
Steganography and Collusion in Cryptographic Protocols

by

Matthew Lepinski

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Sept 2006

© Massachusetts Institute of Technology 2006. All rights reserved.

Author

/I

.. .. .t
Department of Electrical Engineering and Computer Science

August 7, 2006

/1/1

Certified by................. .. .

Silvio Micali
Professor

Thesis Supervisor

Accepted by 7--
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSAcHUSCHWS INS1r't1f,
OF TECHNOLOGY

JAN 11 2007

LIBRARIES

ARCHtVES

i I

Steganography and Collusion in Cryptographic Protocols

by

Matthew Lepinski

Submitted to the Department of Electrical Engineering and Computer Science
on August 7, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

Steganography, the hiding of covert messages inside innocuous communication, is an ac-
tive area of cryptographic research. Recent research has shown that provably undetectable
steganography is possible in a wide variety of settings. We believe that the existence of such
undetectable steganography will have far reaching implications. In this thesis, we investi-
gate the impact of steganography on the design of cryptographic protocols. In particular,
we show that that all existing cryptographic protocols allow malicious players to collude
and coordinate their actions by steganographicly hiding covert messages inside legitimate
protocol traffic. Such collusion is devastating in many settings, and thus we argue that it's
elimination is an important direction for cryptographic research.

Defeating such steganographic collusion requires not only new cryptographic protocols,
but also a new notion of protocol security. Traditional notions of protocol security attempt
to minimize the injuries to privacy and correctness inflicted by malicious participants who
collude during run-time. They do not, however, prevent malicious parties from colluding
and coordinating their actions in the first place! We therefore put forward the notion of a
collusion-free protocol which guarantees that no set of players can use the protocol to ma-
liciously coordinate their actions. As should be expected, such a strong notion of security
is very difficult to achieve. We show that achieving collusion-free security is impossible in
a model with only broadcast communication and that even with physically private com-
munication (e.g. physical envelopes) there are still many ideal functionalities that have no
collusion-free protocols.

Fortunately, under natural assumptions collusion-free protocols exist for an interesting
class of ideal functionalities. Assuming the existence of trapdoor permutations, we construct
collusion-free protocols, in a model with both broadcast messages and physical envelopes,
for every finite ideal functionality in which all actions are public.

Thesis Supervisor: Silvio Micali
Title: Professor

Acknowledgments

The thesis is based upon joint work produced by Silvio Micali, Abhi Shelat, and myself.

An earlier version of this work [17] appeared in the proceedings of STOC 2006. I'd like to

thank Abhi Shelat for being a joy to work with on this project and Silvio Micali for all of his

advice and guidance throughout my graduate studies. Additionally, I'd like to thank Ran

Canetti, Shafi Goldwasser, Ron Rivest, Chris Peikert and Rafael Pass for helpful comments

and discussions at various stages of this work. I greatly appreciate the financial support of

the National Science Foundation. This thesis is based upon work supported under an NSF

Graduate Research Fellowship.

The successful completion of my graduate studies would have been impossible without

the help and support of many others. I'd like to thank Seth Gilbert, Sergei Izmalkov,

April Rasala Lehman, David Liben-Nowell, and Chris Peikert for working with me on other

research projects unrelated to this thesis. I'd also like to thank my dear friends Michael Ed-

wards, Michael Treaster, David Hafvenstein and Michael Thomas for frequently reminding

me that there's more to life than theoretical computer science. And finally, I surely would

have given up long before the completion of this thesis if not for the unconditional love of

my wife, Liv Coleman, my parents, Steve and Ellen Lepinski, and our cats Patience and

Mirth.

Contents

1 Introduction 9

1.1 The Problem: Steganographic Collusion 9

1.2 Our Solution: Collusion-Free Protocols 11

2 Defining Collusion-Free Protocols 21

2.1 Preliminaries 22

2.2 Definition 24

3 Tools for Our Construction 27

3.1 A Classic Tool: The GMW Protocol 27

3.2 A Novel Tool: Bounded Unique Zero-Knowledge Proofs 30

4 Constructing Collusion-Free Protocols 33

4.1 Construction 33

4.2 Proof of Correctness 38

5 Impossibility Results 49

5.1 Impossibility of Broadcast-Only Protocols 49

5.2 Impossibility of Infinite Games 51

5.3 Impossibility of Games With Private Actions 53

6 Extensions and Future Directions 57

Chapter 1

Introduction

1.1 The Problem: Steganographic Collusion

Steganography

Steganography is the art of conveying a hidden message via a public and apparently in-

nocuous one. For example, a photographer in a heavily censured country may use the

photograph of a middle-aged man to secretly transmit the bit 0, if the 30th hair from the

left is white, and 1 otherwise. Steganography in various forms dates back to the ancient

Greeks, but, in the past few years, it has become an active area of search within the cryp-

tography community. Recent work in Steganography (e.g., [3, 19, 21, 20, 1]) has shown that

in a wide variety of settings and models

Steganographic communication is provably impossible to detect whenever there is a

minimum amount of entropy

At a high level, the intuition behind these results is as follows. Suppose a distribution of

"innocuous messages" has a fair amount of entropy. Then a sender can sample innocuous

messages from the distribution until he comes up with one that hashes to his desired covert

message. This means that anyone who knows what hash function the sender used can

determine the covert message, but, for appropriately chosen hash functions, anyone who

doesn't know the hash function will see a random-looking innocuous message.

Secure Multi-Party Computation

Secure multi-party computation [10) (SMC, for short) traditionally posits that any ideal

interaction with a trusted party (also know as a game with imperfect information) can be

tightly simulated by the players themselves. That is, even if a proper subset of the play-

ers collude and deviate from their prescribed instructions in an arbitrary and coordinated

manner, SMC guarantees that the game unfolds with the same privacy and correctness as

if an external trusted party handled all the crucial details of the interaction.

In the past two decades, SMC has been extensively investigated and improved; in par-

ticular, by (a) solely relying on physical assumptions [2, 6], (b) tolerating the dynamic

corruption of players [5], and (c) guaranteeing its safe use as a subroutine within arbitrary

and larger protocols [9, 4]. However, no prior SMC protocol could prevent malicious players

from colluding; that is, from successfully coordinating their actions in order to disrupt the

protocol's desired correctness or privacy constraints. Whether based on computational or

physical assumptions, all prior results simply guarantee that "executing the ideal function-

ality with a subset of colluding players or executing the protocol with the same colluding

players yields the identical results."

Collusion in SMC protocols

Let us now consider the impact of steganography on SMC protocols and see why malicious

collusion is possible in all prior SMC protocols.

The key to collusion is communication. A coalition arises only if its members coordinate

their actions by communicating with each other (else, we would already be facing a set of

independent bad players). Recall that Steganographic communication is provably impossi-

ble to detect whenever the distribution of acceptable messages has a minimum amount of

entropy. Additionally, it is well known to cryptographers that

any secure protocol must have a lot of entropy (as shown by [15] even in the case of

simple encryption).

Therefore, due to the entropy in the messages of all secure protocols, malicious players

can use steganography to hide covert messages within the traffic of protocol to collude by

coordinating their actions. Moreover, such collusion is provably undetectable by the honest

players!

In many settings, such collusion (even among a set of just two players) would be dis-

astrous. In poker, for example, two players secretly sharing information about their hands

have a tremendous -and illegal!- advantage. For example, consider a game of draw poker

in which malicious player 1 has a pair of Aces and malicious player 2 has both four hearts

and a pair of Kings. If the two players are playing independently (without knowledge of

each other's hands) then will both surely keep their high pairs when it comes time to draw.

However, if, via steganography, the players can collude and share information about their

hands then player 2 will realize that his pair of Kings will always lose to player 1's pair of

Aces. Therefore, player 2's best move is to discard his non-heart king and draw to a flush.

It is easy to see that such collusion during a poker game will result in the honest players

losing much more often than they should. Therefore, no existing SMC protocol is capable

of guaranteeing a fair game of poker. Indeed, the ability to cryptographicly play a fair game

of poker has been an elusive goal for the past 20 years. In 1985, Crepeau [7] introduced

techniques for limiting the power of a coalition of bad players in Mental Poker, and raised

the important question of whether this power could be eliminated altogether. His question

has remained unanswered until now.

We provide a positive solution to his open problem by (1) formalizing what it means to

make a coalition as powerless as possible in a SMC protocol, and (2) achieving such security,

under standard computational and physical assumptions, not only for Poker, but for any

finite game with publicly observable actions.

1.2 Our Solution: Collusion-Free Protocols

Understanding Our Goal

Of course steganography is not the only way for malicious players to coordinate their actions

during the execution of an SMC protocol. Indeed, the very actions of the game itself may

intrinsicly enable some amount of communication between players. For example, in poker,

if a player folds then others can infer that he did not have four aces. Such intrinsic commu-

nication is clearly desirable: no one would play a game of poker in which a player's actions

must be totally independent from his cards. As another example of intrinsic communication,

in the game of bridge players are allowed to communicate a limited amount of information

to their partners via their bids in the auctions. Such communication during the auction is

an integral part of a bridge game and yet any communication beyond what is legitimately

allowed in the auction would give a partnership a massive and unfair advantage. Therefore,

our goal is to prevent coalitions (to the maximum possible extent) by eliminating all ille-

gitimate, extra communication between malicious players while preserving the legitimate,

game-intrinsic communication.

It is the undetectability of steganographic collusion that makes it so difficult to elimi-

nate. If good players in a protocol execution detect any extra (i.e., non protocol-specified)

communication, then they should abort since its very presence indicates that bad players

are at work. Yet the undectability of steganography is inherent in any secure protocol due

to the entropy required for protocol security. We resolve this apparent contradiction by

proving that

The presence of steganographic communication is provably impossible to detect, but

its very presence is provably preventable in Poker, Bridge, and all similar games.

The Notion of Collusion-Free Protocols

To help elucidate our new notion, we choose to defer all other complexities and introduce

collusion-free protocols in the simplest possible setting: the static, stand-alone model with-

out "fairness." Informally, this means that we shall focus on a single execution, where the

bad players are fixed in advance, only one player is active at any given time, and any player

can cause an abort. The number of bad players, however, can be arbitrarily high.

To define collusion-free protocols, we rely once more on the traditional Ideal-Real

paradigm. We actually find it convenient (for variety of discourse, as well to be in line

with game-theoretic tradition1) to refer to the abstract specification of a protocol as a

game, and then consider two separate implementations for it, the ideal and the real.

e Ideal Implementation. Essentially this is the traditional, trusted-party implementation

of a game G, with the caveat that all extra communication channels are removed.

For clarity, we may refer to a player in the ideal implementation as a human player.

Such a player communicates to the trusted party in a private and specific manner.

Simplifying a bit (see Section 2 for more details), when it is his turn to play, a

1Technically, since in our cryptographic setting the players receive no payoffs, a game theorist might refer
to such abstract specifications as a game-form and not a game.

human player can only send an abort signal, or his chosen action; and, at the end of a

player's turn, he can only receive either the signal "game aborted" or his own partial

information about the game's global state. The trusted party, as usual, privately

receives a player's action, properly updates G's global state, and returns to every

player his proper partial information about the new global state. This traditional

mechanics captures the best possible correctness and privacy for G.

Our only addition to the above mechanics is that each human player is confined to

a "Faraday cage" from which he can only communicate with the trusted party. The

absence of any extra, player-to-player channels captures our new desideratum that

each player must act as independently as possible. Our modification to the ideal

setting is thus extremely simple -the real difficulty will lie in implementing it! To

this end, however, we must first understand the implications of our modification and

explain what "as independently as possible" means.

Though the ideal implementation forces all communication to occur -- as sketched

above-- via the trusted party, two bad players, i and j, still possess some game-

intrinsic ability to communicate (and indeed secretly communicate!) with one an-

other. In fact, by choosing an action when it is his turn, i affects the global state of

G, and the proper partial information about the new state will be privately delivered

to j. Thus, though the new state is not totally known or controlled, it may still be

possible for i to achieve some level of communication with j during an execution. The

ideal implementation does not prevent this game intrinsic communication. It does,

however, prevent any additional communication during an execution!

