirm transaction under the conventional AGC. Figure 6-26 shows

that these smaller but faster nonfirm transactions do not have much effect on the

total cumulative cost of the minimal regulation, but the total cumulative cost of the

conventional AGC increases significantly. This indicates that the system under the

conventional AGC is more sensitive to these short term contracts in the competitive

market. Both generator frequencies and the generation costs of the conventional AGC

are effected significantly by the small load changes. However, the minimal regulation

still performs well.
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6.4 Constrained Minimal Regulation

In an open access environment, each supplier can transmit power to its buyer(s)

freely. It is, therefore, important for the system regulation to have a capability

of constraining the transmission power. Since the market-driven power flows are

probably large only on certain transmission lines, it is important to have an effective

way of eliminating these overloads. The overloaded conditions should be eliminated

immediately, otherwise, transmission lines might be damaged because they are over-

heated.

To analyze constrained minimal regulation, consider a similar simulation setup as

that in the previous section with all tie-lines constrained by the transmission limits

of 4p.u. and the generator output limits of -3p.u. < PGi < 3p.u..

At present, when a transmission line is found to violate its thermal limit, the

transmission line owner usually has to determine which areas are responsible and have

the generation adjusted so that the transmission on that line is reduced. Figures 6-27

to 6-30 show a conventional way of dealing with the transmission constraints. In this
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case, real power line flow in 2-25 exceed the transmission limit, and the owner of the

line needs to know which transaction causes the problem. Figures 6-27 to 6-30 are the

results of the constrained AGC. In these simulations, the transmission power from

bus 2 to 25 and from bus 3 to 18 reaches the 4 p.u. constraint. Figures 6-27 to 6-30

also illustrate that the constrained AGC works very slowly. The transmission lines

are overloaded for a significant period of time.

It has been demonstrated in the previous chapters that minimal regulation can

allow the incorporation of tie-line flow constraints. Figures 6-31 to 6-34 show the

constrained minimal regulation response to the 9 p.u. step bilateral transaction. As

in the case of the conventional AGC, the transmission is constrained at lines from

bus 2 to 25 and from bus 3 to 18, and generator 30 reaches its output limit. Figures

6-31 to 6-34 also show that the minimal regulation responds much faster than the

conventional AGC and constrains flows more efficiently.

Since the bilateral transaction does not actually reflect system demand changes,

the generation cost needed for system regulation is small even though the conventional

108



x 10-3  Frequency Deviations in Area 1
5 1 1...i ,

-5 I I
0 50 100 15 250 300Generator Power58utputs in A225 30

5 ! 1 1I I I

0 *..... . ......

- -- ---------------------- 5--".... 5-6
l - - -'''- ' - l-1-- -=6- - -50 50 100 150 200 250 300-

0 50 100 150 200 250 300
Time(sec)

Figure 6-31:
(Area 1)

Constrained minimal regulation response to step bilateral transaction

N
I

-r
0r

IL

. 0.5

-0.5

-0.5
0 50

- _

10 i:-• rl:10 00 250
i ~lI ru IL Iu

0S0 ------ -- -- -- -- -----

S- 6-5
0 -- 6-7

0. 15-16

0 50 100 150
Time(sec)

200 250 300

Figure 6-32: Constrained minimal regulation response to step bilateral
(Area 2)

transaction

109

-- - G- -
I i i L~----J I

ie-lne Flowsinto Area

1--
I

I---- 

8•1I

I I L I I . I



Frequency Deviations in Area 3
I I i

x 10
-3

0

r -5
LL

-10
0

- G32
-- G33
-.- G34

..... G35

.0,, 250
ea

I I I I I

- G32
- G33
-- G34

G35

50 109ie-line Flows into Area 00 250

Time(sec)

Figure 6-33: Constrained minimal regulation response to step bilateral transaction
(Area 3)

x 10-3 Frequency Deviations in Area 4

0 50 10i e-line Flows into Area 00 250 300

- - - - - - - - - - - - - - - - - - - - - - --- -- ~ . .. . .

0
-- 17-16

-5. 25-2

-101

0 50 100 150 200 250 300
Time(sec)

Figure 6-34: Constrained minimal regulation response to step bilateral
(Area 4)

transaction

110

50 Genrator Powelr5utputs in A2r

0C

0-0V

·r-

r__



Total Cost Deviation (Sum of Area I, II, III, IV)

2

0

-1

400

300

• 200

100

o

S- Minimal Regulation
- - ACE based AGC

--

0 50 100 150 200 250 301
Time (sec)

Total Cumulative Cost Deviation (Sum of Area I, II, III, IV)

-- Minimal Regulation
- -ACE based AGC

-s

-s

0 50 100 150 200 250 300
Time (sec)

Figure 6-35: Cost comparison of conventional AGC and minimal regulation

AGC is used. However, when the transaction is constrained by the transmission limits,

the situation is different. Figure 6-35 shows that when some tie-line flows go over

their transmission limits, the cost of system regulation is higher if the conventional

AGC is used.