Incidentally, bad players may freely talk before and after executing with the trusted

party.2 Thus, even in an ideal hand of Poker, an honest player should accept that bad

players may

1. coordinate their strategies beforehand, in an attempt to "tilt" the game to their

favor, and

2. compare notes afterwards, in an attempt to gain some knowledge about a honest

player's adopted strategy (e.g., whether he bluffed or not).

2 No protocol can prevent what may happen outside the protocol, and the ideal implementation should
not promise what cannot be delivered! Accordingly, players cannot be confined to Faraday cages for ever!

* Real Implementation. This is the traditional implementation of a game G via a pro-

tocol P executed by just the players themselves, with again the caveat that all extra

communication channels are removed.

In addition, the real implementation preserves the "reactive nature" of game playing.3

That is, a real player i has two distinct components: a human player, Hi, and an

interactive Turing machine, Ti, specified by P. Human player Hi acts as in the ideal

implementation: he chooses actions in G and receives partial information about G's

current global state. Machine Ti acts as Hi's interpreter: essentially, it transforms

an action of Hi into a protocol message, processes "the message traffic," and presents

Hi with proper partial information. In between Hi's actions, therefore, Ti is busy

using P's specified channels (e.g., by sending encrypted messages, performing zero-

knowledge proofs, etc.) so as to simulate, together with the other machines Tj, the

correct evolution of G's global state.

As mentioned above, our only modification to this traditional mechanics is that at any

time, the only channel available to a player (whether good or bad) is the one specified

by P at that time. The absence of any extra communication channels physically

matches the situation of the ideal implementation.

* Collusion-free Implementation. Essentially, this is a real implementation of G that

"tightly simulates" the ideal one.

Easy to describe informally, collusion-free protocols are actually quite tricky to define

properly, even assuming familiarity with the usual subtleties of secure computation.

Personally, we regard the very definition of collusion-freeness as a principal contribu-

tion of this paper, in part because our new conceptual tools also promise to be useful

in other security settings. For instance, game theory models players as selfish but

independent agents, and traditionally analyzes only one player "going bad" at time.

Computer scientist have already started studying protocols in game-theoretic settings,

and our framework may boost the robustness of such game-theoretic protocols.

3Collusion-free protocols would be trivial in a model in which players commit to their strategy for G
and then run a secure function evaluation on these commitments. Besides excising the joy from game-play,
this approach is infeasible (because writing down complete strategies for games such as Poker requires more
symbols than elementary particles in the universe. Moreover, in many natural models "players may be able
to play the game but not to compute their own description."

Remarks.

* Let us observe that communication occurring before or after the protocol is not a prob-

lem: though both "extra and undetectable" by definition, it is already incorporated

in the ideal implementation. 4 The problem is in the extra communication occurring

during the protocol. Right away, this implies that private channels cannot be the sole

means of communication during a collusion-free protocol: they would automatically

make any communication among bad players undetectable. Indeed, when construct-

ing our collusion-free protocols, we demand that, at least during critical portions, all

communication is via broadcast only. But the use of broadcasting is not sufficient,

even with our model's guarantee that no other channels are available to any players,

whether good or bad. This is so because bad players may subliminally use the very

channels specified by the protocol (including broadcast ones) to secretly coordinate

themselves. It is thus the designer's responsibility to guarantee that the protocol itself

cannot be used to provide any additional power to a coalition.

* Our work bars a main avenue of subliminal communication: that introduced by the

protocol itself. Other physical avenues for such communication might, however, still

be open to adversaries who wish to coordinate themselves. (E.g., they may signal

each other by precisely timing the sending of their protocol messages, by winking, by

coughing, etc.) Barring these physical avenues as well will not be easy. Nonetheless,

our results represent a significant paradigm shift concerning the responsibility for

preventing cheating. In the past, colluding players could have simply used the protocol

itself. Now they must use external mechanisms.

* At the risk of stating the obvious, let us emphasize that collusion-free protocols do not

(and indeed cannot) prevent players from acting maliciously. Rather, they guarantee

that each malicious player, if any, acts as independently as possible. (In a sense, they

"divide and conquer" the bad players, not eliminate them!) Let us now uncover the

difficulties in constructing collusion-free protocols.

4Notice, however, that it is the protocol designer's responsibility to ensure that bad players cannot use
post-execution communication to disrupt the protocol's privacy constraint in any way.

Our Theorems

Our main, positive result, shows that collusion-free protocols are possible under standard

computational and physical assumptions. Namely,

Theorem 1: If trapdoor permutations exist, any finite, partial-information game

with publicly observable actions 5 has a collusion-free protocol whose communication

channels consist of broadcast and plain envelopes.

Furthermore, we elucidate why our prerequisites for collusion-free protocols are necessary

by proving that each of (a) the use of envelopes, (b) the finiteness of the game, and (c) the

observability of its actions, is an essential element for Theorem 1 to hold.

Theorem 2: There exists a finite game with publicly observable actions that has no

collusion-free protocol whose only communication channel is broadcast.

Theorem 3: There exists an infinite game with publicly observable actions that has

no collusion-free protocol whose communication channels consist of broadcast and

plain envelopes.

Theorem 4: There exists a finite game with private actions that has no collusion-free

protocol whose communication channels consist of broadcast and plain envelopes.

Remarks

* Using envelopes in a collusion-free protocol may appear contradictory rather than

essential, because any form of physically private channels could make colluding com-

munication absolutely undetected. However, we shall use envelopes only during the

initial phase of our protocols, that is, before the game proper begins. Malicious play-

ers, therefore, cannot use these envelopes to collude in any meaningful way. (In the

subsequent phase when the game properly begins, all communication is broadcast

only, and our computational assumptions become crucial.)

* Theorem 1 provides solves Crepeau's open problem [7], because Poker is a finite game

whose actions are publicly observable: the only actions are publicly announcing a

"Recall (see Section 2 anyway) that a game with partial information is finite if it has a finite number
of players and finitely many stages, each specified by a finite stage function. Such a game has publicly
observable actions if any action a player takes becomes immediately known to all players (unlike the global
state and the players' private information).

subset of {1,..., 5} (representing the cards in his own hand which the player wants

to replace6) or announcing bets, calls, and folds.

Let Poker' be the following variant of Poker: when a player chooses which of the

32(=25) subsets of his cards he wants to replace, all other players learn only the car-

dinality of the chosen subset (i.e., an integer between 0 and 5). While both games have

implementations secure against monolithic adversaries, Poker has collusion-free imple-

mentations, but Poker' has none.7 This concrete example highlights that collusion-free

security is very subtle and depends, as to be expected, on the precise details of the

game's specification.

High-Level View of Our Construction

Our collusion-free protocol for a game G consists of two, distinct subprotocols, P1 and P2,

which are executed sequentially. Every player runs P1 with an empty private input, and

then P2 with a private input consisting of his own history from Pl's execution.

The two subprotocols play dramatically different roles in our solution. To begin, Pi

is heavily probabilistic, while P2 is purely deterministic. Additionally, P1 uses broadcast

and envelopes as communication channels, while P2 solely uses broadcast. Finally, each

subprotocol satisfies its own crucial property. The first one satisfies game independence:

throughout Pi's execution, no portion of G is actually played. The second one satisfies

verifiable uniqueness: all honest players can verify that the only source of non-determinism

for a player in P2 is the choice of actions in G made by his corresponding "human player."

A bit more precisely, fix any player i and any sequence of actions for Hi. Then, whenever

Ti is about to broadcast a message in P2, though what he is going to say is unpredictable,

there is a single message he can broadcast without causing all honest players to abort.

As already mentioned, collusion-free protocols for non-trivial games must overcome

the paradox that every secure protocol must be probabilistic, yet probabilism introduces

steganography. However, our two-subprotocol structure carefully avoids any contradiction.
6This is a bit open to interpretation, because Poker and its variants are traditionally described in a hybrid

"physical-deck implementation" instead of an ideal or real one. However, in all such hybrid implementations,
a player must keep his cards visible at all time. Therefore, everyone can see that a player is choosing -say----
the action of replacing his first and third card with the next two cards in the deck.

7Since Poker' is not a game with publicly observable actions, Theorem 1 does not apply. To be sure, the
fact that Poker' has no collusion-free implementations can be proven using the same techniques as in our
proof of Theorem 4. Indeed, at the price of a few additional complications, we could have chosen Poker' as
the example game necessary to establish Theorem 4.

Since P1 is probabilistic, our resulting collusion-free protocol is also probabilistic. However,

thanks to game independence, the potential for steganography in P1 is useless because no

player has yet received any partial information about the initial global state of G (nor

selected any action in G). In other words, whatever information bad players may stegano-

graphically exchange in P1, they also may exchange -and are entitled to exchange- in

the ideal implementation of G before the execution with the trusted party begins! But

if steganography is useless in P1 , it is impossible in P2! Thanks to verifiable uniqueness,

P2 eliminates any possible choice due to the protocol proper, and therefore removes all

steganography except for that already intrinsic to G.

Having clarified the logical structure of our solution, let us now give some idea of how

P1 and P2 actually work. In essence, P2 replaces the probabilistic player i of a traditionally

secure protocol for G by a deterministic one that utilizes randomness that is properly

selected and fixed in P1 , before the game begins. The honest players of P2, however, should

be able to verify that this is indeed the case. We thus demand that player i provide a

zero-knowledge proof that he is properly executing P2. Unfortunately, this would result in a

vicious circle, since a ZK proof -being a secure protocol- would itself require randomness.

To break this circularity, we use so called unique zero knowledge proofs (uniZK for short)

8 rather than traditional, ZK ones. A uniZK system for a NP-language L satisfies the

completeness, soundness and zero-knowledgeness properties of a traditional ZK system, but

differs in the following two ways. First, uniZK works in a public-key setting. (Namely, the

prover has a public key, UPK, and a matching secret key, USK, and uses the latter, along with

a proper witness, to create a proof of membership in L. Conversely, the verifier uses PK in

order to check such a proof.) Second, whenever there is a unique witness for x E L, there is

exactly one proof acceptable by the uniZK verifier! (Notice that our construction will only

need to prove theorems for "unique-witness languages.") To enable our use of uniZK proofs

in P2, we also use P1 for generating public and secret uniZK keys for all players, because

such key generation requires randomness.

One last complication arises. If a bad player i shares knowledge about his secret uniZK

key with a bad player j, then any uniZK proof that player i generates is no longer zero-

knowledge, and can actually be used to subliminally convey information. For instance,

8The original definition and construction of uniZK proofs is presented in [18]. However, for our applica-
tion, a weaker version (requiring weaker assumptions) suffices.

by giving a uniZK proof in P2 that "there exists a string w satisfying a polynomial-time

predicate Q", player i precisely reveals w to j, and does so without being detected by any

honest player! It is thus a requirement in P2 that player i be the only player to know his

own secret uniZK key. This requirement prohibits us from instructing player i to generate

his matching uniZK keys, USKi and UPKi, on his own. Else, a malicious i could inform

his accomplice j, before P1 begins, that (USKi, UPKi) will be the uniZK keys that he will

generate during P1 . Nor can the keys be jointly generated via a broadcast-only protocol

(e.g., via a proper secure function evaluation). This would be another vicious circle, because

secure, broadcast-only protocols rely on public-key encryption. Once again, i can share with

j the secret decryption key he plans to use in P1 , and then j could simply compute the same

USKi that i computes in P1 by reading all the broadcasted, encrypted message "addressed

to" i.

It is precisely in order to break this second circle that our protocol makes use of physical

envelopes. Namely, we ensure that USKi -as well as any other secret of player i-- depends

on unpredictable messages that the other players deliver to i in sealed envelopes as the last

step of P1. Thus, at that moment, because there is at least one good player that delivers

an unpredictable string a to i in a sealed envelope, no other bad player j may know what

a can be. Moreover, because no extra channels channels are available, i cannot inform j

about a, and thus only player i will be able to compute USKi. (Notice that i cannot use

such envelopes to slip a to j. This is so because each player a is instructed to put his string

Uab for player b into a sealed envelope Eab and "put it on the table" before any envelope is

actually delivered.) To maintain this unique-knowledge situation, it must also be impossible

for i to steganographically communicate USKi to j during P2. But in P2, each message is

broadcast and verifiably unique. Thus, the only hope for i to subliminally inform j about

USKi rests in the game-intrinsic entropy of G. Here we use the fact that G is a finite game,

and thus the total entropy available to a player is constant and known. Consequently, only

a constant number of bits about USKi can be communicated by i to j using the game. With

a sufficiently large security parameter, and properly choosing our cryptographic primitives,

such a small amount of information about USKi is provably useless for any adversary to

violate our collusion-free definition.

Chapter 2

Defining Collusion-Free Protocols

We follow the original paradigm of [10]: a protocol is "secure if all malicious parties in the

real execution of the protocol can be simulated in an ideal execution." Our primary mod-

ifications are that (1) our ideal adversaries do not communicate during an ideal execution

-- to capture their independence-- and (2) an efficient function f "reconciles" their separate

and contrasting views after the game -to guarantee forever that honest player privacy is

maintained. More specifically, the reconciling function f combines the separate outputs of

the our ideal adversaries, and produces a single output that is indistinguishable from the

joint views of the real adversaries. This ensures that whatever malicious players can learn

by comparing notes after a real execution, they can also learn after an ideal execution.

This is the best we can hope for. Of course, it would be preferable if the malicious players,

separated during the game, remain separated forever after, but it is not realistic to expect

that real players live forever in a Faraday cage!

As already mentioned, in our basic scenario only one player is active at any time, and

between the actions of two players each player receives his own partial information (possibly

empty). 1 We tightly couple a real execution to its corresponding ideal one by requiring

that all information about the global state of the ideal execution can be extracted (perhaps

in exponential time) from the message traffic of the real execution. In order to make sure

that every human player "knows" his own ideal state, we require that player's view of the

message traffic can be efficiently mapped into that player's ideal state.

10Our definition generalizes to cases where multiple ideal players take actions at the same time, but this
requires our protocols to make frequent use of simultaneous broadcast channels which we find undesirable.

2.1 Preliminaries

IDEAL GAMES. A finite game G with n players and s stages consists of

1. E, a finite set of possible game states,

2. X J , a finite set of possible actions for player i for each stage j,

3. Y/j. a finite set of possible outputs for player i for each stage j, and

4. TURN : [1...s] -* [1... n], a function which maps each stage to the player who must

take an action during that stage.

5. g',.., gS, a sequence of probabilistic stage functions where g : (XTRN() E) -

(Yi x -.. x Y,3 x E).

In an ideal execution, a honest human player, Hi, is a sequence of probabilistic (strategy)

functions, {H, . . ., H }2 and a malicious player, Ai, is an efficient interactive Turing machine

which accepts a unary input (and as usual retains state between stages). Such Ai chooses

actions for player i during an execution of the game and additionally, at the end of the

game, produces an auxiliary output.

The global state of a game at stage j, oa, is a string encoding all actions taken by all

players prior to stage j, all information sent to the players prior to round j and any private

randomness used by the stage functions. 3 The local state of a player i, oa consists of the

all of the actions taken by i, and all of the outputs received from the trusted party prior to

round j. The local state of a set of players C, oC, consists of the concatenation of uj for

all c E C. Letting Ej be the set of all possible local states for player i at the beginning of

stage j, then each H(maps K into the action set -+ X'.
An action x i E Xji is a public action if, whenever the active player i of stage j chooses

x-' in stage j, then every player k receives x i as part of his private output yj at the end of

stage j.

IDEAL EXECUTIONS. Let C be a subset of [1, n]. In an ideal execution of G with secu-

rity parameter 1K and trusted party TG, the players are partitioned into a set of ideal

adversaries, {A, : c E C}, and a set of human players, {Hi : i V' C}.
2We may think of these functions as being non-deterministically chosen to capture the whimsical manner

in which a player acts in a game.
3 In this section, a superscript indexes time, a subscript indexes the player.

Prior to the first stage of an ideal execution of G, the trusted party generates a1 ,

which, without loss of generality, contains all the random coins needed to evaluate the stage

functions of G. Also prior to the first stage, the ideal adversaries may exchange an arbitrary

number of private messages.

For stage j, suppose the trusted party has global state ai and let i = TURN(j). If i ý C,

then the honest player function Hj (ao) is invoked on input au to compute an action xJ which

is sent to TG. If i E C, then the ideal adversary Ac is given unary input 1K and (running

from his previous state) computes an action x i which is delivered to TG. The trusted party

then computes the partial information vector (a j +l, y ,..., y) = gJ (aJ, x). The players

receive their partial information, in lexicographic order, by means of the following n-step

process (per player): for the ith player, TG queries all the players in order to determine if

player i should receive his partial information. If no player objects, TG delivers yi to player

i. Else, if a player objects, then TG informs all players that the game has been aborted

(and appends "abort" to the global state). The execution continues in a similar fashion for

all s stages.

1i
We use the notation e -- ((Hi : i C) - (Ac : c E C)) to denote that e is a random

ideal execution of G with security parameter 1K, ideal adversaries {Ac : c E C}, and human

players {Hi : i V C}. If e is an ideal execution, the auxiliary output of Ac is denoted

OUTc(e). When indexed by a set C, OUTc(e) consists of the concatenation of OUTc(e) for

cE C.

PROTOCOLS. An r-round, n-player protocol II for a game G is defined by (1) a set of n effi-

cient oracle ITMs (Interactive Turing Machines), {Ti,..., Tn}, each capable of making only

s oracle calls, (2) r communication channels, {Bi,..., B, }, the last of which are broadcast

channels, and (3) a (not necessarily efficient) extraction function EXT described below as

well as an efficient player-extraction function EXTi for each player i. We refer to machine

Ti as the interpreter for player i.

REAL WORLD EXECUTIONS. Let C be a subset of [1, n]. An execution of protocol II with

human players H1,..., Hn and a set of malicious players {Ac : c E C}, is defined as follows.

The ith player in this execution is Ai if i E C, and THz otherwise. By THi, we mean the

interpreter Ti runs with oracle access to human player Hi such that the jth oracle call of Ti

is answered by the probabilistic function HJ.

Prior to round 1, all parties are given a security parameter 1K as input. Also prior to

round 1, all malicious players may exchange may exchange an arbitrary number of private

messages. For each round t of II, all communication occurs via channel Bt, for honest and

malicious players alike.

As before, we use the notation e - ((T H : i C) k (Ac : cE C)) to denote that

e is a random execution of 11 with human players {Hi : i ý C} and adversarial algorithms

{A : cE C}.

The message traffic in a real execution e is denoted TRAFFIC(e) and consists of all

messages sent during an of execution of H. Similarly, VIEWi(e) denotes the view of a player

i and consists all messages received by player i as well as the random coins used by either

Ai or Ti (depending on whether i E C or not respectively). As before, VIEWC(e) is the

concatenation of VIEWc(e) for c E C. Finally, the (possibly exponential time) function

EXT :TRAFFIC E-+ maps the traffic to a global game state in G and the efficient function

EXTi : VIEWi(e) - Ci maps a player's view to a human player state.

2.2 Definition

Definition 1 (Collusion-free Protocol) A protocol H is a Collusion-free realization of

game G if for every proper subset C of the players and any set of efficient adversarial

algorithms {Ac : c E C}, there exist ideal adversaries {Ac : c E C} such that for any set of

honest human players {Hi : i V C}, for all c E C, there exists an efficient function f so

that the following pair of ensembles are computationally indistinguishable

{ e-- ((THi :i C) l- (A c E C)) : (VIEWC(e), EXTc(VIEWc(e)), EXT(TRAFFIC(e))) k

e - ((H" i C) Ik (Ac: c C)): (f(ouTc(e)), as(e),as(e)) }
Remarks

* The reconciliation function f models the privacy guarantee that malicious players

cannot combine their information after an execution to learn extra information about

an honest player's strategy that they could not learn in an ideal execution.

There are several ways that one could model this requirement. An optimist might

consider removing f from the definition and just requiring that (OUTc(e),...) be

indistinguishable from (VIEWc(eI), .. .). Let us informally explain why such an opti-

mistic definition is impossible to achieve.

Such an optimistic definition would imply that for each c E C, Ac must generate the

public broadcast traffic of the protocol, and must do so without knowledge of any

other player's private outputs. In a real execution, however, the broadcast traffic in

each view perfectly coincides, bit for bit! Therefore, the optimistic definition would

thus obligate each Ai to generate the exactly same broadcast traffic. However, this

broadcast traffic together with player j's private view allows player j E C to deduce

his private outputs. Thus, Ai must generate broadcast traffic that properly encodes

j's private outputs without knowledge of these private outcomes -A task which is

information-theoretically impossible.

By using the reconciling function f, and, crucially, the fact that the game is finite, we

are able to circumvent this difficulty and design a protocol which meets our definition.

At the same time, since f is efficiently computable, our definition still captures the

stated privacy guarantee.

* We follow the definition of Dodis and Micali [9] and require that the game state of

G is embedded in any real execution and could be extracted if one had unlimited

computational resources. (The state of G is analogous to the effective inputs and

outputs of the trusted party in the definition of Dodis and Micali.) An alternative

approach to defining secure computation is to specify that the each honest player

i outputs ai (in both the ideal and real executions) and that the in the definition

the (extracted) state of G is replaced by the outputs of the honest players (see for

example, [4]).

Such an approach leads to a weaker (more permissive) notion of protocol security. In

particular, it allows a protocol to be secure if the inputs (or outputs) of a player exist

only in that player's mind and are not actually embedded in the traffic. (For example,

perhaps a player i's output is a function of i's private coin tosses as well as the traffic

of the protocol.) Which of these two approaches yields a more "natural" notion of

protocol security is a philosophical question beyond the scope of this thesis.

Since our main result is a positive one, we prefer to use the stronger (less permissive)

notion of security. (Indeed, since our construction achieves the the stronger notion we

might as well claim the strongest result possible.) However, it is worth noting that

all of the impossibility results in Chapter 5 continue to hold even if one adopts the

weaker approach to protocol security.

* We think it is quite natural to model a setting in which malicious players can com-

municate before and after a protocol execution and are only isolated from each other

during the execution. However, one can perhaps imagine settings in which malicious

players are somehow prevented from coordinating their strategies before an execution

or pooling their information after an execution.

It is easy to formulate a definition which captures real and ideal adversaries cannot

communicate after a protocol execution. To do so, in the above definition, simply

replace f(outc(e)) with outc(e) and replace VIEWc(e) with VIEWc(e). It is easy to see

that the impossibility results from Section 5 still hold with respect to this modified

definition and that our protocol presented in Section 4.1 also satisfies this modified

definition.

However, it is not clear how to formulate a definition which both (1) captures that

real and ideal adversaries cannot communicate before an execution; and (2) is achiev-

able for some class of non-trivial games using only broadcast and physical envelopes.

Indeed, the ability of the ideal adversaries to coordinate their strategies is essential

to our construction, and we do not see how this coordinate can be removed -even in

the case where the real adversaries are prevented from communicating before hand.

* It is explicit in our ideal execution th any player can abort the execution at any time.

This is necessary if we wish to tolerate an arbitrarily large coalition of malicious

players. As in other secure computation settings, if we were willing to assume an

honest majority, then we could remove the ability to abort from our ideal executions.

In such a case, we would need to modify our protocol (in Section 4.1) to use a threshold

secret sharing scheme in place of an XOR secret sharing scheme. 4

4See [10] or [11] for more information on secure multi-party computation with an honest majority.

Chapter 3

Tools for Our Construction

In this paper, we use a number of standard cryptographic tools. For more information on

Public-Key Encryption see [15]. For more information on Perfectly Binding Commitments

see [11]. For more information on Zero-Knowledge proofs see [14, 13]. Below, we describe in

some detail the classic GMW Protocol for Secure Multi-party Computation and our novel

bounded uniZK proofs.