Minimal regulation uses the constrained ED program to reschedule all the gener-

ation resources involved in the system regulation every Tt seconds5 , but conventional

AGC only rearranges the generators in area 1 and in area 3. Therefore, it forces

the system to use the more expensive generation (area 3) to maintain the system

reliability.

In Figure 6-35, the total generation cost of the conventional AGC is lower than

that of the minimal regulation over a short period of time, from about 70 seconds

to 140 seconds, during which the conventional AGC is still violating the tie-line flow

constraints but the minimal regulation is not. The conventional AGC cannot respond

as fast as the minimal regulation, for it needs more time to make tie-line flows return

SRecall that, as discussed in Chapter 4, minimal regulation uses the information monitored in
KTt to compute the optimal values of generation power for (K + 1)Tt.
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to the limits.

In practice, both parties involved in a bilateral agreement would not have the same

behavior during the real time operation. Their noncompliances could be different,

hence a non-zero net imbalance. In this situation, the cost of system regulation could

be much higher. Generally, once the market becomes fully competitive, the market-

driven power flows are hard to associate with the specific transactions.

6.5 An Example of a Multilateral Transaction

The system responses to the different types of single bilateral inputs have been demon-

strated. System regulation should be capable of responding to more than one trans-

action simultaneously. Assume that five transactions occur consecutively; at time=30

seconds, bus 3 sells 9 p.u. electric power to bus 21; at time=90 seconds, bus 11 sells

3 p.u. electric power to bus 23; at time=150 seconds, bus 15 sells 5 p.u. electric

power to bus 28; at time=210 seconds, bus 8 sells 2 p.u. electric power to bus 25;

and at time=270 seconds, bus 1 sells 4 p.u. electric power to bus 10. These bilateral

agreements are all economically attractive, since the buyers obtain power from other

areas with less expensive generation.

One can observe from Figures 6-36 to 6-39 that with the conventional AGC, every

time the system resets the ACE signals, tie-line flows are adjusted. However, because

the ACE signals only vary with the net flow changes, the conventional AGC is not

able to manage individual tie-line flows. Therefore, the values of tie-line flows will

not be their economically optimal values.

In contrast, Figures 6-40 to 6-43 show that the proposed minimal regulation can

manage tie-line flows efficiently. Every time a transaction occurs, each tie-line flow is

controlled to its optimal value very quickly and efficiently. This is the main reason

that why the minimal regulation is more cost-efficient than the conventional AGC.

Figure 6-44 shows the total regulation cost and cumulative cost deviations of

both conventional AGC and minimal regulation. Because all the bilateral contracts

are based on the economic attraction, transmitting power from an area with cheaper
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Figure 6-43: Minimal regulation response to multilateral transaction (Area 4)
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Figure 6-44: Cost comparison of conventional AGC and minimal regulation

generation to an area with expensive generation, minimal regulation realizes this

economic efficiency and saves a lot of regulation expense for ISO. However, if the

conventional AGC is used, the system does not benefit but has a significant amount

of regulation cost.

Similarly in a nonfirm transaction case, these successive transactions result in an

extremely bad frequency performance under the conventional AGC. On the other

hand, our fringe control always performs well in frequency regulation. Frequency

quality is always preserved. In the real world, many deviations from firm and nonfirm

agreements are likely to happen simultaneously. In this situation, the transaction

signals are extremely complex and the tie-line flows also respond in a complicated

way. Therefore, it is hard to maintain frequency quality by using the ACE-based

AGC.
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6.6 Summary

Since a restructured US utility industry is likely to see many bilateral transactions,

this chapter provides a study on the system response to different components and

types of bilateral transactions under the minimal regulation, as well as under conven-

tional AGC.

Using the present ACE-based AGC, if a transaction is not made known to all con-

trol areas then the actual system-wide response will not correspond to the economic

transaction. As the ACE signal is regulated back to zero in an automated way, no

change in tie-line flows among the areas will occur. It is best, therefore, for each

transaction to be made known. On the contrary, minimal regulation will respond to

the transaction automatically. By using the instant information, the proposed min-

imal regulation updates the optimal power set points Pý for next time interval at

a tertiary control rate. That is why minimal regulation can function properly and

without the need to be informed earlier.

Under a bilateral contract, the power is sold from a supplier bus to a buyer bus,

so the same amount of power is injected into and withdrawn from the network simul-

taneously. No net demand increase takes place, except for the transmission losses.

Generators controlled by ISO for system regulation are only in charge of compensat-

ing the transmission losses, and balancing the system in response to noncomplying

deviations from the contracted power quantities. This results in a small generation

regulation cost. However, because the conventional AGC functions sluggishly, a sig-

nificant amount of cumulative cost is seen while system is regulated. On the other

hand, minimal regulation can control the system to the optimal operation points ef-

ficiently, so it not only minimizes the total generation cost but also avoids the extra

cumulative cost caused by slow frequency regulation.

When some unpredictable and fast nonfirm transactions happen, simulation re-

sults show that the short-term transactions affect the performance of conventional

AGC significantly. The generator frequencies deviate considerably and the regula-

tion cost increases. In contrast, minimal regulation can still maintain the high level
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frequency quality yet it costs much less.

The difference in operation costs between conventional AGC and minimal regula-

tion becomes more pronounced with transmission line constraints accounted for. This

leads to a general conclusion that regulation must be done in such a way that the

transmission line constraints are met in the most efficient way.

Since the conventional AGC is based on the ACE signals, it cannot manage in-

dividual tie-line flows efficiently. Tie-line flows will behave in an unpredictable way

when more than one bilateral transaction occurs. On the other hand, our approach

can optimally reschedule tie-line flows as soon as a new transaction takes place.
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Chapter 7

Conclusions

The electric power market in the US is evolving into a deregulated competitive market

for generation. An independent system operator (ISO) will be providing network co-

ordination and systems control services. These generation-based systems control ser-

vices are needed for frequency regulation, compensation of transmission losses caused

by competitive transactions, as well as for keeping the network within the operating

limits. They are thought to be a "glue" of the generation and transmission opera-

tional systems and are essential to physically foster a competitive electricity market

[20].

In this thesis, a particular modeling and control approach is described, that is

viewed as basic for system regulation under competition. This approach is capable

of responding to the market-driven generation and demand changes, and is referred

to as minimal regulation.

Under the open access, customers have many choices in selecting their power sup-

pliers. Typically non-utility owned independent power producers do not participate in

system regulation. The traditional horizontally structured industry will be modified

into a form of a nested hierarchical structure with these independent producers located

inside utilities. Moreover, conventional ways to reschedule coordinated economic dis-

patch are static and slow so that they cannot respond to the instant market-driven

input changes. This may add a significant burden on automated systems control

functions.
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In this thesis, a newly developed hierarchical modeling approach is used for ef-

fective models at different control levels. The main idea of our modeling method

is to view system dynamics as evolving over different time scales at different levels

of hierarchies, so that one can model the complex system behavior as consisting of

simpler submodels. Because these structure-based models allow the unbundling of

information to provide for the system coordination, cost signals can be included into

the control algorithm to meet "cost-based" performance objectives in the competitive

environment.

Traditional performance objectives for system regulations are (i) regulating the

ACE signals so that they cross zero every ten minutes (Al criterion) and (ii) eliminat-

ing the inadvertent energy exchange (IEE) among administrative areas. The current

control technique, ACE-based AGC, has been used to achieve the first objective. The

IEE is basically not regulated in closed-loop; instead, generation is adjusted in each

control area to make up for the IEE from the previous day. There are no financial

penalties imposed for violations of the Al criterion, nor for the IEE. However, the

rapidly evolving competitive utility market will be qualitatively different from the

current system. For power quality control and reliability reasons, frequency devi-

ations should be always regulated. The power flows among the different areas are

most probably related to the most economic transfers, and thus cannot be treated as

inadvertent energy exchanges. In this sense, the control objectives should be adjusted

to optimally benefit the entire industry in a unbiased way. This is achievable by the

system coordination of systems control services. The modeling approach adopted in

this thesis is important, because only when the objectives of systems control and the

type of services that are provided under competition are defined, can the benefits

of these services to specific market participants be established. Consequently, the

conflicts among different parties will be reduced.