3.1 A Classic Tool: The GMW Protocol

The GMW protocol allows a set of n players to privately and correctly evaluate any proba-

bilistic function F mapping private inputs xl,... , x. (one for each player) to private outputs

yl, ... , yn. The GMW protocol consists of two components. The first component is a pro-

tocol, which we refer to as GMW', that uses private channels to privately and correctly

evaluate F in the presence of "honest-but-curious" players.' The second component is a

compiler, which we refer to as GMW", that transforms any honest-but-curious protocol

that uses private channels into a broadcast protocol that is secure even in the presence of

malicious players who deviate in an arbitrary fashion from the prescribed protocol.

GMW': The protocol GMW' takes in a probabilistic circuit for the function F and outputs

a set of interactive Turing machines M1 ,..., M,, one for each player in the protocol. Each

machine MIi operates by dividing its input xi into n shares (one for each player) in such a

way that all nr shares can be used to reconstruct the input but any n - 1 shares provide no

'An honest-but-curious player sends every message according to the prescribed protocol, however honest-
but-curious players may share information with one another and attempt to deduce information about other
players' inputs and outputs.

information about the input (an XOR sharing is one such sharing). The machines Mli then

perform computation on these shares to evaluate the probabilistic circuit for the function

F. At the end of the protocol each Mi has a share of each of the outputs yj. Each AMi then

(for each j) sends its share of yj to machine AMj. The GMW' protocol guarantees that after

any honest execution, each player is able to compute an output yi such that (1) the n-tuple

Y1,... , Yn is a (possibly random) output of F on inputs l,... , x and (2) for any subset

C C {1..n}, anything that can be efficiently computed from the transcripts of machines

{Tc : c E C} can be efficiently computed from the input-output pairs {(xc, yc) : c E C}.

GMW": The compiler takes as input the machines M1 , ... , M• n from the honest-but-curious

protocol described above and outputs a set of interactive Turing machines M 1,..., M, one

for each player in the protocol. The compiled GMW protocol proceeds as follows:

1. Each machine Mi runs the generator for a public-key encryption system to obtain a

public encryption key PKi and a matching private decryption key SKi. Machine Mi

then broadcasts PKi and provides a zero-knowledge proof of knowledge of SKi.

2. The machines M 1, ... , MIn run a coin flipping protocol which produces for each i a

commitment, COM(Ri), to a random string Ri. The protocol is such that all partici-

pants can compute COM(Ri) but only machine Mi can compute Ri.

3. Each machine Mi broadcasts a commitment to the initial state of Mi with random tape

Ri and provides a zero-knowledge proof2 that this commitment is correctly computed.

Note that the statement being proven is in NP since anyone who knows the coins used

to create the commitment can easily verify the truth of the statement.

4. Machine Mi now proceeds to simulate an honest execution of the machine Mi. Through-

out the execution, Mi maintains a commitment to the current state of MIi. Every time

AMi wants to send a private message to Mj, machine Mi (A) computes the message

based on the current state of 1Mi, (B) broadcasts an encryption of the message in

the key PKj, (C) broadcasts a commitment to the new state of Ti (after sending the

message) and (D) provides a zero-knowledge proof that the announced encryption and

the announced commitment are correctly computed based on the commitment to the
2When we say that a machine M/l. "provides a zero-knowledge proof" of some NP statement x E L, we

mean that for each other machine Mj, machine Mi acts as the prover in a zero-knowledge proof that x E L
in which AMj acts as the verifier and all messages in the proof are sent over the broadcast channel. If an
honest verifier would reject any of these ZK proofs then every machine Mj aborts.

previous state of Ti. Note that this statement is also in NP since anyone who knows

the coins used to construct the commitments and the encryption can easily verify

the truth of the statement. Upon receiving the encrypted message, Mj decrypts the

message and announces a commitment to the new state of Mj (after receiving the

message). Machine Mj then provides a zero-knowledge proof that this commitment

was computed correctly.

5. Once the simulated execution reaches the final stage of the honest-but-curious pro-

tocol, each Mi is able to compute a share of each output yj. Machine Mi then

encrypts his share of yj in the key PKj, broadcasts this encryption and provides a

zero-knowledge proof that the encryption is properly computed.

GMW SIMULATOR Let C be a static set of adversaries. The GMW" simulator, Sc({AcIc E

C}), works for any set of real execution adversaries, Ac for c E C, and does so in three

stages: first, the simulator extracts the private input of the malicious players, it then feeds

these private inputs to an Oracle for the functionality being computed and receives the

corresponding outputs for the set of bad players, and finally produces fake transcripts and

simulated proofs which induce those outputs. Informally, these three stages work as follows:

1. Pick random tapes, A1,..., An, for each of the n parties in the protocol. Whenever

party i requires random bits, use Ai.

2. Begin running an execution of the GMW protocol with algorithms A, for c E C

in which all honest party messages are generated as specified below. Whenever the

protocol calls for an adversary to generate a message, run the corresponding machine

Ac to generate the message. Feed all messages into the Ac algorithms as they would

be fed in a real execution of GMW".

3. Complete Step 1 of the GMW" protocol for each of the honest parties using random

tapes A, for all i §' C.

4. Use the ability to rewind each of the adversary machines in order to extract secret

keys SKc during step 1. At this point, the simulator knows all of the secret encryption

keys for all of the parties.

5. Complete Step 2 of GMW". Use the secret key of each of the bad players extracted

in the previous step to determine Rc for each c inC. Complete Step 3 of GMW" by

generating each honest message as specified in GMW".

6. Begin executing Step 4 of GMW". Recall that the first step of the GMW' protocol is

for each machine to produce an XOR sharing of its input. When generating shares

for the honest players, the simulator produces a random sharing of the input 0. For

each party c E C, use use knowledge of the SKc and Rc in order to extract x. for all

cE C.

7. Query the Oracle with the xc values that were extracted in the previous step. Receive

the corresponding function values for the bad players, yc for c E C.

8. Continue simulating the GMW" protocol. When a message for an honest player must

be produced, send an encryption of a random message, along with a simulated ZK

proof that the random string was correctly computed as in GMW". Verify each of the

adversary messages as the honest player would. If any message from the set of bad

players does not verify, signal an abort.

9. Once the execution reaches Step 5 of GMW", the simulator knows all of the shares of

the output values that each of the adversary machines have computed. The simulator

then produces fake messages and proofs for the honest party such that the final value

computed by each of the Ac machines is yc.

3.2 A Novel Tool: Bounded Unique Zero-Knowledge Proofs

We first provide a definition of Bounded-Theorem uniZK. As with the standard definition

of uniZK presented in [18], our bounded-theorem uniZK definition guarantees -- in addition

to the standard properties of a zero-knowledge proof system- that with overwhelming

probability (over the choice of public proving keys) the honest prover algorithm is a bijection

between witnesses for the theorem and proofs the verifier will accept. In particular, this

implies that for any theorem with a unique witness, there is only a single proof string that

will cause the verifier to accept.3 However, our bounded-theorem uniZK definition is weaker

3In our collusion-free protocol presented in Section 4.1 we shall use uniZK proofs only for theorems that
have a single witness.

than the standard uniZK definition not only because the number of theorems being proved

is bounded, but also because a dishonest prover is forced to use a correctly generated public

and secret key pair.4 However, this weaker formulation suffices for our purposes because we

generate the public and secret keys for all players using a secure function evaluation and

thus even a dishonest prover cannot cause his keys to be generated incorrectly. We then

show that unlike the standard uniZK definition, this definition can be easily achieved using

any one-way permutation.5

Let L be an NP language, and RL be its corresponding, polynomial-time relation. We

say that a sequence of pairs of strings, (Xl, Wl), (x 2 , W2), (X , Wp), is a p-bounded theorem-

witness sequence for L for some polynomial p if each xi E L and wi E RL(xi) and the total

length of all the xi's is less than p(k).

Definition 2 A triple of efficient algorithms, (G, P, V), where P is deterministic, is a

bounded theorem uniZK proof system for an NP-language L if there exists a positive constant

c and a negligible function p such that the following properties are satisfied:

COMPLETENESS: V p-bounded theorem-witness sequences (xl, wl), (x2. w2),.. - , (p, p) for

L, and security parameters Vk > 2

Pr (UPK, USK) - G(lk, p); 71" = P(x1, w1, USK, 1);

_7r2 = P(x2, 2, USK, 2); ... ; 7rp = P(xp, Wp, USK, p) : Ai V(xi, UPK, ri,i) = 1

SOUNDNESS: Vk > 2 and V algorithms P*,

Pr [(UPK, USK) +- G(lk, p); (x*, i) P*(UPK, USK)

x* ý L A V(x*, UPK, r*, i) = 1] < p(k)

ZERO-KNOWLEDGENESS: 3 an efficient algorithm S, such that for all p-bounded theorem-

witness sequences (Xl, wl), (x 2 , w2),. ., (Xp, Wp) for L, the following two ensembles are com-

4In the stronger definition of [18] the soundness and zero-knowledgeness of a proof must hold no matter
how a dishonest prover maliciously chooses his public key. They achieve this stronger guarantee by including
a common random string which the prover uses to certify that his chosen key is "valid".

5The construction of [18] requires the quadratic residuosity assumption. No constructions of standard
uniZK proof systems under any other assumption are currently known.

putationally indistinguishable:

(UPK, USK) +- G(1l, p); 7r1 = P(l,wl, USK, 1);

72 P(x2, w2, USK, 2); ...; Tp = P(xp, wp, USK, p) : (UPK, "1,7"2, .. , "/p) k

(UPK', USK') - S(lk); +- S(USK', x 1, 1);

7i +-- S(USK' , X2, 2); ... ; 7' +- S(USK' , Xp, p) : (UPK', 7r, 2', 7 . ,p)

UNIQUENESS: 3 an efficient deterministic algorithm P-1 such that Vx E L, Vi > 0,

with probability greater than 1 - I(k) (over the random choice of (UPK, USK) according

to G(1. p)) P(x, , USK, i) is a bijection between Wx and IPUPK(x) and P-(x, *, USK, i) is a

bijection between HIUPK(x) and Wx, where Wx = {w : w E RL(X)} and H 'PK(xo) = {7r

V(X, , UPK, , i) = 1).

Theorem 1 (uniZK) The existence of one-way permutations implies a p-bounded theorem

uniZK proof system for any NP-language L and for any polynomial p().

Proof: Our construction of a bounded theorem uniZK system is based heavily on the

protocol of DMP protocol[8] which allows a prover, after an interactive pre-processing stage,

to non-interactively prove a set of theorems of bounded length.

In particular, we define G on input 1k, to perform an honest execution of the DMP pre-

processing protocol and output as a public key, the honest verifier's view of this execution,

and output as a secret key, the honest prover's view of this execution. Additionally we take

P to be the DMP theorem proving algorithm and take V to be the DMP verifier algorithm.

Completeness, Soundness and Zero-Knowledgeness follow directly from the correctness of

the DMP protocol. Uniqueness follows from the observation that an honest execution of

pre-processing induces a bijection between NP witnesses that x E L verifier acceptable

proofs of x E L (and this bijection is easily computed in both directions by anyone who

knows the coin tosses used by the honest prover during pre-processing).

Chapter 4

Constructing Collusion-Free

Protocols

4.1 Construction

In this section, we present our Collusion-free protocol. The corresponding security proofs,

which complete Theorem 1, can be found in the following section.

Our protocol is based on the original GMW [10] protocol for secure multi-party compu-

tation. We feel it is most natural to present our protocol by making references to the steps

of the GMW protocol. Therefore, we provide an overview of the important pieces of the

GMW protocol in Section 3.1. (A more thorough explanation of the GMW protocol can be

found in [11].)

As noted in the Introduction, our protocol, P, for playing any finite game G consists of

two subprotocols, a pre-processing subprotocol, P1, immediately followed by a computation

subprotocol, P2. The pre-processing phase computes a function PRE in such a way that no

player has knowledge of another player's private output, even if players maliciously collude

with one another. The computation phase uses the private outputs from P1 to perform a

secure evaluation of the stage functions of G in a verifiably unique fashion by using the

uniZK proofs introduced in [18]. Since G is finite, one can upper bound the total number

of bits in all the theorems that need to be proved during the computation process. Hence,

a bounded theorem uniZK proof system suffices for P2. In Section 3.2 we give a bounded

uniZK proof system based on one-way permutations. 1

Physical Envelopes

As we show in Section 5.1, some type of physical channel assumption is necessary to achieve

a collusion-free protocol for general games. Our protocol assumes the existence of physical

envelopes that support the operations SEND(R, m) and RECEIVE(S) which satisfy the fol-

lowing properties: (1) Binding -- when a receiver, R, calls RECEIVE(S), he learns the values

m for all previous calls to SEND(R, m) made by sender S (2) Hiding -- when a sender calls

SEND(R, m), no one gains any information about m and when receiver calls RECEIVE(S) no

one besides R gains any information about m (3) Public -- when a sender calls SEND(R, m)

everyone learns the string "(SEND, S, R)" and when a receiver calls RECEIVE(S), everyone

learns the string "(RECEIVE, S, R)." We think of SEND(R, m) as corresponding to an action

where the sender puts m in an envelope, writes his name on the envelope and hands it to

R. We then think of RECEIVE(S) corresponding to the action where the receiver publicly

opens all envelopes from S and privately reads their contents. 2

The Function PRE

The function PRE is a probabilistic function that maps n private inputs xl,...,xn to n

private outputs yi, . . . , yn. However, we find it easier to explain PRE as a function from a

single public input 1k to a common public output Common and private outputs or,..., on.

That is, for each i, xi = 1 k and yi = (Common, oi).

Let the polynomial p(k) upper-bound the total number of bits in all of the theorems

that need to be proven during the Computation stage of our protocol running on security

parameter 1
k . Due to the structure of our protocol, p() will only depend on the stage

functions of G, and the security parameter k.

Let Gen be the generator for a public-key encryption scheme, Genuzk be the generator

for a p-bounded-theorem uniZK system and coM(string, coins) be the commitment algo-

rithm for a perfectly binding commitment scheme. The function PRE then operates by

1The original uniZK paper[18] provides a system attaining a stronger multi-theorem notion of uniZK but
requires a specific number theoretic assumption instead of working for any trapdoor permutation.

2Note that a single invocation of a channel allowing simultaneous delivery of private messages would
suffice for our protocol, but we prefer to use physical envelopes to emphasize that fact that simultaneity is
not required.

1. Running Gen(lk) n times to obtain matching public and secret encryption keys:

(PK1, SK1),. .. , (PKn, SKn).

2. Running Genuzk(lk,p(k)) n times to obtain matching public and secret uniZK keys:

(UPK1, USK1), , (UPKn, USKn).

3. Selecting random strings T1,..., Rn,., Rn, r. , ..., , n, R , ., R1, r, . . ., r, and

V1! , . Un.

4. Computing commitments to the random tapes, COM(Ri, rn),. coM(Rn, rn), COM(R, r'),

.. , COM(R',r), and coM(SK1 USK 1 , V1), ... , COM(SKnUSKn, Vn).

The common output Common is then the 6-tuple consisting of (1) The n-vector of public

encryption keys (PK 1 ,..., PK,) (2) The n-vector of public uniZK keys (UPK1,... , UPK,) (3)

The n-vector of committed random tapes (coM(R 1, rl), ... , COM(Rn, rn)) (4) The n-vector

of committed random tapes (COM(R',r'), ... COM(Rn,rn)) (5) The n-vector of common

reference strings (-1,i...,Tn) and (6) The n-vector of committed secret keys COM(SK 1 USK 1, v1),

... , COM(SKnIUSKn, Vn). The private output oi is the 7-tuple: (SKi, USKi, Ri, ri, R1, R1, vi).

The Pre-Processing Phase

The pre-processing protocol P1 proceeds as follows:

1. The players run Steps 1 - 4 of the GMW protocol to compute the function PRE on

input 1 k

2. As in Step 5 of GMW, the players broadcast encryptions of their shares of the public

output Common and provide zero-knowledge proofs that the encryptions of the shares

are correct. However, unlike in GMW, the players do not yet broadcast their shares

of the private outputs.

3. Envelopes are used to exchange the shares of the players' private inputs. Each player

i invokes SEND(j, mj) once for each other player j where mj is player i's share of

private output oj. Once each player has observed ("Send", i, j) for each pair i and

j, each player then invokes RECEIVE(j) once for each other player j. If any player

observes ("Receive", i, j) before observing ("Send", j, k) for all k = j then that player

broadcasts an abort flag. (That is, if player j opens his envelope from player i before

sending all n of his envelopes, he is presumed to be cheating, and so each honest player

is instructed to abort.) Each player then reconstructs this private output oi. Each

player then verifies the secret keys in oi correspond to the public keys which are part of

Common by opening COM(SKilUSKi, Vi) using vi and comparing the values. Similarly,

each player checks that the secret coins in oi correspond to the public commitments

in Common. If any of these checks fail, the player broadcasts an abort flag.

Computation Phase

In the computation protocol, denoted P2, the players run a sequence of secure computation

protocols to evaluate the stage functions of G. Each of the secure computation protocols,

which we refer to as UNI-GMW protocols, are based on GMW but differ as follows:

* A UNI-GMW protocol only works on finite functions (whose size is independent of

the security parameter k).

* The players do not perform Step 1 of GMW, but instead use the keys (PKi, SKi)

computed during P1 .

* The players do not perform Step 2 of GMW, but instead use the committed random

tapes COM(Ri) computed during P1 .

* The players perform Steps 3 - 5 as in GMW except that whenever player i is instructed

to give a zero-knowledge proof that an encryption or commitment; is correct he instead

gives a single uniZK proof using key UPKi and string 7i that "The encryption or

commitment is correct and that the encryption or commitment is computed properly

using random coins committed in COM(R', rl)."

We now specify the Computation phase as follows:

1. The players run a UNI-GMW protocol on empty input to generate a random sharing

of the initial global state a .

Interpreter Ti initializes a variable, ai, to null, and maintains it throughout this phase

by appending to it all of the actions taken by player Hi and all of the partial infor-

mation it receives.

2. Let i = TURN(j). In order to emulate stage j of G, interpreter Ti queries its oracle Hi

on input ai to obtain an action xz (this is the same action that the human player sends

in an ideal execution). All interpreters then engage in n + 1 UNI-GMW protocols to

compute the following functions (we are essentially splitting the stage function gj into

n + 1 parts):

* SHAREj: This function computes a sharing of aj +l . Player i's private input to

this step consists of his share of the global state aj and his action xi . All other

players' private inputs are their own shares of aj.

* OUTPUTi,j: This function computes player i's output in stage j based on the

stage function gj. The private inputs to this function are the same as above.

For each party i (in order from 1 to n), the interpreters run a UNI-GMW protocol

on the inputs described above to produce the private partial information y: for

player i. Each interpreter then updates its state, aj, by appending yZ to it.

For all j > 1, the inputs to SHAREj and OUTPUT(i, j) include shares of the global

state produced as output from the UNI-GMW protocol computing SHAREj-1.

Therefore, when sharing these inputs, the player provides an additional uniZK

proof that the input being shared is the same as the output received in the

previous stage.

4.2 Proof of Correctness

Here we describe how to map any set of corrupted players, C, who use adversarial algo-

rithms A = {Ac}, c C, into a set of independent ideal adversaries, {Alc E C} where

each Ac corresponds to Ac. We also describe a reconciliation function f which takes the

output from said ideal adversaries, and produces a transcript of an execution of P which is

indistinguishable from a real execution.

At a high level, each of our ideal adversaries independently simulates an execution of P

against adversary algorithms {AcIc E C} as follows. During the simulation of P1, the ideal

adversary uses its rewinding ability in order to control the set of (Common, oi) outputs

generated for each of the honest players in their own simulation. By controlling these keys,

Ac can use the secret keys of the players in C - {c} to generate messages for these bad

players in each of the UNI-GMW protocols in P2. Additionally, A,: can use the uniZK

simulator to "fake" messages from the honest players in order to force particular outputs

for player c.

At the end of the ideal execution, each ideal adversary Ai outputs the ideal state of

player i consisting of all messages that Ai sent and received from the trusted party during

the ideal execution. The key goal of our simulation is to ensure that the ideal state produced

during such an ideal execution is statisticly indistinguishable from the ideal state extracted

from a real execution. We then construct a reconciliation function f that takes as input

the ideal states produced by Ai and outputs simulated views for all of the ideal players. To

implement this high-level approach, we must overcome the following three challenges:

Simulating Dishonest Player Messages: The primary challenge that differentiates our collusion-

free simulation from other protocol simulations is that we must simulate the view of a

malicious adversary interacting with other independent malicious adversaries.3 In par-

ticular, this means that Ai must simulate messages messages sent by Aj. Naively, one

might suggest that Ai generate Aj's messages by simply running Aj. However, this is

not possible because Ai does not know the messages that player j received from the

trusted party.

It is the uniqueness of our uniZK proofs and the fact that G is a public-action game

3Traditionally, in protocol simulations, all players not controlled by the malicious adversary are honest.
Such a traditional setting is easier since the honest players faithfully follow the protocol instructions -which
are, of course, carefully designed so as to make honest players easy to simulate.

which enables us to overcome this challenge. Whenever player j chooses an action a

in the game, that action is transmitted to Ai 4. The uniqueness of our proofs then

guarantees that there is only one possible way for player j to encode action a (as a

sequence of encrypted shares) and Ai -knowing the secret keys of all malicious players-

can compute this proper encoding of a. Similarly, whenever player j must send a message

that does not encode his choice of action, he has, by uniqueness, only possible message to

send and Ai can compute this message. Thus, by severely limiting the choices available

to each player, we enable the ideal adversary Ai, who does not have enough information

to run the code of the real adversaries, to nonetheless generate the messages sent by the

other malicious players.

Simulating Honest Player Messages: The second challenge is to simulate the messages sent

by the honest parties. What makes this challenging in our setting is that the messages

sent by the honest players essentially encode the outputs sent by the trusted party to

the malicious players. Indeed, a standard simulation technique is to "fake" the messages

sent by the honest parties to ensure that the output encoded in these messages is the

correct output obtained from the trusted party. The difficulty in our setting is that

the honest player messages encoding player j's output are necessarily different in Ai's

simulated execution than they are in Aj's simulated execution -- because Ai doesn't

know player j's output! This can be problematic if Aj were, for example, to hash all

honest player messages he's seen in order to select some future action. In essence, the

problem is that later actions chosen by Aj can provide Ai with additional information

about the honest-player messages that encoded earlier outputs for player j.

To overcome this challenge, Ai must update the view that he presents to Ai at each

stage based on the actions chosen by the other malicious players. In a real execution,

for any global state uk at stage k, Ai sees a random transcript consistent with ak.

Therefore, to obtain the same distribution of player i actions in an ideal execution, Ai

should endeavor to present Ai with a random transcript consistent with ak. This is

clearly impossible, but fortunately -due to the privacy properties of our cryptographic

primitives--- Ai cannot distinguish a random transcript consistent with ak from a random

transcript consistent with ao. Thus at each stage k, Ai randomly samples simulated

transcripts until it finds one consistent with statei. This sampling can be performed

4 Recall that our protocol works only for public-action games.

in expected polynomial time since the number of possible states is constant.5 Such

sampling is also used by the reconciliation function f to generate a simulated transcript

which is consistent with ac,.

4.2.1 Ideal Adversaries

In the ensuing discussion, we denote by Sc, the GMW simulator for malicious players C

as defined in Section 3.1. This simulator expects black-box access to the algorithms Ac for

c E C and produces a transcript of the interaction between honest players and the coalition

C.

The Function PRE'

The ideal adversaries for any set of corrupted parties compute a function PREc, which is

very similar to the function PRE, except that it uses a uniZK simulator in order to generate

the public and secret uniZK keys and common random strings for the honest players. The

function is defined as follows.

On input 1 k .

1. Run step 1 of the function PRE.

2. In place of step 2, run Suzk(lk), the uniZK simulator, n - IC times to obtain matching

public and private uniZK keys (UPK', USK') and simulated random strings wT for each

i V C. Run the normal uniZK generator, Guzk(lk) ICI times to generate uniZK public

and private keys, (USKc, UPKc) for each c E C.