The proposed control which is needed to regulate the system reliably and efficiently

under open access consists of two different levels of control, fringe control and minimal

regulation. The fringe control has impact on the frequency control which responds

to the fast load deviations at a subsystem, secondary control level. The minimal
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regulation is introduced to regulate system economically so that the total cost needed

to perform the system regulation is minimized. Our minimal regulation can also allow

systems to operate within the safety range without violating the constraints. It is

shown how the secondary model, Equation (2.23), can be used for fringe control in

order to preserve frequency quality. The tertiary level model, Equation (2.36), is

developed for minimal regulation of generation of scheduling in response to sustained

demand variations at a slower rate than the fringe control.

To study the system response in the changing industry, several scenarios are used

for numerical simulations. The simulation results indicate significant improvements

with the newly proposed control over the presently implemented control.

First, the ability of minimal regulation control to regulate the system in a more

economic way than the conventional AGC is shown. From the cost analysis, the

total generation cost and total cumulative generation cost of minimal regulation are

found to be much smaller than those of the ACE-based AGC. In effect, by simply

dealing with two major control tasks individually at two different levels of hierarchy,

minimal regulation can respond much faster than the conventional AGC so that the

new control method can achieve the control targets pre-specified at each control level.

Second, through the simulation examples included in the thesis, the frequency

quality of our control method is shown to be much better than that of the conventional

one. Because the fringe control can regulate frequency deviations efficiently, the

generation frequencies are disturbed by any kind of transaction only over a very

short time period. In addition, by using the unbundled secondary model framework

and optimal control design method, LQR, the fringe control can assign different level

of frequency quality required by specific end users.

Third, the proposed minimal regulation is capable of regulating system-wide re-

sponse subject to transmission constraints easily and automatically. This enhance-

ment corrects for the major shortcomings of the conventional AGC. The detailed

derivations and control algorithms have been presented in Chapter 5. Reliability and

efficient system regulation will become increasingly important as the utility market

becomes more competitive as reflected in unpredictable short term, nonfirm contracts

122



and non-compliance with these contracts. Therefore, if the system is operating un-

der a tightly constrained environment, its economic efficiency can only be partially

achieved.

In Chapter 6, the system behavior under the bilateral model has been examined.

Because the main control objective remains the same, present AGC should inform

control center before a bilateral transaction occurs; then, decisions can be made

to allow the transaction to take place. However, minimal regulation can respond

dynamically to a bilateral transaction even when the ISO is not informed in advance.

Furthermore, the conventional AGC regulates system very slowly so it may cause

major losses even if transmissions are noticed beforehand. On the other hand, minimal

regulation can respond quickly and economically regulate the system so it will save a

significant loss of transmission cost.

Finally, since the power injected from a supplier is taken out by a buyer, a bilateral

transaction will not actually reflect in a significant net demand increase. Once a

transaction is done successfully and regulated adequately, either by ACE-based AGC

or using ideas developed in this thesis, the only thing left in the final cost changes

will be transmission losses. However, compared to the actual power transfer, the

losses are quite small. Namely, when the system reaches its steady state, there is

not much difference between the total cost of conventional AGC and the minimal

regulation'. However, when some tie-line cannot accommodate a specific transaction

because of the operating constraints, the transaction has to be constrained; otherwise

the system will be forced to reschedule the total generation and utilize some other

more expensive generation units. Then, a large difference between total cost of ACE-

based AGC and minimal regulation will occur because the conventional AGC cannot

dispatch generation efficiently and economically.

In conclusion, the proposed minimal regulation at the interconnected system level

is cost effective and would greatly simplify the accounting for the services needed in

this changing industry. In addition, it would guarantee technical performance at the

interconnected system level.

1However, a significant difference happens on the total cumulative cost deviation.
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Appendix A

Reduced Order Tertiary Level

Control

In this appendix, we discuss reduced order tertiary level controls: tertiary tie-line

flow control and minimal regulation. Since tertiary level control is coordinated, it

must be designed for an extremely large region, for example the entire United States

or continental Europe. However, based on the concepts which we have developed

in previous chapters, a tertiary level controller has to send every generator reference

input for secondary level controllers. However, it is impossible for a very large region

to communicate between control center and every remote generator.

In the real world, slightly different from the simulation examples, the electric power

system is not only physically large but each administrative area is also much larger

and more generators are involved. Therefore, there are fewer tie-lines than generators

actually participating in regulation. For example, there are hundreds of generators in

the electric power network but only twenty or thirty tie-lines connecting the different

areas. Obviously, it is not necessary to control hundreds of generators to regulate a

few tie-line flows. If the number of generators involved in tertiary level control can be

reduced, and the communication between remote generators and the control center

can be eliminated, then the tertiary level controllers can be implemented more easily.
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A.1 Reduced Order Tie-line Flow Control

The following demonstrates how the number controls participating in tertiary tie-line

flow control are reduced. First, assume the number of generators is larger than the

number of independent tie-lines in the power system network. For example, in the

standard IEEE 39-buses system, there are ten generators but only seven tie-lines,

of which six are independent. In Chapter 3, ten control signals are used to control

these six variables, but now only six out of ten generators are chosen as the controls.