3. Run steps 3 and 4 of the function PRE, except that instead of randomly choosing the

Ti strings for i f C, use -i' from the previous step. Generate all Tc, c E C as in PRE.

These values are organized as specified in the PRE function into a common output

Common' and a private output or.

5The difficulty in doing such sampling is that ae may occur with negligible probability and thus the
sampling procedure may require more than polynomial time. We therefore achieve expected polynomial time
sampling by using the techniques of Goldreich and Kahan [12]. That is, we approximate the probability
that au occurs and then terminate the execution if we fail to find a transcript consistent with ca within
the anticipated number of trials. Although the work of Goldreich and Kahan only considers a setting with
two possible states (success and abort), their techniques immediately generalize to settings with a constant
number of states.

Producing transcripts for P1 (pre-processing phase).

For this part, Ac makes black-box access to all bad player algorithms, {Alc E C} in order

to run Sc.

1. Share coins. Before the protocol beings, the ideal adversaries agree upon a random

tapes, Apre, AS and, for all c E C, Ac which they will use during the ideal execution.

Recall that this is a legitimate step, since our ideal model allows adversaries to share

arbitrary information before the game starts.

2. Generate known keys. Each Ac uses Apre, to run the function PRE' in order to

generate outputs (Common, o') for each player i.

3. Start P1 Each Ac runs an independent copy of Sc, using random tape As as the coins

of the simulator and random tape Ac as the coins for algorithm Ac (for each c E C),

until Step 9 of Sc, which corresponds to Step 5 of the GMW" protocol. Ac prints all

the messages output by Sc and the adversaries Ac into its transcript.

When Sc queries the oracle for the function values (during its own Step 7), each Ac

supplies Sc with the strings, (Common', o') (for all c E C), generated in Step 2.

At some point, Sc produces shares of (Common, oc) sent by the honest players to

player c (where all shares sent to player c are encrypted in c's public key). It is under-

stood that these shares can be split into the shares of the public output, Common,

and the private output oc. At this point A, prints the portion of the shares corre-

sponding to Common into the transcript (along with the ZK proofs generated by Sc

that these shares are correctly computed). The shares of o, are used in the next step.

4. Print traffic. Finally, using the shares of oc, Ac prints into the transcript envelope

traffic as described in Step 3 of the pre-processing.

UNI-GMW Simulator

To simplify the description of our ideal adversaries below we describe the following chunk of

code (which is executed repeatedly by the ideal adversary) as the "UNI-GMW Simulator"

S. (Note that this is not a simulator in the strict sense of any definition, but is simply a

sub-routine that the ideal adversary uses to generate some transcripts.) Whenever, S is

invoked, it inherits all of the state of the ideal adversary which includes (a) The output of

the PRE' function, (b) the stage j (which allows it to determine which section of the tapes

R and R' are being used), (c) the set of malicious players and their code, (d) the function

being computed (either sharej or OUTPUTi,j, (e) the output, Yc for player c.

The "Simulator" S(Ac, y,) works as follows:

1. First, the simulator must produce commitments to the initial state of the honest-but-

curious machine for each player. For each d E C, the simulator honestly generates this

message based on Rd (using the section of Rd reserved for this instance of the protocol).

The simulator produces correct uniZK proofs that these commitments are correctly

computed. For each honest player i ý' C, the simulator generates a commitment to a

random, initial state for the honest-but-curious machine and simulates a uniZK proof

that this commitment is correct. Use the black-box access to Ac to generate player

c's commitment to the initial state.

2. As in Step 6 of the GMW simulator, produce messages corresponding to the XOR

sharing of the player's inputs. For honest players, produce a random sharing of the

input 0 and give a simulated uniZK proof that the sharing is correct. For player c,

use black-box access to Ac to produce the sharing messages. If a player d E C must

give an input other than his share of aj, the ideal adversary invoking S will supply

messages to be inserted into the transcript on behalf of player d. When a player d's

only input is his share of aj, the simulator uses secret key SKd and Rd (both in od)

to determine aj, and then honestly computes a new sharing of this same value using

tape Rd (and of course gives a proper uniZK proof that this was done correctly).

3. Generate a simulated transcript of the remaining portion of the UNI-GMW execution.

During the protocol, whenever a player d E C must generate a message, generate it

honestly based on the messages received by player d (which can be read using SKd)

and the current committed state of d's (honest-but-curious) machine. Whenever an

honest player must generate a message, generate an encryption of a random message

(as done by the GMW simulator), and use the uniZK simulator to generate the proof

of correctness. Use the black-box for player Ac to generate messages (and uniZK

proofs) for player c. The simulator ensures that player c's output is Yc by generating

fake shares (and corresponding proofs) for the honest players in the final round (as in

Step 9).

Sampling Consistent Transcripts

When simulating stage j of game G, the ideal adversary Ac will have a sequence of actions

x ,...x , j - 1 selected by player c, a sequence of outputs y, . . ., y-1 received by player c

and (since the game G has public actions) a sequence of actions x,..., x for each other

malicious player d E C. To ensure a proper distribution of stage j actions for player c, Ac

must present A, with a random (simulated) transcript of the first j - 1 stages consistent

with these actions and outputs.

To accomplish this, we adopt the techniques of Goldreich and Kahan [12].6 Letting 1K

be the security parameter, we randomly sample K 2 genuine transcripts. This allows us to

estimate, to within a constant factor, the probability that xc,, x- 1 , and , .. , for

each d E C, all simultaneously occur. Call this estimate a. 7

The ideal adversary Ac now runs the UNI-GMW simulator S once for every UNI-GMW

protocol executed during the first j - 1 stages of P2.8 (Ideal adversary A, always runs S

with adversary Ac. Additionally, for each UNI-GMW protocol that produces a share of the

global state, Ac picks that produced share at random and for the UNI-GMW protocol that

produces the stage k output for player c, Ac runs the UNI-GMW simulator with output yk.)

Once he has produced such a simulated transcript, Ac checks the transcript for consistency.

That is, for each d E C (including c), Ac checks that at each stage k < j, Ad does not abort

and selects action xk (whenever it is d's turn to act in stage k).

If A, finds that the simulated transcript is not consistent with all of the given actions,

then Ac generates a new simulated transcript (as described above) and continues until either

it finds a consistent transcript or else it finds K 2/a inconsistent transcripts. In the latter

case, Ac aborts the protocol and outputs the special symbol 1.9

6 Although the work of Goldreich and Kahan only considers a setting with two possible states (success
and abort), their techniques immediately generalize to settings with a constant number of states.

70f course, in order to sample genuine transcripts we would need to know the human players Hi, for all
i 0' C. Since we don't know the human players, we can randomly select actions for the human players and,
because the game has constant size, this only makes our estimate a worse by a constant factor.

8Namely, once before stage 1 to generate shares of the initial global state, and then n + 1 times per stage
-once to compute a sharing of the new global state and n times to deliver outputs to each of the n players.

9 Note that the (as in [12]) the indistinguishability of simulated transcripts from genuine transcripts
implies that Ac outputs I with negligible probability and that the above procedure for randomly sampling
a consistent transcript runs in expected polynomial time.

Producing transcripts for P2 (Computation phase).

Recall that in this phase, Ac cannot make use of a GMW-style simulator because Ac does

not know the outputs of any malicious player other than c. Notice that Ac makes repeated

calls to the UNI-GMW simulator, S(Ac), and that S has access to all values computed by

Ac.

Throughout this simulation, Ac uses string Ac as the random coins for Ac and (when

needed) uses Ad as the random coins of Ad for all other d E C. Additionally, for all d E C,

let x' be the action selected by player d in stage j (and let xj be empty if d / TURN(j)),

and let yj be the output selected received from the trusted party in stage j. (Recall that

since G is a game of public actions that Ac obtains xd via yJ).

First Ac obtains transcript T1 as follows. Select a random value wo as player c's share of

the initial global state. Run S(Ac, wo) to generate a transcript T1 for the protocol SHAREO

which computes shares of the initial share of the global state. (Note, that T1 will be

completely independent of the global state maintained by the trusted party.)

For each stage j, Ac will have previously computed a transcript Tj during the previous

stage. Let i = TURN(j). If i = c, then Ac must send an action x3 to TG. Select a random

share wj and run S(Ac, wJ) for the function sharej. Use the transcript from this step (along

with o,) to extract player c's action xj.10 The ideal adversary now forwards x9 to TG. If

i Z c then Ac merely waits for the output y . Ideal adversary A, must still determine

whether to abort prior to the players receiving outputs in stage j. To do so Ac selects a

random share wJ and runs S(Ac, wJ) for the function SHAREj. If A, aborts in this simulated

execution, then Ac requests an abort prior to any player receiving stage j output.

Similarly, Ac must determine whether to abort prior to player x receiving output for

each x < c. To do so, the ideal adversary runs S(Ac) for the function OUTPUTX,j. If Ac

aborts in this simulated execution, then Ac requests an abort prior to player x receiving

output in stage j.

Once Ac receives yc, the ideal adversary learns x i and now samples a transcript Tj+1

that is consistent with xi,..., , for all d E C. Once all s stages have been completed, Ac

prints his local state consisting of all actions and outputs sent or received from the trusted

10This is possible because the transcript contains a commitment to x' using coins specified in the random
tape R'. Since the random tape is known, A, enumerate all possible commitments to the finitely many
actions and determine which one was chosen by Ac.

party.

Generating Reconciled Transcripts.

The reconciliation function f takes in the local states produced by the ideal adversaries and

randomly samples a transcript consistent with all of these local views. This process is quite

similar to the consistent transcript sampling for ideal adversary Ac and uses the techniques

of Goldreich and Kahan [12] (see description above).11 However, unlike Ac, function f has

access to the outputs of all players in C. Therefore, we make use of the fact that our protocol

satisfies the traditional notion of protocol security against a single monolithic adversary. 12

Let A be the (monolithic) adversary who selects a random tape Ad for each d E C, and then

computes messages from player d in protocol P by running algorithm Ad with random tape

Ad. Let SIMA be the traditional simulator for adversary A and protocol P.

On input the local states ad (for each d E C), the function f obtains simulated tran-

scripts by running SIMA, and whenever SIMA requires an output y' from the trusted

party, f provide the simulation with the appropriate yJ output by Ad at the end of the

ideal execution. The function f checks consistency of a transcript by extracting the local

state ad of each player d E C. If ad = O' for each d E C then the transcript is consis-

tent with the outputs of the ideal adversaries and f outputs the transcript. Otherwise, f

repeatedly samples transcripts until it either finds one that is consistent or obtains K 2/a

inconsistent transcripts -where 1K is the security parameter and a is an estimate of the

probability that a genuine transcript is consistent with {ad : d E C}. In the latter case,

function f outputs the special symbol 1.13

4.2.2 Proof Sketch of Collusion-Freeness

The key component of the proof is showing that the global state produced by executing the

ideal adversaries {Ac : c E C} along with any set of human players {Hi : i } C} yields a

"Here it is again essentially that G is finite and thus that there are only a constant number of possible
global states of the game. Otherwise, we would not be able to invoke the techniques of Goldreich and Kahan
to obtaining an expected polynomial-time sampling procedure.

' 2Since our protocol closely follows the structures of the GMW protocol, that our protocol satisfies tradi-
tional notions of security is an immediate corollary of [10].

13Note that in the case that some A. outputs I, then f has no hope of finding a consistent transcript and
will also output 1. However, this occurs with only negligible probability.

global game state that is computationally indistinguishable 14 the extracted global states of

a real execution with {Ac : c E C} and {Hi : i : C). In essence, this result, whose proof is

outlined belowed, shows that during the protocol, the real adversaries have no more power

to affect the global state than they would in an ideal execution.

Given this result, the collusion-freeness of the protocol follows immediately from the

fact that f is a properly distributed transcripts in expected polynomial time. This in

turn follows from (1) the fact that our protocol is secure in the traditional sense against

monolithic adversaries and (2) the techniques of Goldreich and Kahan.

Lemma 1 For each malicious player c E C and for all possible human players correspond-

ing to the players i V C, the following ensembles are indistinguishable.

{e -((T H : i C C) 1 (Ac cE C)) :EXT(TRAFFIC(e))

e - ((H : i C) t1 (A : c EC)) :'o(e) k

PROOF SKETCH OF LEMMA 1

We refer to the top ensemble as REAL, and the bottom ensemble as IDEAL. First, for

clarity, we define REALgood to be the distribution REAL conditioned on the event that

no adversary Ad in the execution produces an acceptable uniZK proof of a false theorem.

Similarly, we define IDEALgoo d to be the distribution IDEAL conditioned on the fact that

for all d E C. the copy of Ad being run inside Ad does not produce an acceptable uniZK

proof of a false theorem. Since false theorems can only be proved with negligible probability,

it is clear that REAL c REALgOOd and IDEAL c IDEALgood.15

At a high level our technique is to bridge the gap between the IDEALgood and REALgood

executions with a series of four hybrid executions.

First, we consider a Hybrid A where instead of Ac having secret keys for the players in

C and honestly generating messages on their behalf, Ac only has knowledge of the secret

keys of player c, and must instead rely on an external party to honestly generate message
14Since the number of possible global states is constant, in this case the notion of computational indistin-

guishability coincides with the notion of the statistical indistinguishability.
15 0f course, this assumes that the uniZK keys for the players in C are generated properly. In an ideal

execution, it is clear from the code of the ideal adversary that the uniZK are properly generated. However,
to prove this formally in a real execution requires using the security of the GMW protocol used to generate
the uniZK keys during pre-processing.

for the players in C - {c}. Additionally, Ac relies on this external party to check the

consistency of the simulated transcripts it generates. This hybrid is indistinguishable from

IDEALgOOd because the perfect secrecy of the envelopes used in pre-processing ensures that

no information about the secret keys of player d E C can be deduced from player c's view

(and by design, the messages for the players in C - {c} are generated in exactly the same

manner in both IDEALgood and Hybrid A).

In a Hybrid A execution: (1) the ideal adversary only knows the secret keys of player c

(2) the committed random strings in the simulated UNI-GMW transcripts are completely

independent from the global state and the outputs received by player c and (3) some of

the players other than c are sending "fake" messages to c to force c to receive certain

outputs. This setting is quite similar to a traditional ideal GMW execution with only a single

malicious player c. This motivates a second Hybrid B in which Ac's UNI-GMW simulator

"magically" receives committed strings that correspond to the true global state and all

honest player messages are honestly generated in a fashion consistent with this global state.

(However, the proofs that these messages are correct are still simulated by Ac.) Hybrid

B is indistinguishable from the Hybrid A due to the correctness of the traditional GMW

protocol (which tells us that "fake" honest player messages and committed strings that are

independent of the global state are indistinguishable from real honest player messages and

committed string consistent with the global state).

In a Hybrid B execution, the ideal adversary still generates simulated uniZK keys for

all of the honest parties and simulates uniZK proofs that the honest player messages were

correct. We next introduce a Hybrid C in which the ideal adversary no longer generates

simulated uniZK keys for the honest players but instead "magically" receives correct uniZK

keys for the honest players. In addition to "magically receiving correctly generated honest

player messages," the ideal adversary also "magically" receives proper uniZK proofs that

the honest player messages are correctly generated. This hybrid is indistinguishable from

the Hybrid B because of the zero-knowledge property of the uniZK proof system.

In a Hybrid C execution we observe that (1) each of the ideal adversaries receives (the

same) committed tapes consistent with the global state and (2) each of the ideal adversaries

receives (the same) correctly computed honest player messages consistent with the global

state. Additionally, we observe that the consistency of Ac's transcripts ensures that the

actions taken in Ac's transcripts to correspond perfectly with the actions taken in Ad's

transcripts (for all d E C). For these reasons, and because no copy of Ad proves a false

theorem, the theorems being proven in Ac's transcripts correspond perfectly to the theorems

being proven in Ad's transcripts. However, note that in Ac's transcript, Ac produces uniZK

proofs that messages sent by player c are correct, while in Ad's transcript these uniZK

proofs that player c's messages are correct are produced by some external party.

We now consider a Hybrid D in which each Ad magically receives the uniZK proofs (and

corresponding messages) generated by Ac's copy of Ac. This hybrid is indistinguishable

from Hybrid C since the uniqueness of the uniZK proof system (along with the fact that

all of the theorems that are proven have only a single witness) ensures that Ac must be

generating the same uniZK proofs as the external party used in Hybrid C.16

We now observe that during the computation-phase of a Hybrid D execution, Ac's

transcript contains committed tapes consistent with the global state, properly generated

honest player messages consistent with the global state, properly generated honest player

uniZK proofs and messages on behalf of player d (for all d E C) which are actually generated

by Ad. That is, the computation-phase of a Hybrid D execution proceeds exactly as the

computation-phase of a real execution. Therefore, the only difference between REALgood

and Hybrid D is that (during pre-processing) REALgood uses a real execution of a GMW

protocol to compute Pre, while Hybrid D uses a simulated execution of this pre-processing

protocol. (Although we note that the pre-processing phase of both a REALgOOd execution

and a Hybrid D execution produce properly distributed outputs for the function Pre).

Therefore, Hybrid D and REALgood are indistinguishable because of the security of the

GMW protocol used during pre-processing.

160f course this assumes that Ad is giving valid uniZK proofs. However, if Ad ever gives an invalid proof,
Ad would request an abort and the trusted party would immediately notify A,.

Chapter 5

Impossibility Results

All of our impossibility results make use of the following ideal game H (observe that H is

a finite game with publicly observable actions).

Figure 5-1: Game H. First, the trusted party privately hands Player 1 three cards, each
of which is red with probability ½ and black otherwise. Player 1 then (publicly) guesses
the color of card 1, Player 2 (publicly) guesses the color of card 2 and Player 3 (publicly)
guesses the color of card 3. The trusted party then reveals to all players the identities of
the players who guessed correctly.

5.1 Impossibility of Broadcast-Only Protocols

Here we prove that a collusion-free protocol which works for any finite game must use a

physically secure channel.' Since the protocol we present in Section 2 invokes a physically

'Although our proof is with respect to our particular definition of collusion-freeness, the intuition behind
this point does not rely on the specific details of our model. A similar theorem could be proved with respect
to any sufficiently strong definition of collusion-freeness.

private channel only in the final round of pre-processing, its use of physically private channels

is in some sense optimal.

Theorem 2 The game H (which is finite and has publicly observable actions) has no

collusion-free protocol whose only communication channel is broadcast.

Lemma 2 In the game H, a traditional (monolithic) adversary can perform attacks which

cannot be simulated in a collusion-free ideal execution of H as defined in Section 2.

Proof:

Recall that a traditional (monolithic) adversary receives all messages sent to any of the

members of the coalition C and dictates all messages to be sent by any members of C.

Consider a coalition C = {1, 2}. An adversary A1,2 that receives all messages sent to player

1 can determine the color of cards 1 and 2. Therefore, A 1,2 can instruct player 1 and player

2 to each guess correctly in every execution.

Now consider a coalition-free ideal execution of H. In such an ideal execution, after

player 1 learns the color of the cards, the only information from player 1 that player 2

receives from the trusted party is the guess player 1 makes about card 1. Therefore, if

player 1 wins (i.e., correctly guesses the color of card 1) with probability 1, then player 2

receives no information about the color of card 2 (since the color of each card is chosen

independently by the trusted party). In this situation, the mutual information between

the color of card 2 and the guess of player 1 (conditioned on Player 1 winning) is zero.

Therefore, player 2 cannot win with probability greater than ½, and thus there cannot exist

ideal adversaries A1 and A2 that cause player 1 and player 2 to each win with probability

1.

Lemma 3 If protocol H uses only broadcast channels, then any attack performed by a

(traditional) monolithic adversary A can be simulated by a set of independent adversaries

{A: c E C} in a collusion-free real execution of H (as defined in Section 2).

Proof: With only broadcast, independent adversaries in a collusion-free real execution can

emulate any monolithic adversary A, and hence collusion-free security is not possible. To

show this formally, we construct new adversaries {A': c E C} who operate in a collusion-

free real execution of II and generate exactly the same distribution of messages as A.

Our set of adversaries, A'c work as follows. Before the protocol starts, the adversaries

A'c agree upon a random tape, r, via a coin-flipping protocol. Once the protocol starts,

each machine begins to execute an independent copy of A using the random tape r. During

the protocol, each independent adversary feeds all of the messages that are broadcast into

A. Whenever it is A'c's turn to broadcast a message, it broadcasts whatever message A

would have sent on behalf of party c. Since each independent A' is supplying exactly the

same inputs and random tape to copy of A it is running, the ICI copies of A will always have

the same state, and will generate exactly the same messages as the monolithic adversary,

A, when run in the standard model.

PROOF OF THEOREM 2: Lemma 3 states that when a protocol H uses only broadcast,

then any attack by a traditional (monolithic) adversary can be simulated by independent

adversaries in a collusion-free real execution. If II were collusion-free, then these attacks

could also be simulated in a collusion-free ideal execution. If I worked for any finite game

then this would contradict Lemma 2. Thus, a collusion-free broadcast protocol for any finite

game cannot exist.

5.2 Impossibility of Infinite Games

Here we show that not all infinite games have collusion-free protocols. Although we choose

a simple variation of H as our counter-example, our techniques apply to a large class of

games. For example, a similar proof could show that there is no collusion-free protocol for

the game "keep playing hands of poker as long as all players wish to continue".

Theorem 3 There exists an infinite game H' with publicly observable actions that has

no collusion-free protocol whose communication channels consist of broadcast and plain

envelopes.

Proof:

Let H' be a repeated version of game H in which after each round of playing H, player

1 decides whether the game should continue or terminate. (That is, the game H is repeated

an a priori unbounded number of times.) After player 1 decides to terminate, the trusted

party announces which players guessed correctly in each round.

From Theorem 2 we know that any collusion-free protocol for a finite game must use

a physically private channel. The same is true for infinite games (by the same argument).

Therefore, suppose a collusion-free protocol 11 for H' were to use the physically private

channel only once. There are two cases to consider.

If the physically private channel is used after player 1 decides to terminate the game,

then at this point, all of the players' moves have to be determined by the transcript of II

thus far. Otherwise, the players' in a real execution could condition their moves based on

the knowledge of when H' terminates- something not possible in an ideal execution of

H'. If the players' moves have already been determined, then the phase of 1 in which these

moves were chosen used only broadcast. Therefore, by an argument similar to one presented

in Lemma 3, during the entire period of 11 when actions are chosen, the bad players can

simulate any monolithic adversary.

Suppose the physical channel is used before player 1 indicates that the game should

terminate. In this case there are an arbitrary number of rounds that occur after the use of

the physically private channel. Let M be an upper bound on the number of bits sent to any

player over the physically private channel. (Note since the number of rounds is unbounded,

M must be independent of the number of rounds). Consider a malicious player 1 and player

2 who agree on an AM bit random string R prior to the protocol.2 In each round i < M of

H, player 1 guesses "Red" if the ith bit of the (concatenation of) the message(s) received

by player 1 in the physically private channel is equal to the ith bit of R and guesses "Black"

otherwise. Note that after round M, player 2 has knowledge of all messages received by

player 1 throughout the protocol. Therefore player 2 can compute any value that player 1

can compute. Thus in round M + 1 of the protocol, since player 1 can compute the color of

card 2, player 2 must also be able to compute the color of card 2. This means that player

1 and player 2 can both correctly guess the color of their card in round M with probability

1. This is impossible in an ideal execution of H.

We now consider the case where the physically private channel is used multiple times

throughout the protocol. If all uses of the channel occur after player 1 decides to terminate

H', then the argument from the first case above applies. Otherwise, consider a malicious

player 1 and player 2 who agree before the game on a random bit b. We focus our attention

2Alternatively, in the case that M is not known prior to the start of the protocol players 1 and 2 could
agree on the seed of a pseudo-random number generator.

on the first time that the physically private channel is used after the completion of round

1. (Note if the physically private channel is used only prior to the end of round 1, then

the argument from the second case above applies.) Let round r be the first round of H

that begins after this use of the physically private channel. During each round i < r of

H, player 1 correctly guesses the color of card 1 and player 2 makes his guess randomly.