However, the controllability matrix needs to be re-visited. Namely, the generators

have to have the capacity to control all tie-lines.

Assume that m generators out of NG generators are to be controlled

Niine < m < NG (A.1)

where Niine indicates the number of independent tie-line flows, then the model for

reduced order tie-line flow control is

-E[K + 1] = AredP [K] + B• relm [K] + Lredd[K] (A.2)

where A7ed; Bjd, and Lfed are (m x m) matrices indicating parts of Af, Bf, and Lf,

respectively, and e -Gm [K] is the vector of frequency set points for those m generators

that participate in the system regulation. They contain the elements relative to

the controlled generators. Using the same algorithm mentioned in Chapter 3, the

reference input signal for secondary level control is found to be

4 1--m[K]= -Ked(t [K]). (A.3)

The matrix K['ed will be (m x Niine) and it is obtained by from LQR calculation.
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Figure A-1: Reduced order tie-line flow control (Area 1)

A.1.1 Simulation Example of Reduced Order Tertiary Tie-

line Flow Control

In the following simulations, only six generators, generators 30, 31, 32, 36, 38 and 0,

are controlled. In addition, assuming there is a 9 p.u. load demand increase on load

bus 25 at time=30 seconds.

The simulation results show that the reduced order tertiary tie-line flow controller

can also regulate tie-line flow back to the original agreement by just controlling the

six generators. There is no tertiary level control on generator 33, 34, 35, and 37,

so these non-tertiary-level-controlled generators are only in charge of regulating their

frequencies.

A.2 Reduced Order Minimal Regulation

As in tertiary tie-line flow control, the same problem is found in proposed minimal

regulation which transmits frequency reference input of every secondary level genera-

tor. This is impractical for extremely large areas. A reduced order minimal regulation
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Figure A-2: Reduced order tie-line flow control (Area 2)
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Figure A-3: Reduced order tie-line flow control (Area 3)
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Figure A-4: Reduced order tie-line flow control (Area 4)

is formulated by using the same method that applies to tie-line flow control, i.e. the

generators not participating in the operation are disregarded. Then, the performance

objective of minimal regulation is modified so as to minimize the total cost of the

generators involved in the tertiary level control.

Furthermore, the tie-line flows have to be constrained within their limits so at least

Niine generators have to participate. One suggestion is that the number of generators

included in minimal regulation, n has to greater than the number of independent

tie-lines, and the larger the better.

Nine <_ n < NG (A.4)

where n indicates the number of participating generators. Economic dispatch problem

differ from former one:
n

min{E Ci } (A.5)
i=1
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subject to
n NL NG

Pý 1=_PL P + Ploss - E PGk (A.6)
i=1 j=1 k=n+1

Similarly, the reduced order model for minimal regulation is

PG1-n[K + 1] = A redpGI-l [K + 1] + Bped _t_[ [K] + L edd[K] (A.7)

where A r ed; Bred, and L;ed are n by n matrices and indicating parts of A,, B,, and

Lp, respectively. They contain the elements relative to the controlled generators.

PG1-n and w et_ represent the vectors of generator power and frequency set points

for secondary level control associated with the n generators that is controlled by ISO.

._e [K] = -K[ed(PG,l [K ] - EG* 1 [K]) (A.8)

where K[ed is a (n x n) matrix and obtained by applying the same method as reduced

order tertiary tie-line flow control.

A.2.1 Simulation Example of Reduced Order Minimal Reg-

ulation

In the following simulations, the same six generators are controlled. The same amount

of load demand increase on bus 25 occurs at time=30 seconds. Figures A-5 to A-8

show that generators 33, 34, 35, and 37 are not included in minimal regulation so

they only respond to the fringe control.

In the end of the appendix, an additional simulation case is included, to show that

the reduced order minimal regulation can still maintain the tie-line flows within their

limits. As discussed previously, at least six generators is needed to be controlled. In

Figures A-9 to A-12, all tie-line transmissions are bounded by -3pu and 3pu.
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Frequency Deviations in Area 3
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Figure A-7: Reduced order minimal regulation (Area 3)
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Figure A-8: Reduced order minimal regulation (Area 4)
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