Then, when the physical channel is used prior to round r, player 1 privately sends to player

2 (unobserved by the other players) the color of card 2 in round 1. Subsequently in round

r, player 1 again correctly guesses the color of card 1 and player 2 makes a guess which is

equal to the color of card 2 in round 1. Player 1 then terminates the game. The trusted

party's announcement allows everyone to conclude that player 1 guessed correctly in every

round and player 2's guess in round r was equal to the color of card 2 in round 1. The

ability for player 2 to correlate his guesses this way is impossible in an ideal execution of

H'.

5.3 Impossibility of Games With Private Actions

Here we prove that not all games with private actions have collusion-free protocols. Al-

though we choose a simple variation of H as are counterexample, our techniques apply to

a broad class of games with private actions including the game Poker' discussed in the

Introduction.

Although there do not exist collusion-free protocols for games with private actions, one

can easily transform a private action game G into a similar game G' with publicly observable

actions in such a way that G and G' are identical with respect to what can be accomplished

by a traditional monolithic adversary. This can be done as follows: Every time a player

must take a private action in G chosen from set A, the trusted party in G' sends the player

a random mapping f from A to {0, 1}k, the player publicly announces f(a) and the trusted

party updates the global state as though the player had chosen a. Note that G' has more

opportunities for game-intrinsic communication than G. However, in general, the power of

a set of maliciously colluding players is much less in a collusion-free protocol for G' than in

a traditional secure protocol for G. (In light of Theorem 4, this is in some sense the best

one can hope for).

Theorem 4 There exists a finite game, H*, with private actions that has no collusion-free

protocol whose communication channels consist of broadcast and plain envelopes.

Proof: Let H* be the following variation of H. First, the trusted party privately hands

each of the three players a card which is red with probability ! and black otherwise. Player

1 then privately guesses the color of card 1, Player 2 (privately) guesses the color of card

2 and Player 3 (privately) guesses the color of card 3. The trusted party then reveals the

guesses of all players as well as the colors of all three cards.

Assume, for the sake of contradiction, that II* is a collusion-free protocol for H*. Assume

that when the security parameter is 1K, that I[* has RK rounds. Note that RK must be

polynomial in K.

Consider the following two strategies for player 1: Red1 is the strategy "play honestly

and guess red", and Black1 is the strategy "play honestly and guess black". Notice that

in any execution e of fI* (with security parameter 1K) there must be a first round R'(e)

where the message prescribed by Red1 differs from the message prescribed by Black1. We

can analogously define strategies Red2 and Black2 for player 2 and let R 2 (e) be the first

round where the message prescribed by Red2 differs from the message prescribed by Black2.

Finally, we analogously define Red3, Black3 and R 3(e) for player 3.

Notice that there must be some player i such that for infinitely many values of K, the

probability over executions e with security parameter 1K that Ri(e) = min(R1 (e), R 2(e), R 3 (e))

is at least 1/3. Therefore, there is some player j 5 i such that for infinitely many values of

K, with probability at least 1/6, R'(e) < Rj(e) and player j observes player i's round-Ri(e)

message.

Now consider the following malicious strategies of players i and j. Before the game,

players i and j agree on a (sufficiently long) random string X. In round RZ(e), player i

computes the message Mred that would be sent by strategy Redi and the message Mlblack

that would be sent by strategy Redj. If Mred . X 3 differs from Mblack - X then player i

chooses the guess g such that Mg -X corresponds to the color of Card i.4 Otherwise, player

i chooses his guess at random. In round RJ (e), player j randomly selects a round r < R3 (e)

such that player j observed a message m from player i in round r. (If no such round r exists

-- e.g., if round R3 (e) is the first round-- then let player j selects message m at random.)

player j then selects the guess corresponding to m _ X. 5

3Where l -X denotes the inner product of Al and X.
4 Here we can use the convention that 0 means "Black" and 1 means "Red".
5Again, we can use the convention that 0 means "Black" and 1 means "Red".

With these malicious strategies, let us consider the probability that Player j's guess

is equal to the color of Card i. For infinitely many K, with probability at least a 1/6,

Ri(e) < RJ(e) and player j observes player i's round-Ri(e) message. In those cases, with

probability 1/2 Mred -X Z Mblack -X and with probability at least 1/RK player j guesses

7T = R (e). Notice that when all these events occur, player j correctly guesses the color of

card i and in all other cases player j guesses the color of card i with probability 1/2. So for

infinitely many values of K with probability at least - + 4 player correctly guesses

the color of card i. Thus, since RK is polynomial in K, this contradicts the fact that H* is

collusion free. This is because in an ideal execution of H* all strategies of player j cause j

to correctly guess the color of card i with probability exactly 1/2.

Chapter 6

Extensions and Future Directions

A Stronger Notion

In essence, our notion of a collusion-free protocol captures that when the malicious players

have no side channels available then the protocol prevents the creation of subliminal side

channels. However, the assumption that no pair of malicious players has any side channels

available during protocol execution is quite strong and may not be applicable in many

settings. Therefore, it is desirable to consider a stronger notion of collusion-freeness which

provides meaningful guarantees even when some of the malicious players have side channels

available.

Consider the following (informal) definition of a strongly collusion-free protocols. For all

functions f (mapping pairs of players to integers), protocol executions in which each player

i has access to an undetectable side channel that allows him to secretly send (up to) f(i, j)

bits of information to each player j can be simulated by ideal executions in which the ideal

adversaries have access to the same side channels.

In essence, such strongly collusion-free protocols captures that no matter what secret side

channels the players have available, the protocol does not enhance the capacity of existing

side channels. In particular, this guarantees that if malicious players 1 and 2 have formed

a coalition using an undetectable side channel and malicious players 3 and 4 have formed a

coalition using an undetectable side channel, then the protocol prevents the former coalition

from colluding with the latter.

Fortunately, our proof that the protocol presented in Section 4.1 is collusion-free protocol

can be easily modified to show that the same protocol is also strongly collusion-free. 1

Circumventing Impossibility Results

In Section 5 we showed that in a model with broadcast messages and physical envelopes it is

impossible to achieve collusion-free protocols for every game. We believe results such as this

motivate the study of alternative models of communication. The work of Izmalkov, Lepin-

ski and Micali [16] shows that in a model with physical envelopes and a simple device for

randomizing the order of envelopes (namely, a ballot-box) one can achieve collusion-free pro-

tocols for any game -- including games infinite games with private actions! Although their

ballot-box model is a natural model of communication used in conducting secure elections

for hundreds of years, it is unlikely that their model is the only one permitting collusion-free

protocols for all games. It thus interesting to ask, in what other communication models can

one construct collusion-free protocols for every game?

One should also note that the impossibility results in Section 5 rule out collusion-free pro-

tocols for many infinite (or private-action) games. However, they do not rule out collusion-

freeness for all such games. Indeed, the notion of Fair Zero-Knowledge put forward in

[18] is essence a collusion-free protocol for the infinite game in which a prover proves to

a verifier, in zero-knowledge, an arbitrary number of theorems. Given that collusion-free

protocols exist for this specific zero-knowledge game, it is natural to ask what other infinite

(or private-action) games have collusion-free protocols in our model of broadcast messages

and physical envelopes.

Improving Efficiency

An undesirable feature of our construction is that for many games (including poker) the

running time of the simulators is exponential in the natural representation of the game. This

'Essentially, there are two cases. If the capacity of the side channel from player c to player d has constant
capacity (independent of the security parameter), then whenever A, sends a side message to Ad, Ac sends
the same side message to Ad. Additionally, when checking the consistency of simulated transcripts, AD does
a further check to ensure that in the simulated transcript A, would have actually sent the observed side
channel messages to Ad. (The transcript sampling procedure can still be performed in expected polynomial
time because in this case the side channel messages are all of constant size.)

Alternatively, if the side channel from player c to player d has capacity that grows asymptoticly, then for
all sufficiently large security parameters, the capacity of the side channel is greater than the size of G. In
this case, A, forwards all of the ideal messages he receives to Ad. In this case, Ad has all the information
needed to run Ad and can run a slightly modified UNI-GMW simulator that treats has black-box access to
bothA, and Ad.

isn't technically a problem for us since all the games we deal with have constant size. Still

this inefficiency is undesirable since it necessitates choosing such large security parameters

as to make a collusion-free game of Mental Poker impractical. Therefore, it is interesting

to consider how efficiency one can make the simulation of a collusion-free protocol. In

particular, even for our protocol, it is very possible that improved analysis could yield more

efficient simulation.

In general, the proof of Theorem 3 implies some limit on the efficiency of a collusion-

free protocol. (That is, if the security parameters that one uses are too small then the

game-intrinsic communication can be used to transmit a substantial amount of information

about the players' secret keys and violate collusion-freeness.) However, there seems to be a

gap between the size of the security parameters required by our construction and the lower

bounds implied by Theorem 3.

Composability

It is easily seen that universally composable collusion-free protocols are impossible to con-

struct (at least in our model of broadcast messages and physical envelopes2). Intuitively,

malicious players can share the secret keys, created during the preprocessing of a collusion-

free protocol, using inherent communication in other protocols running concurrently.

However, although arbitrary composition of collusion-free protocols is impossible, it is

interesting to consider more limited settings of protocol composition. For example, is it

possible for a set of players to play to two fair games of poker concurrently?

2The ballot-box protocol of [16] is both collusion-free and universally composible.

Bibliography

[1] Michael Backes and Christian Cachin. Public-key steganography with active attacks.

In TCC '05, 2005.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for fault-tolerant

distributed computing. In Proc. of STOC '88, pages 1-10, 1988.

[3] Christian Cachin. An information-theoretic model for steganography. In Proc. of

Information Hiding '98, pages 306-318, 1998.

[4] Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In Proc. 42nd FOCS, pages 136-145, 2001.

[5] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Noar. Adaptively secure multi-party

computation. In Proc. 28th STOC, pages 639-648, 1996.

[6] D. Chauin, C. Crepeau, and I. Damgard. Multi-party unconditionally secure protocols.

In STOC '88, 1988.

[7] Claude Crepeau. A secure poker protocol that minimizes the effects of player coalitions.

In Crypto '85, volume 218 of LNCS, pages 73-86. Springer, 1986.

[8] Alfredo DeSantis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-

knowledge with preprocessing. In CRYPTO 1988, pages 269-282. 1991.

[9] Yevgeniy Dodis and Silvio Micali. Parallel reducibility for information-theoretically

secure computation. In CRYPTO '00, pages 74-92, 2000.

[10] 0. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC

'87, pages 218-229. ACM, 1987.

[11] Oded Goldreich. Foundations of Cryptography, volume 2, chapter 7 (General Crypto-

graphic Protocols). Cambridge University Press, 2004.

[12] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge

proof systems for np. Journal of Cryptology, 9(3), 1996.

[13] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their

validity or all languages in np have zero-knowledge proofs. Journal of the A CM, 38(3),

1991.

[14] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive

proof-systems. SIAM. J. Computing, 18(1):186-208, February 1989.

[15] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and

System Science, 28(2), 1984.

[16] Sergei Izmalkov, Matt Lepinski, and Silvio Micali. Rational secure function evaluation

and ideal mechanism design. In Proceedings of FOCS '05, 2005.

[17] Matt Lepinski, Silvio Micali, and abhi shelat. Collusion-free protocols. In Proceedings

of STOC '05, 2005.

[18] Matt Lepinski, Silvio Micali, and abhi shelat. Fair-zero knowledge. In TCC 2005,

pages 245-263, 2005.

[19] Nicholas Hopper Luis von Ahn and John Langford. Provably secure steganography. In

Crypto '02, 2002.

[20] Leonid Reyzin Nenad Dedic, Gene Itkis and Scott Russell. Upper and lower bounds

on black-box steganography. In TCC '05, 2005.

[21] Luis von Ahn and Nicholas Hopper. Public-key steganography. In Eurocrypt '04, 2004.

